]>
Commit | Line | Data |
---|---|---|
0b86a832 CM |
1 | /* |
2 | * Copyright (C) 2007 Oracle. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public | |
6 | * License v2 as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
11 | * General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public | |
14 | * License along with this program; if not, write to the | |
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
16 | * Boston, MA 021110-1307, USA. | |
17 | */ | |
18 | #include <linux/sched.h> | |
19 | #include <linux/bio.h> | |
8a4b83cc | 20 | #include <linux/buffer_head.h> |
f2d8d74d | 21 | #include <linux/blkdev.h> |
788f20eb | 22 | #include <linux/random.h> |
4b4e25f2 | 23 | #include <linux/version.h> |
593060d7 | 24 | #include <asm/div64.h> |
4b4e25f2 | 25 | #include "compat.h" |
0b86a832 CM |
26 | #include "ctree.h" |
27 | #include "extent_map.h" | |
28 | #include "disk-io.h" | |
29 | #include "transaction.h" | |
30 | #include "print-tree.h" | |
31 | #include "volumes.h" | |
8b712842 | 32 | #include "async-thread.h" |
0b86a832 | 33 | |
593060d7 CM |
34 | struct map_lookup { |
35 | u64 type; | |
36 | int io_align; | |
37 | int io_width; | |
38 | int stripe_len; | |
39 | int sector_size; | |
40 | int num_stripes; | |
321aecc6 | 41 | int sub_stripes; |
cea9e445 | 42 | struct btrfs_bio_stripe stripes[]; |
593060d7 CM |
43 | }; |
44 | ||
2b82032c YZ |
45 | static int init_first_rw_device(struct btrfs_trans_handle *trans, |
46 | struct btrfs_root *root, | |
47 | struct btrfs_device *device); | |
48 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | |
49 | ||
593060d7 | 50 | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ |
cea9e445 | 51 | (sizeof(struct btrfs_bio_stripe) * (n))) |
593060d7 | 52 | |
8a4b83cc CM |
53 | static DEFINE_MUTEX(uuid_mutex); |
54 | static LIST_HEAD(fs_uuids); | |
55 | ||
a061fc8d CM |
56 | void btrfs_lock_volumes(void) |
57 | { | |
58 | mutex_lock(&uuid_mutex); | |
59 | } | |
60 | ||
61 | void btrfs_unlock_volumes(void) | |
62 | { | |
63 | mutex_unlock(&uuid_mutex); | |
64 | } | |
65 | ||
7d9eb12c CM |
66 | static void lock_chunks(struct btrfs_root *root) |
67 | { | |
7d9eb12c CM |
68 | mutex_lock(&root->fs_info->chunk_mutex); |
69 | } | |
70 | ||
71 | static void unlock_chunks(struct btrfs_root *root) | |
72 | { | |
7d9eb12c CM |
73 | mutex_unlock(&root->fs_info->chunk_mutex); |
74 | } | |
75 | ||
e4404d6e YZ |
76 | static void free_fs_devices(struct btrfs_fs_devices *fs_devices) |
77 | { | |
78 | struct btrfs_device *device; | |
79 | WARN_ON(fs_devices->opened); | |
80 | while (!list_empty(&fs_devices->devices)) { | |
81 | device = list_entry(fs_devices->devices.next, | |
82 | struct btrfs_device, dev_list); | |
83 | list_del(&device->dev_list); | |
84 | kfree(device->name); | |
85 | kfree(device); | |
86 | } | |
87 | kfree(fs_devices); | |
88 | } | |
89 | ||
8a4b83cc CM |
90 | int btrfs_cleanup_fs_uuids(void) |
91 | { | |
92 | struct btrfs_fs_devices *fs_devices; | |
8a4b83cc | 93 | |
2b82032c YZ |
94 | while (!list_empty(&fs_uuids)) { |
95 | fs_devices = list_entry(fs_uuids.next, | |
96 | struct btrfs_fs_devices, list); | |
97 | list_del(&fs_devices->list); | |
e4404d6e | 98 | free_fs_devices(fs_devices); |
8a4b83cc CM |
99 | } |
100 | return 0; | |
101 | } | |
102 | ||
a1b32a59 CM |
103 | static noinline struct btrfs_device *__find_device(struct list_head *head, |
104 | u64 devid, u8 *uuid) | |
8a4b83cc CM |
105 | { |
106 | struct btrfs_device *dev; | |
107 | struct list_head *cur; | |
108 | ||
109 | list_for_each(cur, head) { | |
110 | dev = list_entry(cur, struct btrfs_device, dev_list); | |
a443755f | 111 | if (dev->devid == devid && |
8f18cf13 | 112 | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { |
8a4b83cc | 113 | return dev; |
a443755f | 114 | } |
8a4b83cc CM |
115 | } |
116 | return NULL; | |
117 | } | |
118 | ||
a1b32a59 | 119 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) |
8a4b83cc CM |
120 | { |
121 | struct list_head *cur; | |
122 | struct btrfs_fs_devices *fs_devices; | |
123 | ||
124 | list_for_each(cur, &fs_uuids) { | |
125 | fs_devices = list_entry(cur, struct btrfs_fs_devices, list); | |
126 | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | |
127 | return fs_devices; | |
128 | } | |
129 | return NULL; | |
130 | } | |
131 | ||
8b712842 CM |
132 | /* |
133 | * we try to collect pending bios for a device so we don't get a large | |
134 | * number of procs sending bios down to the same device. This greatly | |
135 | * improves the schedulers ability to collect and merge the bios. | |
136 | * | |
137 | * But, it also turns into a long list of bios to process and that is sure | |
138 | * to eventually make the worker thread block. The solution here is to | |
139 | * make some progress and then put this work struct back at the end of | |
140 | * the list if the block device is congested. This way, multiple devices | |
141 | * can make progress from a single worker thread. | |
142 | */ | |
d397712b | 143 | static noinline int run_scheduled_bios(struct btrfs_device *device) |
8b712842 CM |
144 | { |
145 | struct bio *pending; | |
146 | struct backing_dev_info *bdi; | |
b64a2851 | 147 | struct btrfs_fs_info *fs_info; |
8b712842 CM |
148 | struct bio *tail; |
149 | struct bio *cur; | |
150 | int again = 0; | |
151 | unsigned long num_run = 0; | |
b64a2851 | 152 | unsigned long limit; |
8b712842 CM |
153 | |
154 | bdi = device->bdev->bd_inode->i_mapping->backing_dev_info; | |
b64a2851 CM |
155 | fs_info = device->dev_root->fs_info; |
156 | limit = btrfs_async_submit_limit(fs_info); | |
157 | limit = limit * 2 / 3; | |
158 | ||
8b712842 CM |
159 | loop: |
160 | spin_lock(&device->io_lock); | |
161 | ||
162 | /* take all the bios off the list at once and process them | |
163 | * later on (without the lock held). But, remember the | |
164 | * tail and other pointers so the bios can be properly reinserted | |
165 | * into the list if we hit congestion | |
166 | */ | |
167 | pending = device->pending_bios; | |
168 | tail = device->pending_bio_tail; | |
169 | WARN_ON(pending && !tail); | |
170 | device->pending_bios = NULL; | |
171 | device->pending_bio_tail = NULL; | |
172 | ||
173 | /* | |
174 | * if pending was null this time around, no bios need processing | |
175 | * at all and we can stop. Otherwise it'll loop back up again | |
176 | * and do an additional check so no bios are missed. | |
177 | * | |
178 | * device->running_pending is used to synchronize with the | |
179 | * schedule_bio code. | |
180 | */ | |
181 | if (pending) { | |
182 | again = 1; | |
183 | device->running_pending = 1; | |
184 | } else { | |
185 | again = 0; | |
186 | device->running_pending = 0; | |
187 | } | |
188 | spin_unlock(&device->io_lock); | |
189 | ||
d397712b | 190 | while (pending) { |
8b712842 CM |
191 | cur = pending; |
192 | pending = pending->bi_next; | |
193 | cur->bi_next = NULL; | |
b64a2851 CM |
194 | atomic_dec(&fs_info->nr_async_bios); |
195 | ||
196 | if (atomic_read(&fs_info->nr_async_bios) < limit && | |
197 | waitqueue_active(&fs_info->async_submit_wait)) | |
198 | wake_up(&fs_info->async_submit_wait); | |
492bb6de CM |
199 | |
200 | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | |
201 | bio_get(cur); | |
8b712842 | 202 | submit_bio(cur->bi_rw, cur); |
492bb6de | 203 | bio_put(cur); |
8b712842 CM |
204 | num_run++; |
205 | ||
206 | /* | |
207 | * we made progress, there is more work to do and the bdi | |
208 | * is now congested. Back off and let other work structs | |
209 | * run instead | |
210 | */ | |
5f2cc086 CM |
211 | if (pending && bdi_write_congested(bdi) && |
212 | fs_info->fs_devices->open_devices > 1) { | |
8b712842 CM |
213 | struct bio *old_head; |
214 | ||
215 | spin_lock(&device->io_lock); | |
492bb6de | 216 | |
8b712842 CM |
217 | old_head = device->pending_bios; |
218 | device->pending_bios = pending; | |
219 | if (device->pending_bio_tail) | |
220 | tail->bi_next = old_head; | |
221 | else | |
222 | device->pending_bio_tail = tail; | |
223 | ||
224 | spin_unlock(&device->io_lock); | |
225 | btrfs_requeue_work(&device->work); | |
226 | goto done; | |
227 | } | |
228 | } | |
229 | if (again) | |
230 | goto loop; | |
231 | done: | |
232 | return 0; | |
233 | } | |
234 | ||
b2950863 | 235 | static void pending_bios_fn(struct btrfs_work *work) |
8b712842 CM |
236 | { |
237 | struct btrfs_device *device; | |
238 | ||
239 | device = container_of(work, struct btrfs_device, work); | |
240 | run_scheduled_bios(device); | |
241 | } | |
242 | ||
a1b32a59 | 243 | static noinline int device_list_add(const char *path, |
8a4b83cc CM |
244 | struct btrfs_super_block *disk_super, |
245 | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | |
246 | { | |
247 | struct btrfs_device *device; | |
248 | struct btrfs_fs_devices *fs_devices; | |
249 | u64 found_transid = btrfs_super_generation(disk_super); | |
250 | ||
251 | fs_devices = find_fsid(disk_super->fsid); | |
252 | if (!fs_devices) { | |
515dc322 | 253 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); |
8a4b83cc CM |
254 | if (!fs_devices) |
255 | return -ENOMEM; | |
256 | INIT_LIST_HEAD(&fs_devices->devices); | |
b3075717 | 257 | INIT_LIST_HEAD(&fs_devices->alloc_list); |
8a4b83cc CM |
258 | list_add(&fs_devices->list, &fs_uuids); |
259 | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | |
260 | fs_devices->latest_devid = devid; | |
261 | fs_devices->latest_trans = found_transid; | |
8a4b83cc CM |
262 | device = NULL; |
263 | } else { | |
a443755f CM |
264 | device = __find_device(&fs_devices->devices, devid, |
265 | disk_super->dev_item.uuid); | |
8a4b83cc CM |
266 | } |
267 | if (!device) { | |
2b82032c YZ |
268 | if (fs_devices->opened) |
269 | return -EBUSY; | |
270 | ||
8a4b83cc CM |
271 | device = kzalloc(sizeof(*device), GFP_NOFS); |
272 | if (!device) { | |
273 | /* we can safely leave the fs_devices entry around */ | |
274 | return -ENOMEM; | |
275 | } | |
276 | device->devid = devid; | |
8b712842 | 277 | device->work.func = pending_bios_fn; |
a443755f CM |
278 | memcpy(device->uuid, disk_super->dev_item.uuid, |
279 | BTRFS_UUID_SIZE); | |
f2984462 | 280 | device->barriers = 1; |
b248a415 | 281 | spin_lock_init(&device->io_lock); |
8a4b83cc CM |
282 | device->name = kstrdup(path, GFP_NOFS); |
283 | if (!device->name) { | |
284 | kfree(device); | |
285 | return -ENOMEM; | |
286 | } | |
2b82032c | 287 | INIT_LIST_HEAD(&device->dev_alloc_list); |
8a4b83cc | 288 | list_add(&device->dev_list, &fs_devices->devices); |
2b82032c | 289 | device->fs_devices = fs_devices; |
8a4b83cc CM |
290 | fs_devices->num_devices++; |
291 | } | |
292 | ||
293 | if (found_transid > fs_devices->latest_trans) { | |
294 | fs_devices->latest_devid = devid; | |
295 | fs_devices->latest_trans = found_transid; | |
296 | } | |
8a4b83cc CM |
297 | *fs_devices_ret = fs_devices; |
298 | return 0; | |
299 | } | |
300 | ||
e4404d6e YZ |
301 | static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) |
302 | { | |
303 | struct btrfs_fs_devices *fs_devices; | |
304 | struct btrfs_device *device; | |
305 | struct btrfs_device *orig_dev; | |
306 | ||
307 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | |
308 | if (!fs_devices) | |
309 | return ERR_PTR(-ENOMEM); | |
310 | ||
311 | INIT_LIST_HEAD(&fs_devices->devices); | |
312 | INIT_LIST_HEAD(&fs_devices->alloc_list); | |
313 | INIT_LIST_HEAD(&fs_devices->list); | |
314 | fs_devices->latest_devid = orig->latest_devid; | |
315 | fs_devices->latest_trans = orig->latest_trans; | |
316 | memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid)); | |
317 | ||
318 | list_for_each_entry(orig_dev, &orig->devices, dev_list) { | |
319 | device = kzalloc(sizeof(*device), GFP_NOFS); | |
320 | if (!device) | |
321 | goto error; | |
322 | ||
323 | device->name = kstrdup(orig_dev->name, GFP_NOFS); | |
324 | if (!device->name) | |
325 | goto error; | |
326 | ||
327 | device->devid = orig_dev->devid; | |
328 | device->work.func = pending_bios_fn; | |
329 | memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid)); | |
330 | device->barriers = 1; | |
331 | spin_lock_init(&device->io_lock); | |
332 | INIT_LIST_HEAD(&device->dev_list); | |
333 | INIT_LIST_HEAD(&device->dev_alloc_list); | |
334 | ||
335 | list_add(&device->dev_list, &fs_devices->devices); | |
336 | device->fs_devices = fs_devices; | |
337 | fs_devices->num_devices++; | |
338 | } | |
339 | return fs_devices; | |
340 | error: | |
341 | free_fs_devices(fs_devices); | |
342 | return ERR_PTR(-ENOMEM); | |
343 | } | |
344 | ||
dfe25020 CM |
345 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) |
346 | { | |
2b82032c | 347 | struct list_head *tmp; |
dfe25020 CM |
348 | struct list_head *cur; |
349 | struct btrfs_device *device; | |
350 | ||
351 | mutex_lock(&uuid_mutex); | |
352 | again: | |
2b82032c | 353 | list_for_each_safe(cur, tmp, &fs_devices->devices) { |
dfe25020 | 354 | device = list_entry(cur, struct btrfs_device, dev_list); |
2b82032c YZ |
355 | if (device->in_fs_metadata) |
356 | continue; | |
357 | ||
358 | if (device->bdev) { | |
15916de8 | 359 | close_bdev_exclusive(device->bdev, device->mode); |
2b82032c YZ |
360 | device->bdev = NULL; |
361 | fs_devices->open_devices--; | |
362 | } | |
363 | if (device->writeable) { | |
364 | list_del_init(&device->dev_alloc_list); | |
365 | device->writeable = 0; | |
366 | fs_devices->rw_devices--; | |
367 | } | |
e4404d6e YZ |
368 | list_del_init(&device->dev_list); |
369 | fs_devices->num_devices--; | |
370 | kfree(device->name); | |
371 | kfree(device); | |
dfe25020 | 372 | } |
2b82032c YZ |
373 | |
374 | if (fs_devices->seed) { | |
375 | fs_devices = fs_devices->seed; | |
2b82032c YZ |
376 | goto again; |
377 | } | |
378 | ||
dfe25020 CM |
379 | mutex_unlock(&uuid_mutex); |
380 | return 0; | |
381 | } | |
a0af469b | 382 | |
2b82032c | 383 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
8a4b83cc | 384 | { |
8a4b83cc CM |
385 | struct list_head *cur; |
386 | struct btrfs_device *device; | |
e4404d6e | 387 | |
2b82032c YZ |
388 | if (--fs_devices->opened > 0) |
389 | return 0; | |
8a4b83cc | 390 | |
2b82032c | 391 | list_for_each(cur, &fs_devices->devices) { |
8a4b83cc CM |
392 | device = list_entry(cur, struct btrfs_device, dev_list); |
393 | if (device->bdev) { | |
15916de8 | 394 | close_bdev_exclusive(device->bdev, device->mode); |
a0af469b | 395 | fs_devices->open_devices--; |
8a4b83cc | 396 | } |
2b82032c YZ |
397 | if (device->writeable) { |
398 | list_del_init(&device->dev_alloc_list); | |
399 | fs_devices->rw_devices--; | |
400 | } | |
401 | ||
8a4b83cc | 402 | device->bdev = NULL; |
2b82032c | 403 | device->writeable = 0; |
dfe25020 | 404 | device->in_fs_metadata = 0; |
8a4b83cc | 405 | } |
e4404d6e YZ |
406 | WARN_ON(fs_devices->open_devices); |
407 | WARN_ON(fs_devices->rw_devices); | |
2b82032c YZ |
408 | fs_devices->opened = 0; |
409 | fs_devices->seeding = 0; | |
2b82032c | 410 | |
8a4b83cc CM |
411 | return 0; |
412 | } | |
413 | ||
2b82032c YZ |
414 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
415 | { | |
e4404d6e | 416 | struct btrfs_fs_devices *seed_devices = NULL; |
2b82032c YZ |
417 | int ret; |
418 | ||
419 | mutex_lock(&uuid_mutex); | |
420 | ret = __btrfs_close_devices(fs_devices); | |
e4404d6e YZ |
421 | if (!fs_devices->opened) { |
422 | seed_devices = fs_devices->seed; | |
423 | fs_devices->seed = NULL; | |
424 | } | |
2b82032c | 425 | mutex_unlock(&uuid_mutex); |
e4404d6e YZ |
426 | |
427 | while (seed_devices) { | |
428 | fs_devices = seed_devices; | |
429 | seed_devices = fs_devices->seed; | |
430 | __btrfs_close_devices(fs_devices); | |
431 | free_fs_devices(fs_devices); | |
432 | } | |
2b82032c YZ |
433 | return ret; |
434 | } | |
435 | ||
e4404d6e YZ |
436 | static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
437 | fmode_t flags, void *holder) | |
8a4b83cc CM |
438 | { |
439 | struct block_device *bdev; | |
440 | struct list_head *head = &fs_devices->devices; | |
441 | struct list_head *cur; | |
442 | struct btrfs_device *device; | |
a0af469b CM |
443 | struct block_device *latest_bdev = NULL; |
444 | struct buffer_head *bh; | |
445 | struct btrfs_super_block *disk_super; | |
446 | u64 latest_devid = 0; | |
447 | u64 latest_transid = 0; | |
a0af469b | 448 | u64 devid; |
2b82032c | 449 | int seeding = 1; |
a0af469b | 450 | int ret = 0; |
8a4b83cc | 451 | |
8a4b83cc CM |
452 | list_for_each(cur, head) { |
453 | device = list_entry(cur, struct btrfs_device, dev_list); | |
c1c4d91c CM |
454 | if (device->bdev) |
455 | continue; | |
dfe25020 CM |
456 | if (!device->name) |
457 | continue; | |
458 | ||
15916de8 | 459 | bdev = open_bdev_exclusive(device->name, flags, holder); |
8a4b83cc | 460 | if (IS_ERR(bdev)) { |
d397712b | 461 | printk(KERN_INFO "open %s failed\n", device->name); |
a0af469b | 462 | goto error; |
8a4b83cc | 463 | } |
a061fc8d | 464 | set_blocksize(bdev, 4096); |
a0af469b | 465 | |
a512bbf8 | 466 | bh = btrfs_read_dev_super(bdev); |
a0af469b CM |
467 | if (!bh) |
468 | goto error_close; | |
469 | ||
470 | disk_super = (struct btrfs_super_block *)bh->b_data; | |
a0af469b CM |
471 | devid = le64_to_cpu(disk_super->dev_item.devid); |
472 | if (devid != device->devid) | |
473 | goto error_brelse; | |
474 | ||
2b82032c YZ |
475 | if (memcmp(device->uuid, disk_super->dev_item.uuid, |
476 | BTRFS_UUID_SIZE)) | |
477 | goto error_brelse; | |
478 | ||
479 | device->generation = btrfs_super_generation(disk_super); | |
480 | if (!latest_transid || device->generation > latest_transid) { | |
a0af469b | 481 | latest_devid = devid; |
2b82032c | 482 | latest_transid = device->generation; |
a0af469b CM |
483 | latest_bdev = bdev; |
484 | } | |
485 | ||
2b82032c YZ |
486 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { |
487 | device->writeable = 0; | |
488 | } else { | |
489 | device->writeable = !bdev_read_only(bdev); | |
490 | seeding = 0; | |
491 | } | |
492 | ||
8a4b83cc | 493 | device->bdev = bdev; |
dfe25020 | 494 | device->in_fs_metadata = 0; |
15916de8 CM |
495 | device->mode = flags; |
496 | ||
a0af469b | 497 | fs_devices->open_devices++; |
2b82032c YZ |
498 | if (device->writeable) { |
499 | fs_devices->rw_devices++; | |
500 | list_add(&device->dev_alloc_list, | |
501 | &fs_devices->alloc_list); | |
502 | } | |
a0af469b | 503 | continue; |
a061fc8d | 504 | |
a0af469b CM |
505 | error_brelse: |
506 | brelse(bh); | |
507 | error_close: | |
97288f2c | 508 | close_bdev_exclusive(bdev, FMODE_READ); |
a0af469b CM |
509 | error: |
510 | continue; | |
8a4b83cc | 511 | } |
a0af469b CM |
512 | if (fs_devices->open_devices == 0) { |
513 | ret = -EIO; | |
514 | goto out; | |
515 | } | |
2b82032c YZ |
516 | fs_devices->seeding = seeding; |
517 | fs_devices->opened = 1; | |
a0af469b CM |
518 | fs_devices->latest_bdev = latest_bdev; |
519 | fs_devices->latest_devid = latest_devid; | |
520 | fs_devices->latest_trans = latest_transid; | |
2b82032c | 521 | fs_devices->total_rw_bytes = 0; |
a0af469b | 522 | out: |
2b82032c YZ |
523 | return ret; |
524 | } | |
525 | ||
526 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | |
97288f2c | 527 | fmode_t flags, void *holder) |
2b82032c YZ |
528 | { |
529 | int ret; | |
530 | ||
531 | mutex_lock(&uuid_mutex); | |
532 | if (fs_devices->opened) { | |
e4404d6e YZ |
533 | fs_devices->opened++; |
534 | ret = 0; | |
2b82032c | 535 | } else { |
15916de8 | 536 | ret = __btrfs_open_devices(fs_devices, flags, holder); |
2b82032c | 537 | } |
8a4b83cc | 538 | mutex_unlock(&uuid_mutex); |
8a4b83cc CM |
539 | return ret; |
540 | } | |
541 | ||
97288f2c | 542 | int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, |
8a4b83cc CM |
543 | struct btrfs_fs_devices **fs_devices_ret) |
544 | { | |
545 | struct btrfs_super_block *disk_super; | |
546 | struct block_device *bdev; | |
547 | struct buffer_head *bh; | |
548 | int ret; | |
549 | u64 devid; | |
f2984462 | 550 | u64 transid; |
8a4b83cc CM |
551 | |
552 | mutex_lock(&uuid_mutex); | |
553 | ||
15916de8 | 554 | bdev = open_bdev_exclusive(path, flags, holder); |
8a4b83cc CM |
555 | |
556 | if (IS_ERR(bdev)) { | |
8a4b83cc CM |
557 | ret = PTR_ERR(bdev); |
558 | goto error; | |
559 | } | |
560 | ||
561 | ret = set_blocksize(bdev, 4096); | |
562 | if (ret) | |
563 | goto error_close; | |
a512bbf8 | 564 | bh = btrfs_read_dev_super(bdev); |
8a4b83cc CM |
565 | if (!bh) { |
566 | ret = -EIO; | |
567 | goto error_close; | |
568 | } | |
569 | disk_super = (struct btrfs_super_block *)bh->b_data; | |
8a4b83cc | 570 | devid = le64_to_cpu(disk_super->dev_item.devid); |
f2984462 | 571 | transid = btrfs_super_generation(disk_super); |
7ae9c09d | 572 | if (disk_super->label[0]) |
d397712b | 573 | printk(KERN_INFO "device label %s ", disk_super->label); |
7ae9c09d CM |
574 | else { |
575 | /* FIXME, make a readl uuid parser */ | |
d397712b | 576 | printk(KERN_INFO "device fsid %llx-%llx ", |
7ae9c09d CM |
577 | *(unsigned long long *)disk_super->fsid, |
578 | *(unsigned long long *)(disk_super->fsid + 8)); | |
579 | } | |
d397712b CM |
580 | printk(KERN_INFO "devid %llu transid %llu %s\n", |
581 | (unsigned long long)devid, (unsigned long long)transid, path); | |
8a4b83cc CM |
582 | ret = device_list_add(path, disk_super, devid, fs_devices_ret); |
583 | ||
8a4b83cc CM |
584 | brelse(bh); |
585 | error_close: | |
15916de8 | 586 | close_bdev_exclusive(bdev, flags); |
8a4b83cc CM |
587 | error: |
588 | mutex_unlock(&uuid_mutex); | |
589 | return ret; | |
590 | } | |
0b86a832 CM |
591 | |
592 | /* | |
593 | * this uses a pretty simple search, the expectation is that it is | |
594 | * called very infrequently and that a given device has a small number | |
595 | * of extents | |
596 | */ | |
a1b32a59 CM |
597 | static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans, |
598 | struct btrfs_device *device, | |
a1b32a59 | 599 | u64 num_bytes, u64 *start) |
0b86a832 CM |
600 | { |
601 | struct btrfs_key key; | |
602 | struct btrfs_root *root = device->dev_root; | |
603 | struct btrfs_dev_extent *dev_extent = NULL; | |
2b82032c | 604 | struct btrfs_path *path; |
0b86a832 CM |
605 | u64 hole_size = 0; |
606 | u64 last_byte = 0; | |
607 | u64 search_start = 0; | |
608 | u64 search_end = device->total_bytes; | |
609 | int ret; | |
610 | int slot = 0; | |
611 | int start_found; | |
612 | struct extent_buffer *l; | |
613 | ||
2b82032c YZ |
614 | path = btrfs_alloc_path(); |
615 | if (!path) | |
616 | return -ENOMEM; | |
0b86a832 | 617 | path->reada = 2; |
2b82032c | 618 | start_found = 0; |
0b86a832 CM |
619 | |
620 | /* FIXME use last free of some kind */ | |
621 | ||
8a4b83cc CM |
622 | /* we don't want to overwrite the superblock on the drive, |
623 | * so we make sure to start at an offset of at least 1MB | |
624 | */ | |
625 | search_start = max((u64)1024 * 1024, search_start); | |
8f18cf13 CM |
626 | |
627 | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | |
628 | search_start = max(root->fs_info->alloc_start, search_start); | |
629 | ||
0b86a832 CM |
630 | key.objectid = device->devid; |
631 | key.offset = search_start; | |
632 | key.type = BTRFS_DEV_EXTENT_KEY; | |
633 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | |
634 | if (ret < 0) | |
635 | goto error; | |
636 | ret = btrfs_previous_item(root, path, 0, key.type); | |
637 | if (ret < 0) | |
638 | goto error; | |
639 | l = path->nodes[0]; | |
640 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | |
641 | while (1) { | |
642 | l = path->nodes[0]; | |
643 | slot = path->slots[0]; | |
644 | if (slot >= btrfs_header_nritems(l)) { | |
645 | ret = btrfs_next_leaf(root, path); | |
646 | if (ret == 0) | |
647 | continue; | |
648 | if (ret < 0) | |
649 | goto error; | |
650 | no_more_items: | |
651 | if (!start_found) { | |
652 | if (search_start >= search_end) { | |
653 | ret = -ENOSPC; | |
654 | goto error; | |
655 | } | |
656 | *start = search_start; | |
657 | start_found = 1; | |
658 | goto check_pending; | |
659 | } | |
660 | *start = last_byte > search_start ? | |
661 | last_byte : search_start; | |
662 | if (search_end <= *start) { | |
663 | ret = -ENOSPC; | |
664 | goto error; | |
665 | } | |
666 | goto check_pending; | |
667 | } | |
668 | btrfs_item_key_to_cpu(l, &key, slot); | |
669 | ||
670 | if (key.objectid < device->devid) | |
671 | goto next; | |
672 | ||
673 | if (key.objectid > device->devid) | |
674 | goto no_more_items; | |
675 | ||
676 | if (key.offset >= search_start && key.offset > last_byte && | |
677 | start_found) { | |
678 | if (last_byte < search_start) | |
679 | last_byte = search_start; | |
680 | hole_size = key.offset - last_byte; | |
681 | if (key.offset > last_byte && | |
682 | hole_size >= num_bytes) { | |
683 | *start = last_byte; | |
684 | goto check_pending; | |
685 | } | |
686 | } | |
d397712b | 687 | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) |
0b86a832 | 688 | goto next; |
0b86a832 CM |
689 | |
690 | start_found = 1; | |
691 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | |
692 | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | |
693 | next: | |
694 | path->slots[0]++; | |
695 | cond_resched(); | |
696 | } | |
697 | check_pending: | |
698 | /* we have to make sure we didn't find an extent that has already | |
699 | * been allocated by the map tree or the original allocation | |
700 | */ | |
0b86a832 CM |
701 | BUG_ON(*start < search_start); |
702 | ||
6324fbf3 | 703 | if (*start + num_bytes > search_end) { |
0b86a832 CM |
704 | ret = -ENOSPC; |
705 | goto error; | |
706 | } | |
707 | /* check for pending inserts here */ | |
2b82032c | 708 | ret = 0; |
0b86a832 CM |
709 | |
710 | error: | |
2b82032c | 711 | btrfs_free_path(path); |
0b86a832 CM |
712 | return ret; |
713 | } | |
714 | ||
b2950863 | 715 | static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, |
8f18cf13 CM |
716 | struct btrfs_device *device, |
717 | u64 start) | |
718 | { | |
719 | int ret; | |
720 | struct btrfs_path *path; | |
721 | struct btrfs_root *root = device->dev_root; | |
722 | struct btrfs_key key; | |
a061fc8d CM |
723 | struct btrfs_key found_key; |
724 | struct extent_buffer *leaf = NULL; | |
725 | struct btrfs_dev_extent *extent = NULL; | |
8f18cf13 CM |
726 | |
727 | path = btrfs_alloc_path(); | |
728 | if (!path) | |
729 | return -ENOMEM; | |
730 | ||
731 | key.objectid = device->devid; | |
732 | key.offset = start; | |
733 | key.type = BTRFS_DEV_EXTENT_KEY; | |
734 | ||
735 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | |
a061fc8d CM |
736 | if (ret > 0) { |
737 | ret = btrfs_previous_item(root, path, key.objectid, | |
738 | BTRFS_DEV_EXTENT_KEY); | |
739 | BUG_ON(ret); | |
740 | leaf = path->nodes[0]; | |
741 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | |
742 | extent = btrfs_item_ptr(leaf, path->slots[0], | |
743 | struct btrfs_dev_extent); | |
744 | BUG_ON(found_key.offset > start || found_key.offset + | |
745 | btrfs_dev_extent_length(leaf, extent) < start); | |
746 | ret = 0; | |
747 | } else if (ret == 0) { | |
748 | leaf = path->nodes[0]; | |
749 | extent = btrfs_item_ptr(leaf, path->slots[0], | |
750 | struct btrfs_dev_extent); | |
751 | } | |
8f18cf13 CM |
752 | BUG_ON(ret); |
753 | ||
dfe25020 CM |
754 | if (device->bytes_used > 0) |
755 | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | |
8f18cf13 CM |
756 | ret = btrfs_del_item(trans, root, path); |
757 | BUG_ON(ret); | |
758 | ||
759 | btrfs_free_path(path); | |
760 | return ret; | |
761 | } | |
762 | ||
2b82032c | 763 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, |
0b86a832 | 764 | struct btrfs_device *device, |
e17cade2 | 765 | u64 chunk_tree, u64 chunk_objectid, |
2b82032c | 766 | u64 chunk_offset, u64 start, u64 num_bytes) |
0b86a832 CM |
767 | { |
768 | int ret; | |
769 | struct btrfs_path *path; | |
770 | struct btrfs_root *root = device->dev_root; | |
771 | struct btrfs_dev_extent *extent; | |
772 | struct extent_buffer *leaf; | |
773 | struct btrfs_key key; | |
774 | ||
dfe25020 | 775 | WARN_ON(!device->in_fs_metadata); |
0b86a832 CM |
776 | path = btrfs_alloc_path(); |
777 | if (!path) | |
778 | return -ENOMEM; | |
779 | ||
0b86a832 | 780 | key.objectid = device->devid; |
2b82032c | 781 | key.offset = start; |
0b86a832 CM |
782 | key.type = BTRFS_DEV_EXTENT_KEY; |
783 | ret = btrfs_insert_empty_item(trans, root, path, &key, | |
784 | sizeof(*extent)); | |
785 | BUG_ON(ret); | |
786 | ||
787 | leaf = path->nodes[0]; | |
788 | extent = btrfs_item_ptr(leaf, path->slots[0], | |
789 | struct btrfs_dev_extent); | |
e17cade2 CM |
790 | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); |
791 | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | |
792 | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | |
793 | ||
794 | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | |
795 | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | |
796 | BTRFS_UUID_SIZE); | |
797 | ||
0b86a832 CM |
798 | btrfs_set_dev_extent_length(leaf, extent, num_bytes); |
799 | btrfs_mark_buffer_dirty(leaf); | |
0b86a832 CM |
800 | btrfs_free_path(path); |
801 | return ret; | |
802 | } | |
803 | ||
a1b32a59 CM |
804 | static noinline int find_next_chunk(struct btrfs_root *root, |
805 | u64 objectid, u64 *offset) | |
0b86a832 CM |
806 | { |
807 | struct btrfs_path *path; | |
808 | int ret; | |
809 | struct btrfs_key key; | |
e17cade2 | 810 | struct btrfs_chunk *chunk; |
0b86a832 CM |
811 | struct btrfs_key found_key; |
812 | ||
813 | path = btrfs_alloc_path(); | |
814 | BUG_ON(!path); | |
815 | ||
e17cade2 | 816 | key.objectid = objectid; |
0b86a832 CM |
817 | key.offset = (u64)-1; |
818 | key.type = BTRFS_CHUNK_ITEM_KEY; | |
819 | ||
820 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
821 | if (ret < 0) | |
822 | goto error; | |
823 | ||
824 | BUG_ON(ret == 0); | |
825 | ||
826 | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | |
827 | if (ret) { | |
e17cade2 | 828 | *offset = 0; |
0b86a832 CM |
829 | } else { |
830 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
831 | path->slots[0]); | |
e17cade2 CM |
832 | if (found_key.objectid != objectid) |
833 | *offset = 0; | |
834 | else { | |
835 | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
836 | struct btrfs_chunk); | |
837 | *offset = found_key.offset + | |
838 | btrfs_chunk_length(path->nodes[0], chunk); | |
839 | } | |
0b86a832 CM |
840 | } |
841 | ret = 0; | |
842 | error: | |
843 | btrfs_free_path(path); | |
844 | return ret; | |
845 | } | |
846 | ||
2b82032c | 847 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) |
0b86a832 CM |
848 | { |
849 | int ret; | |
850 | struct btrfs_key key; | |
851 | struct btrfs_key found_key; | |
2b82032c YZ |
852 | struct btrfs_path *path; |
853 | ||
854 | root = root->fs_info->chunk_root; | |
855 | ||
856 | path = btrfs_alloc_path(); | |
857 | if (!path) | |
858 | return -ENOMEM; | |
0b86a832 CM |
859 | |
860 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | |
861 | key.type = BTRFS_DEV_ITEM_KEY; | |
862 | key.offset = (u64)-1; | |
863 | ||
864 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
865 | if (ret < 0) | |
866 | goto error; | |
867 | ||
868 | BUG_ON(ret == 0); | |
869 | ||
870 | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | |
871 | BTRFS_DEV_ITEM_KEY); | |
872 | if (ret) { | |
873 | *objectid = 1; | |
874 | } else { | |
875 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
876 | path->slots[0]); | |
877 | *objectid = found_key.offset + 1; | |
878 | } | |
879 | ret = 0; | |
880 | error: | |
2b82032c | 881 | btrfs_free_path(path); |
0b86a832 CM |
882 | return ret; |
883 | } | |
884 | ||
885 | /* | |
886 | * the device information is stored in the chunk root | |
887 | * the btrfs_device struct should be fully filled in | |
888 | */ | |
889 | int btrfs_add_device(struct btrfs_trans_handle *trans, | |
890 | struct btrfs_root *root, | |
891 | struct btrfs_device *device) | |
892 | { | |
893 | int ret; | |
894 | struct btrfs_path *path; | |
895 | struct btrfs_dev_item *dev_item; | |
896 | struct extent_buffer *leaf; | |
897 | struct btrfs_key key; | |
898 | unsigned long ptr; | |
0b86a832 CM |
899 | |
900 | root = root->fs_info->chunk_root; | |
901 | ||
902 | path = btrfs_alloc_path(); | |
903 | if (!path) | |
904 | return -ENOMEM; | |
905 | ||
0b86a832 CM |
906 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
907 | key.type = BTRFS_DEV_ITEM_KEY; | |
2b82032c | 908 | key.offset = device->devid; |
0b86a832 CM |
909 | |
910 | ret = btrfs_insert_empty_item(trans, root, path, &key, | |
0d81ba5d | 911 | sizeof(*dev_item)); |
0b86a832 CM |
912 | if (ret) |
913 | goto out; | |
914 | ||
915 | leaf = path->nodes[0]; | |
916 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | |
917 | ||
918 | btrfs_set_device_id(leaf, dev_item, device->devid); | |
2b82032c | 919 | btrfs_set_device_generation(leaf, dev_item, 0); |
0b86a832 CM |
920 | btrfs_set_device_type(leaf, dev_item, device->type); |
921 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | |
922 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | |
923 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | |
0b86a832 CM |
924 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); |
925 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | |
e17cade2 CM |
926 | btrfs_set_device_group(leaf, dev_item, 0); |
927 | btrfs_set_device_seek_speed(leaf, dev_item, 0); | |
928 | btrfs_set_device_bandwidth(leaf, dev_item, 0); | |
c3027eb5 | 929 | btrfs_set_device_start_offset(leaf, dev_item, 0); |
0b86a832 | 930 | |
0b86a832 | 931 | ptr = (unsigned long)btrfs_device_uuid(dev_item); |
e17cade2 | 932 | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
2b82032c YZ |
933 | ptr = (unsigned long)btrfs_device_fsid(dev_item); |
934 | write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | |
0b86a832 | 935 | btrfs_mark_buffer_dirty(leaf); |
0b86a832 | 936 | |
2b82032c | 937 | ret = 0; |
0b86a832 CM |
938 | out: |
939 | btrfs_free_path(path); | |
940 | return ret; | |
941 | } | |
8f18cf13 | 942 | |
a061fc8d CM |
943 | static int btrfs_rm_dev_item(struct btrfs_root *root, |
944 | struct btrfs_device *device) | |
945 | { | |
946 | int ret; | |
947 | struct btrfs_path *path; | |
a061fc8d | 948 | struct btrfs_key key; |
a061fc8d CM |
949 | struct btrfs_trans_handle *trans; |
950 | ||
951 | root = root->fs_info->chunk_root; | |
952 | ||
953 | path = btrfs_alloc_path(); | |
954 | if (!path) | |
955 | return -ENOMEM; | |
956 | ||
957 | trans = btrfs_start_transaction(root, 1); | |
958 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | |
959 | key.type = BTRFS_DEV_ITEM_KEY; | |
960 | key.offset = device->devid; | |
7d9eb12c | 961 | lock_chunks(root); |
a061fc8d CM |
962 | |
963 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | |
964 | if (ret < 0) | |
965 | goto out; | |
966 | ||
967 | if (ret > 0) { | |
968 | ret = -ENOENT; | |
969 | goto out; | |
970 | } | |
971 | ||
972 | ret = btrfs_del_item(trans, root, path); | |
973 | if (ret) | |
974 | goto out; | |
a061fc8d CM |
975 | out: |
976 | btrfs_free_path(path); | |
7d9eb12c | 977 | unlock_chunks(root); |
a061fc8d CM |
978 | btrfs_commit_transaction(trans, root); |
979 | return ret; | |
980 | } | |
981 | ||
982 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | |
983 | { | |
984 | struct btrfs_device *device; | |
2b82032c | 985 | struct btrfs_device *next_device; |
a061fc8d | 986 | struct block_device *bdev; |
dfe25020 | 987 | struct buffer_head *bh = NULL; |
a061fc8d CM |
988 | struct btrfs_super_block *disk_super; |
989 | u64 all_avail; | |
990 | u64 devid; | |
2b82032c YZ |
991 | u64 num_devices; |
992 | u8 *dev_uuid; | |
a061fc8d CM |
993 | int ret = 0; |
994 | ||
a061fc8d | 995 | mutex_lock(&uuid_mutex); |
7d9eb12c | 996 | mutex_lock(&root->fs_info->volume_mutex); |
a061fc8d CM |
997 | |
998 | all_avail = root->fs_info->avail_data_alloc_bits | | |
999 | root->fs_info->avail_system_alloc_bits | | |
1000 | root->fs_info->avail_metadata_alloc_bits; | |
1001 | ||
1002 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | |
2b82032c | 1003 | root->fs_info->fs_devices->rw_devices <= 4) { |
d397712b CM |
1004 | printk(KERN_ERR "btrfs: unable to go below four devices " |
1005 | "on raid10\n"); | |
a061fc8d CM |
1006 | ret = -EINVAL; |
1007 | goto out; | |
1008 | } | |
1009 | ||
1010 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | |
2b82032c | 1011 | root->fs_info->fs_devices->rw_devices <= 2) { |
d397712b CM |
1012 | printk(KERN_ERR "btrfs: unable to go below two " |
1013 | "devices on raid1\n"); | |
a061fc8d CM |
1014 | ret = -EINVAL; |
1015 | goto out; | |
1016 | } | |
1017 | ||
dfe25020 CM |
1018 | if (strcmp(device_path, "missing") == 0) { |
1019 | struct list_head *cur; | |
1020 | struct list_head *devices; | |
1021 | struct btrfs_device *tmp; | |
a061fc8d | 1022 | |
dfe25020 CM |
1023 | device = NULL; |
1024 | devices = &root->fs_info->fs_devices->devices; | |
1025 | list_for_each(cur, devices) { | |
1026 | tmp = list_entry(cur, struct btrfs_device, dev_list); | |
1027 | if (tmp->in_fs_metadata && !tmp->bdev) { | |
1028 | device = tmp; | |
1029 | break; | |
1030 | } | |
1031 | } | |
1032 | bdev = NULL; | |
1033 | bh = NULL; | |
1034 | disk_super = NULL; | |
1035 | if (!device) { | |
d397712b CM |
1036 | printk(KERN_ERR "btrfs: no missing devices found to " |
1037 | "remove\n"); | |
dfe25020 CM |
1038 | goto out; |
1039 | } | |
dfe25020 | 1040 | } else { |
97288f2c | 1041 | bdev = open_bdev_exclusive(device_path, FMODE_READ, |
dfe25020 CM |
1042 | root->fs_info->bdev_holder); |
1043 | if (IS_ERR(bdev)) { | |
1044 | ret = PTR_ERR(bdev); | |
1045 | goto out; | |
1046 | } | |
a061fc8d | 1047 | |
2b82032c | 1048 | set_blocksize(bdev, 4096); |
a512bbf8 | 1049 | bh = btrfs_read_dev_super(bdev); |
dfe25020 CM |
1050 | if (!bh) { |
1051 | ret = -EIO; | |
1052 | goto error_close; | |
1053 | } | |
1054 | disk_super = (struct btrfs_super_block *)bh->b_data; | |
dfe25020 | 1055 | devid = le64_to_cpu(disk_super->dev_item.devid); |
2b82032c YZ |
1056 | dev_uuid = disk_super->dev_item.uuid; |
1057 | device = btrfs_find_device(root, devid, dev_uuid, | |
1058 | disk_super->fsid); | |
dfe25020 CM |
1059 | if (!device) { |
1060 | ret = -ENOENT; | |
1061 | goto error_brelse; | |
1062 | } | |
2b82032c | 1063 | } |
dfe25020 | 1064 | |
2b82032c | 1065 | if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { |
d397712b CM |
1066 | printk(KERN_ERR "btrfs: unable to remove the only writeable " |
1067 | "device\n"); | |
2b82032c YZ |
1068 | ret = -EINVAL; |
1069 | goto error_brelse; | |
1070 | } | |
1071 | ||
1072 | if (device->writeable) { | |
1073 | list_del_init(&device->dev_alloc_list); | |
1074 | root->fs_info->fs_devices->rw_devices--; | |
dfe25020 | 1075 | } |
a061fc8d CM |
1076 | |
1077 | ret = btrfs_shrink_device(device, 0); | |
1078 | if (ret) | |
1079 | goto error_brelse; | |
1080 | ||
a061fc8d CM |
1081 | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); |
1082 | if (ret) | |
1083 | goto error_brelse; | |
1084 | ||
2b82032c | 1085 | device->in_fs_metadata = 0; |
e4404d6e YZ |
1086 | list_del_init(&device->dev_list); |
1087 | device->fs_devices->num_devices--; | |
2b82032c YZ |
1088 | |
1089 | next_device = list_entry(root->fs_info->fs_devices->devices.next, | |
1090 | struct btrfs_device, dev_list); | |
1091 | if (device->bdev == root->fs_info->sb->s_bdev) | |
1092 | root->fs_info->sb->s_bdev = next_device->bdev; | |
1093 | if (device->bdev == root->fs_info->fs_devices->latest_bdev) | |
1094 | root->fs_info->fs_devices->latest_bdev = next_device->bdev; | |
1095 | ||
e4404d6e YZ |
1096 | if (device->bdev) { |
1097 | close_bdev_exclusive(device->bdev, device->mode); | |
1098 | device->bdev = NULL; | |
1099 | device->fs_devices->open_devices--; | |
1100 | } | |
1101 | ||
2b82032c YZ |
1102 | num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; |
1103 | btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); | |
1104 | ||
e4404d6e YZ |
1105 | if (device->fs_devices->open_devices == 0) { |
1106 | struct btrfs_fs_devices *fs_devices; | |
1107 | fs_devices = root->fs_info->fs_devices; | |
1108 | while (fs_devices) { | |
1109 | if (fs_devices->seed == device->fs_devices) | |
1110 | break; | |
1111 | fs_devices = fs_devices->seed; | |
2b82032c | 1112 | } |
e4404d6e YZ |
1113 | fs_devices->seed = device->fs_devices->seed; |
1114 | device->fs_devices->seed = NULL; | |
1115 | __btrfs_close_devices(device->fs_devices); | |
1116 | free_fs_devices(device->fs_devices); | |
2b82032c YZ |
1117 | } |
1118 | ||
1119 | /* | |
1120 | * at this point, the device is zero sized. We want to | |
1121 | * remove it from the devices list and zero out the old super | |
1122 | */ | |
1123 | if (device->writeable) { | |
dfe25020 CM |
1124 | /* make sure this device isn't detected as part of |
1125 | * the FS anymore | |
1126 | */ | |
1127 | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | |
1128 | set_buffer_dirty(bh); | |
1129 | sync_dirty_buffer(bh); | |
dfe25020 | 1130 | } |
a061fc8d CM |
1131 | |
1132 | kfree(device->name); | |
1133 | kfree(device); | |
1134 | ret = 0; | |
a061fc8d CM |
1135 | |
1136 | error_brelse: | |
1137 | brelse(bh); | |
1138 | error_close: | |
dfe25020 | 1139 | if (bdev) |
97288f2c | 1140 | close_bdev_exclusive(bdev, FMODE_READ); |
a061fc8d | 1141 | out: |
7d9eb12c | 1142 | mutex_unlock(&root->fs_info->volume_mutex); |
a061fc8d | 1143 | mutex_unlock(&uuid_mutex); |
a061fc8d CM |
1144 | return ret; |
1145 | } | |
1146 | ||
2b82032c YZ |
1147 | /* |
1148 | * does all the dirty work required for changing file system's UUID. | |
1149 | */ | |
1150 | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | |
1151 | struct btrfs_root *root) | |
1152 | { | |
1153 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | |
1154 | struct btrfs_fs_devices *old_devices; | |
e4404d6e | 1155 | struct btrfs_fs_devices *seed_devices; |
2b82032c YZ |
1156 | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; |
1157 | struct btrfs_device *device; | |
1158 | u64 super_flags; | |
1159 | ||
1160 | BUG_ON(!mutex_is_locked(&uuid_mutex)); | |
e4404d6e | 1161 | if (!fs_devices->seeding) |
2b82032c YZ |
1162 | return -EINVAL; |
1163 | ||
e4404d6e YZ |
1164 | seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); |
1165 | if (!seed_devices) | |
2b82032c YZ |
1166 | return -ENOMEM; |
1167 | ||
e4404d6e YZ |
1168 | old_devices = clone_fs_devices(fs_devices); |
1169 | if (IS_ERR(old_devices)) { | |
1170 | kfree(seed_devices); | |
1171 | return PTR_ERR(old_devices); | |
2b82032c | 1172 | } |
e4404d6e | 1173 | |
2b82032c YZ |
1174 | list_add(&old_devices->list, &fs_uuids); |
1175 | ||
e4404d6e YZ |
1176 | memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); |
1177 | seed_devices->opened = 1; | |
1178 | INIT_LIST_HEAD(&seed_devices->devices); | |
1179 | INIT_LIST_HEAD(&seed_devices->alloc_list); | |
1180 | list_splice_init(&fs_devices->devices, &seed_devices->devices); | |
1181 | list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); | |
1182 | list_for_each_entry(device, &seed_devices->devices, dev_list) { | |
1183 | device->fs_devices = seed_devices; | |
1184 | } | |
1185 | ||
2b82032c YZ |
1186 | fs_devices->seeding = 0; |
1187 | fs_devices->num_devices = 0; | |
1188 | fs_devices->open_devices = 0; | |
e4404d6e | 1189 | fs_devices->seed = seed_devices; |
2b82032c YZ |
1190 | |
1191 | generate_random_uuid(fs_devices->fsid); | |
1192 | memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | |
1193 | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | |
1194 | super_flags = btrfs_super_flags(disk_super) & | |
1195 | ~BTRFS_SUPER_FLAG_SEEDING; | |
1196 | btrfs_set_super_flags(disk_super, super_flags); | |
1197 | ||
1198 | return 0; | |
1199 | } | |
1200 | ||
1201 | /* | |
1202 | * strore the expected generation for seed devices in device items. | |
1203 | */ | |
1204 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | |
1205 | struct btrfs_root *root) | |
1206 | { | |
1207 | struct btrfs_path *path; | |
1208 | struct extent_buffer *leaf; | |
1209 | struct btrfs_dev_item *dev_item; | |
1210 | struct btrfs_device *device; | |
1211 | struct btrfs_key key; | |
1212 | u8 fs_uuid[BTRFS_UUID_SIZE]; | |
1213 | u8 dev_uuid[BTRFS_UUID_SIZE]; | |
1214 | u64 devid; | |
1215 | int ret; | |
1216 | ||
1217 | path = btrfs_alloc_path(); | |
1218 | if (!path) | |
1219 | return -ENOMEM; | |
1220 | ||
1221 | root = root->fs_info->chunk_root; | |
1222 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | |
1223 | key.offset = 0; | |
1224 | key.type = BTRFS_DEV_ITEM_KEY; | |
1225 | ||
1226 | while (1) { | |
1227 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | |
1228 | if (ret < 0) | |
1229 | goto error; | |
1230 | ||
1231 | leaf = path->nodes[0]; | |
1232 | next_slot: | |
1233 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | |
1234 | ret = btrfs_next_leaf(root, path); | |
1235 | if (ret > 0) | |
1236 | break; | |
1237 | if (ret < 0) | |
1238 | goto error; | |
1239 | leaf = path->nodes[0]; | |
1240 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | |
1241 | btrfs_release_path(root, path); | |
1242 | continue; | |
1243 | } | |
1244 | ||
1245 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | |
1246 | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | |
1247 | key.type != BTRFS_DEV_ITEM_KEY) | |
1248 | break; | |
1249 | ||
1250 | dev_item = btrfs_item_ptr(leaf, path->slots[0], | |
1251 | struct btrfs_dev_item); | |
1252 | devid = btrfs_device_id(leaf, dev_item); | |
1253 | read_extent_buffer(leaf, dev_uuid, | |
1254 | (unsigned long)btrfs_device_uuid(dev_item), | |
1255 | BTRFS_UUID_SIZE); | |
1256 | read_extent_buffer(leaf, fs_uuid, | |
1257 | (unsigned long)btrfs_device_fsid(dev_item), | |
1258 | BTRFS_UUID_SIZE); | |
1259 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | |
1260 | BUG_ON(!device); | |
1261 | ||
1262 | if (device->fs_devices->seeding) { | |
1263 | btrfs_set_device_generation(leaf, dev_item, | |
1264 | device->generation); | |
1265 | btrfs_mark_buffer_dirty(leaf); | |
1266 | } | |
1267 | ||
1268 | path->slots[0]++; | |
1269 | goto next_slot; | |
1270 | } | |
1271 | ret = 0; | |
1272 | error: | |
1273 | btrfs_free_path(path); | |
1274 | return ret; | |
1275 | } | |
1276 | ||
788f20eb CM |
1277 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) |
1278 | { | |
1279 | struct btrfs_trans_handle *trans; | |
1280 | struct btrfs_device *device; | |
1281 | struct block_device *bdev; | |
1282 | struct list_head *cur; | |
1283 | struct list_head *devices; | |
2b82032c | 1284 | struct super_block *sb = root->fs_info->sb; |
788f20eb | 1285 | u64 total_bytes; |
2b82032c | 1286 | int seeding_dev = 0; |
788f20eb CM |
1287 | int ret = 0; |
1288 | ||
2b82032c YZ |
1289 | if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) |
1290 | return -EINVAL; | |
788f20eb | 1291 | |
15916de8 | 1292 | bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder); |
d397712b | 1293 | if (!bdev) |
788f20eb | 1294 | return -EIO; |
a2135011 | 1295 | |
2b82032c YZ |
1296 | if (root->fs_info->fs_devices->seeding) { |
1297 | seeding_dev = 1; | |
1298 | down_write(&sb->s_umount); | |
1299 | mutex_lock(&uuid_mutex); | |
1300 | } | |
1301 | ||
8c8bee1d | 1302 | filemap_write_and_wait(bdev->bd_inode->i_mapping); |
7d9eb12c | 1303 | mutex_lock(&root->fs_info->volume_mutex); |
a2135011 | 1304 | |
788f20eb CM |
1305 | devices = &root->fs_info->fs_devices->devices; |
1306 | list_for_each(cur, devices) { | |
1307 | device = list_entry(cur, struct btrfs_device, dev_list); | |
1308 | if (device->bdev == bdev) { | |
1309 | ret = -EEXIST; | |
2b82032c | 1310 | goto error; |
788f20eb CM |
1311 | } |
1312 | } | |
1313 | ||
1314 | device = kzalloc(sizeof(*device), GFP_NOFS); | |
1315 | if (!device) { | |
1316 | /* we can safely leave the fs_devices entry around */ | |
1317 | ret = -ENOMEM; | |
2b82032c | 1318 | goto error; |
788f20eb CM |
1319 | } |
1320 | ||
788f20eb CM |
1321 | device->name = kstrdup(device_path, GFP_NOFS); |
1322 | if (!device->name) { | |
1323 | kfree(device); | |
2b82032c YZ |
1324 | ret = -ENOMEM; |
1325 | goto error; | |
788f20eb | 1326 | } |
2b82032c YZ |
1327 | |
1328 | ret = find_next_devid(root, &device->devid); | |
1329 | if (ret) { | |
1330 | kfree(device); | |
1331 | goto error; | |
1332 | } | |
1333 | ||
1334 | trans = btrfs_start_transaction(root, 1); | |
1335 | lock_chunks(root); | |
1336 | ||
1337 | device->barriers = 1; | |
1338 | device->writeable = 1; | |
1339 | device->work.func = pending_bios_fn; | |
1340 | generate_random_uuid(device->uuid); | |
1341 | spin_lock_init(&device->io_lock); | |
1342 | device->generation = trans->transid; | |
788f20eb CM |
1343 | device->io_width = root->sectorsize; |
1344 | device->io_align = root->sectorsize; | |
1345 | device->sector_size = root->sectorsize; | |
1346 | device->total_bytes = i_size_read(bdev->bd_inode); | |
1347 | device->dev_root = root->fs_info->dev_root; | |
1348 | device->bdev = bdev; | |
dfe25020 | 1349 | device->in_fs_metadata = 1; |
15916de8 | 1350 | device->mode = 0; |
2b82032c | 1351 | set_blocksize(device->bdev, 4096); |
788f20eb | 1352 | |
2b82032c YZ |
1353 | if (seeding_dev) { |
1354 | sb->s_flags &= ~MS_RDONLY; | |
1355 | ret = btrfs_prepare_sprout(trans, root); | |
1356 | BUG_ON(ret); | |
1357 | } | |
788f20eb | 1358 | |
2b82032c YZ |
1359 | device->fs_devices = root->fs_info->fs_devices; |
1360 | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | |
1361 | list_add(&device->dev_alloc_list, | |
1362 | &root->fs_info->fs_devices->alloc_list); | |
1363 | root->fs_info->fs_devices->num_devices++; | |
1364 | root->fs_info->fs_devices->open_devices++; | |
1365 | root->fs_info->fs_devices->rw_devices++; | |
1366 | root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | |
325cd4ba | 1367 | |
788f20eb CM |
1368 | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); |
1369 | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | |
1370 | total_bytes + device->total_bytes); | |
1371 | ||
1372 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | |
1373 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | |
1374 | total_bytes + 1); | |
1375 | ||
2b82032c YZ |
1376 | if (seeding_dev) { |
1377 | ret = init_first_rw_device(trans, root, device); | |
1378 | BUG_ON(ret); | |
1379 | ret = btrfs_finish_sprout(trans, root); | |
1380 | BUG_ON(ret); | |
1381 | } else { | |
1382 | ret = btrfs_add_device(trans, root, device); | |
1383 | } | |
1384 | ||
7d9eb12c | 1385 | unlock_chunks(root); |
2b82032c | 1386 | btrfs_commit_transaction(trans, root); |
a2135011 | 1387 | |
2b82032c YZ |
1388 | if (seeding_dev) { |
1389 | mutex_unlock(&uuid_mutex); | |
1390 | up_write(&sb->s_umount); | |
788f20eb | 1391 | |
2b82032c YZ |
1392 | ret = btrfs_relocate_sys_chunks(root); |
1393 | BUG_ON(ret); | |
1394 | } | |
1395 | out: | |
1396 | mutex_unlock(&root->fs_info->volume_mutex); | |
1397 | return ret; | |
1398 | error: | |
15916de8 | 1399 | close_bdev_exclusive(bdev, 0); |
2b82032c YZ |
1400 | if (seeding_dev) { |
1401 | mutex_unlock(&uuid_mutex); | |
1402 | up_write(&sb->s_umount); | |
1403 | } | |
788f20eb CM |
1404 | goto out; |
1405 | } | |
1406 | ||
d397712b CM |
1407 | static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, |
1408 | struct btrfs_device *device) | |
0b86a832 CM |
1409 | { |
1410 | int ret; | |
1411 | struct btrfs_path *path; | |
1412 | struct btrfs_root *root; | |
1413 | struct btrfs_dev_item *dev_item; | |
1414 | struct extent_buffer *leaf; | |
1415 | struct btrfs_key key; | |
1416 | ||
1417 | root = device->dev_root->fs_info->chunk_root; | |
1418 | ||
1419 | path = btrfs_alloc_path(); | |
1420 | if (!path) | |
1421 | return -ENOMEM; | |
1422 | ||
1423 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | |
1424 | key.type = BTRFS_DEV_ITEM_KEY; | |
1425 | key.offset = device->devid; | |
1426 | ||
1427 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | |
1428 | if (ret < 0) | |
1429 | goto out; | |
1430 | ||
1431 | if (ret > 0) { | |
1432 | ret = -ENOENT; | |
1433 | goto out; | |
1434 | } | |
1435 | ||
1436 | leaf = path->nodes[0]; | |
1437 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | |
1438 | ||
1439 | btrfs_set_device_id(leaf, dev_item, device->devid); | |
1440 | btrfs_set_device_type(leaf, dev_item, device->type); | |
1441 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | |
1442 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | |
1443 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | |
0b86a832 CM |
1444 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); |
1445 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | |
1446 | btrfs_mark_buffer_dirty(leaf); | |
1447 | ||
1448 | out: | |
1449 | btrfs_free_path(path); | |
1450 | return ret; | |
1451 | } | |
1452 | ||
7d9eb12c | 1453 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, |
8f18cf13 CM |
1454 | struct btrfs_device *device, u64 new_size) |
1455 | { | |
1456 | struct btrfs_super_block *super_copy = | |
1457 | &device->dev_root->fs_info->super_copy; | |
1458 | u64 old_total = btrfs_super_total_bytes(super_copy); | |
1459 | u64 diff = new_size - device->total_bytes; | |
1460 | ||
2b82032c YZ |
1461 | if (!device->writeable) |
1462 | return -EACCES; | |
1463 | if (new_size <= device->total_bytes) | |
1464 | return -EINVAL; | |
1465 | ||
8f18cf13 | 1466 | btrfs_set_super_total_bytes(super_copy, old_total + diff); |
2b82032c YZ |
1467 | device->fs_devices->total_rw_bytes += diff; |
1468 | ||
1469 | device->total_bytes = new_size; | |
8f18cf13 CM |
1470 | return btrfs_update_device(trans, device); |
1471 | } | |
1472 | ||
7d9eb12c CM |
1473 | int btrfs_grow_device(struct btrfs_trans_handle *trans, |
1474 | struct btrfs_device *device, u64 new_size) | |
1475 | { | |
1476 | int ret; | |
1477 | lock_chunks(device->dev_root); | |
1478 | ret = __btrfs_grow_device(trans, device, new_size); | |
1479 | unlock_chunks(device->dev_root); | |
1480 | return ret; | |
1481 | } | |
1482 | ||
8f18cf13 CM |
1483 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, |
1484 | struct btrfs_root *root, | |
1485 | u64 chunk_tree, u64 chunk_objectid, | |
1486 | u64 chunk_offset) | |
1487 | { | |
1488 | int ret; | |
1489 | struct btrfs_path *path; | |
1490 | struct btrfs_key key; | |
1491 | ||
1492 | root = root->fs_info->chunk_root; | |
1493 | path = btrfs_alloc_path(); | |
1494 | if (!path) | |
1495 | return -ENOMEM; | |
1496 | ||
1497 | key.objectid = chunk_objectid; | |
1498 | key.offset = chunk_offset; | |
1499 | key.type = BTRFS_CHUNK_ITEM_KEY; | |
1500 | ||
1501 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | |
1502 | BUG_ON(ret); | |
1503 | ||
1504 | ret = btrfs_del_item(trans, root, path); | |
1505 | BUG_ON(ret); | |
1506 | ||
1507 | btrfs_free_path(path); | |
1508 | return 0; | |
1509 | } | |
1510 | ||
b2950863 | 1511 | static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 |
8f18cf13 CM |
1512 | chunk_offset) |
1513 | { | |
1514 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | |
1515 | struct btrfs_disk_key *disk_key; | |
1516 | struct btrfs_chunk *chunk; | |
1517 | u8 *ptr; | |
1518 | int ret = 0; | |
1519 | u32 num_stripes; | |
1520 | u32 array_size; | |
1521 | u32 len = 0; | |
1522 | u32 cur; | |
1523 | struct btrfs_key key; | |
1524 | ||
1525 | array_size = btrfs_super_sys_array_size(super_copy); | |
1526 | ||
1527 | ptr = super_copy->sys_chunk_array; | |
1528 | cur = 0; | |
1529 | ||
1530 | while (cur < array_size) { | |
1531 | disk_key = (struct btrfs_disk_key *)ptr; | |
1532 | btrfs_disk_key_to_cpu(&key, disk_key); | |
1533 | ||
1534 | len = sizeof(*disk_key); | |
1535 | ||
1536 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | |
1537 | chunk = (struct btrfs_chunk *)(ptr + len); | |
1538 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | |
1539 | len += btrfs_chunk_item_size(num_stripes); | |
1540 | } else { | |
1541 | ret = -EIO; | |
1542 | break; | |
1543 | } | |
1544 | if (key.objectid == chunk_objectid && | |
1545 | key.offset == chunk_offset) { | |
1546 | memmove(ptr, ptr + len, array_size - (cur + len)); | |
1547 | array_size -= len; | |
1548 | btrfs_set_super_sys_array_size(super_copy, array_size); | |
1549 | } else { | |
1550 | ptr += len; | |
1551 | cur += len; | |
1552 | } | |
1553 | } | |
1554 | return ret; | |
1555 | } | |
1556 | ||
b2950863 | 1557 | static int btrfs_relocate_chunk(struct btrfs_root *root, |
8f18cf13 CM |
1558 | u64 chunk_tree, u64 chunk_objectid, |
1559 | u64 chunk_offset) | |
1560 | { | |
1561 | struct extent_map_tree *em_tree; | |
1562 | struct btrfs_root *extent_root; | |
1563 | struct btrfs_trans_handle *trans; | |
1564 | struct extent_map *em; | |
1565 | struct map_lookup *map; | |
1566 | int ret; | |
1567 | int i; | |
1568 | ||
d397712b | 1569 | printk(KERN_INFO "btrfs relocating chunk %llu\n", |
323da79c | 1570 | (unsigned long long)chunk_offset); |
8f18cf13 CM |
1571 | root = root->fs_info->chunk_root; |
1572 | extent_root = root->fs_info->extent_root; | |
1573 | em_tree = &root->fs_info->mapping_tree.map_tree; | |
1574 | ||
1575 | /* step one, relocate all the extents inside this chunk */ | |
1a40e23b | 1576 | ret = btrfs_relocate_block_group(extent_root, chunk_offset); |
8f18cf13 CM |
1577 | BUG_ON(ret); |
1578 | ||
1579 | trans = btrfs_start_transaction(root, 1); | |
1580 | BUG_ON(!trans); | |
1581 | ||
7d9eb12c CM |
1582 | lock_chunks(root); |
1583 | ||
8f18cf13 CM |
1584 | /* |
1585 | * step two, delete the device extents and the | |
1586 | * chunk tree entries | |
1587 | */ | |
1588 | spin_lock(&em_tree->lock); | |
1589 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | |
1590 | spin_unlock(&em_tree->lock); | |
1591 | ||
a061fc8d CM |
1592 | BUG_ON(em->start > chunk_offset || |
1593 | em->start + em->len < chunk_offset); | |
8f18cf13 CM |
1594 | map = (struct map_lookup *)em->bdev; |
1595 | ||
1596 | for (i = 0; i < map->num_stripes; i++) { | |
1597 | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | |
1598 | map->stripes[i].physical); | |
1599 | BUG_ON(ret); | |
a061fc8d | 1600 | |
dfe25020 CM |
1601 | if (map->stripes[i].dev) { |
1602 | ret = btrfs_update_device(trans, map->stripes[i].dev); | |
1603 | BUG_ON(ret); | |
1604 | } | |
8f18cf13 CM |
1605 | } |
1606 | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | |
1607 | chunk_offset); | |
1608 | ||
1609 | BUG_ON(ret); | |
1610 | ||
1611 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | |
1612 | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | |
1613 | BUG_ON(ret); | |
8f18cf13 CM |
1614 | } |
1615 | ||
2b82032c YZ |
1616 | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); |
1617 | BUG_ON(ret); | |
1618 | ||
1619 | spin_lock(&em_tree->lock); | |
1620 | remove_extent_mapping(em_tree, em); | |
1621 | spin_unlock(&em_tree->lock); | |
1622 | ||
1623 | kfree(map); | |
1624 | em->bdev = NULL; | |
1625 | ||
1626 | /* once for the tree */ | |
1627 | free_extent_map(em); | |
1628 | /* once for us */ | |
1629 | free_extent_map(em); | |
1630 | ||
1631 | unlock_chunks(root); | |
1632 | btrfs_end_transaction(trans, root); | |
1633 | return 0; | |
1634 | } | |
1635 | ||
1636 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | |
1637 | { | |
1638 | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | |
1639 | struct btrfs_path *path; | |
1640 | struct extent_buffer *leaf; | |
1641 | struct btrfs_chunk *chunk; | |
1642 | struct btrfs_key key; | |
1643 | struct btrfs_key found_key; | |
1644 | u64 chunk_tree = chunk_root->root_key.objectid; | |
1645 | u64 chunk_type; | |
1646 | int ret; | |
1647 | ||
1648 | path = btrfs_alloc_path(); | |
1649 | if (!path) | |
1650 | return -ENOMEM; | |
1651 | ||
1652 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | |
1653 | key.offset = (u64)-1; | |
1654 | key.type = BTRFS_CHUNK_ITEM_KEY; | |
1655 | ||
1656 | while (1) { | |
1657 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | |
1658 | if (ret < 0) | |
1659 | goto error; | |
1660 | BUG_ON(ret == 0); | |
1661 | ||
1662 | ret = btrfs_previous_item(chunk_root, path, key.objectid, | |
1663 | key.type); | |
1664 | if (ret < 0) | |
1665 | goto error; | |
1666 | if (ret > 0) | |
1667 | break; | |
1a40e23b | 1668 | |
2b82032c YZ |
1669 | leaf = path->nodes[0]; |
1670 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | |
1a40e23b | 1671 | |
2b82032c YZ |
1672 | chunk = btrfs_item_ptr(leaf, path->slots[0], |
1673 | struct btrfs_chunk); | |
1674 | chunk_type = btrfs_chunk_type(leaf, chunk); | |
1675 | btrfs_release_path(chunk_root, path); | |
8f18cf13 | 1676 | |
2b82032c YZ |
1677 | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { |
1678 | ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | |
1679 | found_key.objectid, | |
1680 | found_key.offset); | |
1681 | BUG_ON(ret); | |
1682 | } | |
8f18cf13 | 1683 | |
2b82032c YZ |
1684 | if (found_key.offset == 0) |
1685 | break; | |
1686 | key.offset = found_key.offset - 1; | |
1687 | } | |
1688 | ret = 0; | |
1689 | error: | |
1690 | btrfs_free_path(path); | |
1691 | return ret; | |
8f18cf13 CM |
1692 | } |
1693 | ||
ec44a35c CM |
1694 | static u64 div_factor(u64 num, int factor) |
1695 | { | |
1696 | if (factor == 10) | |
1697 | return num; | |
1698 | num *= factor; | |
1699 | do_div(num, 10); | |
1700 | return num; | |
1701 | } | |
1702 | ||
ec44a35c CM |
1703 | int btrfs_balance(struct btrfs_root *dev_root) |
1704 | { | |
1705 | int ret; | |
1706 | struct list_head *cur; | |
1707 | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | |
1708 | struct btrfs_device *device; | |
1709 | u64 old_size; | |
1710 | u64 size_to_free; | |
1711 | struct btrfs_path *path; | |
1712 | struct btrfs_key key; | |
1713 | struct btrfs_chunk *chunk; | |
1714 | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | |
1715 | struct btrfs_trans_handle *trans; | |
1716 | struct btrfs_key found_key; | |
1717 | ||
2b82032c YZ |
1718 | if (dev_root->fs_info->sb->s_flags & MS_RDONLY) |
1719 | return -EROFS; | |
ec44a35c | 1720 | |
7d9eb12c | 1721 | mutex_lock(&dev_root->fs_info->volume_mutex); |
ec44a35c CM |
1722 | dev_root = dev_root->fs_info->dev_root; |
1723 | ||
ec44a35c CM |
1724 | /* step one make some room on all the devices */ |
1725 | list_for_each(cur, devices) { | |
1726 | device = list_entry(cur, struct btrfs_device, dev_list); | |
1727 | old_size = device->total_bytes; | |
1728 | size_to_free = div_factor(old_size, 1); | |
1729 | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | |
2b82032c YZ |
1730 | if (!device->writeable || |
1731 | device->total_bytes - device->bytes_used > size_to_free) | |
ec44a35c CM |
1732 | continue; |
1733 | ||
1734 | ret = btrfs_shrink_device(device, old_size - size_to_free); | |
1735 | BUG_ON(ret); | |
1736 | ||
1737 | trans = btrfs_start_transaction(dev_root, 1); | |
1738 | BUG_ON(!trans); | |
1739 | ||
1740 | ret = btrfs_grow_device(trans, device, old_size); | |
1741 | BUG_ON(ret); | |
1742 | ||
1743 | btrfs_end_transaction(trans, dev_root); | |
1744 | } | |
1745 | ||
1746 | /* step two, relocate all the chunks */ | |
1747 | path = btrfs_alloc_path(); | |
1748 | BUG_ON(!path); | |
1749 | ||
1750 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | |
1751 | key.offset = (u64)-1; | |
1752 | key.type = BTRFS_CHUNK_ITEM_KEY; | |
1753 | ||
d397712b | 1754 | while (1) { |
ec44a35c CM |
1755 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
1756 | if (ret < 0) | |
1757 | goto error; | |
1758 | ||
1759 | /* | |
1760 | * this shouldn't happen, it means the last relocate | |
1761 | * failed | |
1762 | */ | |
1763 | if (ret == 0) | |
1764 | break; | |
1765 | ||
1766 | ret = btrfs_previous_item(chunk_root, path, 0, | |
1767 | BTRFS_CHUNK_ITEM_KEY); | |
7d9eb12c | 1768 | if (ret) |
ec44a35c | 1769 | break; |
7d9eb12c | 1770 | |
ec44a35c CM |
1771 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
1772 | path->slots[0]); | |
1773 | if (found_key.objectid != key.objectid) | |
1774 | break; | |
7d9eb12c | 1775 | |
ec44a35c CM |
1776 | chunk = btrfs_item_ptr(path->nodes[0], |
1777 | path->slots[0], | |
1778 | struct btrfs_chunk); | |
1779 | key.offset = found_key.offset; | |
1780 | /* chunk zero is special */ | |
1781 | if (key.offset == 0) | |
1782 | break; | |
1783 | ||
7d9eb12c | 1784 | btrfs_release_path(chunk_root, path); |
ec44a35c CM |
1785 | ret = btrfs_relocate_chunk(chunk_root, |
1786 | chunk_root->root_key.objectid, | |
1787 | found_key.objectid, | |
1788 | found_key.offset); | |
1789 | BUG_ON(ret); | |
ec44a35c CM |
1790 | } |
1791 | ret = 0; | |
1792 | error: | |
1793 | btrfs_free_path(path); | |
7d9eb12c | 1794 | mutex_unlock(&dev_root->fs_info->volume_mutex); |
ec44a35c CM |
1795 | return ret; |
1796 | } | |
1797 | ||
8f18cf13 CM |
1798 | /* |
1799 | * shrinking a device means finding all of the device extents past | |
1800 | * the new size, and then following the back refs to the chunks. | |
1801 | * The chunk relocation code actually frees the device extent | |
1802 | */ | |
1803 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | |
1804 | { | |
1805 | struct btrfs_trans_handle *trans; | |
1806 | struct btrfs_root *root = device->dev_root; | |
1807 | struct btrfs_dev_extent *dev_extent = NULL; | |
1808 | struct btrfs_path *path; | |
1809 | u64 length; | |
1810 | u64 chunk_tree; | |
1811 | u64 chunk_objectid; | |
1812 | u64 chunk_offset; | |
1813 | int ret; | |
1814 | int slot; | |
1815 | struct extent_buffer *l; | |
1816 | struct btrfs_key key; | |
1817 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | |
1818 | u64 old_total = btrfs_super_total_bytes(super_copy); | |
1819 | u64 diff = device->total_bytes - new_size; | |
1820 | ||
2b82032c YZ |
1821 | if (new_size >= device->total_bytes) |
1822 | return -EINVAL; | |
8f18cf13 CM |
1823 | |
1824 | path = btrfs_alloc_path(); | |
1825 | if (!path) | |
1826 | return -ENOMEM; | |
1827 | ||
1828 | trans = btrfs_start_transaction(root, 1); | |
1829 | if (!trans) { | |
1830 | ret = -ENOMEM; | |
1831 | goto done; | |
1832 | } | |
1833 | ||
1834 | path->reada = 2; | |
1835 | ||
7d9eb12c CM |
1836 | lock_chunks(root); |
1837 | ||
8f18cf13 | 1838 | device->total_bytes = new_size; |
2b82032c YZ |
1839 | if (device->writeable) |
1840 | device->fs_devices->total_rw_bytes -= diff; | |
8f18cf13 CM |
1841 | ret = btrfs_update_device(trans, device); |
1842 | if (ret) { | |
7d9eb12c | 1843 | unlock_chunks(root); |
8f18cf13 CM |
1844 | btrfs_end_transaction(trans, root); |
1845 | goto done; | |
1846 | } | |
1847 | WARN_ON(diff > old_total); | |
1848 | btrfs_set_super_total_bytes(super_copy, old_total - diff); | |
7d9eb12c | 1849 | unlock_chunks(root); |
8f18cf13 CM |
1850 | btrfs_end_transaction(trans, root); |
1851 | ||
1852 | key.objectid = device->devid; | |
1853 | key.offset = (u64)-1; | |
1854 | key.type = BTRFS_DEV_EXTENT_KEY; | |
1855 | ||
1856 | while (1) { | |
1857 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
1858 | if (ret < 0) | |
1859 | goto done; | |
1860 | ||
1861 | ret = btrfs_previous_item(root, path, 0, key.type); | |
1862 | if (ret < 0) | |
1863 | goto done; | |
1864 | if (ret) { | |
1865 | ret = 0; | |
1866 | goto done; | |
1867 | } | |
1868 | ||
1869 | l = path->nodes[0]; | |
1870 | slot = path->slots[0]; | |
1871 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | |
1872 | ||
1873 | if (key.objectid != device->devid) | |
1874 | goto done; | |
1875 | ||
1876 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | |
1877 | length = btrfs_dev_extent_length(l, dev_extent); | |
1878 | ||
1879 | if (key.offset + length <= new_size) | |
1880 | goto done; | |
1881 | ||
1882 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | |
1883 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | |
1884 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | |
1885 | btrfs_release_path(root, path); | |
1886 | ||
1887 | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | |
1888 | chunk_offset); | |
1889 | if (ret) | |
1890 | goto done; | |
1891 | } | |
1892 | ||
1893 | done: | |
1894 | btrfs_free_path(path); | |
1895 | return ret; | |
1896 | } | |
1897 | ||
b2950863 | 1898 | static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, |
0b86a832 CM |
1899 | struct btrfs_root *root, |
1900 | struct btrfs_key *key, | |
1901 | struct btrfs_chunk *chunk, int item_size) | |
1902 | { | |
1903 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | |
1904 | struct btrfs_disk_key disk_key; | |
1905 | u32 array_size; | |
1906 | u8 *ptr; | |
1907 | ||
1908 | array_size = btrfs_super_sys_array_size(super_copy); | |
1909 | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | |
1910 | return -EFBIG; | |
1911 | ||
1912 | ptr = super_copy->sys_chunk_array + array_size; | |
1913 | btrfs_cpu_key_to_disk(&disk_key, key); | |
1914 | memcpy(ptr, &disk_key, sizeof(disk_key)); | |
1915 | ptr += sizeof(disk_key); | |
1916 | memcpy(ptr, chunk, item_size); | |
1917 | item_size += sizeof(disk_key); | |
1918 | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | |
1919 | return 0; | |
1920 | } | |
1921 | ||
d397712b | 1922 | static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size, |
a1b32a59 | 1923 | int num_stripes, int sub_stripes) |
9b3f68b9 CM |
1924 | { |
1925 | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | |
1926 | return calc_size; | |
1927 | else if (type & BTRFS_BLOCK_GROUP_RAID10) | |
1928 | return calc_size * (num_stripes / sub_stripes); | |
1929 | else | |
1930 | return calc_size * num_stripes; | |
1931 | } | |
1932 | ||
2b82032c YZ |
1933 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, |
1934 | struct btrfs_root *extent_root, | |
1935 | struct map_lookup **map_ret, | |
1936 | u64 *num_bytes, u64 *stripe_size, | |
1937 | u64 start, u64 type) | |
0b86a832 | 1938 | { |
593060d7 | 1939 | struct btrfs_fs_info *info = extent_root->fs_info; |
0b86a832 | 1940 | struct btrfs_device *device = NULL; |
2b82032c | 1941 | struct btrfs_fs_devices *fs_devices = info->fs_devices; |
6324fbf3 | 1942 | struct list_head *cur; |
2b82032c | 1943 | struct map_lookup *map = NULL; |
0b86a832 | 1944 | struct extent_map_tree *em_tree; |
0b86a832 | 1945 | struct extent_map *em; |
2b82032c | 1946 | struct list_head private_devs; |
a40a90a0 | 1947 | int min_stripe_size = 1 * 1024 * 1024; |
0b86a832 | 1948 | u64 calc_size = 1024 * 1024 * 1024; |
9b3f68b9 CM |
1949 | u64 max_chunk_size = calc_size; |
1950 | u64 min_free; | |
6324fbf3 CM |
1951 | u64 avail; |
1952 | u64 max_avail = 0; | |
2b82032c | 1953 | u64 dev_offset; |
6324fbf3 | 1954 | int num_stripes = 1; |
a40a90a0 | 1955 | int min_stripes = 1; |
321aecc6 | 1956 | int sub_stripes = 0; |
6324fbf3 | 1957 | int looped = 0; |
0b86a832 | 1958 | int ret; |
6324fbf3 | 1959 | int index; |
593060d7 | 1960 | int stripe_len = 64 * 1024; |
0b86a832 | 1961 | |
ec44a35c CM |
1962 | if ((type & BTRFS_BLOCK_GROUP_RAID1) && |
1963 | (type & BTRFS_BLOCK_GROUP_DUP)) { | |
1964 | WARN_ON(1); | |
1965 | type &= ~BTRFS_BLOCK_GROUP_DUP; | |
1966 | } | |
2b82032c | 1967 | if (list_empty(&fs_devices->alloc_list)) |
6324fbf3 | 1968 | return -ENOSPC; |
593060d7 | 1969 | |
a40a90a0 | 1970 | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { |
2b82032c | 1971 | num_stripes = fs_devices->rw_devices; |
a40a90a0 CM |
1972 | min_stripes = 2; |
1973 | } | |
1974 | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | |
611f0e00 | 1975 | num_stripes = 2; |
a40a90a0 CM |
1976 | min_stripes = 2; |
1977 | } | |
8790d502 | 1978 | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { |
2b82032c | 1979 | num_stripes = min_t(u64, 2, fs_devices->rw_devices); |
9b3f68b9 CM |
1980 | if (num_stripes < 2) |
1981 | return -ENOSPC; | |
a40a90a0 | 1982 | min_stripes = 2; |
8790d502 | 1983 | } |
321aecc6 | 1984 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { |
2b82032c | 1985 | num_stripes = fs_devices->rw_devices; |
321aecc6 CM |
1986 | if (num_stripes < 4) |
1987 | return -ENOSPC; | |
1988 | num_stripes &= ~(u32)1; | |
1989 | sub_stripes = 2; | |
a40a90a0 | 1990 | min_stripes = 4; |
321aecc6 | 1991 | } |
9b3f68b9 CM |
1992 | |
1993 | if (type & BTRFS_BLOCK_GROUP_DATA) { | |
1994 | max_chunk_size = 10 * calc_size; | |
a40a90a0 | 1995 | min_stripe_size = 64 * 1024 * 1024; |
9b3f68b9 CM |
1996 | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { |
1997 | max_chunk_size = 4 * calc_size; | |
a40a90a0 CM |
1998 | min_stripe_size = 32 * 1024 * 1024; |
1999 | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | |
2000 | calc_size = 8 * 1024 * 1024; | |
2001 | max_chunk_size = calc_size * 2; | |
2002 | min_stripe_size = 1 * 1024 * 1024; | |
9b3f68b9 CM |
2003 | } |
2004 | ||
2b82032c YZ |
2005 | /* we don't want a chunk larger than 10% of writeable space */ |
2006 | max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | |
2007 | max_chunk_size); | |
9b3f68b9 | 2008 | |
a40a90a0 | 2009 | again: |
2b82032c YZ |
2010 | if (!map || map->num_stripes != num_stripes) { |
2011 | kfree(map); | |
2012 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | |
2013 | if (!map) | |
2014 | return -ENOMEM; | |
2015 | map->num_stripes = num_stripes; | |
2016 | } | |
2017 | ||
9b3f68b9 CM |
2018 | if (calc_size * num_stripes > max_chunk_size) { |
2019 | calc_size = max_chunk_size; | |
2020 | do_div(calc_size, num_stripes); | |
2021 | do_div(calc_size, stripe_len); | |
2022 | calc_size *= stripe_len; | |
2023 | } | |
2024 | /* we don't want tiny stripes */ | |
a40a90a0 | 2025 | calc_size = max_t(u64, min_stripe_size, calc_size); |
9b3f68b9 | 2026 | |
9b3f68b9 CM |
2027 | do_div(calc_size, stripe_len); |
2028 | calc_size *= stripe_len; | |
2029 | ||
2b82032c | 2030 | cur = fs_devices->alloc_list.next; |
6324fbf3 | 2031 | index = 0; |
611f0e00 CM |
2032 | |
2033 | if (type & BTRFS_BLOCK_GROUP_DUP) | |
2034 | min_free = calc_size * 2; | |
9b3f68b9 CM |
2035 | else |
2036 | min_free = calc_size; | |
611f0e00 | 2037 | |
0f9dd46c JB |
2038 | /* |
2039 | * we add 1MB because we never use the first 1MB of the device, unless | |
2040 | * we've looped, then we are likely allocating the maximum amount of | |
2041 | * space left already | |
2042 | */ | |
2043 | if (!looped) | |
2044 | min_free += 1024 * 1024; | |
ad5bd91e | 2045 | |
2b82032c | 2046 | INIT_LIST_HEAD(&private_devs); |
d397712b | 2047 | while (index < num_stripes) { |
b3075717 | 2048 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); |
2b82032c | 2049 | BUG_ON(!device->writeable); |
dfe25020 CM |
2050 | if (device->total_bytes > device->bytes_used) |
2051 | avail = device->total_bytes - device->bytes_used; | |
2052 | else | |
2053 | avail = 0; | |
6324fbf3 | 2054 | cur = cur->next; |
8f18cf13 | 2055 | |
dfe25020 | 2056 | if (device->in_fs_metadata && avail >= min_free) { |
2b82032c YZ |
2057 | ret = find_free_dev_extent(trans, device, |
2058 | min_free, &dev_offset); | |
8f18cf13 CM |
2059 | if (ret == 0) { |
2060 | list_move_tail(&device->dev_alloc_list, | |
2061 | &private_devs); | |
2b82032c YZ |
2062 | map->stripes[index].dev = device; |
2063 | map->stripes[index].physical = dev_offset; | |
611f0e00 | 2064 | index++; |
2b82032c YZ |
2065 | if (type & BTRFS_BLOCK_GROUP_DUP) { |
2066 | map->stripes[index].dev = device; | |
2067 | map->stripes[index].physical = | |
2068 | dev_offset + calc_size; | |
8f18cf13 | 2069 | index++; |
2b82032c | 2070 | } |
8f18cf13 | 2071 | } |
dfe25020 | 2072 | } else if (device->in_fs_metadata && avail > max_avail) |
a40a90a0 | 2073 | max_avail = avail; |
2b82032c | 2074 | if (cur == &fs_devices->alloc_list) |
6324fbf3 CM |
2075 | break; |
2076 | } | |
2b82032c | 2077 | list_splice(&private_devs, &fs_devices->alloc_list); |
6324fbf3 | 2078 | if (index < num_stripes) { |
a40a90a0 CM |
2079 | if (index >= min_stripes) { |
2080 | num_stripes = index; | |
2081 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | |
2082 | num_stripes /= sub_stripes; | |
2083 | num_stripes *= sub_stripes; | |
2084 | } | |
2085 | looped = 1; | |
2086 | goto again; | |
2087 | } | |
6324fbf3 CM |
2088 | if (!looped && max_avail > 0) { |
2089 | looped = 1; | |
2090 | calc_size = max_avail; | |
2091 | goto again; | |
2092 | } | |
2b82032c | 2093 | kfree(map); |
6324fbf3 CM |
2094 | return -ENOSPC; |
2095 | } | |
2b82032c YZ |
2096 | map->sector_size = extent_root->sectorsize; |
2097 | map->stripe_len = stripe_len; | |
2098 | map->io_align = stripe_len; | |
2099 | map->io_width = stripe_len; | |
2100 | map->type = type; | |
2101 | map->num_stripes = num_stripes; | |
2102 | map->sub_stripes = sub_stripes; | |
0b86a832 | 2103 | |
2b82032c YZ |
2104 | *map_ret = map; |
2105 | *stripe_size = calc_size; | |
2106 | *num_bytes = chunk_bytes_by_type(type, calc_size, | |
2107 | num_stripes, sub_stripes); | |
0b86a832 | 2108 | |
2b82032c YZ |
2109 | em = alloc_extent_map(GFP_NOFS); |
2110 | if (!em) { | |
2111 | kfree(map); | |
593060d7 CM |
2112 | return -ENOMEM; |
2113 | } | |
2b82032c YZ |
2114 | em->bdev = (struct block_device *)map; |
2115 | em->start = start; | |
2116 | em->len = *num_bytes; | |
2117 | em->block_start = 0; | |
2118 | em->block_len = em->len; | |
593060d7 | 2119 | |
2b82032c YZ |
2120 | em_tree = &extent_root->fs_info->mapping_tree.map_tree; |
2121 | spin_lock(&em_tree->lock); | |
2122 | ret = add_extent_mapping(em_tree, em); | |
2123 | spin_unlock(&em_tree->lock); | |
2124 | BUG_ON(ret); | |
2125 | free_extent_map(em); | |
0b86a832 | 2126 | |
2b82032c YZ |
2127 | ret = btrfs_make_block_group(trans, extent_root, 0, type, |
2128 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | |
2129 | start, *num_bytes); | |
2130 | BUG_ON(ret); | |
611f0e00 | 2131 | |
2b82032c YZ |
2132 | index = 0; |
2133 | while (index < map->num_stripes) { | |
2134 | device = map->stripes[index].dev; | |
2135 | dev_offset = map->stripes[index].physical; | |
0b86a832 CM |
2136 | |
2137 | ret = btrfs_alloc_dev_extent(trans, device, | |
2b82032c YZ |
2138 | info->chunk_root->root_key.objectid, |
2139 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | |
2140 | start, dev_offset, calc_size); | |
0b86a832 | 2141 | BUG_ON(ret); |
2b82032c YZ |
2142 | index++; |
2143 | } | |
2144 | ||
2145 | return 0; | |
2146 | } | |
2147 | ||
2148 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | |
2149 | struct btrfs_root *extent_root, | |
2150 | struct map_lookup *map, u64 chunk_offset, | |
2151 | u64 chunk_size, u64 stripe_size) | |
2152 | { | |
2153 | u64 dev_offset; | |
2154 | struct btrfs_key key; | |
2155 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | |
2156 | struct btrfs_device *device; | |
2157 | struct btrfs_chunk *chunk; | |
2158 | struct btrfs_stripe *stripe; | |
2159 | size_t item_size = btrfs_chunk_item_size(map->num_stripes); | |
2160 | int index = 0; | |
2161 | int ret; | |
2162 | ||
2163 | chunk = kzalloc(item_size, GFP_NOFS); | |
2164 | if (!chunk) | |
2165 | return -ENOMEM; | |
2166 | ||
2167 | index = 0; | |
2168 | while (index < map->num_stripes) { | |
2169 | device = map->stripes[index].dev; | |
2170 | device->bytes_used += stripe_size; | |
0b86a832 CM |
2171 | ret = btrfs_update_device(trans, device); |
2172 | BUG_ON(ret); | |
2b82032c YZ |
2173 | index++; |
2174 | } | |
2175 | ||
2176 | index = 0; | |
2177 | stripe = &chunk->stripe; | |
2178 | while (index < map->num_stripes) { | |
2179 | device = map->stripes[index].dev; | |
2180 | dev_offset = map->stripes[index].physical; | |
0b86a832 | 2181 | |
e17cade2 CM |
2182 | btrfs_set_stack_stripe_devid(stripe, device->devid); |
2183 | btrfs_set_stack_stripe_offset(stripe, dev_offset); | |
2184 | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | |
2b82032c | 2185 | stripe++; |
0b86a832 CM |
2186 | index++; |
2187 | } | |
2188 | ||
2b82032c | 2189 | btrfs_set_stack_chunk_length(chunk, chunk_size); |
0b86a832 | 2190 | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); |
2b82032c YZ |
2191 | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); |
2192 | btrfs_set_stack_chunk_type(chunk, map->type); | |
2193 | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | |
2194 | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | |
2195 | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | |
0b86a832 | 2196 | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); |
2b82032c | 2197 | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); |
0b86a832 | 2198 | |
2b82032c YZ |
2199 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
2200 | key.type = BTRFS_CHUNK_ITEM_KEY; | |
2201 | key.offset = chunk_offset; | |
0b86a832 | 2202 | |
2b82032c YZ |
2203 | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); |
2204 | BUG_ON(ret); | |
0b86a832 | 2205 | |
2b82032c YZ |
2206 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
2207 | ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | |
2208 | item_size); | |
8f18cf13 CM |
2209 | BUG_ON(ret); |
2210 | } | |
0b86a832 | 2211 | kfree(chunk); |
2b82032c YZ |
2212 | return 0; |
2213 | } | |
0b86a832 | 2214 | |
2b82032c YZ |
2215 | /* |
2216 | * Chunk allocation falls into two parts. The first part does works | |
2217 | * that make the new allocated chunk useable, but not do any operation | |
2218 | * that modifies the chunk tree. The second part does the works that | |
2219 | * require modifying the chunk tree. This division is important for the | |
2220 | * bootstrap process of adding storage to a seed btrfs. | |
2221 | */ | |
2222 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | |
2223 | struct btrfs_root *extent_root, u64 type) | |
2224 | { | |
2225 | u64 chunk_offset; | |
2226 | u64 chunk_size; | |
2227 | u64 stripe_size; | |
2228 | struct map_lookup *map; | |
2229 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | |
2230 | int ret; | |
2231 | ||
2232 | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | |
2233 | &chunk_offset); | |
2234 | if (ret) | |
2235 | return ret; | |
2236 | ||
2237 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | |
2238 | &stripe_size, chunk_offset, type); | |
2239 | if (ret) | |
2240 | return ret; | |
2241 | ||
2242 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | |
2243 | chunk_size, stripe_size); | |
2244 | BUG_ON(ret); | |
2245 | return 0; | |
2246 | } | |
2247 | ||
d397712b | 2248 | static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, |
2b82032c YZ |
2249 | struct btrfs_root *root, |
2250 | struct btrfs_device *device) | |
2251 | { | |
2252 | u64 chunk_offset; | |
2253 | u64 sys_chunk_offset; | |
2254 | u64 chunk_size; | |
2255 | u64 sys_chunk_size; | |
2256 | u64 stripe_size; | |
2257 | u64 sys_stripe_size; | |
2258 | u64 alloc_profile; | |
2259 | struct map_lookup *map; | |
2260 | struct map_lookup *sys_map; | |
2261 | struct btrfs_fs_info *fs_info = root->fs_info; | |
2262 | struct btrfs_root *extent_root = fs_info->extent_root; | |
2263 | int ret; | |
2264 | ||
2265 | ret = find_next_chunk(fs_info->chunk_root, | |
2266 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | |
2267 | BUG_ON(ret); | |
2268 | ||
2269 | alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | |
2270 | (fs_info->metadata_alloc_profile & | |
2271 | fs_info->avail_metadata_alloc_bits); | |
2272 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | |
2273 | ||
2274 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | |
2275 | &stripe_size, chunk_offset, alloc_profile); | |
2276 | BUG_ON(ret); | |
2277 | ||
2278 | sys_chunk_offset = chunk_offset + chunk_size; | |
2279 | ||
2280 | alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | |
2281 | (fs_info->system_alloc_profile & | |
2282 | fs_info->avail_system_alloc_bits); | |
2283 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | |
2284 | ||
2285 | ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | |
2286 | &sys_chunk_size, &sys_stripe_size, | |
2287 | sys_chunk_offset, alloc_profile); | |
2288 | BUG_ON(ret); | |
2289 | ||
2290 | ret = btrfs_add_device(trans, fs_info->chunk_root, device); | |
2291 | BUG_ON(ret); | |
2292 | ||
2293 | /* | |
2294 | * Modifying chunk tree needs allocating new blocks from both | |
2295 | * system block group and metadata block group. So we only can | |
2296 | * do operations require modifying the chunk tree after both | |
2297 | * block groups were created. | |
2298 | */ | |
2299 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | |
2300 | chunk_size, stripe_size); | |
2301 | BUG_ON(ret); | |
2302 | ||
2303 | ret = __finish_chunk_alloc(trans, extent_root, sys_map, | |
2304 | sys_chunk_offset, sys_chunk_size, | |
2305 | sys_stripe_size); | |
b248a415 | 2306 | BUG_ON(ret); |
2b82032c YZ |
2307 | return 0; |
2308 | } | |
2309 | ||
2310 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | |
2311 | { | |
2312 | struct extent_map *em; | |
2313 | struct map_lookup *map; | |
2314 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | |
2315 | int readonly = 0; | |
2316 | int i; | |
2317 | ||
2318 | spin_lock(&map_tree->map_tree.lock); | |
2319 | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | |
2320 | spin_unlock(&map_tree->map_tree.lock); | |
2321 | if (!em) | |
2322 | return 1; | |
2323 | ||
2324 | map = (struct map_lookup *)em->bdev; | |
2325 | for (i = 0; i < map->num_stripes; i++) { | |
2326 | if (!map->stripes[i].dev->writeable) { | |
2327 | readonly = 1; | |
2328 | break; | |
2329 | } | |
2330 | } | |
0b86a832 | 2331 | free_extent_map(em); |
2b82032c | 2332 | return readonly; |
0b86a832 CM |
2333 | } |
2334 | ||
2335 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | |
2336 | { | |
2337 | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | |
2338 | } | |
2339 | ||
2340 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | |
2341 | { | |
2342 | struct extent_map *em; | |
2343 | ||
d397712b | 2344 | while (1) { |
0b86a832 CM |
2345 | spin_lock(&tree->map_tree.lock); |
2346 | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | |
2347 | if (em) | |
2348 | remove_extent_mapping(&tree->map_tree, em); | |
2349 | spin_unlock(&tree->map_tree.lock); | |
2350 | if (!em) | |
2351 | break; | |
2352 | kfree(em->bdev); | |
2353 | /* once for us */ | |
2354 | free_extent_map(em); | |
2355 | /* once for the tree */ | |
2356 | free_extent_map(em); | |
2357 | } | |
2358 | } | |
2359 | ||
f188591e CM |
2360 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) |
2361 | { | |
2362 | struct extent_map *em; | |
2363 | struct map_lookup *map; | |
2364 | struct extent_map_tree *em_tree = &map_tree->map_tree; | |
2365 | int ret; | |
2366 | ||
2367 | spin_lock(&em_tree->lock); | |
2368 | em = lookup_extent_mapping(em_tree, logical, len); | |
b248a415 | 2369 | spin_unlock(&em_tree->lock); |
f188591e CM |
2370 | BUG_ON(!em); |
2371 | ||
2372 | BUG_ON(em->start > logical || em->start + em->len < logical); | |
2373 | map = (struct map_lookup *)em->bdev; | |
2374 | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | |
2375 | ret = map->num_stripes; | |
321aecc6 CM |
2376 | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
2377 | ret = map->sub_stripes; | |
f188591e CM |
2378 | else |
2379 | ret = 1; | |
2380 | free_extent_map(em); | |
f188591e CM |
2381 | return ret; |
2382 | } | |
2383 | ||
dfe25020 CM |
2384 | static int find_live_mirror(struct map_lookup *map, int first, int num, |
2385 | int optimal) | |
2386 | { | |
2387 | int i; | |
2388 | if (map->stripes[optimal].dev->bdev) | |
2389 | return optimal; | |
2390 | for (i = first; i < first + num; i++) { | |
2391 | if (map->stripes[i].dev->bdev) | |
2392 | return i; | |
2393 | } | |
2394 | /* we couldn't find one that doesn't fail. Just return something | |
2395 | * and the io error handling code will clean up eventually | |
2396 | */ | |
2397 | return optimal; | |
2398 | } | |
2399 | ||
f2d8d74d CM |
2400 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
2401 | u64 logical, u64 *length, | |
2402 | struct btrfs_multi_bio **multi_ret, | |
2403 | int mirror_num, struct page *unplug_page) | |
0b86a832 CM |
2404 | { |
2405 | struct extent_map *em; | |
2406 | struct map_lookup *map; | |
2407 | struct extent_map_tree *em_tree = &map_tree->map_tree; | |
2408 | u64 offset; | |
593060d7 CM |
2409 | u64 stripe_offset; |
2410 | u64 stripe_nr; | |
cea9e445 | 2411 | int stripes_allocated = 8; |
321aecc6 | 2412 | int stripes_required = 1; |
593060d7 | 2413 | int stripe_index; |
cea9e445 | 2414 | int i; |
f2d8d74d | 2415 | int num_stripes; |
a236aed1 | 2416 | int max_errors = 0; |
cea9e445 | 2417 | struct btrfs_multi_bio *multi = NULL; |
0b86a832 | 2418 | |
d397712b | 2419 | if (multi_ret && !(rw & (1 << BIO_RW))) |
cea9e445 | 2420 | stripes_allocated = 1; |
cea9e445 CM |
2421 | again: |
2422 | if (multi_ret) { | |
2423 | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | |
2424 | GFP_NOFS); | |
2425 | if (!multi) | |
2426 | return -ENOMEM; | |
a236aed1 CM |
2427 | |
2428 | atomic_set(&multi->error, 0); | |
cea9e445 | 2429 | } |
0b86a832 CM |
2430 | |
2431 | spin_lock(&em_tree->lock); | |
2432 | em = lookup_extent_mapping(em_tree, logical, *length); | |
b248a415 | 2433 | spin_unlock(&em_tree->lock); |
f2d8d74d CM |
2434 | |
2435 | if (!em && unplug_page) | |
2436 | return 0; | |
2437 | ||
3b951516 | 2438 | if (!em) { |
d397712b CM |
2439 | printk(KERN_CRIT "unable to find logical %llu len %llu\n", |
2440 | (unsigned long long)logical, | |
2441 | (unsigned long long)*length); | |
f2d8d74d | 2442 | BUG(); |
3b951516 | 2443 | } |
0b86a832 CM |
2444 | |
2445 | BUG_ON(em->start > logical || em->start + em->len < logical); | |
2446 | map = (struct map_lookup *)em->bdev; | |
2447 | offset = logical - em->start; | |
593060d7 | 2448 | |
f188591e CM |
2449 | if (mirror_num > map->num_stripes) |
2450 | mirror_num = 0; | |
2451 | ||
cea9e445 | 2452 | /* if our multi bio struct is too small, back off and try again */ |
321aecc6 CM |
2453 | if (rw & (1 << BIO_RW)) { |
2454 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | |
2455 | BTRFS_BLOCK_GROUP_DUP)) { | |
2456 | stripes_required = map->num_stripes; | |
a236aed1 | 2457 | max_errors = 1; |
321aecc6 CM |
2458 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
2459 | stripes_required = map->sub_stripes; | |
a236aed1 | 2460 | max_errors = 1; |
321aecc6 CM |
2461 | } |
2462 | } | |
2463 | if (multi_ret && rw == WRITE && | |
2464 | stripes_allocated < stripes_required) { | |
cea9e445 | 2465 | stripes_allocated = map->num_stripes; |
cea9e445 CM |
2466 | free_extent_map(em); |
2467 | kfree(multi); | |
2468 | goto again; | |
2469 | } | |
593060d7 CM |
2470 | stripe_nr = offset; |
2471 | /* | |
2472 | * stripe_nr counts the total number of stripes we have to stride | |
2473 | * to get to this block | |
2474 | */ | |
2475 | do_div(stripe_nr, map->stripe_len); | |
2476 | ||
2477 | stripe_offset = stripe_nr * map->stripe_len; | |
2478 | BUG_ON(offset < stripe_offset); | |
2479 | ||
2480 | /* stripe_offset is the offset of this block in its stripe*/ | |
2481 | stripe_offset = offset - stripe_offset; | |
2482 | ||
cea9e445 | 2483 | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | |
321aecc6 | 2484 | BTRFS_BLOCK_GROUP_RAID10 | |
cea9e445 CM |
2485 | BTRFS_BLOCK_GROUP_DUP)) { |
2486 | /* we limit the length of each bio to what fits in a stripe */ | |
2487 | *length = min_t(u64, em->len - offset, | |
2488 | map->stripe_len - stripe_offset); | |
2489 | } else { | |
2490 | *length = em->len - offset; | |
2491 | } | |
f2d8d74d CM |
2492 | |
2493 | if (!multi_ret && !unplug_page) | |
cea9e445 CM |
2494 | goto out; |
2495 | ||
f2d8d74d | 2496 | num_stripes = 1; |
cea9e445 | 2497 | stripe_index = 0; |
8790d502 | 2498 | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { |
f2d8d74d CM |
2499 | if (unplug_page || (rw & (1 << BIO_RW))) |
2500 | num_stripes = map->num_stripes; | |
2fff734f | 2501 | else if (mirror_num) |
f188591e | 2502 | stripe_index = mirror_num - 1; |
dfe25020 CM |
2503 | else { |
2504 | stripe_index = find_live_mirror(map, 0, | |
2505 | map->num_stripes, | |
2506 | current->pid % map->num_stripes); | |
2507 | } | |
2fff734f | 2508 | |
611f0e00 | 2509 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
cea9e445 | 2510 | if (rw & (1 << BIO_RW)) |
f2d8d74d | 2511 | num_stripes = map->num_stripes; |
f188591e CM |
2512 | else if (mirror_num) |
2513 | stripe_index = mirror_num - 1; | |
2fff734f | 2514 | |
321aecc6 CM |
2515 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
2516 | int factor = map->num_stripes / map->sub_stripes; | |
321aecc6 CM |
2517 | |
2518 | stripe_index = do_div(stripe_nr, factor); | |
2519 | stripe_index *= map->sub_stripes; | |
2520 | ||
f2d8d74d CM |
2521 | if (unplug_page || (rw & (1 << BIO_RW))) |
2522 | num_stripes = map->sub_stripes; | |
321aecc6 CM |
2523 | else if (mirror_num) |
2524 | stripe_index += mirror_num - 1; | |
dfe25020 CM |
2525 | else { |
2526 | stripe_index = find_live_mirror(map, stripe_index, | |
2527 | map->sub_stripes, stripe_index + | |
2528 | current->pid % map->sub_stripes); | |
2529 | } | |
8790d502 CM |
2530 | } else { |
2531 | /* | |
2532 | * after this do_div call, stripe_nr is the number of stripes | |
2533 | * on this device we have to walk to find the data, and | |
2534 | * stripe_index is the number of our device in the stripe array | |
2535 | */ | |
2536 | stripe_index = do_div(stripe_nr, map->num_stripes); | |
2537 | } | |
593060d7 | 2538 | BUG_ON(stripe_index >= map->num_stripes); |
cea9e445 | 2539 | |
f2d8d74d CM |
2540 | for (i = 0; i < num_stripes; i++) { |
2541 | if (unplug_page) { | |
2542 | struct btrfs_device *device; | |
2543 | struct backing_dev_info *bdi; | |
2544 | ||
2545 | device = map->stripes[stripe_index].dev; | |
dfe25020 CM |
2546 | if (device->bdev) { |
2547 | bdi = blk_get_backing_dev_info(device->bdev); | |
d397712b | 2548 | if (bdi->unplug_io_fn) |
dfe25020 | 2549 | bdi->unplug_io_fn(bdi, unplug_page); |
f2d8d74d CM |
2550 | } |
2551 | } else { | |
2552 | multi->stripes[i].physical = | |
2553 | map->stripes[stripe_index].physical + | |
2554 | stripe_offset + stripe_nr * map->stripe_len; | |
2555 | multi->stripes[i].dev = map->stripes[stripe_index].dev; | |
2556 | } | |
cea9e445 | 2557 | stripe_index++; |
593060d7 | 2558 | } |
f2d8d74d CM |
2559 | if (multi_ret) { |
2560 | *multi_ret = multi; | |
2561 | multi->num_stripes = num_stripes; | |
a236aed1 | 2562 | multi->max_errors = max_errors; |
f2d8d74d | 2563 | } |
cea9e445 | 2564 | out: |
0b86a832 | 2565 | free_extent_map(em); |
0b86a832 CM |
2566 | return 0; |
2567 | } | |
2568 | ||
f2d8d74d CM |
2569 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, |
2570 | u64 logical, u64 *length, | |
2571 | struct btrfs_multi_bio **multi_ret, int mirror_num) | |
2572 | { | |
2573 | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | |
2574 | mirror_num, NULL); | |
2575 | } | |
2576 | ||
a512bbf8 YZ |
2577 | int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, |
2578 | u64 chunk_start, u64 physical, u64 devid, | |
2579 | u64 **logical, int *naddrs, int *stripe_len) | |
2580 | { | |
2581 | struct extent_map_tree *em_tree = &map_tree->map_tree; | |
2582 | struct extent_map *em; | |
2583 | struct map_lookup *map; | |
2584 | u64 *buf; | |
2585 | u64 bytenr; | |
2586 | u64 length; | |
2587 | u64 stripe_nr; | |
2588 | int i, j, nr = 0; | |
2589 | ||
2590 | spin_lock(&em_tree->lock); | |
2591 | em = lookup_extent_mapping(em_tree, chunk_start, 1); | |
2592 | spin_unlock(&em_tree->lock); | |
2593 | ||
2594 | BUG_ON(!em || em->start != chunk_start); | |
2595 | map = (struct map_lookup *)em->bdev; | |
2596 | ||
2597 | length = em->len; | |
2598 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) | |
2599 | do_div(length, map->num_stripes / map->sub_stripes); | |
2600 | else if (map->type & BTRFS_BLOCK_GROUP_RAID0) | |
2601 | do_div(length, map->num_stripes); | |
2602 | ||
2603 | buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); | |
2604 | BUG_ON(!buf); | |
2605 | ||
2606 | for (i = 0; i < map->num_stripes; i++) { | |
2607 | if (devid && map->stripes[i].dev->devid != devid) | |
2608 | continue; | |
2609 | if (map->stripes[i].physical > physical || | |
2610 | map->stripes[i].physical + length <= physical) | |
2611 | continue; | |
2612 | ||
2613 | stripe_nr = physical - map->stripes[i].physical; | |
2614 | do_div(stripe_nr, map->stripe_len); | |
2615 | ||
2616 | if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | |
2617 | stripe_nr = stripe_nr * map->num_stripes + i; | |
2618 | do_div(stripe_nr, map->sub_stripes); | |
2619 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | |
2620 | stripe_nr = stripe_nr * map->num_stripes + i; | |
2621 | } | |
2622 | bytenr = chunk_start + stripe_nr * map->stripe_len; | |
934d375b | 2623 | WARN_ON(nr >= map->num_stripes); |
a512bbf8 YZ |
2624 | for (j = 0; j < nr; j++) { |
2625 | if (buf[j] == bytenr) | |
2626 | break; | |
2627 | } | |
934d375b CM |
2628 | if (j == nr) { |
2629 | WARN_ON(nr >= map->num_stripes); | |
a512bbf8 | 2630 | buf[nr++] = bytenr; |
934d375b | 2631 | } |
a512bbf8 YZ |
2632 | } |
2633 | ||
2634 | for (i = 0; i > nr; i++) { | |
2635 | struct btrfs_multi_bio *multi; | |
2636 | struct btrfs_bio_stripe *stripe; | |
2637 | int ret; | |
2638 | ||
2639 | length = 1; | |
2640 | ret = btrfs_map_block(map_tree, WRITE, buf[i], | |
2641 | &length, &multi, 0); | |
2642 | BUG_ON(ret); | |
2643 | ||
2644 | stripe = multi->stripes; | |
2645 | for (j = 0; j < multi->num_stripes; j++) { | |
2646 | if (stripe->physical >= physical && | |
2647 | physical < stripe->physical + length) | |
2648 | break; | |
2649 | } | |
2650 | BUG_ON(j >= multi->num_stripes); | |
2651 | kfree(multi); | |
2652 | } | |
2653 | ||
2654 | *logical = buf; | |
2655 | *naddrs = nr; | |
2656 | *stripe_len = map->stripe_len; | |
2657 | ||
2658 | free_extent_map(em); | |
2659 | return 0; | |
2660 | } | |
2661 | ||
f2d8d74d CM |
2662 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, |
2663 | u64 logical, struct page *page) | |
2664 | { | |
2665 | u64 length = PAGE_CACHE_SIZE; | |
2666 | return __btrfs_map_block(map_tree, READ, logical, &length, | |
2667 | NULL, 0, page); | |
2668 | } | |
2669 | ||
8790d502 | 2670 | static void end_bio_multi_stripe(struct bio *bio, int err) |
8790d502 | 2671 | { |
cea9e445 | 2672 | struct btrfs_multi_bio *multi = bio->bi_private; |
7d2b4daa | 2673 | int is_orig_bio = 0; |
8790d502 | 2674 | |
8790d502 | 2675 | if (err) |
a236aed1 | 2676 | atomic_inc(&multi->error); |
8790d502 | 2677 | |
7d2b4daa CM |
2678 | if (bio == multi->orig_bio) |
2679 | is_orig_bio = 1; | |
2680 | ||
cea9e445 | 2681 | if (atomic_dec_and_test(&multi->stripes_pending)) { |
7d2b4daa CM |
2682 | if (!is_orig_bio) { |
2683 | bio_put(bio); | |
2684 | bio = multi->orig_bio; | |
2685 | } | |
8790d502 CM |
2686 | bio->bi_private = multi->private; |
2687 | bio->bi_end_io = multi->end_io; | |
a236aed1 CM |
2688 | /* only send an error to the higher layers if it is |
2689 | * beyond the tolerance of the multi-bio | |
2690 | */ | |
1259ab75 | 2691 | if (atomic_read(&multi->error) > multi->max_errors) { |
a236aed1 | 2692 | err = -EIO; |
1259ab75 CM |
2693 | } else if (err) { |
2694 | /* | |
2695 | * this bio is actually up to date, we didn't | |
2696 | * go over the max number of errors | |
2697 | */ | |
2698 | set_bit(BIO_UPTODATE, &bio->bi_flags); | |
a236aed1 | 2699 | err = 0; |
1259ab75 | 2700 | } |
8790d502 CM |
2701 | kfree(multi); |
2702 | ||
2703 | bio_endio(bio, err); | |
7d2b4daa | 2704 | } else if (!is_orig_bio) { |
8790d502 CM |
2705 | bio_put(bio); |
2706 | } | |
8790d502 CM |
2707 | } |
2708 | ||
8b712842 CM |
2709 | struct async_sched { |
2710 | struct bio *bio; | |
2711 | int rw; | |
2712 | struct btrfs_fs_info *info; | |
2713 | struct btrfs_work work; | |
2714 | }; | |
2715 | ||
2716 | /* | |
2717 | * see run_scheduled_bios for a description of why bios are collected for | |
2718 | * async submit. | |
2719 | * | |
2720 | * This will add one bio to the pending list for a device and make sure | |
2721 | * the work struct is scheduled. | |
2722 | */ | |
d397712b | 2723 | static noinline int schedule_bio(struct btrfs_root *root, |
a1b32a59 CM |
2724 | struct btrfs_device *device, |
2725 | int rw, struct bio *bio) | |
8b712842 CM |
2726 | { |
2727 | int should_queue = 1; | |
2728 | ||
2729 | /* don't bother with additional async steps for reads, right now */ | |
2730 | if (!(rw & (1 << BIO_RW))) { | |
492bb6de | 2731 | bio_get(bio); |
8b712842 | 2732 | submit_bio(rw, bio); |
492bb6de | 2733 | bio_put(bio); |
8b712842 CM |
2734 | return 0; |
2735 | } | |
2736 | ||
2737 | /* | |
0986fe9e | 2738 | * nr_async_bios allows us to reliably return congestion to the |
8b712842 CM |
2739 | * higher layers. Otherwise, the async bio makes it appear we have |
2740 | * made progress against dirty pages when we've really just put it | |
2741 | * on a queue for later | |
2742 | */ | |
0986fe9e | 2743 | atomic_inc(&root->fs_info->nr_async_bios); |
492bb6de | 2744 | WARN_ON(bio->bi_next); |
8b712842 CM |
2745 | bio->bi_next = NULL; |
2746 | bio->bi_rw |= rw; | |
2747 | ||
2748 | spin_lock(&device->io_lock); | |
2749 | ||
2750 | if (device->pending_bio_tail) | |
2751 | device->pending_bio_tail->bi_next = bio; | |
2752 | ||
2753 | device->pending_bio_tail = bio; | |
2754 | if (!device->pending_bios) | |
2755 | device->pending_bios = bio; | |
2756 | if (device->running_pending) | |
2757 | should_queue = 0; | |
2758 | ||
2759 | spin_unlock(&device->io_lock); | |
2760 | ||
2761 | if (should_queue) | |
1cc127b5 CM |
2762 | btrfs_queue_worker(&root->fs_info->submit_workers, |
2763 | &device->work); | |
8b712842 CM |
2764 | return 0; |
2765 | } | |
2766 | ||
f188591e | 2767 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, |
8b712842 | 2768 | int mirror_num, int async_submit) |
0b86a832 CM |
2769 | { |
2770 | struct btrfs_mapping_tree *map_tree; | |
2771 | struct btrfs_device *dev; | |
8790d502 | 2772 | struct bio *first_bio = bio; |
a62b9401 | 2773 | u64 logical = (u64)bio->bi_sector << 9; |
0b86a832 CM |
2774 | u64 length = 0; |
2775 | u64 map_length; | |
cea9e445 | 2776 | struct btrfs_multi_bio *multi = NULL; |
0b86a832 | 2777 | int ret; |
8790d502 CM |
2778 | int dev_nr = 0; |
2779 | int total_devs = 1; | |
0b86a832 | 2780 | |
f2d8d74d | 2781 | length = bio->bi_size; |
0b86a832 CM |
2782 | map_tree = &root->fs_info->mapping_tree; |
2783 | map_length = length; | |
cea9e445 | 2784 | |
f188591e CM |
2785 | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, |
2786 | mirror_num); | |
cea9e445 CM |
2787 | BUG_ON(ret); |
2788 | ||
2789 | total_devs = multi->num_stripes; | |
2790 | if (map_length < length) { | |
d397712b CM |
2791 | printk(KERN_CRIT "mapping failed logical %llu bio len %llu " |
2792 | "len %llu\n", (unsigned long long)logical, | |
2793 | (unsigned long long)length, | |
2794 | (unsigned long long)map_length); | |
cea9e445 CM |
2795 | BUG(); |
2796 | } | |
2797 | multi->end_io = first_bio->bi_end_io; | |
2798 | multi->private = first_bio->bi_private; | |
7d2b4daa | 2799 | multi->orig_bio = first_bio; |
cea9e445 CM |
2800 | atomic_set(&multi->stripes_pending, multi->num_stripes); |
2801 | ||
d397712b | 2802 | while (dev_nr < total_devs) { |
8790d502 | 2803 | if (total_devs > 1) { |
8790d502 CM |
2804 | if (dev_nr < total_devs - 1) { |
2805 | bio = bio_clone(first_bio, GFP_NOFS); | |
2806 | BUG_ON(!bio); | |
2807 | } else { | |
2808 | bio = first_bio; | |
2809 | } | |
2810 | bio->bi_private = multi; | |
2811 | bio->bi_end_io = end_bio_multi_stripe; | |
2812 | } | |
cea9e445 CM |
2813 | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; |
2814 | dev = multi->stripes[dev_nr].dev; | |
2b82032c | 2815 | BUG_ON(rw == WRITE && !dev->writeable); |
dfe25020 CM |
2816 | if (dev && dev->bdev) { |
2817 | bio->bi_bdev = dev->bdev; | |
8b712842 CM |
2818 | if (async_submit) |
2819 | schedule_bio(root, dev, rw, bio); | |
2820 | else | |
2821 | submit_bio(rw, bio); | |
dfe25020 CM |
2822 | } else { |
2823 | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | |
2824 | bio->bi_sector = logical >> 9; | |
dfe25020 | 2825 | bio_endio(bio, -EIO); |
dfe25020 | 2826 | } |
8790d502 CM |
2827 | dev_nr++; |
2828 | } | |
cea9e445 CM |
2829 | if (total_devs == 1) |
2830 | kfree(multi); | |
0b86a832 CM |
2831 | return 0; |
2832 | } | |
2833 | ||
a443755f | 2834 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, |
2b82032c | 2835 | u8 *uuid, u8 *fsid) |
0b86a832 | 2836 | { |
2b82032c YZ |
2837 | struct btrfs_device *device; |
2838 | struct btrfs_fs_devices *cur_devices; | |
2839 | ||
2840 | cur_devices = root->fs_info->fs_devices; | |
2841 | while (cur_devices) { | |
2842 | if (!fsid || | |
2843 | !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | |
2844 | device = __find_device(&cur_devices->devices, | |
2845 | devid, uuid); | |
2846 | if (device) | |
2847 | return device; | |
2848 | } | |
2849 | cur_devices = cur_devices->seed; | |
2850 | } | |
2851 | return NULL; | |
0b86a832 CM |
2852 | } |
2853 | ||
dfe25020 CM |
2854 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, |
2855 | u64 devid, u8 *dev_uuid) | |
2856 | { | |
2857 | struct btrfs_device *device; | |
2858 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | |
2859 | ||
2860 | device = kzalloc(sizeof(*device), GFP_NOFS); | |
7cbd8a83 | 2861 | if (!device) |
2862 | return NULL; | |
dfe25020 CM |
2863 | list_add(&device->dev_list, |
2864 | &fs_devices->devices); | |
dfe25020 CM |
2865 | device->barriers = 1; |
2866 | device->dev_root = root->fs_info->dev_root; | |
2867 | device->devid = devid; | |
8b712842 | 2868 | device->work.func = pending_bios_fn; |
e4404d6e | 2869 | device->fs_devices = fs_devices; |
dfe25020 CM |
2870 | fs_devices->num_devices++; |
2871 | spin_lock_init(&device->io_lock); | |
d20f7043 | 2872 | INIT_LIST_HEAD(&device->dev_alloc_list); |
dfe25020 CM |
2873 | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); |
2874 | return device; | |
2875 | } | |
2876 | ||
0b86a832 CM |
2877 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, |
2878 | struct extent_buffer *leaf, | |
2879 | struct btrfs_chunk *chunk) | |
2880 | { | |
2881 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | |
2882 | struct map_lookup *map; | |
2883 | struct extent_map *em; | |
2884 | u64 logical; | |
2885 | u64 length; | |
2886 | u64 devid; | |
a443755f | 2887 | u8 uuid[BTRFS_UUID_SIZE]; |
593060d7 | 2888 | int num_stripes; |
0b86a832 | 2889 | int ret; |
593060d7 | 2890 | int i; |
0b86a832 | 2891 | |
e17cade2 CM |
2892 | logical = key->offset; |
2893 | length = btrfs_chunk_length(leaf, chunk); | |
a061fc8d | 2894 | |
0b86a832 CM |
2895 | spin_lock(&map_tree->map_tree.lock); |
2896 | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | |
b248a415 | 2897 | spin_unlock(&map_tree->map_tree.lock); |
0b86a832 CM |
2898 | |
2899 | /* already mapped? */ | |
2900 | if (em && em->start <= logical && em->start + em->len > logical) { | |
2901 | free_extent_map(em); | |
0b86a832 CM |
2902 | return 0; |
2903 | } else if (em) { | |
2904 | free_extent_map(em); | |
2905 | } | |
0b86a832 CM |
2906 | |
2907 | map = kzalloc(sizeof(*map), GFP_NOFS); | |
2908 | if (!map) | |
2909 | return -ENOMEM; | |
2910 | ||
2911 | em = alloc_extent_map(GFP_NOFS); | |
2912 | if (!em) | |
2913 | return -ENOMEM; | |
593060d7 CM |
2914 | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
2915 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | |
0b86a832 CM |
2916 | if (!map) { |
2917 | free_extent_map(em); | |
2918 | return -ENOMEM; | |
2919 | } | |
2920 | ||
2921 | em->bdev = (struct block_device *)map; | |
2922 | em->start = logical; | |
2923 | em->len = length; | |
2924 | em->block_start = 0; | |
c8b97818 | 2925 | em->block_len = em->len; |
0b86a832 | 2926 | |
593060d7 CM |
2927 | map->num_stripes = num_stripes; |
2928 | map->io_width = btrfs_chunk_io_width(leaf, chunk); | |
2929 | map->io_align = btrfs_chunk_io_align(leaf, chunk); | |
2930 | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | |
2931 | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | |
2932 | map->type = btrfs_chunk_type(leaf, chunk); | |
321aecc6 | 2933 | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
593060d7 CM |
2934 | for (i = 0; i < num_stripes; i++) { |
2935 | map->stripes[i].physical = | |
2936 | btrfs_stripe_offset_nr(leaf, chunk, i); | |
2937 | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | |
a443755f CM |
2938 | read_extent_buffer(leaf, uuid, (unsigned long) |
2939 | btrfs_stripe_dev_uuid_nr(chunk, i), | |
2940 | BTRFS_UUID_SIZE); | |
2b82032c YZ |
2941 | map->stripes[i].dev = btrfs_find_device(root, devid, uuid, |
2942 | NULL); | |
dfe25020 | 2943 | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { |
593060d7 CM |
2944 | kfree(map); |
2945 | free_extent_map(em); | |
2946 | return -EIO; | |
2947 | } | |
dfe25020 CM |
2948 | if (!map->stripes[i].dev) { |
2949 | map->stripes[i].dev = | |
2950 | add_missing_dev(root, devid, uuid); | |
2951 | if (!map->stripes[i].dev) { | |
2952 | kfree(map); | |
2953 | free_extent_map(em); | |
2954 | return -EIO; | |
2955 | } | |
2956 | } | |
2957 | map->stripes[i].dev->in_fs_metadata = 1; | |
0b86a832 CM |
2958 | } |
2959 | ||
2960 | spin_lock(&map_tree->map_tree.lock); | |
2961 | ret = add_extent_mapping(&map_tree->map_tree, em); | |
0b86a832 | 2962 | spin_unlock(&map_tree->map_tree.lock); |
b248a415 | 2963 | BUG_ON(ret); |
0b86a832 CM |
2964 | free_extent_map(em); |
2965 | ||
2966 | return 0; | |
2967 | } | |
2968 | ||
2969 | static int fill_device_from_item(struct extent_buffer *leaf, | |
2970 | struct btrfs_dev_item *dev_item, | |
2971 | struct btrfs_device *device) | |
2972 | { | |
2973 | unsigned long ptr; | |
0b86a832 CM |
2974 | |
2975 | device->devid = btrfs_device_id(leaf, dev_item); | |
2976 | device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); | |
2977 | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | |
2978 | device->type = btrfs_device_type(leaf, dev_item); | |
2979 | device->io_align = btrfs_device_io_align(leaf, dev_item); | |
2980 | device->io_width = btrfs_device_io_width(leaf, dev_item); | |
2981 | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | |
0b86a832 CM |
2982 | |
2983 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | |
e17cade2 | 2984 | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
0b86a832 | 2985 | |
0b86a832 CM |
2986 | return 0; |
2987 | } | |
2988 | ||
2b82032c YZ |
2989 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) |
2990 | { | |
2991 | struct btrfs_fs_devices *fs_devices; | |
2992 | int ret; | |
2993 | ||
2994 | mutex_lock(&uuid_mutex); | |
2995 | ||
2996 | fs_devices = root->fs_info->fs_devices->seed; | |
2997 | while (fs_devices) { | |
2998 | if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | |
2999 | ret = 0; | |
3000 | goto out; | |
3001 | } | |
3002 | fs_devices = fs_devices->seed; | |
3003 | } | |
3004 | ||
3005 | fs_devices = find_fsid(fsid); | |
3006 | if (!fs_devices) { | |
3007 | ret = -ENOENT; | |
3008 | goto out; | |
3009 | } | |
e4404d6e YZ |
3010 | |
3011 | fs_devices = clone_fs_devices(fs_devices); | |
3012 | if (IS_ERR(fs_devices)) { | |
3013 | ret = PTR_ERR(fs_devices); | |
2b82032c YZ |
3014 | goto out; |
3015 | } | |
3016 | ||
97288f2c | 3017 | ret = __btrfs_open_devices(fs_devices, FMODE_READ, |
15916de8 | 3018 | root->fs_info->bdev_holder); |
2b82032c YZ |
3019 | if (ret) |
3020 | goto out; | |
3021 | ||
3022 | if (!fs_devices->seeding) { | |
3023 | __btrfs_close_devices(fs_devices); | |
e4404d6e | 3024 | free_fs_devices(fs_devices); |
2b82032c YZ |
3025 | ret = -EINVAL; |
3026 | goto out; | |
3027 | } | |
3028 | ||
3029 | fs_devices->seed = root->fs_info->fs_devices->seed; | |
3030 | root->fs_info->fs_devices->seed = fs_devices; | |
2b82032c YZ |
3031 | out: |
3032 | mutex_unlock(&uuid_mutex); | |
3033 | return ret; | |
3034 | } | |
3035 | ||
0d81ba5d | 3036 | static int read_one_dev(struct btrfs_root *root, |
0b86a832 CM |
3037 | struct extent_buffer *leaf, |
3038 | struct btrfs_dev_item *dev_item) | |
3039 | { | |
3040 | struct btrfs_device *device; | |
3041 | u64 devid; | |
3042 | int ret; | |
2b82032c | 3043 | u8 fs_uuid[BTRFS_UUID_SIZE]; |
a443755f CM |
3044 | u8 dev_uuid[BTRFS_UUID_SIZE]; |
3045 | ||
0b86a832 | 3046 | devid = btrfs_device_id(leaf, dev_item); |
a443755f CM |
3047 | read_extent_buffer(leaf, dev_uuid, |
3048 | (unsigned long)btrfs_device_uuid(dev_item), | |
3049 | BTRFS_UUID_SIZE); | |
2b82032c YZ |
3050 | read_extent_buffer(leaf, fs_uuid, |
3051 | (unsigned long)btrfs_device_fsid(dev_item), | |
3052 | BTRFS_UUID_SIZE); | |
3053 | ||
3054 | if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | |
3055 | ret = open_seed_devices(root, fs_uuid); | |
e4404d6e | 3056 | if (ret && !btrfs_test_opt(root, DEGRADED)) |
2b82032c | 3057 | return ret; |
2b82032c YZ |
3058 | } |
3059 | ||
3060 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | |
3061 | if (!device || !device->bdev) { | |
e4404d6e | 3062 | if (!btrfs_test_opt(root, DEGRADED)) |
2b82032c YZ |
3063 | return -EIO; |
3064 | ||
3065 | if (!device) { | |
d397712b CM |
3066 | printk(KERN_WARNING "warning devid %llu missing\n", |
3067 | (unsigned long long)devid); | |
2b82032c YZ |
3068 | device = add_missing_dev(root, devid, dev_uuid); |
3069 | if (!device) | |
3070 | return -ENOMEM; | |
3071 | } | |
3072 | } | |
3073 | ||
3074 | if (device->fs_devices != root->fs_info->fs_devices) { | |
3075 | BUG_ON(device->writeable); | |
3076 | if (device->generation != | |
3077 | btrfs_device_generation(leaf, dev_item)) | |
3078 | return -EINVAL; | |
6324fbf3 | 3079 | } |
0b86a832 CM |
3080 | |
3081 | fill_device_from_item(leaf, dev_item, device); | |
3082 | device->dev_root = root->fs_info->dev_root; | |
dfe25020 | 3083 | device->in_fs_metadata = 1; |
2b82032c YZ |
3084 | if (device->writeable) |
3085 | device->fs_devices->total_rw_bytes += device->total_bytes; | |
0b86a832 | 3086 | ret = 0; |
0b86a832 CM |
3087 | return ret; |
3088 | } | |
3089 | ||
0d81ba5d CM |
3090 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) |
3091 | { | |
3092 | struct btrfs_dev_item *dev_item; | |
3093 | ||
3094 | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | |
3095 | dev_item); | |
3096 | return read_one_dev(root, buf, dev_item); | |
3097 | } | |
3098 | ||
e4404d6e | 3099 | int btrfs_read_sys_array(struct btrfs_root *root) |
0b86a832 CM |
3100 | { |
3101 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | |
a061fc8d | 3102 | struct extent_buffer *sb; |
0b86a832 | 3103 | struct btrfs_disk_key *disk_key; |
0b86a832 | 3104 | struct btrfs_chunk *chunk; |
84eed90f CM |
3105 | u8 *ptr; |
3106 | unsigned long sb_ptr; | |
3107 | int ret = 0; | |
0b86a832 CM |
3108 | u32 num_stripes; |
3109 | u32 array_size; | |
3110 | u32 len = 0; | |
0b86a832 | 3111 | u32 cur; |
84eed90f | 3112 | struct btrfs_key key; |
0b86a832 | 3113 | |
e4404d6e | 3114 | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, |
a061fc8d CM |
3115 | BTRFS_SUPER_INFO_SIZE); |
3116 | if (!sb) | |
3117 | return -ENOMEM; | |
3118 | btrfs_set_buffer_uptodate(sb); | |
3119 | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | |
0b86a832 CM |
3120 | array_size = btrfs_super_sys_array_size(super_copy); |
3121 | ||
0b86a832 CM |
3122 | ptr = super_copy->sys_chunk_array; |
3123 | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | |
3124 | cur = 0; | |
3125 | ||
3126 | while (cur < array_size) { | |
3127 | disk_key = (struct btrfs_disk_key *)ptr; | |
3128 | btrfs_disk_key_to_cpu(&key, disk_key); | |
3129 | ||
a061fc8d | 3130 | len = sizeof(*disk_key); ptr += len; |
0b86a832 CM |
3131 | sb_ptr += len; |
3132 | cur += len; | |
3133 | ||
0d81ba5d | 3134 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
0b86a832 | 3135 | chunk = (struct btrfs_chunk *)sb_ptr; |
0d81ba5d | 3136 | ret = read_one_chunk(root, &key, sb, chunk); |
84eed90f CM |
3137 | if (ret) |
3138 | break; | |
0b86a832 CM |
3139 | num_stripes = btrfs_chunk_num_stripes(sb, chunk); |
3140 | len = btrfs_chunk_item_size(num_stripes); | |
3141 | } else { | |
84eed90f CM |
3142 | ret = -EIO; |
3143 | break; | |
0b86a832 CM |
3144 | } |
3145 | ptr += len; | |
3146 | sb_ptr += len; | |
3147 | cur += len; | |
3148 | } | |
a061fc8d | 3149 | free_extent_buffer(sb); |
84eed90f | 3150 | return ret; |
0b86a832 CM |
3151 | } |
3152 | ||
3153 | int btrfs_read_chunk_tree(struct btrfs_root *root) | |
3154 | { | |
3155 | struct btrfs_path *path; | |
3156 | struct extent_buffer *leaf; | |
3157 | struct btrfs_key key; | |
3158 | struct btrfs_key found_key; | |
3159 | int ret; | |
3160 | int slot; | |
3161 | ||
3162 | root = root->fs_info->chunk_root; | |
3163 | ||
3164 | path = btrfs_alloc_path(); | |
3165 | if (!path) | |
3166 | return -ENOMEM; | |
3167 | ||
3168 | /* first we search for all of the device items, and then we | |
3169 | * read in all of the chunk items. This way we can create chunk | |
3170 | * mappings that reference all of the devices that are afound | |
3171 | */ | |
3172 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | |
3173 | key.offset = 0; | |
3174 | key.type = 0; | |
3175 | again: | |
3176 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
d397712b | 3177 | while (1) { |
0b86a832 CM |
3178 | leaf = path->nodes[0]; |
3179 | slot = path->slots[0]; | |
3180 | if (slot >= btrfs_header_nritems(leaf)) { | |
3181 | ret = btrfs_next_leaf(root, path); | |
3182 | if (ret == 0) | |
3183 | continue; | |
3184 | if (ret < 0) | |
3185 | goto error; | |
3186 | break; | |
3187 | } | |
3188 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | |
3189 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | |
3190 | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | |
3191 | break; | |
3192 | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | |
3193 | struct btrfs_dev_item *dev_item; | |
3194 | dev_item = btrfs_item_ptr(leaf, slot, | |
3195 | struct btrfs_dev_item); | |
0d81ba5d | 3196 | ret = read_one_dev(root, leaf, dev_item); |
2b82032c YZ |
3197 | if (ret) |
3198 | goto error; | |
0b86a832 CM |
3199 | } |
3200 | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | |
3201 | struct btrfs_chunk *chunk; | |
3202 | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | |
3203 | ret = read_one_chunk(root, &found_key, leaf, chunk); | |
2b82032c YZ |
3204 | if (ret) |
3205 | goto error; | |
0b86a832 CM |
3206 | } |
3207 | path->slots[0]++; | |
3208 | } | |
3209 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | |
3210 | key.objectid = 0; | |
3211 | btrfs_release_path(root, path); | |
3212 | goto again; | |
3213 | } | |
0b86a832 CM |
3214 | ret = 0; |
3215 | error: | |
2b82032c | 3216 | btrfs_free_path(path); |
0b86a832 CM |
3217 | return ret; |
3218 | } |