]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/mlock.c | |
4 | * | |
5 | * (C) Copyright 1995 Linus Torvalds | |
6 | * (C) Copyright 2002 Christoph Hellwig | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
1da177e4 LT |
10 | #include <linux/mman.h> |
11 | #include <linux/mm.h> | |
8703e8a4 | 12 | #include <linux/sched/user.h> |
b291f000 NP |
13 | #include <linux/swap.h> |
14 | #include <linux/swapops.h> | |
15 | #include <linux/pagemap.h> | |
7225522b | 16 | #include <linux/pagevec.h> |
1da177e4 LT |
17 | #include <linux/mempolicy.h> |
18 | #include <linux/syscalls.h> | |
e8edc6e0 | 19 | #include <linux/sched.h> |
b95f1b31 | 20 | #include <linux/export.h> |
b291f000 NP |
21 | #include <linux/rmap.h> |
22 | #include <linux/mmzone.h> | |
23 | #include <linux/hugetlb.h> | |
7225522b VB |
24 | #include <linux/memcontrol.h> |
25 | #include <linux/mm_inline.h> | |
1507f512 | 26 | #include <linux/secretmem.h> |
b291f000 NP |
27 | |
28 | #include "internal.h" | |
1da177e4 | 29 | |
7f43add4 | 30 | bool can_do_mlock(void) |
e8edc6e0 | 31 | { |
59e99e5b | 32 | if (rlimit(RLIMIT_MEMLOCK) != 0) |
7f43add4 | 33 | return true; |
a5a6579d | 34 | if (capable(CAP_IPC_LOCK)) |
7f43add4 WX |
35 | return true; |
36 | return false; | |
e8edc6e0 AD |
37 | } |
38 | EXPORT_SYMBOL(can_do_mlock); | |
1da177e4 | 39 | |
b291f000 NP |
40 | /* |
41 | * Mlocked pages are marked with PageMlocked() flag for efficient testing | |
42 | * in vmscan and, possibly, the fault path; and to support semi-accurate | |
43 | * statistics. | |
44 | * | |
45 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will | |
46 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | |
47 | * The unevictable list is an LRU sibling list to the [in]active lists. | |
48 | * PageUnevictable is set to indicate the unevictable state. | |
49 | * | |
50 | * When lazy mlocking via vmscan, it is important to ensure that the | |
51 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | |
52 | * may have mlocked a page that is being munlocked. So lazy mlock must take | |
c1e8d7c6 | 53 | * the mmap_lock for read, and verify that the vma really is locked |
b291f000 NP |
54 | * (see mm/rmap.c). |
55 | */ | |
56 | ||
57 | /* | |
58 | * LRU accounting for clear_page_mlock() | |
59 | */ | |
e6c509f8 | 60 | void clear_page_mlock(struct page *page) |
b291f000 | 61 | { |
0964730b HD |
62 | int nr_pages; |
63 | ||
e6c509f8 | 64 | if (!TestClearPageMlocked(page)) |
b291f000 | 65 | return; |
b291f000 | 66 | |
0964730b HD |
67 | nr_pages = thp_nr_pages(page); |
68 | mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); | |
69 | count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); | |
9c4e6b1a SB |
70 | /* |
71 | * The previous TestClearPageMlocked() corresponds to the smp_mb() | |
72 | * in __pagevec_lru_add_fn(). | |
73 | * | |
74 | * See __pagevec_lru_add_fn for more explanation. | |
75 | */ | |
b291f000 NP |
76 | if (!isolate_lru_page(page)) { |
77 | putback_lru_page(page); | |
78 | } else { | |
79 | /* | |
8891d6da | 80 | * We lost the race. the page already moved to evictable list. |
b291f000 | 81 | */ |
8891d6da | 82 | if (PageUnevictable(page)) |
0964730b | 83 | count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); |
b291f000 NP |
84 | } |
85 | } | |
86 | ||
87 | /* | |
88 | * Mark page as mlocked if not already. | |
89 | * If page on LRU, isolate and putback to move to unevictable list. | |
90 | */ | |
91 | void mlock_vma_page(struct page *page) | |
92 | { | |
57e68e9c | 93 | /* Serialize with page migration */ |
b291f000 NP |
94 | BUG_ON(!PageLocked(page)); |
95 | ||
e90309c9 KS |
96 | VM_BUG_ON_PAGE(PageTail(page), page); |
97 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | |
98 | ||
5344b7e6 | 99 | if (!TestSetPageMlocked(page)) { |
0964730b HD |
100 | int nr_pages = thp_nr_pages(page); |
101 | ||
102 | mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages); | |
103 | count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages); | |
5344b7e6 NP |
104 | if (!isolate_lru_page(page)) |
105 | putback_lru_page(page); | |
106 | } | |
b291f000 NP |
107 | } |
108 | ||
7225522b VB |
109 | /* |
110 | * Finish munlock after successful page isolation | |
111 | * | |
cd62734c | 112 | * Page must be locked. This is a wrapper for page_mlock() |
7225522b VB |
113 | * and putback_lru_page() with munlock accounting. |
114 | */ | |
115 | static void __munlock_isolated_page(struct page *page) | |
116 | { | |
7225522b VB |
117 | /* |
118 | * Optimization: if the page was mapped just once, that's our mapping | |
119 | * and we don't need to check all the other vmas. | |
120 | */ | |
121 | if (page_mapcount(page) > 1) | |
cd62734c | 122 | page_mlock(page); |
7225522b VB |
123 | |
124 | /* Did try_to_unlock() succeed or punt? */ | |
192d7232 | 125 | if (!PageMlocked(page)) |
0964730b | 126 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page)); |
7225522b VB |
127 | |
128 | putback_lru_page(page); | |
129 | } | |
130 | ||
131 | /* | |
132 | * Accounting for page isolation fail during munlock | |
133 | * | |
134 | * Performs accounting when page isolation fails in munlock. There is nothing | |
135 | * else to do because it means some other task has already removed the page | |
136 | * from the LRU. putback_lru_page() will take care of removing the page from | |
137 | * the unevictable list, if necessary. vmscan [page_referenced()] will move | |
138 | * the page back to the unevictable list if some other vma has it mlocked. | |
139 | */ | |
140 | static void __munlock_isolation_failed(struct page *page) | |
141 | { | |
0964730b HD |
142 | int nr_pages = thp_nr_pages(page); |
143 | ||
7225522b | 144 | if (PageUnevictable(page)) |
0964730b | 145 | __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages); |
7225522b | 146 | else |
0964730b | 147 | __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages); |
7225522b VB |
148 | } |
149 | ||
6927c1dd LS |
150 | /** |
151 | * munlock_vma_page - munlock a vma page | |
b7701a5f | 152 | * @page: page to be unlocked, either a normal page or THP page head |
c424be1c VB |
153 | * |
154 | * returns the size of the page as a page mask (0 for normal page, | |
155 | * HPAGE_PMD_NR - 1 for THP head page) | |
b291f000 | 156 | * |
6927c1dd LS |
157 | * called from munlock()/munmap() path with page supposedly on the LRU. |
158 | * When we munlock a page, because the vma where we found the page is being | |
159 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the | |
160 | * page locked so that we can leave it on the unevictable lru list and not | |
161 | * bother vmscan with it. However, to walk the page's rmap list in | |
cd62734c | 162 | * page_mlock() we must isolate the page from the LRU. If some other |
6927c1dd LS |
163 | * task has removed the page from the LRU, we won't be able to do that. |
164 | * So we clear the PageMlocked as we might not get another chance. If we | |
165 | * can't isolate the page, we leave it for putback_lru_page() and vmscan | |
166 | * [page_referenced()/try_to_unmap()] to deal with. | |
b291f000 | 167 | */ |
ff6a6da6 | 168 | unsigned int munlock_vma_page(struct page *page) |
b291f000 | 169 | { |
7162a1e8 | 170 | int nr_pages; |
ff6a6da6 | 171 | |
cd62734c | 172 | /* For page_mlock() and to serialize with page migration */ |
b291f000 | 173 | BUG_ON(!PageLocked(page)); |
e90309c9 KS |
174 | VM_BUG_ON_PAGE(PageTail(page), page); |
175 | ||
655548bf KS |
176 | if (!TestClearPageMlocked(page)) { |
177 | /* Potentially, PTE-mapped THP: do not skip the rest PTEs */ | |
3db19aa3 | 178 | return 0; |
655548bf | 179 | } |
01cc2e58 | 180 | |
6c357848 | 181 | nr_pages = thp_nr_pages(page); |
3db19aa3 | 182 | mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); |
01cc2e58 | 183 | |
3db19aa3 | 184 | if (!isolate_lru_page(page)) |
01cc2e58 | 185 | __munlock_isolated_page(page); |
3db19aa3 AS |
186 | else |
187 | __munlock_isolation_failed(page); | |
01cc2e58 | 188 | |
c424be1c | 189 | return nr_pages - 1; |
b291f000 NP |
190 | } |
191 | ||
9978ad58 LS |
192 | /* |
193 | * convert get_user_pages() return value to posix mlock() error | |
194 | */ | |
195 | static int __mlock_posix_error_return(long retval) | |
196 | { | |
197 | if (retval == -EFAULT) | |
198 | retval = -ENOMEM; | |
199 | else if (retval == -ENOMEM) | |
200 | retval = -EAGAIN; | |
201 | return retval; | |
b291f000 NP |
202 | } |
203 | ||
56afe477 VB |
204 | /* |
205 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() | |
206 | * | |
207 | * The fast path is available only for evictable pages with single mapping. | |
208 | * Then we can bypass the per-cpu pvec and get better performance. | |
cd62734c | 209 | * when mapcount > 1 we need page_mlock() which can fail. |
56afe477 VB |
210 | * when !page_evictable(), we need the full redo logic of putback_lru_page to |
211 | * avoid leaving evictable page in unevictable list. | |
212 | * | |
213 | * In case of success, @page is added to @pvec and @pgrescued is incremented | |
214 | * in case that the page was previously unevictable. @page is also unlocked. | |
215 | */ | |
216 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, | |
217 | int *pgrescued) | |
218 | { | |
309381fe SL |
219 | VM_BUG_ON_PAGE(PageLRU(page), page); |
220 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
56afe477 VB |
221 | |
222 | if (page_mapcount(page) <= 1 && page_evictable(page)) { | |
223 | pagevec_add(pvec, page); | |
224 | if (TestClearPageUnevictable(page)) | |
225 | (*pgrescued)++; | |
226 | unlock_page(page); | |
227 | return true; | |
228 | } | |
229 | ||
230 | return false; | |
231 | } | |
232 | ||
233 | /* | |
234 | * Putback multiple evictable pages to the LRU | |
235 | * | |
236 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of | |
237 | * the pages might have meanwhile become unevictable but that is OK. | |
238 | */ | |
239 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) | |
240 | { | |
241 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); | |
242 | /* | |
243 | *__pagevec_lru_add() calls release_pages() so we don't call | |
244 | * put_page() explicitly | |
245 | */ | |
246 | __pagevec_lru_add(pvec); | |
247 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
248 | } | |
249 | ||
7225522b VB |
250 | /* |
251 | * Munlock a batch of pages from the same zone | |
252 | * | |
253 | * The work is split to two main phases. First phase clears the Mlocked flag | |
254 | * and attempts to isolate the pages, all under a single zone lru lock. | |
255 | * The second phase finishes the munlock only for pages where isolation | |
256 | * succeeded. | |
257 | * | |
7a8010cd | 258 | * Note that the pagevec may be modified during the process. |
7225522b VB |
259 | */ |
260 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) | |
261 | { | |
262 | int i; | |
263 | int nr = pagevec_count(pvec); | |
70feee0e | 264 | int delta_munlocked = -nr; |
56afe477 | 265 | struct pagevec pvec_putback; |
6168d0da | 266 | struct lruvec *lruvec = NULL; |
56afe477 | 267 | int pgrescued = 0; |
7225522b | 268 | |
86679820 | 269 | pagevec_init(&pvec_putback); |
3b25df93 | 270 | |
7225522b | 271 | /* Phase 1: page isolation */ |
7225522b VB |
272 | for (i = 0; i < nr; i++) { |
273 | struct page *page = pvec->pages[i]; | |
0de340cb | 274 | struct folio *folio = page_folio(page); |
7225522b VB |
275 | |
276 | if (TestClearPageMlocked(page)) { | |
7225522b | 277 | /* |
01cc2e58 VB |
278 | * We already have pin from follow_page_mask() |
279 | * so we can spare the get_page() here. | |
7225522b | 280 | */ |
d25b5bd8 | 281 | if (TestClearPageLRU(page)) { |
0de340cb | 282 | lruvec = folio_lruvec_relock_irq(folio, lruvec); |
46ae6b2c | 283 | del_page_from_lru_list(page, lruvec); |
01cc2e58 | 284 | continue; |
13805a88 | 285 | } else |
01cc2e58 | 286 | __munlock_isolation_failed(page); |
70feee0e YX |
287 | } else { |
288 | delta_munlocked++; | |
7225522b | 289 | } |
01cc2e58 VB |
290 | |
291 | /* | |
292 | * We won't be munlocking this page in the next phase | |
293 | * but we still need to release the follow_page_mask() | |
294 | * pin. We cannot do it under lru_lock however. If it's | |
295 | * the last pin, __page_cache_release() would deadlock. | |
296 | */ | |
297 | pagevec_add(&pvec_putback, pvec->pages[i]); | |
298 | pvec->pages[i] = NULL; | |
7225522b | 299 | } |
6168d0da AS |
300 | if (lruvec) { |
301 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); | |
302 | unlock_page_lruvec_irq(lruvec); | |
303 | } else if (delta_munlocked) { | |
304 | mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); | |
305 | } | |
7225522b | 306 | |
3b25df93 VB |
307 | /* Now we can release pins of pages that we are not munlocking */ |
308 | pagevec_release(&pvec_putback); | |
309 | ||
56afe477 | 310 | /* Phase 2: page munlock */ |
7225522b VB |
311 | for (i = 0; i < nr; i++) { |
312 | struct page *page = pvec->pages[i]; | |
313 | ||
314 | if (page) { | |
315 | lock_page(page); | |
56afe477 VB |
316 | if (!__putback_lru_fast_prepare(page, &pvec_putback, |
317 | &pgrescued)) { | |
5b40998a VB |
318 | /* |
319 | * Slow path. We don't want to lose the last | |
320 | * pin before unlock_page() | |
321 | */ | |
322 | get_page(page); /* for putback_lru_page() */ | |
56afe477 VB |
323 | __munlock_isolated_page(page); |
324 | unlock_page(page); | |
5b40998a | 325 | put_page(page); /* from follow_page_mask() */ |
56afe477 | 326 | } |
7225522b VB |
327 | } |
328 | } | |
56afe477 | 329 | |
5b40998a VB |
330 | /* |
331 | * Phase 3: page putback for pages that qualified for the fast path | |
332 | * This will also call put_page() to return pin from follow_page_mask() | |
333 | */ | |
56afe477 VB |
334 | if (pagevec_count(&pvec_putback)) |
335 | __putback_lru_fast(&pvec_putback, pgrescued); | |
7a8010cd VB |
336 | } |
337 | ||
338 | /* | |
339 | * Fill up pagevec for __munlock_pagevec using pte walk | |
340 | * | |
341 | * The function expects that the struct page corresponding to @start address is | |
342 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. | |
343 | * | |
344 | * The rest of @pvec is filled by subsequent pages within the same pmd and same | |
345 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These | |
346 | * pages also get pinned. | |
347 | * | |
348 | * Returns the address of the next page that should be scanned. This equals | |
349 | * @start + PAGE_SIZE when no page could be added by the pte walk. | |
350 | */ | |
351 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, | |
9472f23c JK |
352 | struct vm_area_struct *vma, struct zone *zone, |
353 | unsigned long start, unsigned long end) | |
7a8010cd VB |
354 | { |
355 | pte_t *pte; | |
356 | spinlock_t *ptl; | |
357 | ||
358 | /* | |
359 | * Initialize pte walk starting at the already pinned page where we | |
eadb41ae | 360 | * are sure that there is a pte, as it was pinned under the same |
c1e8d7c6 | 361 | * mmap_lock write op. |
7a8010cd VB |
362 | */ |
363 | pte = get_locked_pte(vma->vm_mm, start, &ptl); | |
eadb41ae VB |
364 | /* Make sure we do not cross the page table boundary */ |
365 | end = pgd_addr_end(start, end); | |
c2febafc | 366 | end = p4d_addr_end(start, end); |
eadb41ae VB |
367 | end = pud_addr_end(start, end); |
368 | end = pmd_addr_end(start, end); | |
7a8010cd VB |
369 | |
370 | /* The page next to the pinned page is the first we will try to get */ | |
371 | start += PAGE_SIZE; | |
372 | while (start < end) { | |
373 | struct page *page = NULL; | |
374 | pte++; | |
375 | if (pte_present(*pte)) | |
376 | page = vm_normal_page(vma, start, *pte); | |
377 | /* | |
378 | * Break if page could not be obtained or the page's node+zone does not | |
379 | * match | |
380 | */ | |
9472f23c | 381 | if (!page || page_zone(page) != zone) |
7a8010cd | 382 | break; |
56afe477 | 383 | |
e90309c9 KS |
384 | /* |
385 | * Do not use pagevec for PTE-mapped THP, | |
386 | * munlock_vma_pages_range() will handle them. | |
387 | */ | |
388 | if (PageTransCompound(page)) | |
389 | break; | |
390 | ||
7a8010cd VB |
391 | get_page(page); |
392 | /* | |
393 | * Increase the address that will be returned *before* the | |
394 | * eventual break due to pvec becoming full by adding the page | |
395 | */ | |
396 | start += PAGE_SIZE; | |
397 | if (pagevec_add(pvec, page) == 0) | |
398 | break; | |
399 | } | |
400 | pte_unmap_unlock(pte, ptl); | |
401 | return start; | |
7225522b VB |
402 | } |
403 | ||
b291f000 | 404 | /* |
ba470de4 RR |
405 | * munlock_vma_pages_range() - munlock all pages in the vma range.' |
406 | * @vma - vma containing range to be munlock()ed. | |
407 | * @start - start address in @vma of the range | |
408 | * @end - end of range in @vma. | |
409 | * | |
410 | * For mremap(), munmap() and exit(). | |
411 | * | |
412 | * Called with @vma VM_LOCKED. | |
413 | * | |
414 | * Returns with VM_LOCKED cleared. Callers must be prepared to | |
415 | * deal with this. | |
416 | * | |
417 | * We don't save and restore VM_LOCKED here because pages are | |
418 | * still on lru. In unmap path, pages might be scanned by reclaim | |
cd62734c | 419 | * and re-mlocked by page_mlock/try_to_unmap before we unmap and |
ba470de4 | 420 | * free them. This will result in freeing mlocked pages. |
b291f000 | 421 | */ |
ba470de4 | 422 | void munlock_vma_pages_range(struct vm_area_struct *vma, |
408e82b7 | 423 | unsigned long start, unsigned long end) |
b291f000 | 424 | { |
de60f5f1 | 425 | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; |
408e82b7 | 426 | |
ff6a6da6 | 427 | while (start < end) { |
ab7a5af7 | 428 | struct page *page; |
6ebb4a1b | 429 | unsigned int page_mask = 0; |
c424be1c | 430 | unsigned long page_increm; |
7a8010cd VB |
431 | struct pagevec pvec; |
432 | struct zone *zone; | |
ff6a6da6 | 433 | |
86679820 | 434 | pagevec_init(&pvec); |
6e919717 HD |
435 | /* |
436 | * Although FOLL_DUMP is intended for get_dump_page(), | |
437 | * it just so happens that its special treatment of the | |
438 | * ZERO_PAGE (returning an error instead of doing get_page) | |
439 | * suits munlock very well (and if somehow an abnormal page | |
440 | * has sneaked into the range, we won't oops here: great). | |
441 | */ | |
6ebb4a1b | 442 | page = follow_page(vma, start, FOLL_GET | FOLL_DUMP); |
7a8010cd | 443 | |
e90309c9 KS |
444 | if (page && !IS_ERR(page)) { |
445 | if (PageTransTail(page)) { | |
446 | VM_BUG_ON_PAGE(PageMlocked(page), page); | |
447 | put_page(page); /* follow_page_mask() */ | |
448 | } else if (PageTransHuge(page)) { | |
449 | lock_page(page); | |
450 | /* | |
451 | * Any THP page found by follow_page_mask() may | |
452 | * have gotten split before reaching | |
6ebb4a1b KS |
453 | * munlock_vma_page(), so we need to compute |
454 | * the page_mask here instead. | |
e90309c9 KS |
455 | */ |
456 | page_mask = munlock_vma_page(page); | |
457 | unlock_page(page); | |
458 | put_page(page); /* follow_page_mask() */ | |
459 | } else { | |
460 | /* | |
461 | * Non-huge pages are handled in batches via | |
462 | * pagevec. The pin from follow_page_mask() | |
463 | * prevents them from collapsing by THP. | |
464 | */ | |
465 | pagevec_add(&pvec, page); | |
466 | zone = page_zone(page); | |
7a8010cd | 467 | |
e90309c9 KS |
468 | /* |
469 | * Try to fill the rest of pagevec using fast | |
470 | * pte walk. This will also update start to | |
471 | * the next page to process. Then munlock the | |
472 | * pagevec. | |
473 | */ | |
474 | start = __munlock_pagevec_fill(&pvec, vma, | |
9472f23c | 475 | zone, start, end); |
e90309c9 KS |
476 | __munlock_pagevec(&pvec, zone); |
477 | goto next; | |
478 | } | |
408e82b7 | 479 | } |
c424be1c | 480 | page_increm = 1 + page_mask; |
ff6a6da6 | 481 | start += page_increm * PAGE_SIZE; |
7a8010cd | 482 | next: |
408e82b7 HD |
483 | cond_resched(); |
484 | } | |
b291f000 NP |
485 | } |
486 | ||
487 | /* | |
488 | * mlock_fixup - handle mlock[all]/munlock[all] requests. | |
489 | * | |
490 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | |
491 | * munlock is a no-op. However, for some special vmas, we go ahead and | |
cea10a19 | 492 | * populate the ptes. |
b291f000 NP |
493 | * |
494 | * For vmas that pass the filters, merge/split as appropriate. | |
495 | */ | |
1da177e4 | 496 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
ca16d140 | 497 | unsigned long start, unsigned long end, vm_flags_t newflags) |
1da177e4 | 498 | { |
b291f000 | 499 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 500 | pgoff_t pgoff; |
b291f000 | 501 | int nr_pages; |
1da177e4 | 502 | int ret = 0; |
ca16d140 | 503 | int lock = !!(newflags & VM_LOCKED); |
b155b4fd | 504 | vm_flags_t old_flags = vma->vm_flags; |
1da177e4 | 505 | |
fed067da | 506 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || |
e1fb4a08 | 507 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) || |
1507f512 | 508 | vma_is_dax(vma) || vma_is_secretmem(vma)) |
b0f205c2 EM |
509 | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ |
510 | goto out; | |
b291f000 | 511 | |
1da177e4 LT |
512 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
513 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, | |
19a809af | 514 | vma->vm_file, pgoff, vma_policy(vma), |
9a10064f | 515 | vma->vm_userfaultfd_ctx, vma_anon_name(vma)); |
1da177e4 LT |
516 | if (*prev) { |
517 | vma = *prev; | |
518 | goto success; | |
519 | } | |
520 | ||
1da177e4 LT |
521 | if (start != vma->vm_start) { |
522 | ret = split_vma(mm, vma, start, 1); | |
523 | if (ret) | |
524 | goto out; | |
525 | } | |
526 | ||
527 | if (end != vma->vm_end) { | |
528 | ret = split_vma(mm, vma, end, 0); | |
529 | if (ret) | |
530 | goto out; | |
531 | } | |
532 | ||
533 | success: | |
b291f000 NP |
534 | /* |
535 | * Keep track of amount of locked VM. | |
536 | */ | |
537 | nr_pages = (end - start) >> PAGE_SHIFT; | |
538 | if (!lock) | |
539 | nr_pages = -nr_pages; | |
b155b4fd SG |
540 | else if (old_flags & VM_LOCKED) |
541 | nr_pages = 0; | |
b291f000 NP |
542 | mm->locked_vm += nr_pages; |
543 | ||
1da177e4 | 544 | /* |
c1e8d7c6 | 545 | * vm_flags is protected by the mmap_lock held in write mode. |
1da177e4 | 546 | * It's okay if try_to_unmap_one unmaps a page just after we |
fc05f566 | 547 | * set VM_LOCKED, populate_vma_page_range will bring it back. |
1da177e4 | 548 | */ |
1da177e4 | 549 | |
fed067da | 550 | if (lock) |
408e82b7 | 551 | vma->vm_flags = newflags; |
fed067da | 552 | else |
408e82b7 | 553 | munlock_vma_pages_range(vma, start, end); |
1da177e4 | 554 | |
1da177e4 | 555 | out: |
b291f000 | 556 | *prev = vma; |
1da177e4 LT |
557 | return ret; |
558 | } | |
559 | ||
1aab92ec EM |
560 | static int apply_vma_lock_flags(unsigned long start, size_t len, |
561 | vm_flags_t flags) | |
1da177e4 LT |
562 | { |
563 | unsigned long nstart, end, tmp; | |
68d68ff6 | 564 | struct vm_area_struct *vma, *prev; |
1da177e4 LT |
565 | int error; |
566 | ||
8fd9e488 | 567 | VM_BUG_ON(offset_in_page(start)); |
fed067da | 568 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
1da177e4 LT |
569 | end = start + len; |
570 | if (end < start) | |
571 | return -EINVAL; | |
572 | if (end == start) | |
573 | return 0; | |
097d5910 | 574 | vma = find_vma(current->mm, start); |
1da177e4 LT |
575 | if (!vma || vma->vm_start > start) |
576 | return -ENOMEM; | |
577 | ||
097d5910 | 578 | prev = vma->vm_prev; |
1da177e4 LT |
579 | if (start > vma->vm_start) |
580 | prev = vma; | |
581 | ||
582 | for (nstart = start ; ; ) { | |
b0f205c2 | 583 | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
1da177e4 | 584 | |
1aab92ec | 585 | newflags |= flags; |
1da177e4 | 586 | |
1aab92ec | 587 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
1da177e4 LT |
588 | tmp = vma->vm_end; |
589 | if (tmp > end) | |
590 | tmp = end; | |
591 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); | |
592 | if (error) | |
593 | break; | |
594 | nstart = tmp; | |
595 | if (nstart < prev->vm_end) | |
596 | nstart = prev->vm_end; | |
597 | if (nstart >= end) | |
598 | break; | |
599 | ||
600 | vma = prev->vm_next; | |
601 | if (!vma || vma->vm_start != nstart) { | |
602 | error = -ENOMEM; | |
603 | break; | |
604 | } | |
605 | } | |
606 | return error; | |
607 | } | |
608 | ||
0cf2f6f6 SG |
609 | /* |
610 | * Go through vma areas and sum size of mlocked | |
611 | * vma pages, as return value. | |
612 | * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT) | |
613 | * is also counted. | |
614 | * Return value: previously mlocked page counts | |
615 | */ | |
0874bb49 | 616 | static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, |
0cf2f6f6 SG |
617 | unsigned long start, size_t len) |
618 | { | |
619 | struct vm_area_struct *vma; | |
0874bb49 | 620 | unsigned long count = 0; |
0cf2f6f6 SG |
621 | |
622 | if (mm == NULL) | |
623 | mm = current->mm; | |
624 | ||
625 | vma = find_vma(mm, start); | |
626 | if (vma == NULL) | |
48b03eea | 627 | return 0; |
0cf2f6f6 SG |
628 | |
629 | for (; vma ; vma = vma->vm_next) { | |
630 | if (start >= vma->vm_end) | |
631 | continue; | |
632 | if (start + len <= vma->vm_start) | |
633 | break; | |
634 | if (vma->vm_flags & VM_LOCKED) { | |
635 | if (start > vma->vm_start) | |
636 | count -= (start - vma->vm_start); | |
637 | if (start + len < vma->vm_end) { | |
638 | count += start + len - vma->vm_start; | |
639 | break; | |
640 | } | |
641 | count += vma->vm_end - vma->vm_start; | |
642 | } | |
643 | } | |
644 | ||
645 | return count >> PAGE_SHIFT; | |
646 | } | |
647 | ||
dc0ef0df | 648 | static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) |
1da177e4 LT |
649 | { |
650 | unsigned long locked; | |
651 | unsigned long lock_limit; | |
652 | int error = -ENOMEM; | |
653 | ||
057d3389 AK |
654 | start = untagged_addr(start); |
655 | ||
1da177e4 LT |
656 | if (!can_do_mlock()) |
657 | return -EPERM; | |
658 | ||
8fd9e488 | 659 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 LT |
660 | start &= PAGE_MASK; |
661 | ||
59e99e5b | 662 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 | 663 | lock_limit >>= PAGE_SHIFT; |
1f1cd705 DB |
664 | locked = len >> PAGE_SHIFT; |
665 | ||
d8ed45c5 | 666 | if (mmap_write_lock_killable(current->mm)) |
dc0ef0df | 667 | return -EINTR; |
1f1cd705 DB |
668 | |
669 | locked += current->mm->locked_vm; | |
0cf2f6f6 SG |
670 | if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) { |
671 | /* | |
672 | * It is possible that the regions requested intersect with | |
673 | * previously mlocked areas, that part area in "mm->locked_vm" | |
674 | * should not be counted to new mlock increment count. So check | |
675 | * and adjust locked count if necessary. | |
676 | */ | |
677 | locked -= count_mm_mlocked_page_nr(current->mm, | |
678 | start, len); | |
679 | } | |
1da177e4 LT |
680 | |
681 | /* check against resource limits */ | |
682 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) | |
1aab92ec | 683 | error = apply_vma_lock_flags(start, len, flags); |
1f1cd705 | 684 | |
d8ed45c5 | 685 | mmap_write_unlock(current->mm); |
c561259c KS |
686 | if (error) |
687 | return error; | |
688 | ||
689 | error = __mm_populate(start, len, 0); | |
690 | if (error) | |
691 | return __mlock_posix_error_return(error); | |
692 | return 0; | |
1da177e4 LT |
693 | } |
694 | ||
1aab92ec EM |
695 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) |
696 | { | |
697 | return do_mlock(start, len, VM_LOCKED); | |
698 | } | |
699 | ||
a8ca5d0e EM |
700 | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) |
701 | { | |
b0f205c2 EM |
702 | vm_flags_t vm_flags = VM_LOCKED; |
703 | ||
704 | if (flags & ~MLOCK_ONFAULT) | |
a8ca5d0e EM |
705 | return -EINVAL; |
706 | ||
b0f205c2 EM |
707 | if (flags & MLOCK_ONFAULT) |
708 | vm_flags |= VM_LOCKONFAULT; | |
709 | ||
710 | return do_mlock(start, len, vm_flags); | |
a8ca5d0e EM |
711 | } |
712 | ||
6a6160a7 | 713 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) |
1da177e4 LT |
714 | { |
715 | int ret; | |
716 | ||
057d3389 AK |
717 | start = untagged_addr(start); |
718 | ||
8fd9e488 | 719 | len = PAGE_ALIGN(len + (offset_in_page(start))); |
1da177e4 | 720 | start &= PAGE_MASK; |
1f1cd705 | 721 | |
d8ed45c5 | 722 | if (mmap_write_lock_killable(current->mm)) |
dc0ef0df | 723 | return -EINTR; |
1aab92ec | 724 | ret = apply_vma_lock_flags(start, len, 0); |
d8ed45c5 | 725 | mmap_write_unlock(current->mm); |
1f1cd705 | 726 | |
1da177e4 LT |
727 | return ret; |
728 | } | |
729 | ||
b0f205c2 EM |
730 | /* |
731 | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) | |
732 | * and translate into the appropriate modifications to mm->def_flags and/or the | |
733 | * flags for all current VMAs. | |
734 | * | |
735 | * There are a couple of subtleties with this. If mlockall() is called multiple | |
736 | * times with different flags, the values do not necessarily stack. If mlockall | |
737 | * is called once including the MCL_FUTURE flag and then a second time without | |
738 | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. | |
739 | */ | |
1aab92ec | 740 | static int apply_mlockall_flags(int flags) |
1da177e4 | 741 | { |
68d68ff6 | 742 | struct vm_area_struct *vma, *prev = NULL; |
b0f205c2 | 743 | vm_flags_t to_add = 0; |
1da177e4 | 744 | |
b0f205c2 EM |
745 | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; |
746 | if (flags & MCL_FUTURE) { | |
09a9f1d2 | 747 | current->mm->def_flags |= VM_LOCKED; |
1aab92ec | 748 | |
b0f205c2 EM |
749 | if (flags & MCL_ONFAULT) |
750 | current->mm->def_flags |= VM_LOCKONFAULT; | |
751 | ||
752 | if (!(flags & MCL_CURRENT)) | |
753 | goto out; | |
754 | } | |
755 | ||
756 | if (flags & MCL_CURRENT) { | |
757 | to_add |= VM_LOCKED; | |
758 | if (flags & MCL_ONFAULT) | |
759 | to_add |= VM_LOCKONFAULT; | |
760 | } | |
1da177e4 LT |
761 | |
762 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { | |
ca16d140 | 763 | vm_flags_t newflags; |
1da177e4 | 764 | |
b0f205c2 EM |
765 | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; |
766 | newflags |= to_add; | |
1da177e4 LT |
767 | |
768 | /* Ignore errors */ | |
769 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); | |
50d4fb78 | 770 | cond_resched(); |
1da177e4 LT |
771 | } |
772 | out: | |
773 | return 0; | |
774 | } | |
775 | ||
3480b257 | 776 | SYSCALL_DEFINE1(mlockall, int, flags) |
1da177e4 LT |
777 | { |
778 | unsigned long lock_limit; | |
86d2adcc | 779 | int ret; |
1da177e4 | 780 | |
dedca635 PS |
781 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) || |
782 | flags == MCL_ONFAULT) | |
86d2adcc | 783 | return -EINVAL; |
1da177e4 | 784 | |
1da177e4 | 785 | if (!can_do_mlock()) |
86d2adcc | 786 | return -EPERM; |
1da177e4 | 787 | |
59e99e5b | 788 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
1da177e4 LT |
789 | lock_limit >>= PAGE_SHIFT; |
790 | ||
d8ed45c5 | 791 | if (mmap_write_lock_killable(current->mm)) |
dc0ef0df | 792 | return -EINTR; |
1f1cd705 | 793 | |
dc0ef0df | 794 | ret = -ENOMEM; |
1da177e4 LT |
795 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || |
796 | capable(CAP_IPC_LOCK)) | |
1aab92ec | 797 | ret = apply_mlockall_flags(flags); |
d8ed45c5 | 798 | mmap_write_unlock(current->mm); |
bebeb3d6 ML |
799 | if (!ret && (flags & MCL_CURRENT)) |
800 | mm_populate(0, TASK_SIZE); | |
86d2adcc | 801 | |
1da177e4 LT |
802 | return ret; |
803 | } | |
804 | ||
3480b257 | 805 | SYSCALL_DEFINE0(munlockall) |
1da177e4 LT |
806 | { |
807 | int ret; | |
808 | ||
d8ed45c5 | 809 | if (mmap_write_lock_killable(current->mm)) |
dc0ef0df | 810 | return -EINTR; |
1aab92ec | 811 | ret = apply_mlockall_flags(0); |
d8ed45c5 | 812 | mmap_write_unlock(current->mm); |
1da177e4 LT |
813 | return ret; |
814 | } | |
815 | ||
816 | /* | |
817 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB | |
818 | * shm segments) get accounted against the user_struct instead. | |
819 | */ | |
820 | static DEFINE_SPINLOCK(shmlock_user_lock); | |
821 | ||
d7c9e99a | 822 | int user_shm_lock(size_t size, struct ucounts *ucounts) |
1da177e4 LT |
823 | { |
824 | unsigned long lock_limit, locked; | |
d7c9e99a | 825 | long memlock; |
1da177e4 LT |
826 | int allowed = 0; |
827 | ||
828 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
59e99e5b | 829 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
5ed44a40 HB |
830 | if (lock_limit == RLIM_INFINITY) |
831 | allowed = 1; | |
1da177e4 LT |
832 | lock_limit >>= PAGE_SHIFT; |
833 | spin_lock(&shmlock_user_lock); | |
d7c9e99a AG |
834 | memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); |
835 | ||
836 | if (!allowed && (memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) { | |
837 | dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); | |
838 | goto out; | |
839 | } | |
840 | if (!get_ucounts(ucounts)) { | |
841 | dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked); | |
1da177e4 | 842 | goto out; |
d7c9e99a | 843 | } |
1da177e4 LT |
844 | allowed = 1; |
845 | out: | |
846 | spin_unlock(&shmlock_user_lock); | |
847 | return allowed; | |
848 | } | |
849 | ||
d7c9e99a | 850 | void user_shm_unlock(size_t size, struct ucounts *ucounts) |
1da177e4 LT |
851 | { |
852 | spin_lock(&shmlock_user_lock); | |
d7c9e99a | 853 | dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT); |
1da177e4 | 854 | spin_unlock(&shmlock_user_lock); |
d7c9e99a | 855 | put_ucounts(ucounts); |
1da177e4 | 856 | } |