]>
Commit | Line | Data |
---|---|---|
49b786ea AS |
1 | /* |
2 | * Process number limiting controller for cgroups. | |
3 | * | |
4 | * Used to allow a cgroup hierarchy to stop any new processes from fork()ing | |
5 | * after a certain limit is reached. | |
6 | * | |
7 | * Since it is trivial to hit the task limit without hitting any kmemcg limits | |
8 | * in place, PIDs are a fundamental resource. As such, PID exhaustion must be | |
9 | * preventable in the scope of a cgroup hierarchy by allowing resource limiting | |
10 | * of the number of tasks in a cgroup. | |
11 | * | |
12 | * In order to use the `pids` controller, set the maximum number of tasks in | |
13 | * pids.max (this is not available in the root cgroup for obvious reasons). The | |
14 | * number of processes currently in the cgroup is given by pids.current. | |
15 | * Organisational operations are not blocked by cgroup policies, so it is | |
16 | * possible to have pids.current > pids.max. However, it is not possible to | |
17 | * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking | |
18 | * would cause a cgroup policy to be violated. | |
19 | * | |
20 | * To set a cgroup to have no limit, set pids.max to "max". This is the default | |
21 | * for all new cgroups (N.B. that PID limits are hierarchical, so the most | |
22 | * stringent limit in the hierarchy is followed). | |
23 | * | |
24 | * pids.current tracks all child cgroup hierarchies, so parent/pids.current is | |
25 | * a superset of parent/child/pids.current. | |
26 | * | |
27 | * Copyright (C) 2015 Aleksa Sarai <[email protected]> | |
28 | * | |
29 | * This file is subject to the terms and conditions of version 2 of the GNU | |
30 | * General Public License. See the file COPYING in the main directory of the | |
31 | * Linux distribution for more details. | |
32 | */ | |
33 | ||
34 | #include <linux/kernel.h> | |
35 | #include <linux/threads.h> | |
36 | #include <linux/atomic.h> | |
37 | #include <linux/cgroup.h> | |
38 | #include <linux/slab.h> | |
39 | ||
40 | #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) | |
41 | #define PIDS_MAX_STR "max" | |
42 | ||
43 | struct pids_cgroup { | |
44 | struct cgroup_subsys_state css; | |
45 | ||
46 | /* | |
47 | * Use 64-bit types so that we can safely represent "max" as | |
48 | * %PIDS_MAX = (%PID_MAX_LIMIT + 1). | |
49 | */ | |
50 | atomic64_t counter; | |
51 | int64_t limit; | |
52 | }; | |
53 | ||
54 | static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) | |
55 | { | |
56 | return container_of(css, struct pids_cgroup, css); | |
57 | } | |
58 | ||
59 | static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) | |
60 | { | |
61 | return css_pids(pids->css.parent); | |
62 | } | |
63 | ||
64 | static struct cgroup_subsys_state * | |
65 | pids_css_alloc(struct cgroup_subsys_state *parent) | |
66 | { | |
67 | struct pids_cgroup *pids; | |
68 | ||
69 | pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); | |
70 | if (!pids) | |
71 | return ERR_PTR(-ENOMEM); | |
72 | ||
73 | pids->limit = PIDS_MAX; | |
74 | atomic64_set(&pids->counter, 0); | |
75 | return &pids->css; | |
76 | } | |
77 | ||
78 | static void pids_css_free(struct cgroup_subsys_state *css) | |
79 | { | |
80 | kfree(css_pids(css)); | |
81 | } | |
82 | ||
83 | /** | |
84 | * pids_cancel - uncharge the local pid count | |
85 | * @pids: the pid cgroup state | |
86 | * @num: the number of pids to cancel | |
87 | * | |
88 | * This function will WARN if the pid count goes under 0, because such a case is | |
89 | * a bug in the pids controller proper. | |
90 | */ | |
91 | static void pids_cancel(struct pids_cgroup *pids, int num) | |
92 | { | |
93 | /* | |
94 | * A negative count (or overflow for that matter) is invalid, | |
95 | * and indicates a bug in the `pids` controller proper. | |
96 | */ | |
97 | WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); | |
98 | } | |
99 | ||
100 | /** | |
101 | * pids_uncharge - hierarchically uncharge the pid count | |
102 | * @pids: the pid cgroup state | |
103 | * @num: the number of pids to uncharge | |
104 | */ | |
105 | static void pids_uncharge(struct pids_cgroup *pids, int num) | |
106 | { | |
107 | struct pids_cgroup *p; | |
108 | ||
109 | for (p = pids; p; p = parent_pids(p)) | |
110 | pids_cancel(p, num); | |
111 | } | |
112 | ||
113 | /** | |
114 | * pids_charge - hierarchically charge the pid count | |
115 | * @pids: the pid cgroup state | |
116 | * @num: the number of pids to charge | |
117 | * | |
118 | * This function does *not* follow the pid limit set. It cannot fail and the new | |
119 | * pid count may exceed the limit. This is only used for reverting failed | |
120 | * attaches, where there is no other way out than violating the limit. | |
121 | */ | |
122 | static void pids_charge(struct pids_cgroup *pids, int num) | |
123 | { | |
124 | struct pids_cgroup *p; | |
125 | ||
126 | for (p = pids; p; p = parent_pids(p)) | |
127 | atomic64_add(num, &p->counter); | |
128 | } | |
129 | ||
130 | /** | |
131 | * pids_try_charge - hierarchically try to charge the pid count | |
132 | * @pids: the pid cgroup state | |
133 | * @num: the number of pids to charge | |
134 | * | |
135 | * This function follows the set limit. It will fail if the charge would cause | |
136 | * the new value to exceed the hierarchical limit. Returns 0 if the charge | |
137 | * succeded, otherwise -EAGAIN. | |
138 | */ | |
139 | static int pids_try_charge(struct pids_cgroup *pids, int num) | |
140 | { | |
141 | struct pids_cgroup *p, *q; | |
142 | ||
143 | for (p = pids; p; p = parent_pids(p)) { | |
144 | int64_t new = atomic64_add_return(num, &p->counter); | |
145 | ||
146 | /* | |
147 | * Since new is capped to the maximum number of pid_t, if | |
148 | * p->limit is %PIDS_MAX then we know that this test will never | |
149 | * fail. | |
150 | */ | |
151 | if (new > p->limit) | |
152 | goto revert; | |
153 | } | |
154 | ||
155 | return 0; | |
156 | ||
157 | revert: | |
158 | for (q = pids; q != p; q = parent_pids(q)) | |
159 | pids_cancel(q, num); | |
160 | pids_cancel(p, num); | |
161 | ||
162 | return -EAGAIN; | |
163 | } | |
164 | ||
165 | static int pids_can_attach(struct cgroup_subsys_state *css, | |
166 | struct cgroup_taskset *tset) | |
167 | { | |
168 | struct pids_cgroup *pids = css_pids(css); | |
169 | struct task_struct *task; | |
170 | ||
171 | cgroup_taskset_for_each(task, tset) { | |
172 | struct cgroup_subsys_state *old_css; | |
173 | struct pids_cgroup *old_pids; | |
174 | ||
175 | /* | |
ce523995 AS |
176 | * No need to pin @old_css between here and cancel_attach() |
177 | * because cgroup core protects it from being freed before | |
178 | * the migration completes or fails. | |
49b786ea | 179 | */ |
ce523995 | 180 | old_css = task_css(task, pids_cgrp_id); |
49b786ea AS |
181 | old_pids = css_pids(old_css); |
182 | ||
183 | pids_charge(pids, 1); | |
184 | pids_uncharge(old_pids, 1); | |
185 | } | |
186 | ||
187 | return 0; | |
188 | } | |
189 | ||
190 | static void pids_cancel_attach(struct cgroup_subsys_state *css, | |
191 | struct cgroup_taskset *tset) | |
192 | { | |
193 | struct pids_cgroup *pids = css_pids(css); | |
194 | struct task_struct *task; | |
195 | ||
196 | cgroup_taskset_for_each(task, tset) { | |
197 | struct cgroup_subsys_state *old_css; | |
198 | struct pids_cgroup *old_pids; | |
199 | ||
200 | old_css = task_css(task, pids_cgrp_id); | |
201 | old_pids = css_pids(old_css); | |
202 | ||
203 | pids_charge(old_pids, 1); | |
204 | pids_uncharge(pids, 1); | |
49b786ea AS |
205 | } |
206 | } | |
207 | ||
49b786ea AS |
208 | static int pids_can_fork(struct task_struct *task, void **priv_p) |
209 | { | |
210 | struct cgroup_subsys_state *css; | |
211 | struct pids_cgroup *pids; | |
212 | int err; | |
213 | ||
214 | /* | |
215 | * Use the "current" task_css for the pids subsystem as the tentative | |
216 | * css. It is possible we will charge the wrong hierarchy, in which | |
217 | * case we will forcefully revert/reapply the charge on the right | |
218 | * hierarchy after it is committed to the task proper. | |
219 | */ | |
220 | css = task_get_css(current, pids_cgrp_id); | |
221 | pids = css_pids(css); | |
222 | ||
223 | err = pids_try_charge(pids, 1); | |
224 | if (err) | |
225 | goto err_css_put; | |
226 | ||
227 | *priv_p = css; | |
228 | return 0; | |
229 | ||
230 | err_css_put: | |
231 | css_put(css); | |
232 | return err; | |
233 | } | |
234 | ||
235 | static void pids_cancel_fork(struct task_struct *task, void *priv) | |
236 | { | |
237 | struct cgroup_subsys_state *css = priv; | |
238 | struct pids_cgroup *pids = css_pids(css); | |
239 | ||
240 | pids_uncharge(pids, 1); | |
241 | css_put(css); | |
242 | } | |
243 | ||
244 | static void pids_fork(struct task_struct *task, void *priv) | |
245 | { | |
246 | struct cgroup_subsys_state *css; | |
247 | struct cgroup_subsys_state *old_css = priv; | |
248 | struct pids_cgroup *pids; | |
249 | struct pids_cgroup *old_pids = css_pids(old_css); | |
250 | ||
251 | css = task_get_css(task, pids_cgrp_id); | |
252 | pids = css_pids(css); | |
253 | ||
254 | /* | |
255 | * If the association has changed, we have to revert and reapply the | |
256 | * charge/uncharge on the wrong hierarchy to the current one. Since | |
257 | * the association can only change due to an organisation event, its | |
258 | * okay for us to ignore the limit in this case. | |
259 | */ | |
260 | if (pids != old_pids) { | |
261 | pids_uncharge(old_pids, 1); | |
262 | pids_charge(pids, 1); | |
263 | } | |
264 | ||
265 | css_put(css); | |
266 | css_put(old_css); | |
267 | } | |
268 | ||
269 | static void pids_exit(struct cgroup_subsys_state *css, | |
270 | struct cgroup_subsys_state *old_css, | |
271 | struct task_struct *task) | |
272 | { | |
273 | struct pids_cgroup *pids = css_pids(old_css); | |
274 | ||
275 | pids_uncharge(pids, 1); | |
276 | } | |
277 | ||
278 | static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, | |
279 | size_t nbytes, loff_t off) | |
280 | { | |
281 | struct cgroup_subsys_state *css = of_css(of); | |
282 | struct pids_cgroup *pids = css_pids(css); | |
283 | int64_t limit; | |
284 | int err; | |
285 | ||
286 | buf = strstrip(buf); | |
287 | if (!strcmp(buf, PIDS_MAX_STR)) { | |
288 | limit = PIDS_MAX; | |
289 | goto set_limit; | |
290 | } | |
291 | ||
292 | err = kstrtoll(buf, 0, &limit); | |
293 | if (err) | |
294 | return err; | |
295 | ||
296 | if (limit < 0 || limit >= PIDS_MAX) | |
297 | return -EINVAL; | |
298 | ||
299 | set_limit: | |
300 | /* | |
301 | * Limit updates don't need to be mutex'd, since it isn't | |
302 | * critical that any racing fork()s follow the new limit. | |
303 | */ | |
304 | pids->limit = limit; | |
305 | return nbytes; | |
306 | } | |
307 | ||
308 | static int pids_max_show(struct seq_file *sf, void *v) | |
309 | { | |
310 | struct cgroup_subsys_state *css = seq_css(sf); | |
311 | struct pids_cgroup *pids = css_pids(css); | |
312 | int64_t limit = pids->limit; | |
313 | ||
314 | if (limit >= PIDS_MAX) | |
315 | seq_printf(sf, "%s\n", PIDS_MAX_STR); | |
316 | else | |
317 | seq_printf(sf, "%lld\n", limit); | |
318 | ||
319 | return 0; | |
320 | } | |
321 | ||
322 | static s64 pids_current_read(struct cgroup_subsys_state *css, | |
323 | struct cftype *cft) | |
324 | { | |
325 | struct pids_cgroup *pids = css_pids(css); | |
326 | ||
327 | return atomic64_read(&pids->counter); | |
328 | } | |
329 | ||
330 | static struct cftype pids_files[] = { | |
331 | { | |
332 | .name = "max", | |
333 | .write = pids_max_write, | |
334 | .seq_show = pids_max_show, | |
335 | .flags = CFTYPE_NOT_ON_ROOT, | |
336 | }, | |
337 | { | |
338 | .name = "current", | |
339 | .read_s64 = pids_current_read, | |
340 | }, | |
341 | { } /* terminate */ | |
342 | }; | |
343 | ||
344 | struct cgroup_subsys pids_cgrp_subsys = { | |
345 | .css_alloc = pids_css_alloc, | |
346 | .css_free = pids_css_free, | |
49b786ea AS |
347 | .can_attach = pids_can_attach, |
348 | .cancel_attach = pids_cancel_attach, | |
349 | .can_fork = pids_can_fork, | |
350 | .cancel_fork = pids_cancel_fork, | |
351 | .fork = pids_fork, | |
352 | .exit = pids_exit, | |
353 | .legacy_cftypes = pids_files, | |
354 | .dfl_cftypes = pids_files, | |
355 | }; |