]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/binfmt_elf.c | |
3 | * | |
4 | * These are the functions used to load ELF format executables as used | |
5 | * on SVr4 machines. Information on the format may be found in the book | |
6 | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | |
7 | * Tools". | |
8 | * | |
9 | * Copyright 1993, 1994: Eric Youngdale ([email protected]). | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/kernel.h> | |
14 | #include <linux/fs.h> | |
15 | #include <linux/stat.h> | |
16 | #include <linux/time.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/mman.h> | |
19 | #include <linux/a.out.h> | |
20 | #include <linux/errno.h> | |
21 | #include <linux/signal.h> | |
22 | #include <linux/binfmts.h> | |
23 | #include <linux/string.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/fcntl.h> | |
26 | #include <linux/ptrace.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/shm.h> | |
29 | #include <linux/personality.h> | |
30 | #include <linux/elfcore.h> | |
31 | #include <linux/init.h> | |
32 | #include <linux/highuid.h> | |
33 | #include <linux/smp.h> | |
34 | #include <linux/smp_lock.h> | |
35 | #include <linux/compiler.h> | |
36 | #include <linux/highmem.h> | |
37 | #include <linux/pagemap.h> | |
38 | #include <linux/security.h> | |
39 | #include <linux/syscalls.h> | |
40 | #include <linux/random.h> | |
41 | ||
42 | #include <asm/uaccess.h> | |
43 | #include <asm/param.h> | |
44 | #include <asm/page.h> | |
45 | ||
46 | #include <linux/elf.h> | |
47 | ||
48 | static int load_elf_binary(struct linux_binprm * bprm, struct pt_regs * regs); | |
49 | static int load_elf_library(struct file*); | |
50 | static unsigned long elf_map (struct file *, unsigned long, struct elf_phdr *, int, int); | |
51 | extern int dump_fpu (struct pt_regs *, elf_fpregset_t *); | |
52 | ||
53 | #ifndef elf_addr_t | |
54 | #define elf_addr_t unsigned long | |
55 | #endif | |
56 | ||
57 | /* | |
58 | * If we don't support core dumping, then supply a NULL so we | |
59 | * don't even try. | |
60 | */ | |
61 | #ifdef USE_ELF_CORE_DUMP | |
62 | static int elf_core_dump(long signr, struct pt_regs * regs, struct file * file); | |
63 | #else | |
64 | #define elf_core_dump NULL | |
65 | #endif | |
66 | ||
67 | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | |
68 | # define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE | |
69 | #else | |
70 | # define ELF_MIN_ALIGN PAGE_SIZE | |
71 | #endif | |
72 | ||
73 | #ifndef ELF_CORE_EFLAGS | |
74 | #define ELF_CORE_EFLAGS 0 | |
75 | #endif | |
76 | ||
77 | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | |
78 | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | |
79 | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | |
80 | ||
81 | static struct linux_binfmt elf_format = { | |
82 | .module = THIS_MODULE, | |
83 | .load_binary = load_elf_binary, | |
84 | .load_shlib = load_elf_library, | |
85 | .core_dump = elf_core_dump, | |
86 | .min_coredump = ELF_EXEC_PAGESIZE | |
87 | }; | |
88 | ||
89 | #define BAD_ADDR(x) ((unsigned long)(x) > TASK_SIZE) | |
90 | ||
91 | static int set_brk(unsigned long start, unsigned long end) | |
92 | { | |
93 | start = ELF_PAGEALIGN(start); | |
94 | end = ELF_PAGEALIGN(end); | |
95 | if (end > start) { | |
96 | unsigned long addr; | |
97 | down_write(¤t->mm->mmap_sem); | |
98 | addr = do_brk(start, end - start); | |
99 | up_write(¤t->mm->mmap_sem); | |
100 | if (BAD_ADDR(addr)) | |
101 | return addr; | |
102 | } | |
103 | current->mm->start_brk = current->mm->brk = end; | |
104 | return 0; | |
105 | } | |
106 | ||
107 | ||
108 | /* We need to explicitly zero any fractional pages | |
109 | after the data section (i.e. bss). This would | |
110 | contain the junk from the file that should not | |
111 | be in memory */ | |
112 | ||
113 | ||
114 | static int padzero(unsigned long elf_bss) | |
115 | { | |
116 | unsigned long nbyte; | |
117 | ||
118 | nbyte = ELF_PAGEOFFSET(elf_bss); | |
119 | if (nbyte) { | |
120 | nbyte = ELF_MIN_ALIGN - nbyte; | |
121 | if (clear_user((void __user *) elf_bss, nbyte)) | |
122 | return -EFAULT; | |
123 | } | |
124 | return 0; | |
125 | } | |
126 | ||
127 | /* Let's use some macros to make this stack manipulation a litle clearer */ | |
128 | #ifdef CONFIG_STACK_GROWSUP | |
129 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | |
130 | #define STACK_ROUND(sp, items) \ | |
131 | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | |
132 | #define STACK_ALLOC(sp, len) ({ elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; old_sp; }) | |
133 | #else | |
134 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | |
135 | #define STACK_ROUND(sp, items) \ | |
136 | (((unsigned long) (sp - items)) &~ 15UL) | |
137 | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | |
138 | #endif | |
139 | ||
140 | static int | |
141 | create_elf_tables(struct linux_binprm *bprm, struct elfhdr * exec, | |
142 | int interp_aout, unsigned long load_addr, | |
143 | unsigned long interp_load_addr) | |
144 | { | |
145 | unsigned long p = bprm->p; | |
146 | int argc = bprm->argc; | |
147 | int envc = bprm->envc; | |
148 | elf_addr_t __user *argv; | |
149 | elf_addr_t __user *envp; | |
150 | elf_addr_t __user *sp; | |
151 | elf_addr_t __user *u_platform; | |
152 | const char *k_platform = ELF_PLATFORM; | |
153 | int items; | |
154 | elf_addr_t *elf_info; | |
155 | int ei_index = 0; | |
156 | struct task_struct *tsk = current; | |
157 | ||
158 | /* | |
159 | * If this architecture has a platform capability string, copy it | |
160 | * to userspace. In some cases (Sparc), this info is impossible | |
161 | * for userspace to get any other way, in others (i386) it is | |
162 | * merely difficult. | |
163 | */ | |
164 | ||
165 | u_platform = NULL; | |
166 | if (k_platform) { | |
167 | size_t len = strlen(k_platform) + 1; | |
168 | ||
169 | /* | |
170 | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | |
171 | * evictions by the processes running on the same package. One | |
172 | * thing we can do is to shuffle the initial stack for them. | |
173 | */ | |
174 | ||
175 | p = arch_align_stack(p); | |
176 | ||
177 | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | |
178 | if (__copy_to_user(u_platform, k_platform, len)) | |
179 | return -EFAULT; | |
180 | } | |
181 | ||
182 | /* Create the ELF interpreter info */ | |
183 | elf_info = (elf_addr_t *) current->mm->saved_auxv; | |
184 | #define NEW_AUX_ENT(id, val) \ | |
185 | do { elf_info[ei_index++] = id; elf_info[ei_index++] = val; } while (0) | |
186 | ||
187 | #ifdef ARCH_DLINFO | |
188 | /* | |
189 | * ARCH_DLINFO must come first so PPC can do its special alignment of | |
190 | * AUXV. | |
191 | */ | |
192 | ARCH_DLINFO; | |
193 | #endif | |
194 | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | |
195 | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | |
196 | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | |
197 | NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | |
198 | NEW_AUX_ENT(AT_PHENT, sizeof (struct elf_phdr)); | |
199 | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | |
200 | NEW_AUX_ENT(AT_BASE, interp_load_addr); | |
201 | NEW_AUX_ENT(AT_FLAGS, 0); | |
202 | NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | |
203 | NEW_AUX_ENT(AT_UID, (elf_addr_t) tsk->uid); | |
204 | NEW_AUX_ENT(AT_EUID, (elf_addr_t) tsk->euid); | |
205 | NEW_AUX_ENT(AT_GID, (elf_addr_t) tsk->gid); | |
206 | NEW_AUX_ENT(AT_EGID, (elf_addr_t) tsk->egid); | |
207 | NEW_AUX_ENT(AT_SECURE, (elf_addr_t) security_bprm_secureexec(bprm)); | |
208 | if (k_platform) { | |
209 | NEW_AUX_ENT(AT_PLATFORM, (elf_addr_t)(unsigned long)u_platform); | |
210 | } | |
211 | if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { | |
212 | NEW_AUX_ENT(AT_EXECFD, (elf_addr_t) bprm->interp_data); | |
213 | } | |
214 | #undef NEW_AUX_ENT | |
215 | /* AT_NULL is zero; clear the rest too */ | |
216 | memset(&elf_info[ei_index], 0, | |
217 | sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | |
218 | ||
219 | /* And advance past the AT_NULL entry. */ | |
220 | ei_index += 2; | |
221 | ||
222 | sp = STACK_ADD(p, ei_index); | |
223 | ||
224 | items = (argc + 1) + (envc + 1); | |
225 | if (interp_aout) { | |
226 | items += 3; /* a.out interpreters require argv & envp too */ | |
227 | } else { | |
228 | items += 1; /* ELF interpreters only put argc on the stack */ | |
229 | } | |
230 | bprm->p = STACK_ROUND(sp, items); | |
231 | ||
232 | /* Point sp at the lowest address on the stack */ | |
233 | #ifdef CONFIG_STACK_GROWSUP | |
234 | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | |
235 | bprm->exec = (unsigned long) sp; /* XXX: PARISC HACK */ | |
236 | #else | |
237 | sp = (elf_addr_t __user *)bprm->p; | |
238 | #endif | |
239 | ||
240 | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ | |
241 | if (__put_user(argc, sp++)) | |
242 | return -EFAULT; | |
243 | if (interp_aout) { | |
244 | argv = sp + 2; | |
245 | envp = argv + argc + 1; | |
246 | __put_user((elf_addr_t)(unsigned long)argv, sp++); | |
247 | __put_user((elf_addr_t)(unsigned long)envp, sp++); | |
248 | } else { | |
249 | argv = sp; | |
250 | envp = argv + argc + 1; | |
251 | } | |
252 | ||
253 | /* Populate argv and envp */ | |
254 | p = current->mm->arg_start; | |
255 | while (argc-- > 0) { | |
256 | size_t len; | |
257 | __put_user((elf_addr_t)p, argv++); | |
258 | len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES); | |
259 | if (!len || len > PAGE_SIZE*MAX_ARG_PAGES) | |
260 | return 0; | |
261 | p += len; | |
262 | } | |
263 | if (__put_user(0, argv)) | |
264 | return -EFAULT; | |
265 | current->mm->arg_end = current->mm->env_start = p; | |
266 | while (envc-- > 0) { | |
267 | size_t len; | |
268 | __put_user((elf_addr_t)p, envp++); | |
269 | len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES); | |
270 | if (!len || len > PAGE_SIZE*MAX_ARG_PAGES) | |
271 | return 0; | |
272 | p += len; | |
273 | } | |
274 | if (__put_user(0, envp)) | |
275 | return -EFAULT; | |
276 | current->mm->env_end = p; | |
277 | ||
278 | /* Put the elf_info on the stack in the right place. */ | |
279 | sp = (elf_addr_t __user *)envp + 1; | |
280 | if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) | |
281 | return -EFAULT; | |
282 | return 0; | |
283 | } | |
284 | ||
285 | #ifndef elf_map | |
286 | ||
287 | static unsigned long elf_map(struct file *filep, unsigned long addr, | |
288 | struct elf_phdr *eppnt, int prot, int type) | |
289 | { | |
290 | unsigned long map_addr; | |
291 | ||
292 | down_write(¤t->mm->mmap_sem); | |
293 | map_addr = do_mmap(filep, ELF_PAGESTART(addr), | |
294 | eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr), prot, type, | |
295 | eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr)); | |
296 | up_write(¤t->mm->mmap_sem); | |
297 | return(map_addr); | |
298 | } | |
299 | ||
300 | #endif /* !elf_map */ | |
301 | ||
302 | /* This is much more generalized than the library routine read function, | |
303 | so we keep this separate. Technically the library read function | |
304 | is only provided so that we can read a.out libraries that have | |
305 | an ELF header */ | |
306 | ||
307 | static unsigned long load_elf_interp(struct elfhdr * interp_elf_ex, | |
308 | struct file * interpreter, | |
309 | unsigned long *interp_load_addr) | |
310 | { | |
311 | struct elf_phdr *elf_phdata; | |
312 | struct elf_phdr *eppnt; | |
313 | unsigned long load_addr = 0; | |
314 | int load_addr_set = 0; | |
315 | unsigned long last_bss = 0, elf_bss = 0; | |
316 | unsigned long error = ~0UL; | |
317 | int retval, i, size; | |
318 | ||
319 | /* First of all, some simple consistency checks */ | |
320 | if (interp_elf_ex->e_type != ET_EXEC && | |
321 | interp_elf_ex->e_type != ET_DYN) | |
322 | goto out; | |
323 | if (!elf_check_arch(interp_elf_ex)) | |
324 | goto out; | |
325 | if (!interpreter->f_op || !interpreter->f_op->mmap) | |
326 | goto out; | |
327 | ||
328 | /* | |
329 | * If the size of this structure has changed, then punt, since | |
330 | * we will be doing the wrong thing. | |
331 | */ | |
332 | if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) | |
333 | goto out; | |
334 | if (interp_elf_ex->e_phnum < 1 || | |
335 | interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | |
336 | goto out; | |
337 | ||
338 | /* Now read in all of the header information */ | |
339 | ||
340 | size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; | |
341 | if (size > ELF_MIN_ALIGN) | |
342 | goto out; | |
343 | elf_phdata = (struct elf_phdr *) kmalloc(size, GFP_KERNEL); | |
344 | if (!elf_phdata) | |
345 | goto out; | |
346 | ||
347 | retval = kernel_read(interpreter,interp_elf_ex->e_phoff,(char *)elf_phdata,size); | |
348 | error = -EIO; | |
349 | if (retval != size) { | |
350 | if (retval < 0) | |
351 | error = retval; | |
352 | goto out_close; | |
353 | } | |
354 | ||
355 | eppnt = elf_phdata; | |
356 | for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { | |
357 | if (eppnt->p_type == PT_LOAD) { | |
358 | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | |
359 | int elf_prot = 0; | |
360 | unsigned long vaddr = 0; | |
361 | unsigned long k, map_addr; | |
362 | ||
363 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
364 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
365 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
366 | vaddr = eppnt->p_vaddr; | |
367 | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | |
368 | elf_type |= MAP_FIXED; | |
369 | ||
370 | map_addr = elf_map(interpreter, load_addr + vaddr, eppnt, elf_prot, elf_type); | |
371 | error = map_addr; | |
372 | if (BAD_ADDR(map_addr)) | |
373 | goto out_close; | |
374 | ||
375 | if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) { | |
376 | load_addr = map_addr - ELF_PAGESTART(vaddr); | |
377 | load_addr_set = 1; | |
378 | } | |
379 | ||
380 | /* | |
381 | * Check to see if the section's size will overflow the | |
382 | * allowed task size. Note that p_filesz must always be | |
383 | * <= p_memsize so it is only necessary to check p_memsz. | |
384 | */ | |
385 | k = load_addr + eppnt->p_vaddr; | |
386 | if (k > TASK_SIZE || eppnt->p_filesz > eppnt->p_memsz || | |
387 | eppnt->p_memsz > TASK_SIZE || TASK_SIZE - eppnt->p_memsz < k) { | |
388 | error = -ENOMEM; | |
389 | goto out_close; | |
390 | } | |
391 | ||
392 | /* | |
393 | * Find the end of the file mapping for this phdr, and keep | |
394 | * track of the largest address we see for this. | |
395 | */ | |
396 | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | |
397 | if (k > elf_bss) | |
398 | elf_bss = k; | |
399 | ||
400 | /* | |
401 | * Do the same thing for the memory mapping - between | |
402 | * elf_bss and last_bss is the bss section. | |
403 | */ | |
404 | k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; | |
405 | if (k > last_bss) | |
406 | last_bss = k; | |
407 | } | |
408 | } | |
409 | ||
410 | /* | |
411 | * Now fill out the bss section. First pad the last page up | |
412 | * to the page boundary, and then perform a mmap to make sure | |
413 | * that there are zero-mapped pages up to and including the | |
414 | * last bss page. | |
415 | */ | |
416 | if (padzero(elf_bss)) { | |
417 | error = -EFAULT; | |
418 | goto out_close; | |
419 | } | |
420 | ||
421 | elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); /* What we have mapped so far */ | |
422 | ||
423 | /* Map the last of the bss segment */ | |
424 | if (last_bss > elf_bss) { | |
425 | down_write(¤t->mm->mmap_sem); | |
426 | error = do_brk(elf_bss, last_bss - elf_bss); | |
427 | up_write(¤t->mm->mmap_sem); | |
428 | if (BAD_ADDR(error)) | |
429 | goto out_close; | |
430 | } | |
431 | ||
432 | *interp_load_addr = load_addr; | |
433 | error = ((unsigned long) interp_elf_ex->e_entry) + load_addr; | |
434 | ||
435 | out_close: | |
436 | kfree(elf_phdata); | |
437 | out: | |
438 | return error; | |
439 | } | |
440 | ||
441 | static unsigned long load_aout_interp(struct exec * interp_ex, | |
442 | struct file * interpreter) | |
443 | { | |
444 | unsigned long text_data, elf_entry = ~0UL; | |
445 | char __user * addr; | |
446 | loff_t offset; | |
447 | ||
448 | current->mm->end_code = interp_ex->a_text; | |
449 | text_data = interp_ex->a_text + interp_ex->a_data; | |
450 | current->mm->end_data = text_data; | |
451 | current->mm->brk = interp_ex->a_bss + text_data; | |
452 | ||
453 | switch (N_MAGIC(*interp_ex)) { | |
454 | case OMAGIC: | |
455 | offset = 32; | |
456 | addr = (char __user *)0; | |
457 | break; | |
458 | case ZMAGIC: | |
459 | case QMAGIC: | |
460 | offset = N_TXTOFF(*interp_ex); | |
461 | addr = (char __user *) N_TXTADDR(*interp_ex); | |
462 | break; | |
463 | default: | |
464 | goto out; | |
465 | } | |
466 | ||
467 | down_write(¤t->mm->mmap_sem); | |
468 | do_brk(0, text_data); | |
469 | up_write(¤t->mm->mmap_sem); | |
470 | if (!interpreter->f_op || !interpreter->f_op->read) | |
471 | goto out; | |
472 | if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0) | |
473 | goto out; | |
474 | flush_icache_range((unsigned long)addr, | |
475 | (unsigned long)addr + text_data); | |
476 | ||
477 | ||
478 | down_write(¤t->mm->mmap_sem); | |
479 | do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1), | |
480 | interp_ex->a_bss); | |
481 | up_write(¤t->mm->mmap_sem); | |
482 | elf_entry = interp_ex->a_entry; | |
483 | ||
484 | out: | |
485 | return elf_entry; | |
486 | } | |
487 | ||
488 | /* | |
489 | * These are the functions used to load ELF style executables and shared | |
490 | * libraries. There is no binary dependent code anywhere else. | |
491 | */ | |
492 | ||
493 | #define INTERPRETER_NONE 0 | |
494 | #define INTERPRETER_AOUT 1 | |
495 | #define INTERPRETER_ELF 2 | |
496 | ||
497 | ||
498 | static unsigned long randomize_stack_top(unsigned long stack_top) | |
499 | { | |
500 | unsigned int random_variable = 0; | |
501 | ||
502 | if (current->flags & PF_RANDOMIZE) | |
503 | random_variable = get_random_int() % (8*1024*1024); | |
504 | #ifdef CONFIG_STACK_GROWSUP | |
505 | return PAGE_ALIGN(stack_top + random_variable); | |
506 | #else | |
507 | return PAGE_ALIGN(stack_top - random_variable); | |
508 | #endif | |
509 | } | |
510 | ||
511 | static int load_elf_binary(struct linux_binprm * bprm, struct pt_regs * regs) | |
512 | { | |
513 | struct file *interpreter = NULL; /* to shut gcc up */ | |
514 | unsigned long load_addr = 0, load_bias = 0; | |
515 | int load_addr_set = 0; | |
516 | char * elf_interpreter = NULL; | |
517 | unsigned int interpreter_type = INTERPRETER_NONE; | |
518 | unsigned char ibcs2_interpreter = 0; | |
519 | unsigned long error; | |
520 | struct elf_phdr * elf_ppnt, *elf_phdata; | |
521 | unsigned long elf_bss, elf_brk; | |
522 | int elf_exec_fileno; | |
523 | int retval, i; | |
524 | unsigned int size; | |
525 | unsigned long elf_entry, interp_load_addr = 0; | |
526 | unsigned long start_code, end_code, start_data, end_data; | |
527 | unsigned long reloc_func_desc = 0; | |
528 | char passed_fileno[6]; | |
529 | struct files_struct *files; | |
530 | int have_pt_gnu_stack, executable_stack = EXSTACK_DEFAULT; | |
531 | unsigned long def_flags = 0; | |
532 | struct { | |
533 | struct elfhdr elf_ex; | |
534 | struct elfhdr interp_elf_ex; | |
535 | struct exec interp_ex; | |
536 | } *loc; | |
537 | ||
538 | loc = kmalloc(sizeof(*loc), GFP_KERNEL); | |
539 | if (!loc) { | |
540 | retval = -ENOMEM; | |
541 | goto out_ret; | |
542 | } | |
543 | ||
544 | /* Get the exec-header */ | |
545 | loc->elf_ex = *((struct elfhdr *) bprm->buf); | |
546 | ||
547 | retval = -ENOEXEC; | |
548 | /* First of all, some simple consistency checks */ | |
549 | if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
550 | goto out; | |
551 | ||
552 | if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | |
553 | goto out; | |
554 | if (!elf_check_arch(&loc->elf_ex)) | |
555 | goto out; | |
556 | if (!bprm->file->f_op||!bprm->file->f_op->mmap) | |
557 | goto out; | |
558 | ||
559 | /* Now read in all of the header information */ | |
560 | ||
561 | if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) | |
562 | goto out; | |
563 | if (loc->elf_ex.e_phnum < 1 || | |
564 | loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) | |
565 | goto out; | |
566 | size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); | |
567 | retval = -ENOMEM; | |
568 | elf_phdata = (struct elf_phdr *) kmalloc(size, GFP_KERNEL); | |
569 | if (!elf_phdata) | |
570 | goto out; | |
571 | ||
572 | retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, (char *) elf_phdata, size); | |
573 | if (retval != size) { | |
574 | if (retval >= 0) | |
575 | retval = -EIO; | |
576 | goto out_free_ph; | |
577 | } | |
578 | ||
579 | files = current->files; /* Refcounted so ok */ | |
580 | retval = unshare_files(); | |
581 | if (retval < 0) | |
582 | goto out_free_ph; | |
583 | if (files == current->files) { | |
584 | put_files_struct(files); | |
585 | files = NULL; | |
586 | } | |
587 | ||
588 | /* exec will make our files private anyway, but for the a.out | |
589 | loader stuff we need to do it earlier */ | |
590 | ||
591 | retval = get_unused_fd(); | |
592 | if (retval < 0) | |
593 | goto out_free_fh; | |
594 | get_file(bprm->file); | |
595 | fd_install(elf_exec_fileno = retval, bprm->file); | |
596 | ||
597 | elf_ppnt = elf_phdata; | |
598 | elf_bss = 0; | |
599 | elf_brk = 0; | |
600 | ||
601 | start_code = ~0UL; | |
602 | end_code = 0; | |
603 | start_data = 0; | |
604 | end_data = 0; | |
605 | ||
606 | for (i = 0; i < loc->elf_ex.e_phnum; i++) { | |
607 | if (elf_ppnt->p_type == PT_INTERP) { | |
608 | /* This is the program interpreter used for | |
609 | * shared libraries - for now assume that this | |
610 | * is an a.out format binary | |
611 | */ | |
612 | ||
613 | retval = -ENOEXEC; | |
614 | if (elf_ppnt->p_filesz > PATH_MAX || | |
615 | elf_ppnt->p_filesz < 2) | |
616 | goto out_free_file; | |
617 | ||
618 | retval = -ENOMEM; | |
619 | elf_interpreter = (char *) kmalloc(elf_ppnt->p_filesz, | |
620 | GFP_KERNEL); | |
621 | if (!elf_interpreter) | |
622 | goto out_free_file; | |
623 | ||
624 | retval = kernel_read(bprm->file, elf_ppnt->p_offset, | |
625 | elf_interpreter, | |
626 | elf_ppnt->p_filesz); | |
627 | if (retval != elf_ppnt->p_filesz) { | |
628 | if (retval >= 0) | |
629 | retval = -EIO; | |
630 | goto out_free_interp; | |
631 | } | |
632 | /* make sure path is NULL terminated */ | |
633 | retval = -ENOEXEC; | |
634 | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | |
635 | goto out_free_interp; | |
636 | ||
637 | /* If the program interpreter is one of these two, | |
638 | * then assume an iBCS2 image. Otherwise assume | |
639 | * a native linux image. | |
640 | */ | |
641 | if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || | |
642 | strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) | |
643 | ibcs2_interpreter = 1; | |
644 | ||
645 | /* | |
646 | * The early SET_PERSONALITY here is so that the lookup | |
647 | * for the interpreter happens in the namespace of the | |
648 | * to-be-execed image. SET_PERSONALITY can select an | |
649 | * alternate root. | |
650 | * | |
651 | * However, SET_PERSONALITY is NOT allowed to switch | |
652 | * this task into the new images's memory mapping | |
653 | * policy - that is, TASK_SIZE must still evaluate to | |
654 | * that which is appropriate to the execing application. | |
655 | * This is because exit_mmap() needs to have TASK_SIZE | |
656 | * evaluate to the size of the old image. | |
657 | * | |
658 | * So if (say) a 64-bit application is execing a 32-bit | |
659 | * application it is the architecture's responsibility | |
660 | * to defer changing the value of TASK_SIZE until the | |
661 | * switch really is going to happen - do this in | |
662 | * flush_thread(). - akpm | |
663 | */ | |
664 | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | |
665 | ||
666 | interpreter = open_exec(elf_interpreter); | |
667 | retval = PTR_ERR(interpreter); | |
668 | if (IS_ERR(interpreter)) | |
669 | goto out_free_interp; | |
670 | retval = kernel_read(interpreter, 0, bprm->buf, BINPRM_BUF_SIZE); | |
671 | if (retval != BINPRM_BUF_SIZE) { | |
672 | if (retval >= 0) | |
673 | retval = -EIO; | |
674 | goto out_free_dentry; | |
675 | } | |
676 | ||
677 | /* Get the exec headers */ | |
678 | loc->interp_ex = *((struct exec *) bprm->buf); | |
679 | loc->interp_elf_ex = *((struct elfhdr *) bprm->buf); | |
680 | break; | |
681 | } | |
682 | elf_ppnt++; | |
683 | } | |
684 | ||
685 | elf_ppnt = elf_phdata; | |
686 | for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | |
687 | if (elf_ppnt->p_type == PT_GNU_STACK) { | |
688 | if (elf_ppnt->p_flags & PF_X) | |
689 | executable_stack = EXSTACK_ENABLE_X; | |
690 | else | |
691 | executable_stack = EXSTACK_DISABLE_X; | |
692 | break; | |
693 | } | |
694 | have_pt_gnu_stack = (i < loc->elf_ex.e_phnum); | |
695 | ||
696 | /* Some simple consistency checks for the interpreter */ | |
697 | if (elf_interpreter) { | |
698 | interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; | |
699 | ||
700 | /* Now figure out which format our binary is */ | |
701 | if ((N_MAGIC(loc->interp_ex) != OMAGIC) && | |
702 | (N_MAGIC(loc->interp_ex) != ZMAGIC) && | |
703 | (N_MAGIC(loc->interp_ex) != QMAGIC)) | |
704 | interpreter_type = INTERPRETER_ELF; | |
705 | ||
706 | if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
707 | interpreter_type &= ~INTERPRETER_ELF; | |
708 | ||
709 | retval = -ELIBBAD; | |
710 | if (!interpreter_type) | |
711 | goto out_free_dentry; | |
712 | ||
713 | /* Make sure only one type was selected */ | |
714 | if ((interpreter_type & INTERPRETER_ELF) && | |
715 | interpreter_type != INTERPRETER_ELF) { | |
716 | // FIXME - ratelimit this before re-enabling | |
717 | // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n"); | |
718 | interpreter_type = INTERPRETER_ELF; | |
719 | } | |
720 | /* Verify the interpreter has a valid arch */ | |
721 | if ((interpreter_type == INTERPRETER_ELF) && | |
722 | !elf_check_arch(&loc->interp_elf_ex)) | |
723 | goto out_free_dentry; | |
724 | } else { | |
725 | /* Executables without an interpreter also need a personality */ | |
726 | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | |
727 | } | |
728 | ||
729 | /* OK, we are done with that, now set up the arg stuff, | |
730 | and then start this sucker up */ | |
731 | ||
732 | if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) { | |
733 | char *passed_p = passed_fileno; | |
734 | sprintf(passed_fileno, "%d", elf_exec_fileno); | |
735 | ||
736 | if (elf_interpreter) { | |
737 | retval = copy_strings_kernel(1, &passed_p, bprm); | |
738 | if (retval) | |
739 | goto out_free_dentry; | |
740 | bprm->argc++; | |
741 | } | |
742 | } | |
743 | ||
744 | /* Flush all traces of the currently running executable */ | |
745 | retval = flush_old_exec(bprm); | |
746 | if (retval) | |
747 | goto out_free_dentry; | |
748 | ||
749 | /* Discard our unneeded old files struct */ | |
750 | if (files) { | |
751 | steal_locks(files); | |
752 | put_files_struct(files); | |
753 | files = NULL; | |
754 | } | |
755 | ||
756 | /* OK, This is the point of no return */ | |
757 | current->mm->start_data = 0; | |
758 | current->mm->end_data = 0; | |
759 | current->mm->end_code = 0; | |
760 | current->mm->mmap = NULL; | |
761 | current->flags &= ~PF_FORKNOEXEC; | |
762 | current->mm->def_flags = def_flags; | |
763 | ||
764 | /* Do this immediately, since STACK_TOP as used in setup_arg_pages | |
765 | may depend on the personality. */ | |
766 | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | |
767 | if (elf_read_implies_exec(loc->elf_ex, executable_stack)) | |
768 | current->personality |= READ_IMPLIES_EXEC; | |
769 | ||
770 | if ( !(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | |
771 | current->flags |= PF_RANDOMIZE; | |
772 | arch_pick_mmap_layout(current->mm); | |
773 | ||
774 | /* Do this so that we can load the interpreter, if need be. We will | |
775 | change some of these later */ | |
776 | set_mm_counter(current->mm, rss, 0); | |
777 | current->mm->free_area_cache = current->mm->mmap_base; | |
778 | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | |
779 | executable_stack); | |
780 | if (retval < 0) { | |
781 | send_sig(SIGKILL, current, 0); | |
782 | goto out_free_dentry; | |
783 | } | |
784 | ||
1da177e4 LT |
785 | current->mm->start_stack = bprm->p; |
786 | ||
787 | /* Now we do a little grungy work by mmaping the ELF image into | |
788 | the correct location in memory. At this point, we assume that | |
789 | the image should be loaded at fixed address, not at a variable | |
790 | address. */ | |
791 | ||
792 | for(i = 0, elf_ppnt = elf_phdata; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | |
793 | int elf_prot = 0, elf_flags; | |
794 | unsigned long k, vaddr; | |
795 | ||
796 | if (elf_ppnt->p_type != PT_LOAD) | |
797 | continue; | |
798 | ||
799 | if (unlikely (elf_brk > elf_bss)) { | |
800 | unsigned long nbyte; | |
801 | ||
802 | /* There was a PT_LOAD segment with p_memsz > p_filesz | |
803 | before this one. Map anonymous pages, if needed, | |
804 | and clear the area. */ | |
805 | retval = set_brk (elf_bss + load_bias, | |
806 | elf_brk + load_bias); | |
807 | if (retval) { | |
808 | send_sig(SIGKILL, current, 0); | |
809 | goto out_free_dentry; | |
810 | } | |
811 | nbyte = ELF_PAGEOFFSET(elf_bss); | |
812 | if (nbyte) { | |
813 | nbyte = ELF_MIN_ALIGN - nbyte; | |
814 | if (nbyte > elf_brk - elf_bss) | |
815 | nbyte = elf_brk - elf_bss; | |
816 | if (clear_user((void __user *)elf_bss + | |
817 | load_bias, nbyte)) { | |
818 | /* | |
819 | * This bss-zeroing can fail if the ELF | |
820 | * file specifies odd protections. So | |
821 | * we don't check the return value | |
822 | */ | |
823 | } | |
824 | } | |
825 | } | |
826 | ||
827 | if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; | |
828 | if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
829 | if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
830 | ||
831 | elf_flags = MAP_PRIVATE|MAP_DENYWRITE|MAP_EXECUTABLE; | |
832 | ||
833 | vaddr = elf_ppnt->p_vaddr; | |
834 | if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { | |
835 | elf_flags |= MAP_FIXED; | |
836 | } else if (loc->elf_ex.e_type == ET_DYN) { | |
837 | /* Try and get dynamic programs out of the way of the default mmap | |
838 | base, as well as whatever program they might try to exec. This | |
839 | is because the brk will follow the loader, and is not movable. */ | |
840 | load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | |
841 | } | |
842 | ||
843 | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, elf_prot, elf_flags); | |
844 | if (BAD_ADDR(error)) { | |
845 | send_sig(SIGKILL, current, 0); | |
846 | goto out_free_dentry; | |
847 | } | |
848 | ||
849 | if (!load_addr_set) { | |
850 | load_addr_set = 1; | |
851 | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | |
852 | if (loc->elf_ex.e_type == ET_DYN) { | |
853 | load_bias += error - | |
854 | ELF_PAGESTART(load_bias + vaddr); | |
855 | load_addr += load_bias; | |
856 | reloc_func_desc = load_bias; | |
857 | } | |
858 | } | |
859 | k = elf_ppnt->p_vaddr; | |
860 | if (k < start_code) start_code = k; | |
861 | if (start_data < k) start_data = k; | |
862 | ||
863 | /* | |
864 | * Check to see if the section's size will overflow the | |
865 | * allowed task size. Note that p_filesz must always be | |
866 | * <= p_memsz so it is only necessary to check p_memsz. | |
867 | */ | |
868 | if (k > TASK_SIZE || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | |
869 | elf_ppnt->p_memsz > TASK_SIZE || | |
870 | TASK_SIZE - elf_ppnt->p_memsz < k) { | |
871 | /* set_brk can never work. Avoid overflows. */ | |
872 | send_sig(SIGKILL, current, 0); | |
873 | goto out_free_dentry; | |
874 | } | |
875 | ||
876 | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | |
877 | ||
878 | if (k > elf_bss) | |
879 | elf_bss = k; | |
880 | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | |
881 | end_code = k; | |
882 | if (end_data < k) | |
883 | end_data = k; | |
884 | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | |
885 | if (k > elf_brk) | |
886 | elf_brk = k; | |
887 | } | |
888 | ||
889 | loc->elf_ex.e_entry += load_bias; | |
890 | elf_bss += load_bias; | |
891 | elf_brk += load_bias; | |
892 | start_code += load_bias; | |
893 | end_code += load_bias; | |
894 | start_data += load_bias; | |
895 | end_data += load_bias; | |
896 | ||
897 | /* Calling set_brk effectively mmaps the pages that we need | |
898 | * for the bss and break sections. We must do this before | |
899 | * mapping in the interpreter, to make sure it doesn't wind | |
900 | * up getting placed where the bss needs to go. | |
901 | */ | |
902 | retval = set_brk(elf_bss, elf_brk); | |
903 | if (retval) { | |
904 | send_sig(SIGKILL, current, 0); | |
905 | goto out_free_dentry; | |
906 | } | |
907 | if (padzero(elf_bss)) { | |
908 | send_sig(SIGSEGV, current, 0); | |
909 | retval = -EFAULT; /* Nobody gets to see this, but.. */ | |
910 | goto out_free_dentry; | |
911 | } | |
912 | ||
913 | if (elf_interpreter) { | |
914 | if (interpreter_type == INTERPRETER_AOUT) | |
915 | elf_entry = load_aout_interp(&loc->interp_ex, | |
916 | interpreter); | |
917 | else | |
918 | elf_entry = load_elf_interp(&loc->interp_elf_ex, | |
919 | interpreter, | |
920 | &interp_load_addr); | |
921 | if (BAD_ADDR(elf_entry)) { | |
922 | printk(KERN_ERR "Unable to load interpreter %.128s\n", | |
923 | elf_interpreter); | |
924 | force_sig(SIGSEGV, current); | |
925 | retval = -ENOEXEC; /* Nobody gets to see this, but.. */ | |
926 | goto out_free_dentry; | |
927 | } | |
928 | reloc_func_desc = interp_load_addr; | |
929 | ||
930 | allow_write_access(interpreter); | |
931 | fput(interpreter); | |
932 | kfree(elf_interpreter); | |
933 | } else { | |
934 | elf_entry = loc->elf_ex.e_entry; | |
935 | } | |
936 | ||
937 | kfree(elf_phdata); | |
938 | ||
939 | if (interpreter_type != INTERPRETER_AOUT) | |
940 | sys_close(elf_exec_fileno); | |
941 | ||
942 | set_binfmt(&elf_format); | |
943 | ||
547ee84c BH |
944 | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES |
945 | retval = arch_setup_additional_pages(bprm, executable_stack); | |
946 | if (retval < 0) { | |
947 | send_sig(SIGKILL, current, 0); | |
18c8baff | 948 | goto out; |
547ee84c BH |
949 | } |
950 | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | |
951 | ||
1da177e4 LT |
952 | compute_creds(bprm); |
953 | current->flags &= ~PF_FORKNOEXEC; | |
954 | create_elf_tables(bprm, &loc->elf_ex, (interpreter_type == INTERPRETER_AOUT), | |
955 | load_addr, interp_load_addr); | |
956 | /* N.B. passed_fileno might not be initialized? */ | |
957 | if (interpreter_type == INTERPRETER_AOUT) | |
958 | current->mm->arg_start += strlen(passed_fileno) + 1; | |
959 | current->mm->end_code = end_code; | |
960 | current->mm->start_code = start_code; | |
961 | current->mm->start_data = start_data; | |
962 | current->mm->end_data = end_data; | |
963 | current->mm->start_stack = bprm->p; | |
964 | ||
965 | if (current->personality & MMAP_PAGE_ZERO) { | |
966 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, | |
967 | and some applications "depend" upon this behavior. | |
968 | Since we do not have the power to recompile these, we | |
969 | emulate the SVr4 behavior. Sigh. */ | |
970 | down_write(¤t->mm->mmap_sem); | |
971 | error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | |
972 | MAP_FIXED | MAP_PRIVATE, 0); | |
973 | up_write(¤t->mm->mmap_sem); | |
974 | } | |
975 | ||
976 | #ifdef ELF_PLAT_INIT | |
977 | /* | |
978 | * The ABI may specify that certain registers be set up in special | |
979 | * ways (on i386 %edx is the address of a DT_FINI function, for | |
980 | * example. In addition, it may also specify (eg, PowerPC64 ELF) | |
981 | * that the e_entry field is the address of the function descriptor | |
982 | * for the startup routine, rather than the address of the startup | |
983 | * routine itself. This macro performs whatever initialization to | |
984 | * the regs structure is required as well as any relocations to the | |
985 | * function descriptor entries when executing dynamically links apps. | |
986 | */ | |
987 | ELF_PLAT_INIT(regs, reloc_func_desc); | |
988 | #endif | |
989 | ||
990 | start_thread(regs, elf_entry, bprm->p); | |
991 | if (unlikely(current->ptrace & PT_PTRACED)) { | |
992 | if (current->ptrace & PT_TRACE_EXEC) | |
993 | ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP); | |
994 | else | |
995 | send_sig(SIGTRAP, current, 0); | |
996 | } | |
997 | retval = 0; | |
998 | out: | |
999 | kfree(loc); | |
1000 | out_ret: | |
1001 | return retval; | |
1002 | ||
1003 | /* error cleanup */ | |
1004 | out_free_dentry: | |
1005 | allow_write_access(interpreter); | |
1006 | if (interpreter) | |
1007 | fput(interpreter); | |
1008 | out_free_interp: | |
1009 | if (elf_interpreter) | |
1010 | kfree(elf_interpreter); | |
1011 | out_free_file: | |
1012 | sys_close(elf_exec_fileno); | |
1013 | out_free_fh: | |
1014 | if (files) { | |
1015 | put_files_struct(current->files); | |
1016 | current->files = files; | |
1017 | } | |
1018 | out_free_ph: | |
1019 | kfree(elf_phdata); | |
1020 | goto out; | |
1021 | } | |
1022 | ||
1023 | /* This is really simpleminded and specialized - we are loading an | |
1024 | a.out library that is given an ELF header. */ | |
1025 | ||
1026 | static int load_elf_library(struct file *file) | |
1027 | { | |
1028 | struct elf_phdr *elf_phdata; | |
1029 | struct elf_phdr *eppnt; | |
1030 | unsigned long elf_bss, bss, len; | |
1031 | int retval, error, i, j; | |
1032 | struct elfhdr elf_ex; | |
1033 | ||
1034 | error = -ENOEXEC; | |
1035 | retval = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex)); | |
1036 | if (retval != sizeof(elf_ex)) | |
1037 | goto out; | |
1038 | ||
1039 | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
1040 | goto out; | |
1041 | ||
1042 | /* First of all, some simple consistency checks */ | |
1043 | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | |
1044 | !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) | |
1045 | goto out; | |
1046 | ||
1047 | /* Now read in all of the header information */ | |
1048 | ||
1049 | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | |
1050 | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | |
1051 | ||
1052 | error = -ENOMEM; | |
1053 | elf_phdata = kmalloc(j, GFP_KERNEL); | |
1054 | if (!elf_phdata) | |
1055 | goto out; | |
1056 | ||
1057 | eppnt = elf_phdata; | |
1058 | error = -ENOEXEC; | |
1059 | retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | |
1060 | if (retval != j) | |
1061 | goto out_free_ph; | |
1062 | ||
1063 | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | |
1064 | if ((eppnt + i)->p_type == PT_LOAD) | |
1065 | j++; | |
1066 | if (j != 1) | |
1067 | goto out_free_ph; | |
1068 | ||
1069 | while (eppnt->p_type != PT_LOAD) | |
1070 | eppnt++; | |
1071 | ||
1072 | /* Now use mmap to map the library into memory. */ | |
1073 | down_write(¤t->mm->mmap_sem); | |
1074 | error = do_mmap(file, | |
1075 | ELF_PAGESTART(eppnt->p_vaddr), | |
1076 | (eppnt->p_filesz + | |
1077 | ELF_PAGEOFFSET(eppnt->p_vaddr)), | |
1078 | PROT_READ | PROT_WRITE | PROT_EXEC, | |
1079 | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | |
1080 | (eppnt->p_offset - | |
1081 | ELF_PAGEOFFSET(eppnt->p_vaddr))); | |
1082 | up_write(¤t->mm->mmap_sem); | |
1083 | if (error != ELF_PAGESTART(eppnt->p_vaddr)) | |
1084 | goto out_free_ph; | |
1085 | ||
1086 | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | |
1087 | if (padzero(elf_bss)) { | |
1088 | error = -EFAULT; | |
1089 | goto out_free_ph; | |
1090 | } | |
1091 | ||
1092 | len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + ELF_MIN_ALIGN - 1); | |
1093 | bss = eppnt->p_memsz + eppnt->p_vaddr; | |
1094 | if (bss > len) { | |
1095 | down_write(¤t->mm->mmap_sem); | |
1096 | do_brk(len, bss - len); | |
1097 | up_write(¤t->mm->mmap_sem); | |
1098 | } | |
1099 | error = 0; | |
1100 | ||
1101 | out_free_ph: | |
1102 | kfree(elf_phdata); | |
1103 | out: | |
1104 | return error; | |
1105 | } | |
1106 | ||
1107 | /* | |
1108 | * Note that some platforms still use traditional core dumps and not | |
1109 | * the ELF core dump. Each platform can select it as appropriate. | |
1110 | */ | |
1111 | #ifdef USE_ELF_CORE_DUMP | |
1112 | ||
1113 | /* | |
1114 | * ELF core dumper | |
1115 | * | |
1116 | * Modelled on fs/exec.c:aout_core_dump() | |
1117 | * Jeremy Fitzhardinge <[email protected]> | |
1118 | */ | |
1119 | /* | |
1120 | * These are the only things you should do on a core-file: use only these | |
1121 | * functions to write out all the necessary info. | |
1122 | */ | |
1123 | static int dump_write(struct file *file, const void *addr, int nr) | |
1124 | { | |
1125 | return file->f_op->write(file, addr, nr, &file->f_pos) == nr; | |
1126 | } | |
1127 | ||
1128 | static int dump_seek(struct file *file, off_t off) | |
1129 | { | |
1130 | if (file->f_op->llseek) { | |
1131 | if (file->f_op->llseek(file, off, 0) != off) | |
1132 | return 0; | |
1133 | } else | |
1134 | file->f_pos = off; | |
1135 | return 1; | |
1136 | } | |
1137 | ||
1138 | /* | |
1139 | * Decide whether a segment is worth dumping; default is yes to be | |
1140 | * sure (missing info is worse than too much; etc). | |
1141 | * Personally I'd include everything, and use the coredump limit... | |
1142 | * | |
1143 | * I think we should skip something. But I am not sure how. H.J. | |
1144 | */ | |
1145 | static int maydump(struct vm_area_struct *vma) | |
1146 | { | |
1147 | /* Do not dump I/O mapped devices or special mappings */ | |
1148 | if (vma->vm_flags & (VM_IO | VM_RESERVED)) | |
1149 | return 0; | |
1150 | ||
1151 | /* Dump shared memory only if mapped from an anonymous file. */ | |
1152 | if (vma->vm_flags & VM_SHARED) | |
1153 | return vma->vm_file->f_dentry->d_inode->i_nlink == 0; | |
1154 | ||
1155 | /* If it hasn't been written to, don't write it out */ | |
1156 | if (!vma->anon_vma) | |
1157 | return 0; | |
1158 | ||
1159 | return 1; | |
1160 | } | |
1161 | ||
1162 | #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) | |
1163 | ||
1164 | /* An ELF note in memory */ | |
1165 | struct memelfnote | |
1166 | { | |
1167 | const char *name; | |
1168 | int type; | |
1169 | unsigned int datasz; | |
1170 | void *data; | |
1171 | }; | |
1172 | ||
1173 | static int notesize(struct memelfnote *en) | |
1174 | { | |
1175 | int sz; | |
1176 | ||
1177 | sz = sizeof(struct elf_note); | |
1178 | sz += roundup(strlen(en->name) + 1, 4); | |
1179 | sz += roundup(en->datasz, 4); | |
1180 | ||
1181 | return sz; | |
1182 | } | |
1183 | ||
1184 | #define DUMP_WRITE(addr, nr) \ | |
1185 | do { if (!dump_write(file, (addr), (nr))) return 0; } while(0) | |
1186 | #define DUMP_SEEK(off) \ | |
1187 | do { if (!dump_seek(file, (off))) return 0; } while(0) | |
1188 | ||
1189 | static int writenote(struct memelfnote *men, struct file *file) | |
1190 | { | |
1191 | struct elf_note en; | |
1192 | ||
1193 | en.n_namesz = strlen(men->name) + 1; | |
1194 | en.n_descsz = men->datasz; | |
1195 | en.n_type = men->type; | |
1196 | ||
1197 | DUMP_WRITE(&en, sizeof(en)); | |
1198 | DUMP_WRITE(men->name, en.n_namesz); | |
1199 | /* XXX - cast from long long to long to avoid need for libgcc.a */ | |
1200 | DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ | |
1201 | DUMP_WRITE(men->data, men->datasz); | |
1202 | DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ | |
1203 | ||
1204 | return 1; | |
1205 | } | |
1206 | #undef DUMP_WRITE | |
1207 | #undef DUMP_SEEK | |
1208 | ||
1209 | #define DUMP_WRITE(addr, nr) \ | |
1210 | if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ | |
1211 | goto end_coredump; | |
1212 | #define DUMP_SEEK(off) \ | |
1213 | if (!dump_seek(file, (off))) \ | |
1214 | goto end_coredump; | |
1215 | ||
1216 | static inline void fill_elf_header(struct elfhdr *elf, int segs) | |
1217 | { | |
1218 | memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
1219 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
1220 | elf->e_ident[EI_DATA] = ELF_DATA; | |
1221 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
1222 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
1223 | memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); | |
1224 | ||
1225 | elf->e_type = ET_CORE; | |
1226 | elf->e_machine = ELF_ARCH; | |
1227 | elf->e_version = EV_CURRENT; | |
1228 | elf->e_entry = 0; | |
1229 | elf->e_phoff = sizeof(struct elfhdr); | |
1230 | elf->e_shoff = 0; | |
1231 | elf->e_flags = ELF_CORE_EFLAGS; | |
1232 | elf->e_ehsize = sizeof(struct elfhdr); | |
1233 | elf->e_phentsize = sizeof(struct elf_phdr); | |
1234 | elf->e_phnum = segs; | |
1235 | elf->e_shentsize = 0; | |
1236 | elf->e_shnum = 0; | |
1237 | elf->e_shstrndx = 0; | |
1238 | return; | |
1239 | } | |
1240 | ||
1241 | static inline void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
1242 | { | |
1243 | phdr->p_type = PT_NOTE; | |
1244 | phdr->p_offset = offset; | |
1245 | phdr->p_vaddr = 0; | |
1246 | phdr->p_paddr = 0; | |
1247 | phdr->p_filesz = sz; | |
1248 | phdr->p_memsz = 0; | |
1249 | phdr->p_flags = 0; | |
1250 | phdr->p_align = 0; | |
1251 | return; | |
1252 | } | |
1253 | ||
1254 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
1255 | unsigned int sz, void *data) | |
1256 | { | |
1257 | note->name = name; | |
1258 | note->type = type; | |
1259 | note->datasz = sz; | |
1260 | note->data = data; | |
1261 | return; | |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | * fill up all the fields in prstatus from the given task struct, except registers | |
1266 | * which need to be filled up separately. | |
1267 | */ | |
1268 | static void fill_prstatus(struct elf_prstatus *prstatus, | |
1269 | struct task_struct *p, long signr) | |
1270 | { | |
1271 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
1272 | prstatus->pr_sigpend = p->pending.signal.sig[0]; | |
1273 | prstatus->pr_sighold = p->blocked.sig[0]; | |
1274 | prstatus->pr_pid = p->pid; | |
1275 | prstatus->pr_ppid = p->parent->pid; | |
1276 | prstatus->pr_pgrp = process_group(p); | |
1277 | prstatus->pr_sid = p->signal->session; | |
1278 | if (thread_group_leader(p)) { | |
1279 | /* | |
1280 | * This is the record for the group leader. Add in the | |
1281 | * cumulative times of previous dead threads. This total | |
1282 | * won't include the time of each live thread whose state | |
1283 | * is included in the core dump. The final total reported | |
1284 | * to our parent process when it calls wait4 will include | |
1285 | * those sums as well as the little bit more time it takes | |
1286 | * this and each other thread to finish dying after the | |
1287 | * core dump synchronization phase. | |
1288 | */ | |
1289 | cputime_to_timeval(cputime_add(p->utime, p->signal->utime), | |
1290 | &prstatus->pr_utime); | |
1291 | cputime_to_timeval(cputime_add(p->stime, p->signal->stime), | |
1292 | &prstatus->pr_stime); | |
1293 | } else { | |
1294 | cputime_to_timeval(p->utime, &prstatus->pr_utime); | |
1295 | cputime_to_timeval(p->stime, &prstatus->pr_stime); | |
1296 | } | |
1297 | cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); | |
1298 | cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); | |
1299 | } | |
1300 | ||
1301 | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | |
1302 | struct mm_struct *mm) | |
1303 | { | |
1304 | int i, len; | |
1305 | ||
1306 | /* first copy the parameters from user space */ | |
1307 | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | |
1308 | ||
1309 | len = mm->arg_end - mm->arg_start; | |
1310 | if (len >= ELF_PRARGSZ) | |
1311 | len = ELF_PRARGSZ-1; | |
1312 | if (copy_from_user(&psinfo->pr_psargs, | |
1313 | (const char __user *)mm->arg_start, len)) | |
1314 | return -EFAULT; | |
1315 | for(i = 0; i < len; i++) | |
1316 | if (psinfo->pr_psargs[i] == 0) | |
1317 | psinfo->pr_psargs[i] = ' '; | |
1318 | psinfo->pr_psargs[len] = 0; | |
1319 | ||
1320 | psinfo->pr_pid = p->pid; | |
1321 | psinfo->pr_ppid = p->parent->pid; | |
1322 | psinfo->pr_pgrp = process_group(p); | |
1323 | psinfo->pr_sid = p->signal->session; | |
1324 | ||
1325 | i = p->state ? ffz(~p->state) + 1 : 0; | |
1326 | psinfo->pr_state = i; | |
1327 | psinfo->pr_sname = (i < 0 || i > 5) ? '.' : "RSDTZW"[i]; | |
1328 | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | |
1329 | psinfo->pr_nice = task_nice(p); | |
1330 | psinfo->pr_flag = p->flags; | |
1331 | SET_UID(psinfo->pr_uid, p->uid); | |
1332 | SET_GID(psinfo->pr_gid, p->gid); | |
1333 | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | |
1334 | ||
1335 | return 0; | |
1336 | } | |
1337 | ||
1338 | /* Here is the structure in which status of each thread is captured. */ | |
1339 | struct elf_thread_status | |
1340 | { | |
1341 | struct list_head list; | |
1342 | struct elf_prstatus prstatus; /* NT_PRSTATUS */ | |
1343 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
1344 | struct task_struct *thread; | |
1345 | #ifdef ELF_CORE_COPY_XFPREGS | |
1346 | elf_fpxregset_t xfpu; /* NT_PRXFPREG */ | |
1347 | #endif | |
1348 | struct memelfnote notes[3]; | |
1349 | int num_notes; | |
1350 | }; | |
1351 | ||
1352 | /* | |
1353 | * In order to add the specific thread information for the elf file format, | |
1354 | * we need to keep a linked list of every threads pr_status and then | |
1355 | * create a single section for them in the final core file. | |
1356 | */ | |
1357 | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | |
1358 | { | |
1359 | int sz = 0; | |
1360 | struct task_struct *p = t->thread; | |
1361 | t->num_notes = 0; | |
1362 | ||
1363 | fill_prstatus(&t->prstatus, p, signr); | |
1364 | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | |
1365 | ||
1366 | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), &(t->prstatus)); | |
1367 | t->num_notes++; | |
1368 | sz += notesize(&t->notes[0]); | |
1369 | ||
1370 | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, &t->fpu))) { | |
1371 | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), &(t->fpu)); | |
1372 | t->num_notes++; | |
1373 | sz += notesize(&t->notes[1]); | |
1374 | } | |
1375 | ||
1376 | #ifdef ELF_CORE_COPY_XFPREGS | |
1377 | if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | |
1378 | fill_note(&t->notes[2], "LINUX", NT_PRXFPREG, sizeof(t->xfpu), &t->xfpu); | |
1379 | t->num_notes++; | |
1380 | sz += notesize(&t->notes[2]); | |
1381 | } | |
1382 | #endif | |
1383 | return sz; | |
1384 | } | |
1385 | ||
1386 | /* | |
1387 | * Actual dumper | |
1388 | * | |
1389 | * This is a two-pass process; first we find the offsets of the bits, | |
1390 | * and then they are actually written out. If we run out of core limit | |
1391 | * we just truncate. | |
1392 | */ | |
1393 | static int elf_core_dump(long signr, struct pt_regs * regs, struct file * file) | |
1394 | { | |
1395 | #define NUM_NOTES 6 | |
1396 | int has_dumped = 0; | |
1397 | mm_segment_t fs; | |
1398 | int segs; | |
1399 | size_t size = 0; | |
1400 | int i; | |
1401 | struct vm_area_struct *vma; | |
1402 | struct elfhdr *elf = NULL; | |
1403 | off_t offset = 0, dataoff; | |
1404 | unsigned long limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; | |
1405 | int numnote; | |
1406 | struct memelfnote *notes = NULL; | |
1407 | struct elf_prstatus *prstatus = NULL; /* NT_PRSTATUS */ | |
1408 | struct elf_prpsinfo *psinfo = NULL; /* NT_PRPSINFO */ | |
1409 | struct task_struct *g, *p; | |
1410 | LIST_HEAD(thread_list); | |
1411 | struct list_head *t; | |
1412 | elf_fpregset_t *fpu = NULL; | |
1413 | #ifdef ELF_CORE_COPY_XFPREGS | |
1414 | elf_fpxregset_t *xfpu = NULL; | |
1415 | #endif | |
1416 | int thread_status_size = 0; | |
1417 | elf_addr_t *auxv; | |
1418 | ||
1419 | /* | |
1420 | * We no longer stop all VM operations. | |
1421 | * | |
1422 | * This is because those proceses that could possibly change map_count or | |
1423 | * the mmap / vma pages are now blocked in do_exit on current finishing | |
1424 | * this core dump. | |
1425 | * | |
1426 | * Only ptrace can touch these memory addresses, but it doesn't change | |
1427 | * the map_count or the pages allocated. So no possibility of crashing | |
1428 | * exists while dumping the mm->vm_next areas to the core file. | |
1429 | */ | |
1430 | ||
1431 | /* alloc memory for large data structures: too large to be on stack */ | |
1432 | elf = kmalloc(sizeof(*elf), GFP_KERNEL); | |
1433 | if (!elf) | |
1434 | goto cleanup; | |
1435 | prstatus = kmalloc(sizeof(*prstatus), GFP_KERNEL); | |
1436 | if (!prstatus) | |
1437 | goto cleanup; | |
1438 | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | |
1439 | if (!psinfo) | |
1440 | goto cleanup; | |
1441 | notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), GFP_KERNEL); | |
1442 | if (!notes) | |
1443 | goto cleanup; | |
1444 | fpu = kmalloc(sizeof(*fpu), GFP_KERNEL); | |
1445 | if (!fpu) | |
1446 | goto cleanup; | |
1447 | #ifdef ELF_CORE_COPY_XFPREGS | |
1448 | xfpu = kmalloc(sizeof(*xfpu), GFP_KERNEL); | |
1449 | if (!xfpu) | |
1450 | goto cleanup; | |
1451 | #endif | |
1452 | ||
1453 | if (signr) { | |
1454 | struct elf_thread_status *tmp; | |
1455 | read_lock(&tasklist_lock); | |
1456 | do_each_thread(g,p) | |
1457 | if (current->mm == p->mm && current != p) { | |
1458 | tmp = kmalloc(sizeof(*tmp), GFP_ATOMIC); | |
1459 | if (!tmp) { | |
1460 | read_unlock(&tasklist_lock); | |
1461 | goto cleanup; | |
1462 | } | |
1463 | memset(tmp, 0, sizeof(*tmp)); | |
1464 | INIT_LIST_HEAD(&tmp->list); | |
1465 | tmp->thread = p; | |
1466 | list_add(&tmp->list, &thread_list); | |
1467 | } | |
1468 | while_each_thread(g,p); | |
1469 | read_unlock(&tasklist_lock); | |
1470 | list_for_each(t, &thread_list) { | |
1471 | struct elf_thread_status *tmp; | |
1472 | int sz; | |
1473 | ||
1474 | tmp = list_entry(t, struct elf_thread_status, list); | |
1475 | sz = elf_dump_thread_status(signr, tmp); | |
1476 | thread_status_size += sz; | |
1477 | } | |
1478 | } | |
1479 | /* now collect the dump for the current */ | |
1480 | memset(prstatus, 0, sizeof(*prstatus)); | |
1481 | fill_prstatus(prstatus, current, signr); | |
1482 | elf_core_copy_regs(&prstatus->pr_reg, regs); | |
1483 | ||
1484 | segs = current->mm->map_count; | |
1485 | #ifdef ELF_CORE_EXTRA_PHDRS | |
1486 | segs += ELF_CORE_EXTRA_PHDRS; | |
1487 | #endif | |
1488 | ||
1489 | /* Set up header */ | |
1490 | fill_elf_header(elf, segs+1); /* including notes section */ | |
1491 | ||
1492 | has_dumped = 1; | |
1493 | current->flags |= PF_DUMPCORE; | |
1494 | ||
1495 | /* | |
1496 | * Set up the notes in similar form to SVR4 core dumps made | |
1497 | * with info from their /proc. | |
1498 | */ | |
1499 | ||
1500 | fill_note(notes +0, "CORE", NT_PRSTATUS, sizeof(*prstatus), prstatus); | |
1501 | ||
1502 | fill_psinfo(psinfo, current->group_leader, current->mm); | |
1503 | fill_note(notes +1, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | |
1504 | ||
1505 | fill_note(notes +2, "CORE", NT_TASKSTRUCT, sizeof(*current), current); | |
1506 | ||
1507 | numnote = 3; | |
1508 | ||
1509 | auxv = (elf_addr_t *) current->mm->saved_auxv; | |
1510 | ||
1511 | i = 0; | |
1512 | do | |
1513 | i += 2; | |
1514 | while (auxv[i - 2] != AT_NULL); | |
1515 | fill_note(¬es[numnote++], "CORE", NT_AUXV, | |
1516 | i * sizeof (elf_addr_t), auxv); | |
1517 | ||
1518 | /* Try to dump the FPU. */ | |
1519 | if ((prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, fpu))) | |
1520 | fill_note(notes + numnote++, | |
1521 | "CORE", NT_PRFPREG, sizeof(*fpu), fpu); | |
1522 | #ifdef ELF_CORE_COPY_XFPREGS | |
1523 | if (elf_core_copy_task_xfpregs(current, xfpu)) | |
1524 | fill_note(notes + numnote++, | |
1525 | "LINUX", NT_PRXFPREG, sizeof(*xfpu), xfpu); | |
1526 | #endif | |
1527 | ||
1528 | fs = get_fs(); | |
1529 | set_fs(KERNEL_DS); | |
1530 | ||
1531 | DUMP_WRITE(elf, sizeof(*elf)); | |
1532 | offset += sizeof(*elf); /* Elf header */ | |
1533 | offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers */ | |
1534 | ||
1535 | /* Write notes phdr entry */ | |
1536 | { | |
1537 | struct elf_phdr phdr; | |
1538 | int sz = 0; | |
1539 | ||
1540 | for (i = 0; i < numnote; i++) | |
1541 | sz += notesize(notes + i); | |
1542 | ||
1543 | sz += thread_status_size; | |
1544 | ||
1545 | fill_elf_note_phdr(&phdr, sz, offset); | |
1546 | offset += sz; | |
1547 | DUMP_WRITE(&phdr, sizeof(phdr)); | |
1548 | } | |
1549 | ||
1550 | /* Page-align dumped data */ | |
1551 | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | |
1552 | ||
1553 | /* Write program headers for segments dump */ | |
1554 | for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { | |
1555 | struct elf_phdr phdr; | |
1556 | size_t sz; | |
1557 | ||
1558 | sz = vma->vm_end - vma->vm_start; | |
1559 | ||
1560 | phdr.p_type = PT_LOAD; | |
1561 | phdr.p_offset = offset; | |
1562 | phdr.p_vaddr = vma->vm_start; | |
1563 | phdr.p_paddr = 0; | |
1564 | phdr.p_filesz = maydump(vma) ? sz : 0; | |
1565 | phdr.p_memsz = sz; | |
1566 | offset += phdr.p_filesz; | |
1567 | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | |
1568 | if (vma->vm_flags & VM_WRITE) phdr.p_flags |= PF_W; | |
1569 | if (vma->vm_flags & VM_EXEC) phdr.p_flags |= PF_X; | |
1570 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
1571 | ||
1572 | DUMP_WRITE(&phdr, sizeof(phdr)); | |
1573 | } | |
1574 | ||
1575 | #ifdef ELF_CORE_WRITE_EXTRA_PHDRS | |
1576 | ELF_CORE_WRITE_EXTRA_PHDRS; | |
1577 | #endif | |
1578 | ||
1579 | /* write out the notes section */ | |
1580 | for (i = 0; i < numnote; i++) | |
1581 | if (!writenote(notes + i, file)) | |
1582 | goto end_coredump; | |
1583 | ||
1584 | /* write out the thread status notes section */ | |
1585 | list_for_each(t, &thread_list) { | |
1586 | struct elf_thread_status *tmp = list_entry(t, struct elf_thread_status, list); | |
1587 | for (i = 0; i < tmp->num_notes; i++) | |
1588 | if (!writenote(&tmp->notes[i], file)) | |
1589 | goto end_coredump; | |
1590 | } | |
1591 | ||
1592 | DUMP_SEEK(dataoff); | |
1593 | ||
1594 | for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { | |
1595 | unsigned long addr; | |
1596 | ||
1597 | if (!maydump(vma)) | |
1598 | continue; | |
1599 | ||
1600 | for (addr = vma->vm_start; | |
1601 | addr < vma->vm_end; | |
1602 | addr += PAGE_SIZE) { | |
1603 | struct page* page; | |
1604 | struct vm_area_struct *vma; | |
1605 | ||
1606 | if (get_user_pages(current, current->mm, addr, 1, 0, 1, | |
1607 | &page, &vma) <= 0) { | |
1608 | DUMP_SEEK (file->f_pos + PAGE_SIZE); | |
1609 | } else { | |
1610 | if (page == ZERO_PAGE(addr)) { | |
1611 | DUMP_SEEK (file->f_pos + PAGE_SIZE); | |
1612 | } else { | |
1613 | void *kaddr; | |
1614 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
1615 | kaddr = kmap(page); | |
1616 | if ((size += PAGE_SIZE) > limit || | |
1617 | !dump_write(file, kaddr, | |
1618 | PAGE_SIZE)) { | |
1619 | kunmap(page); | |
1620 | page_cache_release(page); | |
1621 | goto end_coredump; | |
1622 | } | |
1623 | kunmap(page); | |
1624 | } | |
1625 | page_cache_release(page); | |
1626 | } | |
1627 | } | |
1628 | } | |
1629 | ||
1630 | #ifdef ELF_CORE_WRITE_EXTRA_DATA | |
1631 | ELF_CORE_WRITE_EXTRA_DATA; | |
1632 | #endif | |
1633 | ||
1634 | if ((off_t) file->f_pos != offset) { | |
1635 | /* Sanity check */ | |
1636 | printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n", | |
1637 | (off_t) file->f_pos, offset); | |
1638 | } | |
1639 | ||
1640 | end_coredump: | |
1641 | set_fs(fs); | |
1642 | ||
1643 | cleanup: | |
1644 | while(!list_empty(&thread_list)) { | |
1645 | struct list_head *tmp = thread_list.next; | |
1646 | list_del(tmp); | |
1647 | kfree(list_entry(tmp, struct elf_thread_status, list)); | |
1648 | } | |
1649 | ||
1650 | kfree(elf); | |
1651 | kfree(prstatus); | |
1652 | kfree(psinfo); | |
1653 | kfree(notes); | |
1654 | kfree(fpu); | |
1655 | #ifdef ELF_CORE_COPY_XFPREGS | |
1656 | kfree(xfpu); | |
1657 | #endif | |
1658 | return has_dumped; | |
1659 | #undef NUM_NOTES | |
1660 | } | |
1661 | ||
1662 | #endif /* USE_ELF_CORE_DUMP */ | |
1663 | ||
1664 | static int __init init_elf_binfmt(void) | |
1665 | { | |
1666 | return register_binfmt(&elf_format); | |
1667 | } | |
1668 | ||
1669 | static void __exit exit_elf_binfmt(void) | |
1670 | { | |
1671 | /* Remove the COFF and ELF loaders. */ | |
1672 | unregister_binfmt(&elf_format); | |
1673 | } | |
1674 | ||
1675 | core_initcall(init_elf_binfmt); | |
1676 | module_exit(exit_elf_binfmt); | |
1677 | MODULE_LICENSE("GPL"); |