]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/profile.c | |
3 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
4 | * with configurable resolution, support for restricting the cpus on | |
5 | * which profiling is done, and switching between cpu time and | |
6 | * schedule() calls via kernel command line parameters passed at boot. | |
7 | * | |
8 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
9 | * Red Hat, July 2004 | |
10 | * Consolidation of architecture support code for profiling, | |
11 | * William Irwin, Oracle, July 2004 | |
12 | * Amortized hit count accounting via per-cpu open-addressed hashtables | |
13 | * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 | |
14 | */ | |
15 | ||
1da177e4 LT |
16 | #include <linux/module.h> |
17 | #include <linux/profile.h> | |
18 | #include <linux/bootmem.h> | |
19 | #include <linux/notifier.h> | |
20 | #include <linux/mm.h> | |
21 | #include <linux/cpumask.h> | |
22 | #include <linux/cpu.h> | |
23 | #include <linux/profile.h> | |
24 | #include <linux/highmem.h> | |
97d1f15b | 25 | #include <linux/mutex.h> |
1da177e4 LT |
26 | #include <asm/sections.h> |
27 | #include <asm/semaphore.h> | |
7d12e780 | 28 | #include <asm/irq_regs.h> |
e8edc6e0 | 29 | #include <asm/ptrace.h> |
1da177e4 LT |
30 | |
31 | struct profile_hit { | |
32 | u32 pc, hits; | |
33 | }; | |
34 | #define PROFILE_GRPSHIFT 3 | |
35 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
36 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
37 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
38 | ||
39 | /* Oprofile timer tick hook */ | |
6c036527 | 40 | int (*timer_hook)(struct pt_regs *) __read_mostly; |
1da177e4 LT |
41 | |
42 | static atomic_t *prof_buffer; | |
43 | static unsigned long prof_len, prof_shift; | |
07031e14 | 44 | |
ece8a684 | 45 | int prof_on __read_mostly; |
07031e14 IM |
46 | EXPORT_SYMBOL_GPL(prof_on); |
47 | ||
1da177e4 LT |
48 | static cpumask_t prof_cpu_mask = CPU_MASK_ALL; |
49 | #ifdef CONFIG_SMP | |
50 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | |
51 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 52 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
53 | #endif /* CONFIG_SMP */ |
54 | ||
55 | static int __init profile_setup(char * str) | |
56 | { | |
dfaa9c94 | 57 | static char __initdata schedstr[] = "schedule"; |
ece8a684 | 58 | static char __initdata sleepstr[] = "sleep"; |
07031e14 | 59 | static char __initdata kvmstr[] = "kvm"; |
1da177e4 LT |
60 | int par; |
61 | ||
ece8a684 IM |
62 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
63 | prof_on = SLEEP_PROFILING; | |
64 | if (str[strlen(sleepstr)] == ',') | |
65 | str += strlen(sleepstr) + 1; | |
66 | if (get_option(&str, &par)) | |
67 | prof_shift = par; | |
68 | printk(KERN_INFO | |
69 | "kernel sleep profiling enabled (shift: %ld)\n", | |
70 | prof_shift); | |
a75acf85 | 71 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 72 | prof_on = SCHED_PROFILING; |
dfaa9c94 NYC |
73 | if (str[strlen(schedstr)] == ',') |
74 | str += strlen(schedstr) + 1; | |
75 | if (get_option(&str, &par)) | |
76 | prof_shift = par; | |
77 | printk(KERN_INFO | |
78 | "kernel schedule profiling enabled (shift: %ld)\n", | |
79 | prof_shift); | |
07031e14 IM |
80 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
81 | prof_on = KVM_PROFILING; | |
82 | if (str[strlen(kvmstr)] == ',') | |
83 | str += strlen(kvmstr) + 1; | |
84 | if (get_option(&str, &par)) | |
85 | prof_shift = par; | |
86 | printk(KERN_INFO | |
87 | "kernel KVM profiling enabled (shift: %ld)\n", | |
88 | prof_shift); | |
dfaa9c94 | 89 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
90 | prof_shift = par; |
91 | prof_on = CPU_PROFILING; | |
92 | printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", | |
93 | prof_shift); | |
94 | } | |
95 | return 1; | |
96 | } | |
97 | __setup("profile=", profile_setup); | |
98 | ||
99 | ||
100 | void __init profile_init(void) | |
101 | { | |
102 | if (!prof_on) | |
103 | return; | |
104 | ||
105 | /* only text is profiled */ | |
106 | prof_len = (_etext - _stext) >> prof_shift; | |
107 | prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); | |
108 | } | |
109 | ||
110 | /* Profile event notifications */ | |
111 | ||
112 | #ifdef CONFIG_PROFILING | |
113 | ||
e041c683 AS |
114 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
115 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
116 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1da177e4 LT |
117 | |
118 | void profile_task_exit(struct task_struct * task) | |
119 | { | |
e041c683 | 120 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 LT |
121 | } |
122 | ||
123 | int profile_handoff_task(struct task_struct * task) | |
124 | { | |
125 | int ret; | |
e041c683 | 126 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
127 | return (ret == NOTIFY_OK) ? 1 : 0; |
128 | } | |
129 | ||
130 | void profile_munmap(unsigned long addr) | |
131 | { | |
e041c683 | 132 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
133 | } |
134 | ||
135 | int task_handoff_register(struct notifier_block * n) | |
136 | { | |
e041c683 | 137 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 LT |
138 | } |
139 | ||
140 | int task_handoff_unregister(struct notifier_block * n) | |
141 | { | |
e041c683 | 142 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 LT |
143 | } |
144 | ||
145 | int profile_event_register(enum profile_type type, struct notifier_block * n) | |
146 | { | |
147 | int err = -EINVAL; | |
148 | ||
1da177e4 LT |
149 | switch (type) { |
150 | case PROFILE_TASK_EXIT: | |
e041c683 AS |
151 | err = blocking_notifier_chain_register( |
152 | &task_exit_notifier, n); | |
1da177e4 LT |
153 | break; |
154 | case PROFILE_MUNMAP: | |
e041c683 AS |
155 | err = blocking_notifier_chain_register( |
156 | &munmap_notifier, n); | |
1da177e4 LT |
157 | break; |
158 | } | |
159 | ||
1da177e4 LT |
160 | return err; |
161 | } | |
162 | ||
163 | ||
164 | int profile_event_unregister(enum profile_type type, struct notifier_block * n) | |
165 | { | |
166 | int err = -EINVAL; | |
167 | ||
1da177e4 LT |
168 | switch (type) { |
169 | case PROFILE_TASK_EXIT: | |
e041c683 AS |
170 | err = blocking_notifier_chain_unregister( |
171 | &task_exit_notifier, n); | |
1da177e4 LT |
172 | break; |
173 | case PROFILE_MUNMAP: | |
e041c683 AS |
174 | err = blocking_notifier_chain_unregister( |
175 | &munmap_notifier, n); | |
1da177e4 LT |
176 | break; |
177 | } | |
178 | ||
1da177e4 LT |
179 | return err; |
180 | } | |
181 | ||
182 | int register_timer_hook(int (*hook)(struct pt_regs *)) | |
183 | { | |
184 | if (timer_hook) | |
185 | return -EBUSY; | |
186 | timer_hook = hook; | |
187 | return 0; | |
188 | } | |
189 | ||
190 | void unregister_timer_hook(int (*hook)(struct pt_regs *)) | |
191 | { | |
192 | WARN_ON(hook != timer_hook); | |
193 | timer_hook = NULL; | |
194 | /* make sure all CPUs see the NULL hook */ | |
fbd568a3 | 195 | synchronize_sched(); /* Allow ongoing interrupts to complete. */ |
1da177e4 LT |
196 | } |
197 | ||
198 | EXPORT_SYMBOL_GPL(register_timer_hook); | |
199 | EXPORT_SYMBOL_GPL(unregister_timer_hook); | |
200 | EXPORT_SYMBOL_GPL(task_handoff_register); | |
201 | EXPORT_SYMBOL_GPL(task_handoff_unregister); | |
202 | ||
203 | #endif /* CONFIG_PROFILING */ | |
204 | ||
205 | EXPORT_SYMBOL_GPL(profile_event_register); | |
206 | EXPORT_SYMBOL_GPL(profile_event_unregister); | |
207 | ||
208 | #ifdef CONFIG_SMP | |
209 | /* | |
210 | * Each cpu has a pair of open-addressed hashtables for pending | |
211 | * profile hits. read_profile() IPI's all cpus to request them | |
212 | * to flip buffers and flushes their contents to prof_buffer itself. | |
213 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
214 | * use of having a second hashtable is for avoiding cacheline | |
215 | * contention that would otherwise happen during flushes of pending | |
216 | * profile hits required for the accuracy of reported profile hits | |
217 | * and so resurrect the interrupt livelock issue. | |
218 | * | |
219 | * The open-addressed hashtables are indexed by profile buffer slot | |
220 | * and hold the number of pending hits to that profile buffer slot on | |
221 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
222 | * are accounted to their corresponding profile buffer slots with | |
223 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
224 | * may be accounted to a profile buffer slot in a hashtable entry, | |
225 | * this amortizes a number of atomic profile buffer increments likely | |
226 | * to be far larger than the number of entries in the hashtable, | |
227 | * particularly given that the number of distinct profile buffer | |
228 | * positions to which hits are accounted during short intervals (e.g. | |
229 | * several seconds) is usually very small. Exclusion from buffer | |
230 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
231 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
232 | * process context). | |
1da177e4 LT |
233 | * The hash function is meant to be lightweight as opposed to strong, |
234 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
235 | * pagetable hash functions, but uses a full hashtable full of finite | |
236 | * collision chains, not just pairs of them. | |
237 | * | |
238 | * -- wli | |
239 | */ | |
240 | static void __profile_flip_buffers(void *unused) | |
241 | { | |
242 | int cpu = smp_processor_id(); | |
243 | ||
244 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
245 | } | |
246 | ||
247 | static void profile_flip_buffers(void) | |
248 | { | |
249 | int i, j, cpu; | |
250 | ||
97d1f15b | 251 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
252 | j = per_cpu(cpu_profile_flip, get_cpu()); |
253 | put_cpu(); | |
254 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | |
255 | for_each_online_cpu(cpu) { | |
256 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
257 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
258 | if (!hits[i].hits) { | |
259 | if (hits[i].pc) | |
260 | hits[i].pc = 0; | |
261 | continue; | |
262 | } | |
263 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
264 | hits[i].hits = hits[i].pc = 0; | |
265 | } | |
266 | } | |
97d1f15b | 267 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
268 | } |
269 | ||
270 | static void profile_discard_flip_buffers(void) | |
271 | { | |
272 | int i, cpu; | |
273 | ||
97d1f15b | 274 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
275 | i = per_cpu(cpu_profile_flip, get_cpu()); |
276 | put_cpu(); | |
277 | on_each_cpu(__profile_flip_buffers, NULL, 0, 1); | |
278 | for_each_online_cpu(cpu) { | |
279 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
280 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
281 | } | |
97d1f15b | 282 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
283 | } |
284 | ||
ece8a684 | 285 | void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
286 | { |
287 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
288 | int i, j, cpu; | |
289 | struct profile_hit *hits; | |
290 | ||
291 | if (prof_on != type || !prof_buffer) | |
292 | return; | |
293 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); | |
294 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
295 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
296 | cpu = get_cpu(); | |
297 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
298 | if (!hits) { | |
299 | put_cpu(); | |
300 | return; | |
301 | } | |
ece8a684 IM |
302 | /* |
303 | * We buffer the global profiler buffer into a per-CPU | |
304 | * queue and thus reduce the number of global (and possibly | |
305 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
306 | */ | |
1da177e4 LT |
307 | local_irq_save(flags); |
308 | do { | |
309 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
310 | if (hits[i + j].pc == pc) { | |
ece8a684 | 311 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
312 | goto out; |
313 | } else if (!hits[i + j].hits) { | |
314 | hits[i + j].pc = pc; | |
ece8a684 | 315 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
316 | goto out; |
317 | } | |
318 | } | |
319 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
320 | } while (i != primary); | |
ece8a684 IM |
321 | |
322 | /* | |
323 | * Add the current hit(s) and flush the write-queue out | |
324 | * to the global buffer: | |
325 | */ | |
326 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
327 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
328 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
329 | hits[i].pc = hits[i].hits = 0; | |
330 | } | |
331 | out: | |
332 | local_irq_restore(flags); | |
333 | put_cpu(); | |
334 | } | |
335 | ||
9c7b216d | 336 | static int __devinit profile_cpu_callback(struct notifier_block *info, |
1da177e4 LT |
337 | unsigned long action, void *__cpu) |
338 | { | |
339 | int node, cpu = (unsigned long)__cpu; | |
340 | struct page *page; | |
341 | ||
342 | switch (action) { | |
343 | case CPU_UP_PREPARE: | |
8bb78442 | 344 | case CPU_UP_PREPARE_FROZEN: |
1da177e4 LT |
345 | node = cpu_to_node(cpu); |
346 | per_cpu(cpu_profile_flip, cpu) = 0; | |
347 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | |
fbd98167 CL |
348 | page = alloc_pages_node(node, |
349 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
350 | 0); | |
1da177e4 LT |
351 | if (!page) |
352 | return NOTIFY_BAD; | |
353 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); | |
354 | } | |
355 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | |
fbd98167 CL |
356 | page = alloc_pages_node(node, |
357 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
358 | 0); | |
1da177e4 LT |
359 | if (!page) |
360 | goto out_free; | |
361 | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | |
362 | } | |
363 | break; | |
364 | out_free: | |
365 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
366 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
367 | __free_page(page); | |
368 | return NOTIFY_BAD; | |
369 | case CPU_ONLINE: | |
8bb78442 | 370 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
371 | cpu_set(cpu, prof_cpu_mask); |
372 | break; | |
373 | case CPU_UP_CANCELED: | |
8bb78442 | 374 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 375 | case CPU_DEAD: |
8bb78442 | 376 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
377 | cpu_clear(cpu, prof_cpu_mask); |
378 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | |
379 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
380 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
381 | __free_page(page); | |
382 | } | |
383 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
384 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
385 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
386 | __free_page(page); | |
387 | } | |
388 | break; | |
389 | } | |
390 | return NOTIFY_OK; | |
391 | } | |
1da177e4 LT |
392 | #else /* !CONFIG_SMP */ |
393 | #define profile_flip_buffers() do { } while (0) | |
394 | #define profile_discard_flip_buffers() do { } while (0) | |
02316067 | 395 | #define profile_cpu_callback NULL |
1da177e4 | 396 | |
ece8a684 | 397 | void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
398 | { |
399 | unsigned long pc; | |
400 | ||
401 | if (prof_on != type || !prof_buffer) | |
402 | return; | |
403 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; | |
ece8a684 | 404 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
405 | } |
406 | #endif /* !CONFIG_SMP */ | |
407 | ||
bbe1a59b AM |
408 | EXPORT_SYMBOL_GPL(profile_hits); |
409 | ||
7d12e780 | 410 | void profile_tick(int type) |
1da177e4 | 411 | { |
7d12e780 DH |
412 | struct pt_regs *regs = get_irq_regs(); |
413 | ||
1da177e4 LT |
414 | if (type == CPU_PROFILING && timer_hook) |
415 | timer_hook(regs); | |
416 | if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) | |
417 | profile_hit(type, (void *)profile_pc(regs)); | |
418 | } | |
419 | ||
420 | #ifdef CONFIG_PROC_FS | |
421 | #include <linux/proc_fs.h> | |
422 | #include <asm/uaccess.h> | |
423 | #include <asm/ptrace.h> | |
424 | ||
425 | static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, | |
426 | int count, int *eof, void *data) | |
427 | { | |
428 | int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); | |
429 | if (count - len < 2) | |
430 | return -EINVAL; | |
431 | len += sprintf(page + len, "\n"); | |
432 | return len; | |
433 | } | |
434 | ||
435 | static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, | |
436 | unsigned long count, void *data) | |
437 | { | |
438 | cpumask_t *mask = (cpumask_t *)data; | |
439 | unsigned long full_count = count, err; | |
440 | cpumask_t new_value; | |
441 | ||
01a3ee2b | 442 | err = cpumask_parse_user(buffer, count, new_value); |
1da177e4 LT |
443 | if (err) |
444 | return err; | |
445 | ||
446 | *mask = new_value; | |
447 | return full_count; | |
448 | } | |
449 | ||
450 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | |
451 | { | |
452 | struct proc_dir_entry *entry; | |
453 | ||
454 | /* create /proc/irq/prof_cpu_mask */ | |
455 | if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) | |
456 | return; | |
1da177e4 LT |
457 | entry->data = (void *)&prof_cpu_mask; |
458 | entry->read_proc = prof_cpu_mask_read_proc; | |
459 | entry->write_proc = prof_cpu_mask_write_proc; | |
460 | } | |
461 | ||
462 | /* | |
463 | * This function accesses profiling information. The returned data is | |
464 | * binary: the sampling step and the actual contents of the profile | |
465 | * buffer. Use of the program readprofile is recommended in order to | |
466 | * get meaningful info out of these data. | |
467 | */ | |
468 | static ssize_t | |
469 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
470 | { | |
471 | unsigned long p = *ppos; | |
472 | ssize_t read; | |
473 | char * pnt; | |
474 | unsigned int sample_step = 1 << prof_shift; | |
475 | ||
476 | profile_flip_buffers(); | |
477 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
478 | return 0; | |
479 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
480 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
481 | read = 0; | |
482 | ||
483 | while (p < sizeof(unsigned int) && count > 0) { | |
064b022c HC |
484 | if (put_user(*((char *)(&sample_step)+p),buf)) |
485 | return -EFAULT; | |
1da177e4 LT |
486 | buf++; p++; count--; read++; |
487 | } | |
488 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
489 | if (copy_to_user(buf,(void *)pnt,count)) | |
490 | return -EFAULT; | |
491 | read += count; | |
492 | *ppos += read; | |
493 | return read; | |
494 | } | |
495 | ||
496 | /* | |
497 | * Writing to /proc/profile resets the counters | |
498 | * | |
499 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
500 | * interrupt frequency, on architectures that support this. | |
501 | */ | |
502 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
503 | size_t count, loff_t *ppos) | |
504 | { | |
505 | #ifdef CONFIG_SMP | |
506 | extern int setup_profiling_timer (unsigned int multiplier); | |
507 | ||
508 | if (count == sizeof(int)) { | |
509 | unsigned int multiplier; | |
510 | ||
511 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
512 | return -EFAULT; | |
513 | ||
514 | if (setup_profiling_timer(multiplier)) | |
515 | return -EINVAL; | |
516 | } | |
517 | #endif | |
518 | profile_discard_flip_buffers(); | |
519 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
520 | return count; | |
521 | } | |
522 | ||
15ad7cdc | 523 | static const struct file_operations proc_profile_operations = { |
1da177e4 LT |
524 | .read = read_profile, |
525 | .write = write_profile, | |
526 | }; | |
527 | ||
528 | #ifdef CONFIG_SMP | |
529 | static void __init profile_nop(void *unused) | |
530 | { | |
531 | } | |
532 | ||
533 | static int __init create_hash_tables(void) | |
534 | { | |
535 | int cpu; | |
536 | ||
537 | for_each_online_cpu(cpu) { | |
538 | int node = cpu_to_node(cpu); | |
539 | struct page *page; | |
540 | ||
fbd98167 CL |
541 | page = alloc_pages_node(node, |
542 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
543 | 0); | |
1da177e4 LT |
544 | if (!page) |
545 | goto out_cleanup; | |
546 | per_cpu(cpu_profile_hits, cpu)[1] | |
547 | = (struct profile_hit *)page_address(page); | |
fbd98167 CL |
548 | page = alloc_pages_node(node, |
549 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | |
550 | 0); | |
1da177e4 LT |
551 | if (!page) |
552 | goto out_cleanup; | |
553 | per_cpu(cpu_profile_hits, cpu)[0] | |
554 | = (struct profile_hit *)page_address(page); | |
555 | } | |
556 | return 0; | |
557 | out_cleanup: | |
558 | prof_on = 0; | |
d59dd462 | 559 | smp_mb(); |
1da177e4 LT |
560 | on_each_cpu(profile_nop, NULL, 0, 1); |
561 | for_each_online_cpu(cpu) { | |
562 | struct page *page; | |
563 | ||
564 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | |
565 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
566 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
567 | __free_page(page); | |
568 | } | |
569 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
570 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
571 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
572 | __free_page(page); | |
573 | } | |
574 | } | |
575 | return -1; | |
576 | } | |
577 | #else | |
578 | #define create_hash_tables() ({ 0; }) | |
579 | #endif | |
580 | ||
581 | static int __init create_proc_profile(void) | |
582 | { | |
583 | struct proc_dir_entry *entry; | |
584 | ||
585 | if (!prof_on) | |
586 | return 0; | |
587 | if (create_hash_tables()) | |
588 | return -1; | |
589 | if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) | |
590 | return 0; | |
591 | entry->proc_fops = &proc_profile_operations; | |
592 | entry->size = (1+prof_len) * sizeof(atomic_t); | |
593 | hotcpu_notifier(profile_cpu_callback, 0); | |
594 | return 0; | |
595 | } | |
596 | module_init(create_proc_profile); | |
597 | #endif /* CONFIG_PROC_FS */ |