]> Git Repo - linux.git/blame - fs/xfs/xfs_log_recover.c
Merge tag 'pinctrl-v5.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
87c199c2 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
a844f451 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
50995582 15#include "xfs_defer.h"
57062787 16#include "xfs_da_format.h"
9a2cc41c 17#include "xfs_da_btree.h"
1da177e4 18#include "xfs_inode.h"
239880ef 19#include "xfs_trans.h"
239880ef 20#include "xfs_log.h"
1da177e4 21#include "xfs_log_priv.h"
1da177e4 22#include "xfs_log_recover.h"
a4fbe6ab 23#include "xfs_inode_item.h"
1da177e4
LT
24#include "xfs_extfree_item.h"
25#include "xfs_trans_priv.h"
a4fbe6ab
DC
26#include "xfs_alloc.h"
27#include "xfs_ialloc.h"
1da177e4 28#include "xfs_quota.h"
0e446be4 29#include "xfs_cksum.h"
0b1b213f 30#include "xfs_trace.h"
33479e05 31#include "xfs_icache.h"
a4fbe6ab 32#include "xfs_bmap_btree.h"
a4fbe6ab 33#include "xfs_error.h"
2b9ab5ab 34#include "xfs_dir2.h"
9e88b5d8 35#include "xfs_rmap_item.h"
60a4a222 36#include "xfs_buf_item.h"
f997ee21 37#include "xfs_refcount_item.h"
77d61fe4 38#include "xfs_bmap_item.h"
1da177e4 39
fc06c6d0
DC
40#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
41
9a8d2fdb
MT
42STATIC int
43xlog_find_zeroed(
44 struct xlog *,
45 xfs_daddr_t *);
46STATIC int
47xlog_clear_stale_blocks(
48 struct xlog *,
49 xfs_lsn_t);
1da177e4 50#if defined(DEBUG)
9a8d2fdb
MT
51STATIC void
52xlog_recover_check_summary(
53 struct xlog *);
1da177e4
LT
54#else
55#define xlog_recover_check_summary(log)
1da177e4 56#endif
7088c413
BF
57STATIC int
58xlog_do_recovery_pass(
59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 60
d5689eaa
CH
61/*
62 * This structure is used during recovery to record the buf log items which
63 * have been canceled and should not be replayed.
64 */
65struct xfs_buf_cancel {
66 xfs_daddr_t bc_blkno;
67 uint bc_len;
68 int bc_refcount;
69 struct list_head bc_list;
70};
71
1da177e4
LT
72/*
73 * Sector aligned buffer routines for buffer create/read/write/access
74 */
75
ff30a622 76/*
99c26595
BF
77 * Verify the log-relative block number and length in basic blocks are valid for
78 * an operation involving the given XFS log buffer. Returns true if the fields
79 * are valid, false otherwise.
ff30a622 80 */
99c26595
BF
81static inline bool
82xlog_verify_bp(
9a8d2fdb 83 struct xlog *log,
99c26595 84 xfs_daddr_t blk_no,
ff30a622
AE
85 int bbcount)
86{
99c26595
BF
87 if (blk_no < 0 || blk_no >= log->l_logBBsize)
88 return false;
89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
90 return false;
91 return true;
ff30a622
AE
92}
93
36adecff
AE
94/*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
5d77c0dc 99STATIC xfs_buf_t *
1da177e4 100xlog_get_bp(
9a8d2fdb 101 struct xlog *log,
3228149c 102 int nbblks)
1da177e4 103{
c8da0faf
CH
104 struct xfs_buf *bp;
105
99c26595
BF
106 /*
107 * Pass log block 0 since we don't have an addr yet, buffer will be
108 * verified on read.
109 */
110 if (!xlog_verify_bp(log, 0, nbblks)) {
a0fa2b67 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
114 return NULL;
115 }
1da177e4 116
36adecff
AE
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
25985edc 120 * requested size to accommodate the basic blocks required
36adecff
AE
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
25985edc 131 * there's space to accommodate this possibility.
36adecff 132 */
69ce58f0
AE
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 136
e70b73f8 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
1da177e4
LT
141}
142
5d77c0dc 143STATIC void
1da177e4
LT
144xlog_put_bp(
145 xfs_buf_t *bp)
146{
147 xfs_buf_free(bp);
148}
149
48389ef1
AE
150/*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
b2a922cd 154STATIC char *
076e6acb 155xlog_align(
9a8d2fdb 156 struct xlog *log,
076e6acb
CH
157 xfs_daddr_t blk_no,
158 int nbblks,
9a8d2fdb 159 struct xfs_buf *bp)
076e6acb 160{
fdc07f44 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 162
4e94b71b 163 ASSERT(offset + nbblks <= bp->b_length);
62926044 164 return bp->b_addr + BBTOB(offset);
076e6acb
CH
165}
166
1da177e4
LT
167
168/*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
076e6acb
CH
171STATIC int
172xlog_bread_noalign(
9a8d2fdb 173 struct xlog *log,
1da177e4
LT
174 xfs_daddr_t blk_no,
175 int nbblks,
9a8d2fdb 176 struct xfs_buf *bp)
1da177e4
LT
177{
178 int error;
179
99c26595
BF
180 if (!xlog_verify_bp(log, blk_no, nbblks)) {
181 xfs_warn(log->l_mp,
182 "Invalid log block/length (0x%llx, 0x%x) for buffer",
183 blk_no, nbblks);
ff30a622 184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 185 return -EFSCORRUPTED;
3228149c
DC
186 }
187
69ce58f0
AE
188 blk_no = round_down(blk_no, log->l_sectBBsize);
189 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
190
191 ASSERT(nbblks > 0);
4e94b71b 192 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
193
194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
0cac682f 195 bp->b_flags |= XBF_READ;
aa0e8833 196 bp->b_io_length = nbblks;
0e95f19a 197 bp->b_error = 0;
1da177e4 198
6af88cda 199 error = xfs_buf_submit(bp);
595bff75 200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 201 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
202 return error;
203}
204
076e6acb
CH
205STATIC int
206xlog_bread(
9a8d2fdb 207 struct xlog *log,
076e6acb
CH
208 xfs_daddr_t blk_no,
209 int nbblks,
9a8d2fdb 210 struct xfs_buf *bp,
b2a922cd 211 char **offset)
076e6acb
CH
212{
213 int error;
214
215 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 if (error)
217 return error;
218
219 *offset = xlog_align(log, blk_no, nbblks, bp);
220 return 0;
221}
222
44396476
DC
223/*
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
226 */
227STATIC int
228xlog_bread_offset(
9a8d2fdb 229 struct xlog *log,
44396476
DC
230 xfs_daddr_t blk_no, /* block to read from */
231 int nbblks, /* blocks to read */
9a8d2fdb 232 struct xfs_buf *bp,
b2a922cd 233 char *offset)
44396476 234{
b2a922cd 235 char *orig_offset = bp->b_addr;
4e94b71b 236 int orig_len = BBTOB(bp->b_length);
44396476
DC
237 int error, error2;
238
02fe03d9 239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
240 if (error)
241 return error;
242
243 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244
245 /* must reset buffer pointer even on error */
02fe03d9 246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
247 if (error)
248 return error;
249 return error2;
250}
251
1da177e4
LT
252/*
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
256 */
ba0f32d4 257STATIC int
1da177e4 258xlog_bwrite(
9a8d2fdb 259 struct xlog *log,
1da177e4
LT
260 xfs_daddr_t blk_no,
261 int nbblks,
9a8d2fdb 262 struct xfs_buf *bp)
1da177e4
LT
263{
264 int error;
265
99c26595
BF
266 if (!xlog_verify_bp(log, blk_no, nbblks)) {
267 xfs_warn(log->l_mp,
268 "Invalid log block/length (0x%llx, 0x%x) for buffer",
269 blk_no, nbblks);
ff30a622 270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 271 return -EFSCORRUPTED;
3228149c
DC
272 }
273
69ce58f0
AE
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
276
277 ASSERT(nbblks > 0);
4e94b71b 278 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
72790aa1 281 xfs_buf_hold(bp);
0c842ad4 282 xfs_buf_lock(bp);
aa0e8833 283 bp->b_io_length = nbblks;
0e95f19a 284 bp->b_error = 0;
1da177e4 285
c2b006c1 286 error = xfs_bwrite(bp);
901796af
CH
287 if (error)
288 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 289 xfs_buf_relse(bp);
1da177e4
LT
290 return error;
291}
292
1da177e4
LT
293#ifdef DEBUG
294/*
295 * dump debug superblock and log record information
296 */
297STATIC void
298xlog_header_check_dump(
299 xfs_mount_t *mp,
300 xlog_rec_header_t *head)
301{
08e96e1a 302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 304 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
306}
307#else
308#define xlog_header_check_dump(mp, head)
309#endif
310
311/*
312 * check log record header for recovery
313 */
314STATIC int
315xlog_header_check_recover(
316 xfs_mount_t *mp,
317 xlog_rec_header_t *head)
318{
69ef921b 319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
320
321 /*
322 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 * a dirty log created in IRIX.
325 */
69ef921b 326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
327 xfs_warn(mp,
328 "dirty log written in incompatible format - can't recover");
1da177e4
LT
329 xlog_header_check_dump(mp, head);
330 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 XFS_ERRLEVEL_HIGH, mp);
2451337d 332 return -EFSCORRUPTED;
1da177e4 333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
334 xfs_warn(mp,
335 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 XFS_ERRLEVEL_HIGH, mp);
2451337d 339 return -EFSCORRUPTED;
1da177e4
LT
340 }
341 return 0;
342}
343
344/*
345 * read the head block of the log and check the header
346 */
347STATIC int
348xlog_header_check_mount(
349 xfs_mount_t *mp,
350 xlog_rec_header_t *head)
351{
69ef921b 352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4 353
d905fdaa 354 if (uuid_is_null(&head->h_fs_uuid)) {
1da177e4
LT
355 /*
356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
d905fdaa 357 * h_fs_uuid is null, we assume this log was last mounted
1da177e4
LT
358 * by IRIX and continue.
359 */
d905fdaa 360 xfs_warn(mp, "null uuid in log - IRIX style log");
1da177e4 361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 362 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
363 xlog_header_check_dump(mp, head);
364 XFS_ERROR_REPORT("xlog_header_check_mount",
365 XFS_ERRLEVEL_HIGH, mp);
2451337d 366 return -EFSCORRUPTED;
1da177e4
LT
367 }
368 return 0;
369}
370
371STATIC void
372xlog_recover_iodone(
373 struct xfs_buf *bp)
374{
5a52c2a5 375 if (bp->b_error) {
1da177e4
LT
376 /*
377 * We're not going to bother about retrying
378 * this during recovery. One strike!
379 */
595bff75
DC
380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
1da177e4 385 }
60a4a222
BF
386
387 /*
388 * On v5 supers, a bli could be attached to update the metadata LSN.
389 * Clean it up.
390 */
fb1755a6 391 if (bp->b_log_item)
60a4a222 392 xfs_buf_item_relse(bp);
fb1755a6 393 ASSERT(bp->b_log_item == NULL);
60a4a222 394
cb669ca5 395 bp->b_iodone = NULL;
e8aaba9a 396 xfs_buf_ioend(bp);
1da177e4
LT
397}
398
399/*
400 * This routine finds (to an approximation) the first block in the physical
401 * log which contains the given cycle. It uses a binary search algorithm.
402 * Note that the algorithm can not be perfect because the disk will not
403 * necessarily be perfect.
404 */
a8272ce0 405STATIC int
1da177e4 406xlog_find_cycle_start(
9a8d2fdb
MT
407 struct xlog *log,
408 struct xfs_buf *bp,
1da177e4
LT
409 xfs_daddr_t first_blk,
410 xfs_daddr_t *last_blk,
411 uint cycle)
412{
b2a922cd 413 char *offset;
1da177e4 414 xfs_daddr_t mid_blk;
e3bb2e30 415 xfs_daddr_t end_blk;
1da177e4
LT
416 uint mid_cycle;
417 int error;
418
e3bb2e30
AE
419 end_blk = *last_blk;
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
422 error = xlog_bread(log, mid_blk, 1, bp, &offset);
423 if (error)
1da177e4 424 return error;
03bea6fe 425 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
426 if (mid_cycle == cycle)
427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
428 else
429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
430 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 431 }
e3bb2e30
AE
432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
433 (mid_blk == end_blk && mid_blk-1 == first_blk));
434
435 *last_blk = end_blk;
1da177e4
LT
436
437 return 0;
438}
439
440/*
3f943d85
AE
441 * Check that a range of blocks does not contain stop_on_cycle_no.
442 * Fill in *new_blk with the block offset where such a block is
443 * found, or with -1 (an invalid block number) if there is no such
444 * block in the range. The scan needs to occur from front to back
445 * and the pointer into the region must be updated since a later
446 * routine will need to perform another test.
1da177e4
LT
447 */
448STATIC int
449xlog_find_verify_cycle(
9a8d2fdb 450 struct xlog *log,
1da177e4
LT
451 xfs_daddr_t start_blk,
452 int nbblks,
453 uint stop_on_cycle_no,
454 xfs_daddr_t *new_blk)
455{
456 xfs_daddr_t i, j;
457 uint cycle;
458 xfs_buf_t *bp;
459 xfs_daddr_t bufblks;
b2a922cd 460 char *buf = NULL;
1da177e4
LT
461 int error = 0;
462
6881a229
AE
463 /*
464 * Greedily allocate a buffer big enough to handle the full
465 * range of basic blocks we'll be examining. If that fails,
466 * try a smaller size. We need to be able to read at least
467 * a log sector, or we're out of luck.
468 */
1da177e4 469 bufblks = 1 << ffs(nbblks);
81158e0c
DC
470 while (bufblks > log->l_logBBsize)
471 bufblks >>= 1;
1da177e4 472 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 473 bufblks >>= 1;
69ce58f0 474 if (bufblks < log->l_sectBBsize)
2451337d 475 return -ENOMEM;
1da177e4
LT
476 }
477
478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
479 int bcount;
480
481 bcount = min(bufblks, (start_blk + nbblks - i));
482
076e6acb
CH
483 error = xlog_bread(log, i, bcount, bp, &buf);
484 if (error)
1da177e4
LT
485 goto out;
486
1da177e4 487 for (j = 0; j < bcount; j++) {
03bea6fe 488 cycle = xlog_get_cycle(buf);
1da177e4
LT
489 if (cycle == stop_on_cycle_no) {
490 *new_blk = i+j;
491 goto out;
492 }
493
494 buf += BBSIZE;
495 }
496 }
497
498 *new_blk = -1;
499
500out:
501 xlog_put_bp(bp);
502 return error;
503}
504
505/*
506 * Potentially backup over partial log record write.
507 *
508 * In the typical case, last_blk is the number of the block directly after
509 * a good log record. Therefore, we subtract one to get the block number
510 * of the last block in the given buffer. extra_bblks contains the number
511 * of blocks we would have read on a previous read. This happens when the
512 * last log record is split over the end of the physical log.
513 *
514 * extra_bblks is the number of blocks potentially verified on a previous
515 * call to this routine.
516 */
517STATIC int
518xlog_find_verify_log_record(
9a8d2fdb 519 struct xlog *log,
1da177e4
LT
520 xfs_daddr_t start_blk,
521 xfs_daddr_t *last_blk,
522 int extra_bblks)
523{
524 xfs_daddr_t i;
525 xfs_buf_t *bp;
b2a922cd 526 char *offset = NULL;
1da177e4
LT
527 xlog_rec_header_t *head = NULL;
528 int error = 0;
529 int smallmem = 0;
530 int num_blks = *last_blk - start_blk;
531 int xhdrs;
532
533 ASSERT(start_blk != 0 || *last_blk != start_blk);
534
535 if (!(bp = xlog_get_bp(log, num_blks))) {
536 if (!(bp = xlog_get_bp(log, 1)))
2451337d 537 return -ENOMEM;
1da177e4
LT
538 smallmem = 1;
539 } else {
076e6acb
CH
540 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
541 if (error)
1da177e4 542 goto out;
1da177e4
LT
543 offset += ((num_blks - 1) << BBSHIFT);
544 }
545
546 for (i = (*last_blk) - 1; i >= 0; i--) {
547 if (i < start_blk) {
548 /* valid log record not found */
a0fa2b67
DC
549 xfs_warn(log->l_mp,
550 "Log inconsistent (didn't find previous header)");
1da177e4 551 ASSERT(0);
2451337d 552 error = -EIO;
1da177e4
LT
553 goto out;
554 }
555
556 if (smallmem) {
076e6acb
CH
557 error = xlog_bread(log, i, 1, bp, &offset);
558 if (error)
1da177e4 559 goto out;
1da177e4
LT
560 }
561
562 head = (xlog_rec_header_t *)offset;
563
69ef921b 564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
565 break;
566
567 if (!smallmem)
568 offset -= BBSIZE;
569 }
570
571 /*
572 * We hit the beginning of the physical log & still no header. Return
573 * to caller. If caller can handle a return of -1, then this routine
574 * will be called again for the end of the physical log.
575 */
576 if (i == -1) {
2451337d 577 error = 1;
1da177e4
LT
578 goto out;
579 }
580
581 /*
582 * We have the final block of the good log (the first block
583 * of the log record _before_ the head. So we check the uuid.
584 */
585 if ((error = xlog_header_check_mount(log->l_mp, head)))
586 goto out;
587
588 /*
589 * We may have found a log record header before we expected one.
590 * last_blk will be the 1st block # with a given cycle #. We may end
591 * up reading an entire log record. In this case, we don't want to
592 * reset last_blk. Only when last_blk points in the middle of a log
593 * record do we update last_blk.
594 */
62118709 595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 596 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
597
598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
599 if (h_size % XLOG_HEADER_CYCLE_SIZE)
600 xhdrs++;
601 } else {
602 xhdrs = 1;
603 }
604
b53e675d
CH
605 if (*last_blk - i + extra_bblks !=
606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
607 *last_blk = i;
608
609out:
610 xlog_put_bp(bp);
611 return error;
612}
613
614/*
615 * Head is defined to be the point of the log where the next log write
0a94da24 616 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
617 * eliminated when calculating the head. We aren't guaranteed that previous
618 * LR have complete transactions. We only know that a cycle number of
619 * current cycle number -1 won't be present in the log if we start writing
620 * from our current block number.
621 *
622 * last_blk contains the block number of the first block with a given
623 * cycle number.
624 *
625 * Return: zero if normal, non-zero if error.
626 */
ba0f32d4 627STATIC int
1da177e4 628xlog_find_head(
9a8d2fdb 629 struct xlog *log,
1da177e4
LT
630 xfs_daddr_t *return_head_blk)
631{
632 xfs_buf_t *bp;
b2a922cd 633 char *offset;
1da177e4
LT
634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
635 int num_scan_bblks;
636 uint first_half_cycle, last_half_cycle;
637 uint stop_on_cycle;
638 int error, log_bbnum = log->l_logBBsize;
639
640 /* Is the end of the log device zeroed? */
2451337d
DC
641 error = xlog_find_zeroed(log, &first_blk);
642 if (error < 0) {
643 xfs_warn(log->l_mp, "empty log check failed");
644 return error;
645 }
646 if (error == 1) {
1da177e4
LT
647 *return_head_blk = first_blk;
648
649 /* Is the whole lot zeroed? */
650 if (!first_blk) {
651 /* Linux XFS shouldn't generate totally zeroed logs -
652 * mkfs etc write a dummy unmount record to a fresh
653 * log so we can store the uuid in there
654 */
a0fa2b67 655 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
656 }
657
658 return 0;
1da177e4
LT
659 }
660
661 first_blk = 0; /* get cycle # of 1st block */
662 bp = xlog_get_bp(log, 1);
663 if (!bp)
2451337d 664 return -ENOMEM;
076e6acb
CH
665
666 error = xlog_bread(log, 0, 1, bp, &offset);
667 if (error)
1da177e4 668 goto bp_err;
076e6acb 669
03bea6fe 670 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
671
672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
673 error = xlog_bread(log, last_blk, 1, bp, &offset);
674 if (error)
1da177e4 675 goto bp_err;
076e6acb 676
03bea6fe 677 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
678 ASSERT(last_half_cycle != 0);
679
680 /*
681 * If the 1st half cycle number is equal to the last half cycle number,
682 * then the entire log is stamped with the same cycle number. In this
683 * case, head_blk can't be set to zero (which makes sense). The below
684 * math doesn't work out properly with head_blk equal to zero. Instead,
685 * we set it to log_bbnum which is an invalid block number, but this
686 * value makes the math correct. If head_blk doesn't changed through
687 * all the tests below, *head_blk is set to zero at the very end rather
688 * than log_bbnum. In a sense, log_bbnum and zero are the same block
689 * in a circular file.
690 */
691 if (first_half_cycle == last_half_cycle) {
692 /*
693 * In this case we believe that the entire log should have
694 * cycle number last_half_cycle. We need to scan backwards
695 * from the end verifying that there are no holes still
696 * containing last_half_cycle - 1. If we find such a hole,
697 * then the start of that hole will be the new head. The
698 * simple case looks like
699 * x | x ... | x - 1 | x
700 * Another case that fits this picture would be
701 * x | x + 1 | x ... | x
c41564b5 702 * In this case the head really is somewhere at the end of the
1da177e4
LT
703 * log, as one of the latest writes at the beginning was
704 * incomplete.
705 * One more case is
706 * x | x + 1 | x ... | x - 1 | x
707 * This is really the combination of the above two cases, and
708 * the head has to end up at the start of the x-1 hole at the
709 * end of the log.
710 *
711 * In the 256k log case, we will read from the beginning to the
712 * end of the log and search for cycle numbers equal to x-1.
713 * We don't worry about the x+1 blocks that we encounter,
714 * because we know that they cannot be the head since the log
715 * started with x.
716 */
717 head_blk = log_bbnum;
718 stop_on_cycle = last_half_cycle - 1;
719 } else {
720 /*
721 * In this case we want to find the first block with cycle
722 * number matching last_half_cycle. We expect the log to be
723 * some variation on
3f943d85 724 * x + 1 ... | x ... | x
1da177e4
LT
725 * The first block with cycle number x (last_half_cycle) will
726 * be where the new head belongs. First we do a binary search
727 * for the first occurrence of last_half_cycle. The binary
728 * search may not be totally accurate, so then we scan back
729 * from there looking for occurrences of last_half_cycle before
730 * us. If that backwards scan wraps around the beginning of
731 * the log, then we look for occurrences of last_half_cycle - 1
732 * at the end of the log. The cases we're looking for look
733 * like
3f943d85
AE
734 * v binary search stopped here
735 * x + 1 ... | x | x + 1 | x ... | x
736 * ^ but we want to locate this spot
1da177e4 737 * or
1da177e4 738 * <---------> less than scan distance
3f943d85
AE
739 * x + 1 ... | x ... | x - 1 | x
740 * ^ we want to locate this spot
1da177e4
LT
741 */
742 stop_on_cycle = last_half_cycle;
743 if ((error = xlog_find_cycle_start(log, bp, first_blk,
744 &head_blk, last_half_cycle)))
745 goto bp_err;
746 }
747
748 /*
749 * Now validate the answer. Scan back some number of maximum possible
750 * blocks and make sure each one has the expected cycle number. The
751 * maximum is determined by the total possible amount of buffering
752 * in the in-core log. The following number can be made tighter if
753 * we actually look at the block size of the filesystem.
754 */
9f2a4505 755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
1da177e4
LT
756 if (head_blk >= num_scan_bblks) {
757 /*
758 * We are guaranteed that the entire check can be performed
759 * in one buffer.
760 */
761 start_blk = head_blk - num_scan_bblks;
762 if ((error = xlog_find_verify_cycle(log,
763 start_blk, num_scan_bblks,
764 stop_on_cycle, &new_blk)))
765 goto bp_err;
766 if (new_blk != -1)
767 head_blk = new_blk;
768 } else { /* need to read 2 parts of log */
769 /*
770 * We are going to scan backwards in the log in two parts.
771 * First we scan the physical end of the log. In this part
772 * of the log, we are looking for blocks with cycle number
773 * last_half_cycle - 1.
774 * If we find one, then we know that the log starts there, as
775 * we've found a hole that didn't get written in going around
776 * the end of the physical log. The simple case for this is
777 * x + 1 ... | x ... | x - 1 | x
778 * <---------> less than scan distance
779 * If all of the blocks at the end of the log have cycle number
780 * last_half_cycle, then we check the blocks at the start of
781 * the log looking for occurrences of last_half_cycle. If we
782 * find one, then our current estimate for the location of the
783 * first occurrence of last_half_cycle is wrong and we move
784 * back to the hole we've found. This case looks like
785 * x + 1 ... | x | x + 1 | x ...
786 * ^ binary search stopped here
787 * Another case we need to handle that only occurs in 256k
788 * logs is
789 * x + 1 ... | x ... | x+1 | x ...
790 * ^ binary search stops here
791 * In a 256k log, the scan at the end of the log will see the
792 * x + 1 blocks. We need to skip past those since that is
793 * certainly not the head of the log. By searching for
794 * last_half_cycle-1 we accomplish that.
795 */
1da177e4 796 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
797 (xfs_daddr_t) num_scan_bblks >= head_blk);
798 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
799 if ((error = xlog_find_verify_cycle(log, start_blk,
800 num_scan_bblks - (int)head_blk,
801 (stop_on_cycle - 1), &new_blk)))
802 goto bp_err;
803 if (new_blk != -1) {
804 head_blk = new_blk;
9db127ed 805 goto validate_head;
1da177e4
LT
806 }
807
808 /*
809 * Scan beginning of log now. The last part of the physical
810 * log is good. This scan needs to verify that it doesn't find
811 * the last_half_cycle.
812 */
813 start_blk = 0;
814 ASSERT(head_blk <= INT_MAX);
815 if ((error = xlog_find_verify_cycle(log,
816 start_blk, (int)head_blk,
817 stop_on_cycle, &new_blk)))
818 goto bp_err;
819 if (new_blk != -1)
820 head_blk = new_blk;
821 }
822
9db127ed 823validate_head:
1da177e4
LT
824 /*
825 * Now we need to make sure head_blk is not pointing to a block in
826 * the middle of a log record.
827 */
828 num_scan_bblks = XLOG_REC_SHIFT(log);
829 if (head_blk >= num_scan_bblks) {
830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
831
832 /* start ptr at last block ptr before head_blk */
2451337d
DC
833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
834 if (error == 1)
835 error = -EIO;
836 if (error)
1da177e4
LT
837 goto bp_err;
838 } else {
839 start_blk = 0;
840 ASSERT(head_blk <= INT_MAX);
2451337d
DC
841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
842 if (error < 0)
843 goto bp_err;
844 if (error == 1) {
1da177e4 845 /* We hit the beginning of the log during our search */
3f943d85 846 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
847 new_blk = log_bbnum;
848 ASSERT(start_blk <= INT_MAX &&
849 (xfs_daddr_t) log_bbnum-start_blk >= 0);
850 ASSERT(head_blk <= INT_MAX);
2451337d
DC
851 error = xlog_find_verify_log_record(log, start_blk,
852 &new_blk, (int)head_blk);
853 if (error == 1)
854 error = -EIO;
855 if (error)
1da177e4
LT
856 goto bp_err;
857 if (new_blk != log_bbnum)
858 head_blk = new_blk;
859 } else if (error)
860 goto bp_err;
861 }
862
863 xlog_put_bp(bp);
864 if (head_blk == log_bbnum)
865 *return_head_blk = 0;
866 else
867 *return_head_blk = head_blk;
868 /*
869 * When returning here, we have a good block number. Bad block
870 * means that during a previous crash, we didn't have a clean break
871 * from cycle number N to cycle number N-1. In this case, we need
872 * to find the first block with cycle number N-1.
873 */
874 return 0;
875
876 bp_err:
877 xlog_put_bp(bp);
878
879 if (error)
a0fa2b67 880 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
881 return error;
882}
883
eed6b462
BF
884/*
885 * Seek backwards in the log for log record headers.
886 *
887 * Given a starting log block, walk backwards until we find the provided number
888 * of records or hit the provided tail block. The return value is the number of
889 * records encountered or a negative error code. The log block and buffer
890 * pointer of the last record seen are returned in rblk and rhead respectively.
891 */
892STATIC int
893xlog_rseek_logrec_hdr(
894 struct xlog *log,
895 xfs_daddr_t head_blk,
896 xfs_daddr_t tail_blk,
897 int count,
898 struct xfs_buf *bp,
899 xfs_daddr_t *rblk,
900 struct xlog_rec_header **rhead,
901 bool *wrapped)
902{
903 int i;
904 int error;
905 int found = 0;
906 char *offset = NULL;
907 xfs_daddr_t end_blk;
908
909 *wrapped = false;
910
911 /*
912 * Walk backwards from the head block until we hit the tail or the first
913 * block in the log.
914 */
915 end_blk = head_blk > tail_blk ? tail_blk : 0;
916 for (i = (int) head_blk - 1; i >= end_blk; i--) {
917 error = xlog_bread(log, i, 1, bp, &offset);
918 if (error)
919 goto out_error;
920
921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
922 *rblk = i;
923 *rhead = (struct xlog_rec_header *) offset;
924 if (++found == count)
925 break;
926 }
927 }
928
929 /*
930 * If we haven't hit the tail block or the log record header count,
931 * start looking again from the end of the physical log. Note that
932 * callers can pass head == tail if the tail is not yet known.
933 */
934 if (tail_blk >= head_blk && found != count) {
935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
936 error = xlog_bread(log, i, 1, bp, &offset);
937 if (error)
938 goto out_error;
939
940 if (*(__be32 *)offset ==
941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 *wrapped = true;
943 *rblk = i;
944 *rhead = (struct xlog_rec_header *) offset;
945 if (++found == count)
946 break;
947 }
948 }
949 }
950
951 return found;
952
953out_error:
954 return error;
955}
956
7088c413
BF
957/*
958 * Seek forward in the log for log record headers.
959 *
960 * Given head and tail blocks, walk forward from the tail block until we find
961 * the provided number of records or hit the head block. The return value is the
962 * number of records encountered or a negative error code. The log block and
963 * buffer pointer of the last record seen are returned in rblk and rhead
964 * respectively.
965 */
966STATIC int
967xlog_seek_logrec_hdr(
968 struct xlog *log,
969 xfs_daddr_t head_blk,
970 xfs_daddr_t tail_blk,
971 int count,
972 struct xfs_buf *bp,
973 xfs_daddr_t *rblk,
974 struct xlog_rec_header **rhead,
975 bool *wrapped)
976{
977 int i;
978 int error;
979 int found = 0;
980 char *offset = NULL;
981 xfs_daddr_t end_blk;
982
983 *wrapped = false;
984
985 /*
986 * Walk forward from the tail block until we hit the head or the last
987 * block in the log.
988 */
989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
990 for (i = (int) tail_blk; i <= end_blk; i++) {
991 error = xlog_bread(log, i, 1, bp, &offset);
992 if (error)
993 goto out_error;
994
995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
996 *rblk = i;
997 *rhead = (struct xlog_rec_header *) offset;
998 if (++found == count)
999 break;
1000 }
1001 }
1002
1003 /*
1004 * If we haven't hit the head block or the log record header count,
1005 * start looking again from the start of the physical log.
1006 */
1007 if (tail_blk > head_blk && found != count) {
1008 for (i = 0; i < (int) head_blk; i++) {
1009 error = xlog_bread(log, i, 1, bp, &offset);
1010 if (error)
1011 goto out_error;
1012
1013 if (*(__be32 *)offset ==
1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1015 *wrapped = true;
1016 *rblk = i;
1017 *rhead = (struct xlog_rec_header *) offset;
1018 if (++found == count)
1019 break;
1020 }
1021 }
1022 }
1023
1024 return found;
1025
1026out_error:
1027 return error;
1028}
1029
1030/*
4a4f66ea
BF
1031 * Calculate distance from head to tail (i.e., unused space in the log).
1032 */
1033static inline int
1034xlog_tail_distance(
1035 struct xlog *log,
1036 xfs_daddr_t head_blk,
1037 xfs_daddr_t tail_blk)
1038{
1039 if (head_blk < tail_blk)
1040 return tail_blk - head_blk;
1041
1042 return tail_blk + (log->l_logBBsize - head_blk);
1043}
1044
1045/*
1046 * Verify the log tail. This is particularly important when torn or incomplete
1047 * writes have been detected near the front of the log and the head has been
1048 * walked back accordingly.
1049 *
1050 * We also have to handle the case where the tail was pinned and the head
1051 * blocked behind the tail right before a crash. If the tail had been pushed
1052 * immediately prior to the crash and the subsequent checkpoint was only
1053 * partially written, it's possible it overwrote the last referenced tail in the
1054 * log with garbage. This is not a coherency problem because the tail must have
1055 * been pushed before it can be overwritten, but appears as log corruption to
1056 * recovery because we have no way to know the tail was updated if the
1057 * subsequent checkpoint didn't write successfully.
7088c413 1058 *
4a4f66ea
BF
1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060 * offending record is within max iclog bufs from the head, walk the tail
1061 * forward and retry until a valid tail is found or corruption is detected out
1062 * of the range of a possible overwrite.
7088c413
BF
1063 */
1064STATIC int
1065xlog_verify_tail(
1066 struct xlog *log,
1067 xfs_daddr_t head_blk,
4a4f66ea
BF
1068 xfs_daddr_t *tail_blk,
1069 int hsize)
7088c413
BF
1070{
1071 struct xlog_rec_header *thead;
1072 struct xfs_buf *bp;
1073 xfs_daddr_t first_bad;
7088c413
BF
1074 int error = 0;
1075 bool wrapped;
4a4f66ea
BF
1076 xfs_daddr_t tmp_tail;
1077 xfs_daddr_t orig_tail = *tail_blk;
7088c413
BF
1078
1079 bp = xlog_get_bp(log, 1);
1080 if (!bp)
1081 return -ENOMEM;
1082
1083 /*
4a4f66ea
BF
1084 * Make sure the tail points to a record (returns positive count on
1085 * success).
7088c413 1086 */
4a4f66ea
BF
1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1088 &tmp_tail, &thead, &wrapped);
1089 if (error < 0)
7088c413 1090 goto out;
4a4f66ea
BF
1091 if (*tail_blk != tmp_tail)
1092 *tail_blk = tmp_tail;
7088c413
BF
1093
1094 /*
4a4f66ea
BF
1095 * Run a CRC check from the tail to the head. We can't just check
1096 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 * blocks cleared during the search for the head/tail. These blocks are
1098 * overwritten with zero-length records and thus record count is not a
1099 * reliable indicator of the iclog state before a crash.
7088c413 1100 */
4a4f66ea
BF
1101 first_bad = 0;
1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
7088c413 1103 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
4a4f66ea
BF
1105 int tail_distance;
1106
1107 /*
1108 * Is corruption within range of the head? If so, retry from
1109 * the next record. Otherwise return an error.
1110 */
1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1113 break;
7088c413 1114
4a4f66ea
BF
1115 /* skip to the next record; returns positive count on success */
1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1117 &tmp_tail, &thead, &wrapped);
1118 if (error < 0)
1119 goto out;
1120
1121 *tail_blk = tmp_tail;
1122 first_bad = 0;
1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1124 XLOG_RECOVER_CRCPASS, &first_bad);
1125 }
1126
1127 if (!error && *tail_blk != orig_tail)
1128 xfs_warn(log->l_mp,
1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 orig_tail, *tail_blk);
7088c413
BF
1131out:
1132 xlog_put_bp(bp);
1133 return error;
1134}
1135
1136/*
1137 * Detect and trim torn writes from the head of the log.
1138 *
1139 * Storage without sector atomicity guarantees can result in torn writes in the
1140 * log in the event of a crash. Our only means to detect this scenario is via
1141 * CRC verification. While we can't always be certain that CRC verification
1142 * failure is due to a torn write vs. an unrelated corruption, we do know that
1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145 * the log and treat failures in this range as torn writes as a matter of
1146 * policy. In the event of CRC failure, the head is walked back to the last good
1147 * record in the log and the tail is updated from that record and verified.
1148 */
1149STATIC int
1150xlog_verify_head(
1151 struct xlog *log,
1152 xfs_daddr_t *head_blk, /* in/out: unverified head */
1153 xfs_daddr_t *tail_blk, /* out: tail block */
1154 struct xfs_buf *bp,
1155 xfs_daddr_t *rhead_blk, /* start blk of last record */
1156 struct xlog_rec_header **rhead, /* ptr to last record */
1157 bool *wrapped) /* last rec. wraps phys. log */
1158{
1159 struct xlog_rec_header *tmp_rhead;
1160 struct xfs_buf *tmp_bp;
1161 xfs_daddr_t first_bad;
1162 xfs_daddr_t tmp_rhead_blk;
1163 int found;
1164 int error;
1165 bool tmp_wrapped;
1166
1167 /*
82ff6cc2
BF
1168 * Check the head of the log for torn writes. Search backwards from the
1169 * head until we hit the tail or the maximum number of log record I/Os
1170 * that could have been in flight at one time. Use a temporary buffer so
1171 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1172 */
1173 tmp_bp = xlog_get_bp(log, 1);
1174 if (!tmp_bp)
1175 return -ENOMEM;
1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1178 &tmp_rhead, &tmp_wrapped);
1179 xlog_put_bp(tmp_bp);
1180 if (error < 0)
1181 return error;
1182
1183 /*
1184 * Now run a CRC verification pass over the records starting at the
1185 * block found above to the current head. If a CRC failure occurs, the
1186 * log block of the first bad record is saved in first_bad.
1187 */
1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1189 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
7088c413
BF
1191 /*
1192 * We've hit a potential torn write. Reset the error and warn
1193 * about it.
1194 */
1195 error = 0;
1196 xfs_warn(log->l_mp,
1197"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 first_bad, *head_blk);
1199
1200 /*
1201 * Get the header block and buffer pointer for the last good
1202 * record before the bad record.
1203 *
1204 * Note that xlog_find_tail() clears the blocks at the new head
1205 * (i.e., the records with invalid CRC) if the cycle number
1206 * matches the the current cycle.
1207 */
1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1209 rhead_blk, rhead, wrapped);
1210 if (found < 0)
1211 return found;
1212 if (found == 0) /* XXX: right thing to do here? */
1213 return -EIO;
1214
1215 /*
1216 * Reset the head block to the starting block of the first bad
1217 * log record and set the tail block based on the last good
1218 * record.
1219 *
1220 * Bail out if the updated head/tail match as this indicates
1221 * possible corruption outside of the acceptable
1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1223 */
1224 *head_blk = first_bad;
1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1226 if (*head_blk == *tail_blk) {
1227 ASSERT(0);
1228 return 0;
1229 }
7088c413 1230 }
5297ac1f
BF
1231 if (error)
1232 return error;
7088c413 1233
4a4f66ea
BF
1234 return xlog_verify_tail(log, *head_blk, tail_blk,
1235 be32_to_cpu((*rhead)->h_size));
7088c413
BF
1236}
1237
0703a8e1
DC
1238/*
1239 * We need to make sure we handle log wrapping properly, so we can't use the
1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1241 * log.
1242 *
1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244 * operation here and cast it back to a 64 bit daddr on return.
1245 */
1246static inline xfs_daddr_t
1247xlog_wrap_logbno(
1248 struct xlog *log,
1249 xfs_daddr_t bno)
1250{
1251 int mod;
1252
1253 div_s64_rem(bno, log->l_logBBsize, &mod);
1254 return mod;
1255}
1256
65b99a08
BF
1257/*
1258 * Check whether the head of the log points to an unmount record. In other
1259 * words, determine whether the log is clean. If so, update the in-core state
1260 * appropriately.
1261 */
1262static int
1263xlog_check_unmount_rec(
1264 struct xlog *log,
1265 xfs_daddr_t *head_blk,
1266 xfs_daddr_t *tail_blk,
1267 struct xlog_rec_header *rhead,
1268 xfs_daddr_t rhead_blk,
1269 struct xfs_buf *bp,
1270 bool *clean)
1271{
1272 struct xlog_op_header *op_head;
1273 xfs_daddr_t umount_data_blk;
1274 xfs_daddr_t after_umount_blk;
1275 int hblks;
1276 int error;
1277 char *offset;
1278
1279 *clean = false;
1280
1281 /*
1282 * Look for unmount record. If we find it, then we know there was a
1283 * clean unmount. Since 'i' could be the last block in the physical
1284 * log, we convert to a log block before comparing to the head_blk.
1285 *
1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 * below. We won't want to clear the unmount record if there is one, so
1288 * we pass the lsn of the unmount record rather than the block after it.
1289 */
1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1291 int h_size = be32_to_cpu(rhead->h_size);
1292 int h_version = be32_to_cpu(rhead->h_version);
1293
1294 if ((h_version & XLOG_VERSION_2) &&
1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1297 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1298 hblks++;
1299 } else {
1300 hblks = 1;
1301 }
1302 } else {
1303 hblks = 1;
1304 }
0703a8e1
DC
1305
1306 after_umount_blk = xlog_wrap_logbno(log,
1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1308
65b99a08
BF
1309 if (*head_blk == after_umount_blk &&
1310 be32_to_cpu(rhead->h_num_logops) == 1) {
0703a8e1 1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
65b99a08
BF
1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1313 if (error)
1314 return error;
1315
1316 op_head = (struct xlog_op_header *)offset;
1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1318 /*
1319 * Set tail and last sync so that newly written log
1320 * records will point recovery to after the current
1321 * unmount record.
1322 */
1323 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1324 log->l_curr_cycle, after_umount_blk);
1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1326 log->l_curr_cycle, after_umount_blk);
1327 *tail_blk = after_umount_blk;
1328
1329 *clean = true;
1330 }
1331 }
1332
1333 return 0;
1334}
1335
717bc0eb
BF
1336static void
1337xlog_set_state(
1338 struct xlog *log,
1339 xfs_daddr_t head_blk,
1340 struct xlog_rec_header *rhead,
1341 xfs_daddr_t rhead_blk,
1342 bool bump_cycle)
1343{
1344 /*
1345 * Reset log values according to the state of the log when we
1346 * crashed. In the case where head_blk == 0, we bump curr_cycle
1347 * one because the next write starts a new cycle rather than
1348 * continuing the cycle of the last good log record. At this
1349 * point we have guaranteed that all partial log records have been
1350 * accounted for. Therefore, we know that the last good log record
1351 * written was complete and ended exactly on the end boundary
1352 * of the physical log.
1353 */
1354 log->l_prev_block = rhead_blk;
1355 log->l_curr_block = (int)head_blk;
1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1357 if (bump_cycle)
1358 log->l_curr_cycle++;
1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1362 BBTOB(log->l_curr_block));
1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1364 BBTOB(log->l_curr_block));
1365}
1366
1da177e4
LT
1367/*
1368 * Find the sync block number or the tail of the log.
1369 *
1370 * This will be the block number of the last record to have its
1371 * associated buffers synced to disk. Every log record header has
1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1373 * to get a sync block number. The only concern is to figure out which
1374 * log record header to believe.
1375 *
1376 * The following algorithm uses the log record header with the largest
1377 * lsn. The entire log record does not need to be valid. We only care
1378 * that the header is valid.
1379 *
1380 * We could speed up search by using current head_blk buffer, but it is not
1381 * available.
1382 */
5d77c0dc 1383STATIC int
1da177e4 1384xlog_find_tail(
9a8d2fdb 1385 struct xlog *log,
1da177e4 1386 xfs_daddr_t *head_blk,
65be6054 1387 xfs_daddr_t *tail_blk)
1da177e4
LT
1388{
1389 xlog_rec_header_t *rhead;
b2a922cd 1390 char *offset = NULL;
1da177e4 1391 xfs_buf_t *bp;
7088c413 1392 int error;
7088c413 1393 xfs_daddr_t rhead_blk;
1da177e4 1394 xfs_lsn_t tail_lsn;
eed6b462 1395 bool wrapped = false;
65b99a08 1396 bool clean = false;
1da177e4
LT
1397
1398 /*
1399 * Find previous log record
1400 */
1401 if ((error = xlog_find_head(log, head_blk)))
1402 return error;
82ff6cc2 1403 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1404
1405 bp = xlog_get_bp(log, 1);
1406 if (!bp)
2451337d 1407 return -ENOMEM;
1da177e4 1408 if (*head_blk == 0) { /* special case */
076e6acb
CH
1409 error = xlog_bread(log, 0, 1, bp, &offset);
1410 if (error)
9db127ed 1411 goto done;
076e6acb 1412
03bea6fe 1413 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1414 *tail_blk = 0;
1415 /* leave all other log inited values alone */
9db127ed 1416 goto done;
1da177e4
LT
1417 }
1418 }
1419
1420 /*
82ff6cc2
BF
1421 * Search backwards through the log looking for the log record header
1422 * block. This wraps all the way back around to the head so something is
1423 * seriously wrong if we can't find it.
1da177e4 1424 */
82ff6cc2
BF
1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1426 &rhead_blk, &rhead, &wrapped);
1427 if (error < 0)
1428 return error;
1429 if (!error) {
1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1431 return -EIO;
1432 }
1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1434
1435 /*
717bc0eb 1436 * Set the log state based on the current head record.
1da177e4 1437 */
717bc0eb 1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
65b99a08 1439 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1440
1441 /*
65b99a08
BF
1442 * Look for an unmount record at the head of the log. This sets the log
1443 * state to determine whether recovery is necessary.
1da177e4 1444 */
65b99a08
BF
1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1446 rhead_blk, bp, &clean);
1447 if (error)
1448 goto done;
1da177e4
LT
1449
1450 /*
7f6aff3a
BF
1451 * Verify the log head if the log is not clean (e.g., we have anything
1452 * but an unmount record at the head). This uses CRC verification to
1453 * detect and trim torn writes. If discovered, CRC failures are
1454 * considered torn writes and the log head is trimmed accordingly.
1da177e4 1455 *
7f6aff3a
BF
1456 * Note that we can only run CRC verification when the log is dirty
1457 * because there's no guarantee that the log data behind an unmount
1458 * record is compatible with the current architecture.
1da177e4 1459 */
7f6aff3a
BF
1460 if (!clean) {
1461 xfs_daddr_t orig_head = *head_blk;
1da177e4 1462
7f6aff3a
BF
1463 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1464 &rhead_blk, &rhead, &wrapped);
076e6acb 1465 if (error)
9db127ed 1466 goto done;
076e6acb 1467
7f6aff3a
BF
1468 /* update in-core state again if the head changed */
1469 if (*head_blk != orig_head) {
1470 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1471 wrapped);
1472 tail_lsn = atomic64_read(&log->l_tail_lsn);
1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1474 rhead, rhead_blk, bp,
1475 &clean);
1476 if (error)
1477 goto done;
1da177e4
LT
1478 }
1479 }
1480
65b99a08
BF
1481 /*
1482 * Note that the unmount was clean. If the unmount was not clean, we
1483 * need to know this to rebuild the superblock counters from the perag
1484 * headers if we have a filesystem using non-persistent counters.
1485 */
1486 if (clean)
1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1488
1489 /*
1490 * Make sure that there are no blocks in front of the head
1491 * with the same cycle number as the head. This can happen
1492 * because we allow multiple outstanding log writes concurrently,
1493 * and the later writes might make it out before earlier ones.
1494 *
1495 * We use the lsn from before modifying it so that we'll never
1496 * overwrite the unmount record after a clean unmount.
1497 *
1498 * Do this only if we are going to recover the filesystem
1499 *
1500 * NOTE: This used to say "if (!readonly)"
1501 * However on Linux, we can & do recover a read-only filesystem.
1502 * We only skip recovery if NORECOVERY is specified on mount,
1503 * in which case we would not be here.
1504 *
1505 * But... if the -device- itself is readonly, just skip this.
1506 * We can't recover this device anyway, so it won't matter.
1507 */
9db127ed 1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1509 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1510
9db127ed 1511done:
1da177e4
LT
1512 xlog_put_bp(bp);
1513
1514 if (error)
a0fa2b67 1515 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1516 return error;
1517}
1518
1519/*
1520 * Is the log zeroed at all?
1521 *
1522 * The last binary search should be changed to perform an X block read
1523 * once X becomes small enough. You can then search linearly through
1524 * the X blocks. This will cut down on the number of reads we need to do.
1525 *
1526 * If the log is partially zeroed, this routine will pass back the blkno
1527 * of the first block with cycle number 0. It won't have a complete LR
1528 * preceding it.
1529 *
1530 * Return:
1531 * 0 => the log is completely written to
2451337d
DC
1532 * 1 => use *blk_no as the first block of the log
1533 * <0 => error has occurred
1da177e4 1534 */
a8272ce0 1535STATIC int
1da177e4 1536xlog_find_zeroed(
9a8d2fdb 1537 struct xlog *log,
1da177e4
LT
1538 xfs_daddr_t *blk_no)
1539{
1540 xfs_buf_t *bp;
b2a922cd 1541 char *offset;
1da177e4
LT
1542 uint first_cycle, last_cycle;
1543 xfs_daddr_t new_blk, last_blk, start_blk;
1544 xfs_daddr_t num_scan_bblks;
1545 int error, log_bbnum = log->l_logBBsize;
1546
6fdf8ccc
NS
1547 *blk_no = 0;
1548
1da177e4
LT
1549 /* check totally zeroed log */
1550 bp = xlog_get_bp(log, 1);
1551 if (!bp)
2451337d 1552 return -ENOMEM;
076e6acb
CH
1553 error = xlog_bread(log, 0, 1, bp, &offset);
1554 if (error)
1da177e4 1555 goto bp_err;
076e6acb 1556
03bea6fe 1557 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1558 if (first_cycle == 0) { /* completely zeroed log */
1559 *blk_no = 0;
1560 xlog_put_bp(bp);
2451337d 1561 return 1;
1da177e4
LT
1562 }
1563
1564 /* check partially zeroed log */
076e6acb
CH
1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1566 if (error)
1da177e4 1567 goto bp_err;
076e6acb 1568
03bea6fe 1569 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1570 if (last_cycle != 0) { /* log completely written to */
1571 xlog_put_bp(bp);
1572 return 0;
1da177e4
LT
1573 }
1574
1575 /* we have a partially zeroed log */
1576 last_blk = log_bbnum-1;
1577 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1578 goto bp_err;
1579
1580 /*
1581 * Validate the answer. Because there is no way to guarantee that
1582 * the entire log is made up of log records which are the same size,
1583 * we scan over the defined maximum blocks. At this point, the maximum
1584 * is not chosen to mean anything special. XXXmiken
1585 */
1586 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1587 ASSERT(num_scan_bblks <= INT_MAX);
1588
1589 if (last_blk < num_scan_bblks)
1590 num_scan_bblks = last_blk;
1591 start_blk = last_blk - num_scan_bblks;
1592
1593 /*
1594 * We search for any instances of cycle number 0 that occur before
1595 * our current estimate of the head. What we're trying to detect is
1596 * 1 ... | 0 | 1 | 0...
1597 * ^ binary search ends here
1598 */
1599 if ((error = xlog_find_verify_cycle(log, start_blk,
1600 (int)num_scan_bblks, 0, &new_blk)))
1601 goto bp_err;
1602 if (new_blk != -1)
1603 last_blk = new_blk;
1604
1605 /*
1606 * Potentially backup over partial log record write. We don't need
1607 * to search the end of the log because we know it is zero.
1608 */
2451337d
DC
1609 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1610 if (error == 1)
1611 error = -EIO;
1612 if (error)
1613 goto bp_err;
1da177e4
LT
1614
1615 *blk_no = last_blk;
1616bp_err:
1617 xlog_put_bp(bp);
1618 if (error)
1619 return error;
2451337d 1620 return 1;
1da177e4
LT
1621}
1622
1623/*
1624 * These are simple subroutines used by xlog_clear_stale_blocks() below
1625 * to initialize a buffer full of empty log record headers and write
1626 * them into the log.
1627 */
1628STATIC void
1629xlog_add_record(
9a8d2fdb 1630 struct xlog *log,
b2a922cd 1631 char *buf,
1da177e4
LT
1632 int cycle,
1633 int block,
1634 int tail_cycle,
1635 int tail_block)
1636{
1637 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1638
1639 memset(buf, 0, BBSIZE);
b53e675d
CH
1640 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1641 recp->h_cycle = cpu_to_be32(cycle);
1642 recp->h_version = cpu_to_be32(
62118709 1643 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1644 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1645 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1646 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1647 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1648}
1649
1650STATIC int
1651xlog_write_log_records(
9a8d2fdb 1652 struct xlog *log,
1da177e4
LT
1653 int cycle,
1654 int start_block,
1655 int blocks,
1656 int tail_cycle,
1657 int tail_block)
1658{
b2a922cd 1659 char *offset;
1da177e4
LT
1660 xfs_buf_t *bp;
1661 int balign, ealign;
69ce58f0 1662 int sectbb = log->l_sectBBsize;
1da177e4
LT
1663 int end_block = start_block + blocks;
1664 int bufblks;
1665 int error = 0;
1666 int i, j = 0;
1667
6881a229
AE
1668 /*
1669 * Greedily allocate a buffer big enough to handle the full
1670 * range of basic blocks to be written. If that fails, try
1671 * a smaller size. We need to be able to write at least a
1672 * log sector, or we're out of luck.
1673 */
1da177e4 1674 bufblks = 1 << ffs(blocks);
81158e0c
DC
1675 while (bufblks > log->l_logBBsize)
1676 bufblks >>= 1;
1da177e4
LT
1677 while (!(bp = xlog_get_bp(log, bufblks))) {
1678 bufblks >>= 1;
69ce58f0 1679 if (bufblks < sectbb)
2451337d 1680 return -ENOMEM;
1da177e4
LT
1681 }
1682
1683 /* We may need to do a read at the start to fill in part of
1684 * the buffer in the starting sector not covered by the first
1685 * write below.
1686 */
5c17f533 1687 balign = round_down(start_block, sectbb);
1da177e4 1688 if (balign != start_block) {
076e6acb
CH
1689 error = xlog_bread_noalign(log, start_block, 1, bp);
1690 if (error)
1691 goto out_put_bp;
1692
1da177e4
LT
1693 j = start_block - balign;
1694 }
1695
1696 for (i = start_block; i < end_block; i += bufblks) {
1697 int bcount, endcount;
1698
1699 bcount = min(bufblks, end_block - start_block);
1700 endcount = bcount - j;
1701
1702 /* We may need to do a read at the end to fill in part of
1703 * the buffer in the final sector not covered by the write.
1704 * If this is the same sector as the above read, skip it.
1705 */
5c17f533 1706 ealign = round_down(end_block, sectbb);
1da177e4 1707 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1708 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1709 error = xlog_bread_offset(log, ealign, sectbb,
1710 bp, offset);
076e6acb
CH
1711 if (error)
1712 break;
1713
1da177e4
LT
1714 }
1715
1716 offset = xlog_align(log, start_block, endcount, bp);
1717 for (; j < endcount; j++) {
1718 xlog_add_record(log, offset, cycle, i+j,
1719 tail_cycle, tail_block);
1720 offset += BBSIZE;
1721 }
1722 error = xlog_bwrite(log, start_block, endcount, bp);
1723 if (error)
1724 break;
1725 start_block += endcount;
1726 j = 0;
1727 }
076e6acb
CH
1728
1729 out_put_bp:
1da177e4
LT
1730 xlog_put_bp(bp);
1731 return error;
1732}
1733
1734/*
1735 * This routine is called to blow away any incomplete log writes out
1736 * in front of the log head. We do this so that we won't become confused
1737 * if we come up, write only a little bit more, and then crash again.
1738 * If we leave the partial log records out there, this situation could
1739 * cause us to think those partial writes are valid blocks since they
1740 * have the current cycle number. We get rid of them by overwriting them
1741 * with empty log records with the old cycle number rather than the
1742 * current one.
1743 *
1744 * The tail lsn is passed in rather than taken from
1745 * the log so that we will not write over the unmount record after a
1746 * clean unmount in a 512 block log. Doing so would leave the log without
1747 * any valid log records in it until a new one was written. If we crashed
1748 * during that time we would not be able to recover.
1749 */
1750STATIC int
1751xlog_clear_stale_blocks(
9a8d2fdb 1752 struct xlog *log,
1da177e4
LT
1753 xfs_lsn_t tail_lsn)
1754{
1755 int tail_cycle, head_cycle;
1756 int tail_block, head_block;
1757 int tail_distance, max_distance;
1758 int distance;
1759 int error;
1760
1761 tail_cycle = CYCLE_LSN(tail_lsn);
1762 tail_block = BLOCK_LSN(tail_lsn);
1763 head_cycle = log->l_curr_cycle;
1764 head_block = log->l_curr_block;
1765
1766 /*
1767 * Figure out the distance between the new head of the log
1768 * and the tail. We want to write over any blocks beyond the
1769 * head that we may have written just before the crash, but
1770 * we don't want to overwrite the tail of the log.
1771 */
1772 if (head_cycle == tail_cycle) {
1773 /*
1774 * The tail is behind the head in the physical log,
1775 * so the distance from the head to the tail is the
1776 * distance from the head to the end of the log plus
1777 * the distance from the beginning of the log to the
1778 * tail.
1779 */
1780 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1781 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1782 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1783 return -EFSCORRUPTED;
1da177e4
LT
1784 }
1785 tail_distance = tail_block + (log->l_logBBsize - head_block);
1786 } else {
1787 /*
1788 * The head is behind the tail in the physical log,
1789 * so the distance from the head to the tail is just
1790 * the tail block minus the head block.
1791 */
1792 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1793 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1794 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1795 return -EFSCORRUPTED;
1da177e4
LT
1796 }
1797 tail_distance = tail_block - head_block;
1798 }
1799
1800 /*
1801 * If the head is right up against the tail, we can't clear
1802 * anything.
1803 */
1804 if (tail_distance <= 0) {
1805 ASSERT(tail_distance == 0);
1806 return 0;
1807 }
1808
1809 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1810 /*
1811 * Take the smaller of the maximum amount of outstanding I/O
1812 * we could have and the distance to the tail to clear out.
1813 * We take the smaller so that we don't overwrite the tail and
1814 * we don't waste all day writing from the head to the tail
1815 * for no reason.
1816 */
9bb54cb5 1817 max_distance = min(max_distance, tail_distance);
1da177e4
LT
1818
1819 if ((head_block + max_distance) <= log->l_logBBsize) {
1820 /*
1821 * We can stomp all the blocks we need to without
1822 * wrapping around the end of the log. Just do it
1823 * in a single write. Use the cycle number of the
1824 * current cycle minus one so that the log will look like:
1825 * n ... | n - 1 ...
1826 */
1827 error = xlog_write_log_records(log, (head_cycle - 1),
1828 head_block, max_distance, tail_cycle,
1829 tail_block);
1830 if (error)
1831 return error;
1832 } else {
1833 /*
1834 * We need to wrap around the end of the physical log in
1835 * order to clear all the blocks. Do it in two separate
1836 * I/Os. The first write should be from the head to the
1837 * end of the physical log, and it should use the current
1838 * cycle number minus one just like above.
1839 */
1840 distance = log->l_logBBsize - head_block;
1841 error = xlog_write_log_records(log, (head_cycle - 1),
1842 head_block, distance, tail_cycle,
1843 tail_block);
1844
1845 if (error)
1846 return error;
1847
1848 /*
1849 * Now write the blocks at the start of the physical log.
1850 * This writes the remainder of the blocks we want to clear.
1851 * It uses the current cycle number since we're now on the
1852 * same cycle as the head so that we get:
1853 * n ... n ... | n - 1 ...
1854 * ^^^^^ blocks we're writing
1855 */
1856 distance = max_distance - (log->l_logBBsize - head_block);
1857 error = xlog_write_log_records(log, head_cycle, 0, distance,
1858 tail_cycle, tail_block);
1859 if (error)
1860 return error;
1861 }
1862
1863 return 0;
1864}
1865
1866/******************************************************************************
1867 *
1868 * Log recover routines
1869 *
1870 ******************************************************************************
1871 */
1872
f0a76953 1873/*
a775ad77
DC
1874 * Sort the log items in the transaction.
1875 *
1876 * The ordering constraints are defined by the inode allocation and unlink
1877 * behaviour. The rules are:
1878 *
1879 * 1. Every item is only logged once in a given transaction. Hence it
1880 * represents the last logged state of the item. Hence ordering is
1881 * dependent on the order in which operations need to be performed so
1882 * required initial conditions are always met.
1883 *
1884 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1885 * there's nothing to replay from them so we can simply cull them
1886 * from the transaction. However, we can't do that until after we've
1887 * replayed all the other items because they may be dependent on the
1888 * cancelled buffer and replaying the cancelled buffer can remove it
1889 * form the cancelled buffer table. Hence they have tobe done last.
1890 *
1891 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1892 * read the buffer and replay changes into it. For filesystems using the
1893 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1894 * treated the same as inode allocation buffers as they create and
1895 * initialise the buffers directly.
a775ad77
DC
1896 *
1897 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1898 * This ensures that inodes are completely flushed to the inode buffer
1899 * in a "free" state before we remove the unlinked inode list pointer.
1900 *
1901 * Hence the ordering needs to be inode allocation buffers first, inode items
1902 * second, inode unlink buffers third and cancelled buffers last.
1903 *
1904 * But there's a problem with that - we can't tell an inode allocation buffer
1905 * apart from a regular buffer, so we can't separate them. We can, however,
1906 * tell an inode unlink buffer from the others, and so we can separate them out
1907 * from all the other buffers and move them to last.
1908 *
1909 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1910 * - buffer_list for all buffers except cancelled/inode unlink buffers
1911 * - item_list for all non-buffer items
1912 * - inode_buffer_list for inode unlink buffers
1913 * - cancel_list for the cancelled buffers
1914 *
1915 * Note that we add objects to the tail of the lists so that first-to-last
1916 * ordering is preserved within the lists. Adding objects to the head of the
1917 * list means when we traverse from the head we walk them in last-to-first
1918 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1919 * but for all other items there may be specific ordering that we need to
1920 * preserve.
f0a76953 1921 */
1da177e4
LT
1922STATIC int
1923xlog_recover_reorder_trans(
ad223e60
MT
1924 struct xlog *log,
1925 struct xlog_recover *trans,
9abbc539 1926 int pass)
1da177e4 1927{
f0a76953 1928 xlog_recover_item_t *item, *n;
2a84108f 1929 int error = 0;
f0a76953 1930 LIST_HEAD(sort_list);
a775ad77
DC
1931 LIST_HEAD(cancel_list);
1932 LIST_HEAD(buffer_list);
1933 LIST_HEAD(inode_buffer_list);
1934 LIST_HEAD(inode_list);
f0a76953
DC
1935
1936 list_splice_init(&trans->r_itemq, &sort_list);
1937 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1938 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1939
f0a76953 1940 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1941 case XFS_LI_ICREATE:
1942 list_move_tail(&item->ri_list, &buffer_list);
1943 break;
1da177e4 1944 case XFS_LI_BUF:
a775ad77 1945 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1946 trace_xfs_log_recover_item_reorder_head(log,
1947 trans, item, pass);
a775ad77 1948 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1949 break;
1950 }
a775ad77
DC
1951 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1952 list_move(&item->ri_list, &inode_buffer_list);
1953 break;
1954 }
1955 list_move_tail(&item->ri_list, &buffer_list);
1956 break;
1da177e4 1957 case XFS_LI_INODE:
1da177e4
LT
1958 case XFS_LI_DQUOT:
1959 case XFS_LI_QUOTAOFF:
1960 case XFS_LI_EFD:
1961 case XFS_LI_EFI:
9e88b5d8
DW
1962 case XFS_LI_RUI:
1963 case XFS_LI_RUD:
f997ee21
DW
1964 case XFS_LI_CUI:
1965 case XFS_LI_CUD:
77d61fe4
DW
1966 case XFS_LI_BUI:
1967 case XFS_LI_BUD:
9abbc539
DC
1968 trace_xfs_log_recover_item_reorder_tail(log,
1969 trans, item, pass);
a775ad77 1970 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1971 break;
1972 default:
a0fa2b67
DC
1973 xfs_warn(log->l_mp,
1974 "%s: unrecognized type of log operation",
1975 __func__);
1da177e4 1976 ASSERT(0);
2a84108f
MT
1977 /*
1978 * return the remaining items back to the transaction
1979 * item list so they can be freed in caller.
1980 */
1981 if (!list_empty(&sort_list))
1982 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1983 error = -EIO;
2a84108f 1984 goto out;
1da177e4 1985 }
f0a76953 1986 }
2a84108f 1987out:
f0a76953 1988 ASSERT(list_empty(&sort_list));
a775ad77
DC
1989 if (!list_empty(&buffer_list))
1990 list_splice(&buffer_list, &trans->r_itemq);
1991 if (!list_empty(&inode_list))
1992 list_splice_tail(&inode_list, &trans->r_itemq);
1993 if (!list_empty(&inode_buffer_list))
1994 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1995 if (!list_empty(&cancel_list))
1996 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1997 return error;
1da177e4
LT
1998}
1999
2000/*
2001 * Build up the table of buf cancel records so that we don't replay
2002 * cancelled data in the second pass. For buffer records that are
2003 * not cancel records, there is nothing to do here so we just return.
2004 *
2005 * If we get a cancel record which is already in the table, this indicates
2006 * that the buffer was cancelled multiple times. In order to ensure
2007 * that during pass 2 we keep the record in the table until we reach its
2008 * last occurrence in the log, we keep a reference count in the cancel
2009 * record in the table to tell us how many times we expect to see this
2010 * record during the second pass.
2011 */
c9f71f5f
CH
2012STATIC int
2013xlog_recover_buffer_pass1(
ad223e60
MT
2014 struct xlog *log,
2015 struct xlog_recover_item *item)
1da177e4 2016{
c9f71f5f 2017 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
2018 struct list_head *bucket;
2019 struct xfs_buf_cancel *bcp;
1da177e4
LT
2020
2021 /*
2022 * If this isn't a cancel buffer item, then just return.
2023 */
e2714bf8 2024 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 2025 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 2026 return 0;
9abbc539 2027 }
1da177e4
LT
2028
2029 /*
d5689eaa
CH
2030 * Insert an xfs_buf_cancel record into the hash table of them.
2031 * If there is already an identical record, bump its reference count.
1da177e4 2032 */
d5689eaa
CH
2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2034 list_for_each_entry(bcp, bucket, bc_list) {
2035 if (bcp->bc_blkno == buf_f->blf_blkno &&
2036 bcp->bc_len == buf_f->blf_len) {
2037 bcp->bc_refcount++;
9abbc539 2038 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 2039 return 0;
1da177e4 2040 }
d5689eaa
CH
2041 }
2042
2043 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2044 bcp->bc_blkno = buf_f->blf_blkno;
2045 bcp->bc_len = buf_f->blf_len;
1da177e4 2046 bcp->bc_refcount = 1;
d5689eaa
CH
2047 list_add_tail(&bcp->bc_list, bucket);
2048
9abbc539 2049 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 2050 return 0;
1da177e4
LT
2051}
2052
2053/*
2054 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
2055 * entry in the buffer cancel record table. If it is, return the cancel
2056 * buffer structure to the caller.
1da177e4 2057 */
84a5b730
DC
2058STATIC struct xfs_buf_cancel *
2059xlog_peek_buffer_cancelled(
ad223e60 2060 struct xlog *log,
1da177e4
LT
2061 xfs_daddr_t blkno,
2062 uint len,
755c7bf5 2063 unsigned short flags)
1da177e4 2064{
d5689eaa
CH
2065 struct list_head *bucket;
2066 struct xfs_buf_cancel *bcp;
1da177e4 2067
84a5b730
DC
2068 if (!log->l_buf_cancel_table) {
2069 /* empty table means no cancelled buffers in the log */
c1155410 2070 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 2071 return NULL;
1da177e4
LT
2072 }
2073
d5689eaa
CH
2074 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2075 list_for_each_entry(bcp, bucket, bc_list) {
2076 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 2077 return bcp;
1da177e4 2078 }
d5689eaa 2079
1da177e4 2080 /*
d5689eaa
CH
2081 * We didn't find a corresponding entry in the table, so return 0 so
2082 * that the buffer is NOT cancelled.
1da177e4 2083 */
c1155410 2084 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
2085 return NULL;
2086}
2087
2088/*
2089 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2090 * otherwise return 0. If the buffer is actually a buffer cancel item
2091 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2092 * table and remove it from the table if this is the last reference.
2093 *
2094 * We remove the cancel record from the table when we encounter its last
2095 * occurrence in the log so that if the same buffer is re-used again after its
2096 * last cancellation we actually replay the changes made at that point.
2097 */
2098STATIC int
2099xlog_check_buffer_cancelled(
2100 struct xlog *log,
2101 xfs_daddr_t blkno,
2102 uint len,
755c7bf5 2103 unsigned short flags)
84a5b730
DC
2104{
2105 struct xfs_buf_cancel *bcp;
2106
2107 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2108 if (!bcp)
2109 return 0;
d5689eaa 2110
d5689eaa
CH
2111 /*
2112 * We've go a match, so return 1 so that the recovery of this buffer
2113 * is cancelled. If this buffer is actually a buffer cancel log
2114 * item, then decrement the refcount on the one in the table and
2115 * remove it if this is the last reference.
2116 */
2117 if (flags & XFS_BLF_CANCEL) {
2118 if (--bcp->bc_refcount == 0) {
2119 list_del(&bcp->bc_list);
2120 kmem_free(bcp);
2121 }
2122 }
2123 return 1;
1da177e4
LT
2124}
2125
1da177e4 2126/*
e2714bf8
CH
2127 * Perform recovery for a buffer full of inodes. In these buffers, the only
2128 * data which should be recovered is that which corresponds to the
2129 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2130 * data for the inodes is always logged through the inodes themselves rather
2131 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2132 *
e2714bf8
CH
2133 * The only time when buffers full of inodes are fully recovered is when the
2134 * buffer is full of newly allocated inodes. In this case the buffer will
2135 * not be marked as an inode buffer and so will be sent to
2136 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2137 */
2138STATIC int
2139xlog_recover_do_inode_buffer(
e2714bf8 2140 struct xfs_mount *mp,
1da177e4 2141 xlog_recover_item_t *item,
e2714bf8 2142 struct xfs_buf *bp,
1da177e4
LT
2143 xfs_buf_log_format_t *buf_f)
2144{
2145 int i;
e2714bf8
CH
2146 int item_index = 0;
2147 int bit = 0;
2148 int nbits = 0;
2149 int reg_buf_offset = 0;
2150 int reg_buf_bytes = 0;
1da177e4
LT
2151 int next_unlinked_offset;
2152 int inodes_per_buf;
2153 xfs_agino_t *logged_nextp;
2154 xfs_agino_t *buffer_nextp;
1da177e4 2155
9abbc539 2156 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2157
2158 /*
2159 * Post recovery validation only works properly on CRC enabled
2160 * filesystems.
2161 */
2162 if (xfs_sb_version_hascrc(&mp->m_sb))
2163 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2164
aa0e8833 2165 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2166 for (i = 0; i < inodes_per_buf; i++) {
2167 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2168 offsetof(xfs_dinode_t, di_next_unlinked);
2169
2170 while (next_unlinked_offset >=
2171 (reg_buf_offset + reg_buf_bytes)) {
2172 /*
2173 * The next di_next_unlinked field is beyond
2174 * the current logged region. Find the next
2175 * logged region that contains or is beyond
2176 * the current di_next_unlinked field.
2177 */
2178 bit += nbits;
e2714bf8
CH
2179 bit = xfs_next_bit(buf_f->blf_data_map,
2180 buf_f->blf_map_size, bit);
1da177e4
LT
2181
2182 /*
2183 * If there are no more logged regions in the
2184 * buffer, then we're done.
2185 */
e2714bf8 2186 if (bit == -1)
1da177e4 2187 return 0;
1da177e4 2188
e2714bf8
CH
2189 nbits = xfs_contig_bits(buf_f->blf_data_map,
2190 buf_f->blf_map_size, bit);
1da177e4 2191 ASSERT(nbits > 0);
c1155410
DC
2192 reg_buf_offset = bit << XFS_BLF_SHIFT;
2193 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2194 item_index++;
2195 }
2196
2197 /*
2198 * If the current logged region starts after the current
2199 * di_next_unlinked field, then move on to the next
2200 * di_next_unlinked field.
2201 */
e2714bf8 2202 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2203 continue;
1da177e4
LT
2204
2205 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2206 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2207 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2208 BBTOB(bp->b_io_length));
1da177e4
LT
2209
2210 /*
2211 * The current logged region contains a copy of the
2212 * current di_next_unlinked field. Extract its value
2213 * and copy it to the buffer copy.
2214 */
4e0d5f92
CH
2215 logged_nextp = item->ri_buf[item_index].i_addr +
2216 next_unlinked_offset - reg_buf_offset;
1da177e4 2217 if (unlikely(*logged_nextp == 0)) {
a0fa2b67 2218 xfs_alert(mp,
c9690043 2219 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
a0fa2b67 2220 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2221 item, bp);
2222 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2223 XFS_ERRLEVEL_LOW, mp);
2451337d 2224 return -EFSCORRUPTED;
1da177e4
LT
2225 }
2226
88ee2df7 2227 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2228 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2229
2230 /*
2231 * If necessary, recalculate the CRC in the on-disk inode. We
2232 * have to leave the inode in a consistent state for whoever
2233 * reads it next....
2234 */
88ee2df7 2235 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2236 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2237
1da177e4
LT
2238 }
2239
2240 return 0;
2241}
2242
50d5c8d8
DC
2243/*
2244 * V5 filesystems know the age of the buffer on disk being recovered. We can
2245 * have newer objects on disk than we are replaying, and so for these cases we
2246 * don't want to replay the current change as that will make the buffer contents
2247 * temporarily invalid on disk.
2248 *
2249 * The magic number might not match the buffer type we are going to recover
2250 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2251 * extract the LSN of the existing object in the buffer based on it's current
2252 * magic number. If we don't recognise the magic number in the buffer, then
2253 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2254 * so can recover the buffer.
566055d3
DC
2255 *
2256 * Note: we cannot rely solely on magic number matches to determine that the
2257 * buffer has a valid LSN - we also need to verify that it belongs to this
2258 * filesystem, so we need to extract the object's LSN and compare it to that
2259 * which we read from the superblock. If the UUIDs don't match, then we've got a
2260 * stale metadata block from an old filesystem instance that we need to recover
2261 * over the top of.
50d5c8d8
DC
2262 */
2263static xfs_lsn_t
2264xlog_recover_get_buf_lsn(
2265 struct xfs_mount *mp,
2266 struct xfs_buf *bp)
2267{
c8ce540d
DW
2268 uint32_t magic32;
2269 uint16_t magic16;
2270 uint16_t magicda;
50d5c8d8 2271 void *blk = bp->b_addr;
566055d3
DC
2272 uuid_t *uuid;
2273 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2274
2275 /* v4 filesystems always recover immediately */
2276 if (!xfs_sb_version_hascrc(&mp->m_sb))
2277 goto recover_immediately;
2278
2279 magic32 = be32_to_cpu(*(__be32 *)blk);
2280 switch (magic32) {
2281 case XFS_ABTB_CRC_MAGIC:
2282 case XFS_ABTC_CRC_MAGIC:
2283 case XFS_ABTB_MAGIC:
2284 case XFS_ABTC_MAGIC:
a650e8f9 2285 case XFS_RMAP_CRC_MAGIC:
a90c00f0 2286 case XFS_REFC_CRC_MAGIC:
50d5c8d8 2287 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2288 case XFS_IBT_MAGIC: {
2289 struct xfs_btree_block *btb = blk;
2290
2291 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2292 uuid = &btb->bb_u.s.bb_uuid;
2293 break;
2294 }
50d5c8d8 2295 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2296 case XFS_BMAP_MAGIC: {
2297 struct xfs_btree_block *btb = blk;
2298
2299 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2300 uuid = &btb->bb_u.l.bb_uuid;
2301 break;
2302 }
50d5c8d8 2303 case XFS_AGF_MAGIC:
566055d3
DC
2304 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2305 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2306 break;
50d5c8d8 2307 case XFS_AGFL_MAGIC:
566055d3
DC
2308 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2309 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2310 break;
50d5c8d8 2311 case XFS_AGI_MAGIC:
566055d3
DC
2312 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2313 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2314 break;
50d5c8d8 2315 case XFS_SYMLINK_MAGIC:
566055d3
DC
2316 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2317 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2318 break;
50d5c8d8
DC
2319 case XFS_DIR3_BLOCK_MAGIC:
2320 case XFS_DIR3_DATA_MAGIC:
2321 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2322 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2323 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2324 break;
50d5c8d8 2325 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2326 /*
2327 * Remote attr blocks are written synchronously, rather than
2328 * being logged. That means they do not contain a valid LSN
2329 * (i.e. transactionally ordered) in them, and hence any time we
2330 * see a buffer to replay over the top of a remote attribute
2331 * block we should simply do so.
2332 */
2333 goto recover_immediately;
50d5c8d8 2334 case XFS_SB_MAGIC:
fcfbe2c4
DC
2335 /*
2336 * superblock uuids are magic. We may or may not have a
2337 * sb_meta_uuid on disk, but it will be set in the in-core
2338 * superblock. We set the uuid pointer for verification
2339 * according to the superblock feature mask to ensure we check
2340 * the relevant UUID in the superblock.
2341 */
566055d3 2342 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2343 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2344 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2345 else
2346 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2347 break;
50d5c8d8
DC
2348 default:
2349 break;
2350 }
2351
566055d3 2352 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2353 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2354 goto recover_immediately;
2355 return lsn;
2356 }
2357
50d5c8d8
DC
2358 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2359 switch (magicda) {
2360 case XFS_DIR3_LEAF1_MAGIC:
2361 case XFS_DIR3_LEAFN_MAGIC:
2362 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2363 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2364 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2365 break;
50d5c8d8
DC
2366 default:
2367 break;
2368 }
2369
566055d3
DC
2370 if (lsn != (xfs_lsn_t)-1) {
2371 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2372 goto recover_immediately;
2373 return lsn;
2374 }
2375
50d5c8d8
DC
2376 /*
2377 * We do individual object checks on dquot and inode buffers as they
2378 * have their own individual LSN records. Also, we could have a stale
2379 * buffer here, so we have to at least recognise these buffer types.
2380 *
2381 * A notd complexity here is inode unlinked list processing - it logs
2382 * the inode directly in the buffer, but we don't know which inodes have
2383 * been modified, and there is no global buffer LSN. Hence we need to
2384 * recover all inode buffer types immediately. This problem will be
2385 * fixed by logical logging of the unlinked list modifications.
2386 */
2387 magic16 = be16_to_cpu(*(__be16 *)blk);
2388 switch (magic16) {
2389 case XFS_DQUOT_MAGIC:
2390 case XFS_DINODE_MAGIC:
2391 goto recover_immediately;
2392 default:
2393 break;
2394 }
2395
2396 /* unknown buffer contents, recover immediately */
2397
2398recover_immediately:
2399 return (xfs_lsn_t)-1;
2400
2401}
2402
1da177e4 2403/*
d75afeb3
DC
2404 * Validate the recovered buffer is of the correct type and attach the
2405 * appropriate buffer operations to them for writeback. Magic numbers are in a
2406 * few places:
2407 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2408 * the first 32 bits of the buffer (most blocks),
2409 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2410 */
d75afeb3 2411static void
50d5c8d8 2412xlog_recover_validate_buf_type(
9abbc539 2413 struct xfs_mount *mp,
e2714bf8 2414 struct xfs_buf *bp,
22db9af2
BF
2415 xfs_buf_log_format_t *buf_f,
2416 xfs_lsn_t current_lsn)
1da177e4 2417{
d75afeb3 2418 struct xfs_da_blkinfo *info = bp->b_addr;
c8ce540d
DW
2419 uint32_t magic32;
2420 uint16_t magic16;
2421 uint16_t magicda;
040c52c0 2422 char *warnmsg = NULL;
d75afeb3 2423
67dc288c
DC
2424 /*
2425 * We can only do post recovery validation on items on CRC enabled
2426 * fielsystems as we need to know when the buffer was written to be able
2427 * to determine if we should have replayed the item. If we replay old
2428 * metadata over a newer buffer, then it will enter a temporarily
2429 * inconsistent state resulting in verification failures. Hence for now
2430 * just avoid the verification stage for non-crc filesystems
2431 */
2432 if (!xfs_sb_version_hascrc(&mp->m_sb))
2433 return;
2434
d75afeb3
DC
2435 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2436 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2437 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2438 switch (xfs_blft_from_flags(buf_f)) {
2439 case XFS_BLFT_BTREE_BUF:
d75afeb3 2440 switch (magic32) {
ee1a47ab 2441 case XFS_ABTB_CRC_MAGIC:
ee1a47ab 2442 case XFS_ABTB_MAGIC:
27df4f50
BF
2443 bp->b_ops = &xfs_bnobt_buf_ops;
2444 break;
2445 case XFS_ABTC_CRC_MAGIC:
ee1a47ab 2446 case XFS_ABTC_MAGIC:
27df4f50 2447 bp->b_ops = &xfs_cntbt_buf_ops;
ee1a47ab
CH
2448 break;
2449 case XFS_IBT_CRC_MAGIC:
2450 case XFS_IBT_MAGIC:
2451 bp->b_ops = &xfs_inobt_buf_ops;
2452 break;
01e68f40
BF
2453 case XFS_FIBT_CRC_MAGIC:
2454 case XFS_FIBT_MAGIC:
2455 bp->b_ops = &xfs_finobt_buf_ops;
2456 break;
ee1a47ab
CH
2457 case XFS_BMAP_CRC_MAGIC:
2458 case XFS_BMAP_MAGIC:
2459 bp->b_ops = &xfs_bmbt_buf_ops;
2460 break;
a650e8f9
DW
2461 case XFS_RMAP_CRC_MAGIC:
2462 bp->b_ops = &xfs_rmapbt_buf_ops;
2463 break;
a90c00f0
DW
2464 case XFS_REFC_CRC_MAGIC:
2465 bp->b_ops = &xfs_refcountbt_buf_ops;
2466 break;
ee1a47ab 2467 default:
040c52c0 2468 warnmsg = "Bad btree block magic!";
ee1a47ab
CH
2469 break;
2470 }
2471 break;
61fe135c 2472 case XFS_BLFT_AGF_BUF:
d75afeb3 2473 if (magic32 != XFS_AGF_MAGIC) {
040c52c0 2474 warnmsg = "Bad AGF block magic!";
4e0e6040
DC
2475 break;
2476 }
2477 bp->b_ops = &xfs_agf_buf_ops;
2478 break;
61fe135c 2479 case XFS_BLFT_AGFL_BUF:
d75afeb3 2480 if (magic32 != XFS_AGFL_MAGIC) {
040c52c0 2481 warnmsg = "Bad AGFL block magic!";
77c95bba
CH
2482 break;
2483 }
2484 bp->b_ops = &xfs_agfl_buf_ops;
2485 break;
61fe135c 2486 case XFS_BLFT_AGI_BUF:
d75afeb3 2487 if (magic32 != XFS_AGI_MAGIC) {
040c52c0 2488 warnmsg = "Bad AGI block magic!";
983d09ff
DC
2489 break;
2490 }
2491 bp->b_ops = &xfs_agi_buf_ops;
2492 break;
61fe135c
DC
2493 case XFS_BLFT_UDQUOT_BUF:
2494 case XFS_BLFT_PDQUOT_BUF:
2495 case XFS_BLFT_GDQUOT_BUF:
123887e8 2496#ifdef CONFIG_XFS_QUOTA
d75afeb3 2497 if (magic16 != XFS_DQUOT_MAGIC) {
040c52c0 2498 warnmsg = "Bad DQUOT block magic!";
3fe58f30
CH
2499 break;
2500 }
2501 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2502#else
2503 xfs_alert(mp,
2504 "Trying to recover dquots without QUOTA support built in!");
2505 ASSERT(0);
2506#endif
3fe58f30 2507 break;
61fe135c 2508 case XFS_BLFT_DINO_BUF:
d75afeb3 2509 if (magic16 != XFS_DINODE_MAGIC) {
040c52c0 2510 warnmsg = "Bad INODE block magic!";
93848a99
CH
2511 break;
2512 }
2513 bp->b_ops = &xfs_inode_buf_ops;
2514 break;
61fe135c 2515 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2516 if (magic32 != XFS_SYMLINK_MAGIC) {
040c52c0 2517 warnmsg = "Bad symlink block magic!";
f948dd76
DC
2518 break;
2519 }
2520 bp->b_ops = &xfs_symlink_buf_ops;
2521 break;
61fe135c 2522 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2523 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2524 magic32 != XFS_DIR3_BLOCK_MAGIC) {
040c52c0 2525 warnmsg = "Bad dir block magic!";
d75afeb3
DC
2526 break;
2527 }
2528 bp->b_ops = &xfs_dir3_block_buf_ops;
2529 break;
61fe135c 2530 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2531 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2532 magic32 != XFS_DIR3_DATA_MAGIC) {
040c52c0 2533 warnmsg = "Bad dir data magic!";
d75afeb3
DC
2534 break;
2535 }
2536 bp->b_ops = &xfs_dir3_data_buf_ops;
2537 break;
61fe135c 2538 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2539 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2540 magic32 != XFS_DIR3_FREE_MAGIC) {
040c52c0 2541 warnmsg = "Bad dir3 free magic!";
d75afeb3
DC
2542 break;
2543 }
2544 bp->b_ops = &xfs_dir3_free_buf_ops;
2545 break;
61fe135c 2546 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2547 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2548 magicda != XFS_DIR3_LEAF1_MAGIC) {
040c52c0 2549 warnmsg = "Bad dir leaf1 magic!";
d75afeb3
DC
2550 break;
2551 }
2552 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2553 break;
61fe135c 2554 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2555 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2556 magicda != XFS_DIR3_LEAFN_MAGIC) {
040c52c0 2557 warnmsg = "Bad dir leafn magic!";
d75afeb3
DC
2558 break;
2559 }
2560 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2561 break;
61fe135c 2562 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2563 if (magicda != XFS_DA_NODE_MAGIC &&
2564 magicda != XFS_DA3_NODE_MAGIC) {
040c52c0 2565 warnmsg = "Bad da node magic!";
d75afeb3
DC
2566 break;
2567 }
2568 bp->b_ops = &xfs_da3_node_buf_ops;
2569 break;
61fe135c 2570 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2571 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2572 magicda != XFS_ATTR3_LEAF_MAGIC) {
040c52c0 2573 warnmsg = "Bad attr leaf magic!";
d75afeb3
DC
2574 break;
2575 }
2576 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2577 break;
61fe135c 2578 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2579 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
040c52c0 2580 warnmsg = "Bad attr remote magic!";
d75afeb3
DC
2581 break;
2582 }
2583 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2584 break;
04a1e6c5
DC
2585 case XFS_BLFT_SB_BUF:
2586 if (magic32 != XFS_SB_MAGIC) {
040c52c0 2587 warnmsg = "Bad SB block magic!";
04a1e6c5
DC
2588 break;
2589 }
2590 bp->b_ops = &xfs_sb_buf_ops;
2591 break;
f67ca6ec
DC
2592#ifdef CONFIG_XFS_RT
2593 case XFS_BLFT_RTBITMAP_BUF:
2594 case XFS_BLFT_RTSUMMARY_BUF:
bf85e099
DC
2595 /* no magic numbers for verification of RT buffers */
2596 bp->b_ops = &xfs_rtbuf_ops;
f67ca6ec
DC
2597 break;
2598#endif /* CONFIG_XFS_RT */
ee1a47ab 2599 default:
61fe135c
DC
2600 xfs_warn(mp, "Unknown buffer type %d!",
2601 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2602 break;
2603 }
040c52c0
BF
2604
2605 /*
60a4a222
BF
2606 * Nothing else to do in the case of a NULL current LSN as this means
2607 * the buffer is more recent than the change in the log and will be
2608 * skipped.
040c52c0 2609 */
60a4a222
BF
2610 if (current_lsn == NULLCOMMITLSN)
2611 return;
2612
2613 if (warnmsg) {
040c52c0
BF
2614 xfs_warn(mp, warnmsg);
2615 ASSERT(0);
2616 }
60a4a222
BF
2617
2618 /*
2619 * We must update the metadata LSN of the buffer as it is written out to
2620 * ensure that older transactions never replay over this one and corrupt
2621 * the buffer. This can occur if log recovery is interrupted at some
2622 * point after the current transaction completes, at which point a
2623 * subsequent mount starts recovery from the beginning.
2624 *
2625 * Write verifiers update the metadata LSN from log items attached to
2626 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2627 * the verifier. We'll clean it up in our ->iodone() callback.
2628 */
2629 if (bp->b_ops) {
2630 struct xfs_buf_log_item *bip;
2631
2632 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2633 bp->b_iodone = xlog_recover_iodone;
2634 xfs_buf_item_init(bp, mp);
fb1755a6 2635 bip = bp->b_log_item;
60a4a222
BF
2636 bip->bli_item.li_lsn = current_lsn;
2637 }
1da177e4
LT
2638}
2639
d75afeb3
DC
2640/*
2641 * Perform a 'normal' buffer recovery. Each logged region of the
2642 * buffer should be copied over the corresponding region in the
2643 * given buffer. The bitmap in the buf log format structure indicates
2644 * where to place the logged data.
2645 */
2646STATIC void
2647xlog_recover_do_reg_buffer(
2648 struct xfs_mount *mp,
2649 xlog_recover_item_t *item,
2650 struct xfs_buf *bp,
22db9af2
BF
2651 xfs_buf_log_format_t *buf_f,
2652 xfs_lsn_t current_lsn)
d75afeb3
DC
2653{
2654 int i;
2655 int bit;
2656 int nbits;
eebf3cab 2657 xfs_failaddr_t fa;
d75afeb3
DC
2658
2659 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2660
2661 bit = 0;
2662 i = 1; /* 0 is the buf format structure */
2663 while (1) {
2664 bit = xfs_next_bit(buf_f->blf_data_map,
2665 buf_f->blf_map_size, bit);
2666 if (bit == -1)
2667 break;
2668 nbits = xfs_contig_bits(buf_f->blf_data_map,
2669 buf_f->blf_map_size, bit);
2670 ASSERT(nbits > 0);
2671 ASSERT(item->ri_buf[i].i_addr != NULL);
2672 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2673 ASSERT(BBTOB(bp->b_io_length) >=
2674 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2675
709da6a6
DC
2676 /*
2677 * The dirty regions logged in the buffer, even though
2678 * contiguous, may span multiple chunks. This is because the
2679 * dirty region may span a physical page boundary in a buffer
2680 * and hence be split into two separate vectors for writing into
2681 * the log. Hence we need to trim nbits back to the length of
2682 * the current region being copied out of the log.
2683 */
2684 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2685 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2686
d75afeb3
DC
2687 /*
2688 * Do a sanity check if this is a dquot buffer. Just checking
2689 * the first dquot in the buffer should do. XXXThis is
2690 * probably a good thing to do for other buf types also.
2691 */
eebf3cab 2692 fa = NULL;
d75afeb3
DC
2693 if (buf_f->blf_flags &
2694 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2695 if (item->ri_buf[i].i_addr == NULL) {
2696 xfs_alert(mp,
2697 "XFS: NULL dquot in %s.", __func__);
2698 goto next;
2699 }
2700 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2701 xfs_alert(mp,
2702 "XFS: dquot too small (%d) in %s.",
2703 item->ri_buf[i].i_len, __func__);
2704 goto next;
2705 }
eebf3cab 2706 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
e381a0f6 2707 -1, 0);
eebf3cab
DW
2708 if (fa) {
2709 xfs_alert(mp,
2710 "dquot corrupt at %pS trying to replay into block 0x%llx",
2711 fa, bp->b_bn);
d75afeb3 2712 goto next;
eebf3cab 2713 }
d75afeb3
DC
2714 }
2715
2716 memcpy(xfs_buf_offset(bp,
2717 (uint)bit << XFS_BLF_SHIFT), /* dest */
2718 item->ri_buf[i].i_addr, /* source */
2719 nbits<<XFS_BLF_SHIFT); /* length */
2720 next:
2721 i++;
2722 bit += nbits;
2723 }
2724
2725 /* Shouldn't be any more regions */
2726 ASSERT(i == item->ri_total);
2727
22db9af2 2728 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
d75afeb3
DC
2729}
2730
1da177e4
LT
2731/*
2732 * Perform a dquot buffer recovery.
8ba701ee 2733 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2734 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2735 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2736 *
2737 * Return false if the buffer was tossed and true if we recovered the buffer to
2738 * indicate to the caller if the buffer needs writing.
1da177e4 2739 */
ad3714b8 2740STATIC bool
1da177e4 2741xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2742 struct xfs_mount *mp,
2743 struct xlog *log,
2744 struct xlog_recover_item *item,
2745 struct xfs_buf *bp,
2746 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2747{
2748 uint type;
2749
9abbc539
DC
2750 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2751
1da177e4
LT
2752 /*
2753 * Filesystems are required to send in quota flags at mount time.
2754 */
ad3714b8
DC
2755 if (!mp->m_qflags)
2756 return false;
1da177e4
LT
2757
2758 type = 0;
c1155410 2759 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2760 type |= XFS_DQ_USER;
c1155410 2761 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2762 type |= XFS_DQ_PROJ;
c1155410 2763 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2764 type |= XFS_DQ_GROUP;
2765 /*
2766 * This type of quotas was turned off, so ignore this buffer
2767 */
2768 if (log->l_quotaoffs_flag & type)
ad3714b8 2769 return false;
1da177e4 2770
22db9af2 2771 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
ad3714b8 2772 return true;
1da177e4
LT
2773}
2774
2775/*
2776 * This routine replays a modification made to a buffer at runtime.
2777 * There are actually two types of buffer, regular and inode, which
2778 * are handled differently. Inode buffers are handled differently
2779 * in that we only recover a specific set of data from them, namely
2780 * the inode di_next_unlinked fields. This is because all other inode
2781 * data is actually logged via inode records and any data we replay
2782 * here which overlaps that may be stale.
2783 *
2784 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2785 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2786 * of the buffer in the log should not be replayed at recovery time.
2787 * This is so that if the blocks covered by the buffer are reused for
2788 * file data before we crash we don't end up replaying old, freed
2789 * meta-data into a user's file.
2790 *
2791 * To handle the cancellation of buffer log items, we make two passes
2792 * over the log during recovery. During the first we build a table of
2793 * those buffers which have been cancelled, and during the second we
2794 * only replay those buffers which do not have corresponding cancel
34be5ff3 2795 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2796 * for more details on the implementation of the table of cancel records.
2797 */
2798STATIC int
c9f71f5f 2799xlog_recover_buffer_pass2(
9a8d2fdb
MT
2800 struct xlog *log,
2801 struct list_head *buffer_list,
50d5c8d8
DC
2802 struct xlog_recover_item *item,
2803 xfs_lsn_t current_lsn)
1da177e4 2804{
4e0d5f92 2805 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2806 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2807 xfs_buf_t *bp;
2808 int error;
6ad112bf 2809 uint buf_flags;
50d5c8d8 2810 xfs_lsn_t lsn;
1da177e4 2811
c9f71f5f
CH
2812 /*
2813 * In this pass we only want to recover all the buffers which have
2814 * not been cancelled and are not cancellation buffers themselves.
2815 */
2816 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2817 buf_f->blf_len, buf_f->blf_flags)) {
2818 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2819 return 0;
1da177e4 2820 }
c9f71f5f 2821
9abbc539 2822 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2823
a8acad70 2824 buf_flags = 0;
611c9946
DC
2825 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2826 buf_flags |= XBF_UNMAPPED;
6ad112bf 2827
e2714bf8 2828 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2829 buf_flags, NULL);
ac4d6888 2830 if (!bp)
2451337d 2831 return -ENOMEM;
e5702805 2832 error = bp->b_error;
5a52c2a5 2833 if (error) {
901796af 2834 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2835 goto out_release;
1da177e4
LT
2836 }
2837
50d5c8d8 2838 /*
67dc288c 2839 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2840 * the lsn of the transaction we are replaying.
67dc288c
DC
2841 *
2842 * Note that we have to be extremely careful of readahead here.
2843 * Readahead does not attach verfiers to the buffers so if we don't
2844 * actually do any replay after readahead because of the LSN we found
2845 * in the buffer if more recent than that current transaction then we
2846 * need to attach the verifier directly. Failure to do so can lead to
2847 * future recovery actions (e.g. EFI and unlinked list recovery) can
2848 * operate on the buffers and they won't get the verifier attached. This
2849 * can lead to blocks on disk having the correct content but a stale
2850 * CRC.
2851 *
2852 * It is safe to assume these clean buffers are currently up to date.
2853 * If the buffer is dirtied by a later transaction being replayed, then
2854 * the verifier will be reset to match whatever recover turns that
2855 * buffer into.
50d5c8d8
DC
2856 */
2857 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c 2858 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
5cd9cee9 2859 trace_xfs_log_recover_buf_skip(log, buf_f);
22db9af2 2860 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
50d5c8d8 2861 goto out_release;
67dc288c 2862 }
50d5c8d8 2863
e2714bf8 2864 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2865 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2866 if (error)
2867 goto out_release;
e2714bf8 2868 } else if (buf_f->blf_flags &
c1155410 2869 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2870 bool dirty;
2871
2872 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2873 if (!dirty)
2874 goto out_release;
1da177e4 2875 } else {
22db9af2 2876 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1da177e4 2877 }
1da177e4
LT
2878
2879 /*
2880 * Perform delayed write on the buffer. Asynchronous writes will be
2881 * slower when taking into account all the buffers to be flushed.
2882 *
2883 * Also make sure that only inode buffers with good sizes stay in
2884 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2885 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2886 * buffers in the log can be a different size if the log was generated
2887 * by an older kernel using unclustered inode buffers or a newer kernel
2888 * running with a different inode cluster size. Regardless, if the
9bb54cb5 2889 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
0f49efd8 2890 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2891 * the buffer out of the buffer cache so that the buffer won't
2892 * overlap with future reads of those inodes.
2893 */
2894 if (XFS_DINODE_MAGIC ==
b53e675d 2895 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
9bb54cb5 2896 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
c8ce540d 2897 (uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2898 xfs_buf_stale(bp);
c2b006c1 2899 error = xfs_bwrite(bp);
1da177e4 2900 } else {
ebad861b 2901 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2902 bp->b_iodone = xlog_recover_iodone;
43ff2122 2903 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2904 }
2905
50d5c8d8 2906out_release:
c2b006c1
CH
2907 xfs_buf_relse(bp);
2908 return error;
1da177e4
LT
2909}
2910
638f4416
DC
2911/*
2912 * Inode fork owner changes
2913 *
2914 * If we have been told that we have to reparent the inode fork, it's because an
2915 * extent swap operation on a CRC enabled filesystem has been done and we are
2916 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2917 * owners of it.
2918 *
2919 * The complexity here is that we don't have an inode context to work with, so
2920 * after we've replayed the inode we need to instantiate one. This is where the
2921 * fun begins.
2922 *
2923 * We are in the middle of log recovery, so we can't run transactions. That
2924 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2925 * that will result in the corresponding iput() running the inode through
2926 * xfs_inactive(). If we've just replayed an inode core that changes the link
2927 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2928 * transactions (bad!).
2929 *
2930 * So, to avoid this, we instantiate an inode directly from the inode core we've
2931 * just recovered. We have the buffer still locked, and all we really need to
2932 * instantiate is the inode core and the forks being modified. We can do this
2933 * manually, then run the inode btree owner change, and then tear down the
2934 * xfs_inode without having to run any transactions at all.
2935 *
2936 * Also, because we don't have a transaction context available here but need to
2937 * gather all the buffers we modify for writeback so we pass the buffer_list
2938 * instead for the operation to use.
2939 */
2940
2941STATIC int
2942xfs_recover_inode_owner_change(
2943 struct xfs_mount *mp,
2944 struct xfs_dinode *dip,
2945 struct xfs_inode_log_format *in_f,
2946 struct list_head *buffer_list)
2947{
2948 struct xfs_inode *ip;
2949 int error;
2950
2951 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2952
2953 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2954 if (!ip)
2451337d 2955 return -ENOMEM;
638f4416
DC
2956
2957 /* instantiate the inode */
3987848c 2958 xfs_inode_from_disk(ip, dip);
638f4416
DC
2959 ASSERT(ip->i_d.di_version >= 3);
2960
2961 error = xfs_iformat_fork(ip, dip);
2962 if (error)
2963 goto out_free_ip;
2964
9cfb9b47
DW
2965 if (!xfs_inode_verify_forks(ip)) {
2966 error = -EFSCORRUPTED;
2967 goto out_free_ip;
2968 }
638f4416
DC
2969
2970 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2971 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2972 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2973 ip->i_ino, buffer_list);
2974 if (error)
2975 goto out_free_ip;
2976 }
2977
2978 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2979 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2980 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2981 ip->i_ino, buffer_list);
2982 if (error)
2983 goto out_free_ip;
2984 }
2985
2986out_free_ip:
2987 xfs_inode_free(ip);
2988 return error;
2989}
2990
1da177e4 2991STATIC int
c9f71f5f 2992xlog_recover_inode_pass2(
9a8d2fdb
MT
2993 struct xlog *log,
2994 struct list_head *buffer_list,
50d5c8d8
DC
2995 struct xlog_recover_item *item,
2996 xfs_lsn_t current_lsn)
1da177e4 2997{
06b11321 2998 struct xfs_inode_log_format *in_f;
c9f71f5f 2999 xfs_mount_t *mp = log->l_mp;
1da177e4 3000 xfs_buf_t *bp;
1da177e4 3001 xfs_dinode_t *dip;
1da177e4 3002 int len;
b2a922cd
CH
3003 char *src;
3004 char *dest;
1da177e4
LT
3005 int error;
3006 int attr_index;
3007 uint fields;
f8d55aa0 3008 struct xfs_log_dinode *ldip;
93848a99 3009 uint isize;
6d192a9b 3010 int need_free = 0;
1da177e4 3011
06b11321 3012 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
4e0d5f92 3013 in_f = item->ri_buf[0].i_addr;
6d192a9b 3014 } else {
06b11321 3015 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
6d192a9b
TS
3016 need_free = 1;
3017 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3018 if (error)
3019 goto error;
3020 }
1da177e4
LT
3021
3022 /*
3023 * Inode buffers can be freed, look out for it,
3024 * and do not replay the inode.
3025 */
a1941895
CH
3026 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3027 in_f->ilf_len, 0)) {
6d192a9b 3028 error = 0;
9abbc539 3029 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
3030 goto error;
3031 }
9abbc539 3032 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 3033
c3f8fc73 3034 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 3035 &xfs_inode_buf_ops);
ac4d6888 3036 if (!bp) {
2451337d 3037 error = -ENOMEM;
ac4d6888
CS
3038 goto error;
3039 }
e5702805 3040 error = bp->b_error;
5a52c2a5 3041 if (error) {
901796af 3042 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 3043 goto out_release;
1da177e4 3044 }
1da177e4 3045 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 3046 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
3047
3048 /*
3049 * Make sure the place we're flushing out to really looks
3050 * like an inode!
3051 */
15baadf7 3052 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
a0fa2b67 3053 xfs_alert(mp,
c9690043 3054 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
a0fa2b67 3055 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 3056 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 3057 XFS_ERRLEVEL_LOW, mp);
2451337d 3058 error = -EFSCORRUPTED;
638f4416 3059 goto out_release;
1da177e4 3060 }
f8d55aa0
DC
3061 ldip = item->ri_buf[1].i_addr;
3062 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67 3063 xfs_alert(mp,
c9690043 3064 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
a0fa2b67 3065 __func__, item, in_f->ilf_ino);
c9f71f5f 3066 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 3067 XFS_ERRLEVEL_LOW, mp);
2451337d 3068 error = -EFSCORRUPTED;
638f4416 3069 goto out_release;
1da177e4
LT
3070 }
3071
50d5c8d8
DC
3072 /*
3073 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
3074 * than the lsn of the transaction we are replaying. Note: we still
3075 * need to replay an owner change even though the inode is more recent
3076 * than the transaction as there is no guarantee that all the btree
3077 * blocks are more recent than this transaction, too.
50d5c8d8
DC
3078 */
3079 if (dip->di_version >= 3) {
3080 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3081
3082 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3083 trace_xfs_log_recover_inode_skip(log, in_f);
3084 error = 0;
638f4416 3085 goto out_owner_change;
50d5c8d8
DC
3086 }
3087 }
3088
e60896d8
DC
3089 /*
3090 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3091 * are transactional and if ordering is necessary we can determine that
3092 * more accurately by the LSN field in the V3 inode core. Don't trust
3093 * the inode versions we might be changing them here - use the
3094 * superblock flag to determine whether we need to look at di_flushiter
3095 * to skip replay when the on disk inode is newer than the log one
3096 */
3097 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
f8d55aa0 3098 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
3099 /*
3100 * Deal with the wrap case, DI_MAX_FLUSH is less
3101 * than smaller numbers
3102 */
81591fe2 3103 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
f8d55aa0 3104 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
3105 /* do nothing */
3106 } else {
9abbc539 3107 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 3108 error = 0;
638f4416 3109 goto out_release;
1da177e4
LT
3110 }
3111 }
e60896d8 3112
1da177e4 3113 /* Take the opportunity to reset the flush iteration count */
f8d55aa0 3114 ldip->di_flushiter = 0;
1da177e4 3115
f8d55aa0
DC
3116 if (unlikely(S_ISREG(ldip->di_mode))) {
3117 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3118 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 3119 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2551a530
DW
3120 XFS_ERRLEVEL_LOW, mp, ldip,
3121 sizeof(*ldip));
a0fa2b67 3122 xfs_alert(mp,
c9690043
DW
3123 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3124 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
a0fa2b67 3125 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3126 error = -EFSCORRUPTED;
638f4416 3127 goto out_release;
1da177e4 3128 }
f8d55aa0
DC
3129 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3130 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3131 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3132 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 3133 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2551a530
DW
3134 XFS_ERRLEVEL_LOW, mp, ldip,
3135 sizeof(*ldip));
a0fa2b67 3136 xfs_alert(mp,
c9690043
DW
3137 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3138 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
a0fa2b67 3139 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3140 error = -EFSCORRUPTED;
638f4416 3141 goto out_release;
1da177e4
LT
3142 }
3143 }
f8d55aa0 3144 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
c9f71f5f 3145 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2551a530
DW
3146 XFS_ERRLEVEL_LOW, mp, ldip,
3147 sizeof(*ldip));
a0fa2b67 3148 xfs_alert(mp,
c9690043
DW
3149 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3150 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
a0fa2b67 3151 __func__, item, dip, bp, in_f->ilf_ino,
f8d55aa0
DC
3152 ldip->di_nextents + ldip->di_anextents,
3153 ldip->di_nblocks);
2451337d 3154 error = -EFSCORRUPTED;
638f4416 3155 goto out_release;
1da177e4 3156 }
f8d55aa0 3157 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3158 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2551a530
DW
3159 XFS_ERRLEVEL_LOW, mp, ldip,
3160 sizeof(*ldip));
a0fa2b67 3161 xfs_alert(mp,
c9690043
DW
3162 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3163 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
f8d55aa0 3164 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
2451337d 3165 error = -EFSCORRUPTED;
638f4416 3166 goto out_release;
1da177e4 3167 }
f8d55aa0 3168 isize = xfs_log_dinode_size(ldip->di_version);
93848a99 3169 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3170 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2551a530
DW
3171 XFS_ERRLEVEL_LOW, mp, ldip,
3172 sizeof(*ldip));
a0fa2b67 3173 xfs_alert(mp,
c9690043 3174 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
a0fa2b67 3175 __func__, item->ri_buf[1].i_len, item);
2451337d 3176 error = -EFSCORRUPTED;
638f4416 3177 goto out_release;
1da177e4
LT
3178 }
3179
3987848c
DC
3180 /* recover the log dinode inode into the on disk inode */
3181 xfs_log_dinode_to_disk(ldip, dip);
1da177e4 3182
1da177e4 3183 fields = in_f->ilf_fields;
42b67dc6 3184 if (fields & XFS_ILOG_DEV)
81591fe2 3185 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3186
3187 if (in_f->ilf_size == 2)
638f4416 3188 goto out_owner_change;
1da177e4
LT
3189 len = item->ri_buf[2].i_len;
3190 src = item->ri_buf[2].i_addr;
3191 ASSERT(in_f->ilf_size <= 4);
3192 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3193 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3194 (len == in_f->ilf_dsize));
3195
3196 switch (fields & XFS_ILOG_DFORK) {
3197 case XFS_ILOG_DDATA:
3198 case XFS_ILOG_DEXT:
81591fe2 3199 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3200 break;
3201
3202 case XFS_ILOG_DBROOT:
7cc95a82 3203 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3204 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3205 XFS_DFORK_DSIZE(dip, mp));
3206 break;
3207
3208 default:
3209 /*
3210 * There are no data fork flags set.
3211 */
3212 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3213 break;
3214 }
3215
3216 /*
3217 * If we logged any attribute data, recover it. There may or
3218 * may not have been any other non-core data logged in this
3219 * transaction.
3220 */
3221 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3222 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3223 attr_index = 3;
3224 } else {
3225 attr_index = 2;
3226 }
3227 len = item->ri_buf[attr_index].i_len;
3228 src = item->ri_buf[attr_index].i_addr;
3229 ASSERT(len == in_f->ilf_asize);
3230
3231 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3232 case XFS_ILOG_ADATA:
3233 case XFS_ILOG_AEXT:
3234 dest = XFS_DFORK_APTR(dip);
3235 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3236 memcpy(dest, src, len);
3237 break;
3238
3239 case XFS_ILOG_ABROOT:
3240 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3241 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3242 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3243 XFS_DFORK_ASIZE(dip, mp));
3244 break;
3245
3246 default:
a0fa2b67 3247 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3248 ASSERT(0);
2451337d 3249 error = -EIO;
638f4416 3250 goto out_release;
1da177e4
LT
3251 }
3252 }
3253
638f4416 3254out_owner_change:
dc1baa71
ES
3255 /* Recover the swapext owner change unless inode has been deleted */
3256 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3257 (dip->di_mode != 0))
638f4416
DC
3258 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3259 buffer_list);
93848a99
CH
3260 /* re-generate the checksum. */
3261 xfs_dinode_calc_crc(log->l_mp, dip);
3262
ebad861b 3263 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3264 bp->b_iodone = xlog_recover_iodone;
43ff2122 3265 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3266
3267out_release:
61551f1e 3268 xfs_buf_relse(bp);
6d192a9b
TS
3269error:
3270 if (need_free)
f0e2d93c 3271 kmem_free(in_f);
b474c7ae 3272 return error;
1da177e4
LT
3273}
3274
3275/*
9a8d2fdb 3276 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3277 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3278 * of that type.
3279 */
3280STATIC int
c9f71f5f 3281xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3282 struct xlog *log,
3283 struct xlog_recover_item *item)
1da177e4 3284{
c9f71f5f 3285 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3286 ASSERT(qoff_f);
3287
3288 /*
3289 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3290 * group/project quotaoff or both.
1da177e4
LT
3291 */
3292 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3293 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3294 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3295 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3296 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3297 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3298
d99831ff 3299 return 0;
1da177e4
LT
3300}
3301
3302/*
3303 * Recover a dquot record
3304 */
3305STATIC int
c9f71f5f 3306xlog_recover_dquot_pass2(
9a8d2fdb
MT
3307 struct xlog *log,
3308 struct list_head *buffer_list,
50d5c8d8
DC
3309 struct xlog_recover_item *item,
3310 xfs_lsn_t current_lsn)
1da177e4 3311{
c9f71f5f 3312 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3313 xfs_buf_t *bp;
3314 struct xfs_disk_dquot *ddq, *recddq;
eebf3cab 3315 xfs_failaddr_t fa;
1da177e4
LT
3316 int error;
3317 xfs_dq_logformat_t *dq_f;
3318 uint type;
3319
1da177e4
LT
3320
3321 /*
3322 * Filesystems are required to send in quota flags at mount time.
3323 */
3324 if (mp->m_qflags == 0)
d99831ff 3325 return 0;
1da177e4 3326
4e0d5f92
CH
3327 recddq = item->ri_buf[1].i_addr;
3328 if (recddq == NULL) {
a0fa2b67 3329 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3330 return -EIO;
0c5e1ce8 3331 }
8ec6dba2 3332 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3333 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3334 item->ri_buf[1].i_len, __func__);
2451337d 3335 return -EIO;
0c5e1ce8
CH
3336 }
3337
1da177e4
LT
3338 /*
3339 * This type of quotas was turned off, so ignore this record.
3340 */
b53e675d 3341 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3342 ASSERT(type);
3343 if (log->l_quotaoffs_flag & type)
d99831ff 3344 return 0;
1da177e4
LT
3345
3346 /*
3347 * At this point we know that quota was _not_ turned off.
3348 * Since the mount flags are not indicating to us otherwise, this
3349 * must mean that quota is on, and the dquot needs to be replayed.
3350 * Remember that we may not have fully recovered the superblock yet,
3351 * so we can't do the usual trick of looking at the SB quota bits.
3352 *
3353 * The other possibility, of course, is that the quota subsystem was
3354 * removed since the last mount - ENOSYS.
3355 */
4e0d5f92 3356 dq_f = item->ri_buf[0].i_addr;
1da177e4 3357 ASSERT(dq_f);
e381a0f6 3358 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
eebf3cab
DW
3359 if (fa) {
3360 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3361 dq_f->qlf_id, fa);
2451337d 3362 return -EIO;
eebf3cab 3363 }
1da177e4
LT
3364 ASSERT(dq_f->qlf_len == 1);
3365
ad3714b8
DC
3366 /*
3367 * At this point we are assuming that the dquots have been allocated
3368 * and hence the buffer has valid dquots stamped in it. It should,
3369 * therefore, pass verifier validation. If the dquot is bad, then the
3370 * we'll return an error here, so we don't need to specifically check
3371 * the dquot in the buffer after the verifier has run.
3372 */
7ca790a5 3373 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3374 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3375 &xfs_dquot_buf_ops);
7ca790a5 3376 if (error)
1da177e4 3377 return error;
7ca790a5 3378
1da177e4 3379 ASSERT(bp);
88ee2df7 3380 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3381
50d5c8d8
DC
3382 /*
3383 * If the dquot has an LSN in it, recover the dquot only if it's less
3384 * than the lsn of the transaction we are replaying.
3385 */
3386 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3387 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3388 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3389
3390 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3391 goto out_release;
3392 }
3393 }
3394
1da177e4 3395 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3396 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3397 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3398 XFS_DQUOT_CRC_OFF);
3399 }
1da177e4
LT
3400
3401 ASSERT(dq_f->qlf_size == 2);
ebad861b 3402 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3403 bp->b_iodone = xlog_recover_iodone;
43ff2122 3404 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3405
50d5c8d8
DC
3406out_release:
3407 xfs_buf_relse(bp);
3408 return 0;
1da177e4
LT
3409}
3410
3411/*
3412 * This routine is called to create an in-core extent free intent
3413 * item from the efi format structure which was logged on disk.
3414 * It allocates an in-core efi, copies the extents from the format
3415 * structure into it, and adds the efi to the AIL with the given
3416 * LSN.
3417 */
6d192a9b 3418STATIC int
c9f71f5f 3419xlog_recover_efi_pass2(
9a8d2fdb
MT
3420 struct xlog *log,
3421 struct xlog_recover_item *item,
3422 xfs_lsn_t lsn)
1da177e4 3423{
e32a1d1f
BF
3424 int error;
3425 struct xfs_mount *mp = log->l_mp;
3426 struct xfs_efi_log_item *efip;
3427 struct xfs_efi_log_format *efi_formatp;
1da177e4 3428
4e0d5f92 3429 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3430
1da177e4 3431 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3432 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3433 if (error) {
6d192a9b
TS
3434 xfs_efi_item_free(efip);
3435 return error;
3436 }
b199c8a4 3437 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3438
57e80956 3439 spin_lock(&log->l_ailp->ail_lock);
1da177e4 3440 /*
e32a1d1f
BF
3441 * The EFI has two references. One for the EFD and one for EFI to ensure
3442 * it makes it into the AIL. Insert the EFI into the AIL directly and
3443 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3444 * AIL lock.
1da177e4 3445 */
e6059949 3446 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3447 xfs_efi_release(efip);
6d192a9b 3448 return 0;
1da177e4
LT
3449}
3450
3451
3452/*
e32a1d1f
BF
3453 * This routine is called when an EFD format structure is found in a committed
3454 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3455 * was still in the log. To do this it searches the AIL for the EFI with an id
3456 * equal to that in the EFD format structure. If we find it we drop the EFD
3457 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3458 */
c9f71f5f
CH
3459STATIC int
3460xlog_recover_efd_pass2(
9a8d2fdb
MT
3461 struct xlog *log,
3462 struct xlog_recover_item *item)
1da177e4 3463{
1da177e4
LT
3464 xfs_efd_log_format_t *efd_formatp;
3465 xfs_efi_log_item_t *efip = NULL;
3466 xfs_log_item_t *lip;
c8ce540d 3467 uint64_t efi_id;
27d8d5fe 3468 struct xfs_ail_cursor cur;
783a2f65 3469 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3470
4e0d5f92 3471 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3472 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3473 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3474 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3475 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3476 efi_id = efd_formatp->efd_efi_id;
3477
3478 /*
e32a1d1f
BF
3479 * Search for the EFI with the id in the EFD format structure in the
3480 * AIL.
1da177e4 3481 */
57e80956 3482 spin_lock(&ailp->ail_lock);
a9c21c1b 3483 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3484 while (lip != NULL) {
3485 if (lip->li_type == XFS_LI_EFI) {
3486 efip = (xfs_efi_log_item_t *)lip;
3487 if (efip->efi_format.efi_id == efi_id) {
3488 /*
e32a1d1f
BF
3489 * Drop the EFD reference to the EFI. This
3490 * removes the EFI from the AIL and frees it.
1da177e4 3491 */
57e80956 3492 spin_unlock(&ailp->ail_lock);
e32a1d1f 3493 xfs_efi_release(efip);
57e80956 3494 spin_lock(&ailp->ail_lock);
27d8d5fe 3495 break;
1da177e4
LT
3496 }
3497 }
a9c21c1b 3498 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3499 }
e32a1d1f 3500
e4a1e29c 3501 xfs_trans_ail_cursor_done(&cur);
57e80956 3502 spin_unlock(&ailp->ail_lock);
c9f71f5f
CH
3503
3504 return 0;
1da177e4
LT
3505}
3506
9e88b5d8
DW
3507/*
3508 * This routine is called to create an in-core extent rmap update
3509 * item from the rui format structure which was logged on disk.
3510 * It allocates an in-core rui, copies the extents from the format
3511 * structure into it, and adds the rui to the AIL with the given
3512 * LSN.
3513 */
3514STATIC int
3515xlog_recover_rui_pass2(
3516 struct xlog *log,
3517 struct xlog_recover_item *item,
3518 xfs_lsn_t lsn)
3519{
3520 int error;
3521 struct xfs_mount *mp = log->l_mp;
3522 struct xfs_rui_log_item *ruip;
3523 struct xfs_rui_log_format *rui_formatp;
3524
3525 rui_formatp = item->ri_buf[0].i_addr;
3526
3527 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3528 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3529 if (error) {
3530 xfs_rui_item_free(ruip);
3531 return error;
3532 }
3533 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3534
57e80956 3535 spin_lock(&log->l_ailp->ail_lock);
9e88b5d8
DW
3536 /*
3537 * The RUI has two references. One for the RUD and one for RUI to ensure
3538 * it makes it into the AIL. Insert the RUI into the AIL directly and
3539 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3540 * AIL lock.
3541 */
3542 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3543 xfs_rui_release(ruip);
3544 return 0;
3545}
3546
3547
3548/*
3549 * This routine is called when an RUD format structure is found in a committed
3550 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3551 * was still in the log. To do this it searches the AIL for the RUI with an id
3552 * equal to that in the RUD format structure. If we find it we drop the RUD
3553 * reference, which removes the RUI from the AIL and frees it.
3554 */
3555STATIC int
3556xlog_recover_rud_pass2(
3557 struct xlog *log,
3558 struct xlog_recover_item *item)
3559{
3560 struct xfs_rud_log_format *rud_formatp;
3561 struct xfs_rui_log_item *ruip = NULL;
3562 struct xfs_log_item *lip;
c8ce540d 3563 uint64_t rui_id;
9e88b5d8
DW
3564 struct xfs_ail_cursor cur;
3565 struct xfs_ail *ailp = log->l_ailp;
3566
3567 rud_formatp = item->ri_buf[0].i_addr;
722e2517 3568 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
9e88b5d8
DW
3569 rui_id = rud_formatp->rud_rui_id;
3570
3571 /*
3572 * Search for the RUI with the id in the RUD format structure in the
3573 * AIL.
3574 */
57e80956 3575 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
3576 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3577 while (lip != NULL) {
3578 if (lip->li_type == XFS_LI_RUI) {
3579 ruip = (struct xfs_rui_log_item *)lip;
3580 if (ruip->rui_format.rui_id == rui_id) {
3581 /*
3582 * Drop the RUD reference to the RUI. This
3583 * removes the RUI from the AIL and frees it.
3584 */
57e80956 3585 spin_unlock(&ailp->ail_lock);
9e88b5d8 3586 xfs_rui_release(ruip);
57e80956 3587 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
3588 break;
3589 }
3590 }
3591 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3592 }
3593
3594 xfs_trans_ail_cursor_done(&cur);
57e80956 3595 spin_unlock(&ailp->ail_lock);
9e88b5d8
DW
3596
3597 return 0;
3598}
3599
f997ee21
DW
3600/*
3601 * Copy an CUI format buffer from the given buf, and into the destination
3602 * CUI format structure. The CUI/CUD items were designed not to need any
3603 * special alignment handling.
3604 */
3605static int
3606xfs_cui_copy_format(
3607 struct xfs_log_iovec *buf,
3608 struct xfs_cui_log_format *dst_cui_fmt)
3609{
3610 struct xfs_cui_log_format *src_cui_fmt;
3611 uint len;
3612
3613 src_cui_fmt = buf->i_addr;
3614 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3615
3616 if (buf->i_len == len) {
3617 memcpy(dst_cui_fmt, src_cui_fmt, len);
3618 return 0;
3619 }
3620 return -EFSCORRUPTED;
3621}
3622
3623/*
3624 * This routine is called to create an in-core extent refcount update
3625 * item from the cui format structure which was logged on disk.
3626 * It allocates an in-core cui, copies the extents from the format
3627 * structure into it, and adds the cui to the AIL with the given
3628 * LSN.
3629 */
3630STATIC int
3631xlog_recover_cui_pass2(
3632 struct xlog *log,
3633 struct xlog_recover_item *item,
3634 xfs_lsn_t lsn)
3635{
3636 int error;
3637 struct xfs_mount *mp = log->l_mp;
3638 struct xfs_cui_log_item *cuip;
3639 struct xfs_cui_log_format *cui_formatp;
3640
3641 cui_formatp = item->ri_buf[0].i_addr;
3642
3643 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3644 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3645 if (error) {
3646 xfs_cui_item_free(cuip);
3647 return error;
3648 }
3649 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3650
57e80956 3651 spin_lock(&log->l_ailp->ail_lock);
f997ee21
DW
3652 /*
3653 * The CUI has two references. One for the CUD and one for CUI to ensure
3654 * it makes it into the AIL. Insert the CUI into the AIL directly and
3655 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3656 * AIL lock.
3657 */
3658 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3659 xfs_cui_release(cuip);
3660 return 0;
3661}
3662
3663
3664/*
3665 * This routine is called when an CUD format structure is found in a committed
3666 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3667 * was still in the log. To do this it searches the AIL for the CUI with an id
3668 * equal to that in the CUD format structure. If we find it we drop the CUD
3669 * reference, which removes the CUI from the AIL and frees it.
3670 */
3671STATIC int
3672xlog_recover_cud_pass2(
3673 struct xlog *log,
3674 struct xlog_recover_item *item)
3675{
3676 struct xfs_cud_log_format *cud_formatp;
3677 struct xfs_cui_log_item *cuip = NULL;
3678 struct xfs_log_item *lip;
c8ce540d 3679 uint64_t cui_id;
f997ee21
DW
3680 struct xfs_ail_cursor cur;
3681 struct xfs_ail *ailp = log->l_ailp;
3682
3683 cud_formatp = item->ri_buf[0].i_addr;
3684 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3685 return -EFSCORRUPTED;
3686 cui_id = cud_formatp->cud_cui_id;
3687
3688 /*
3689 * Search for the CUI with the id in the CUD format structure in the
3690 * AIL.
3691 */
57e80956 3692 spin_lock(&ailp->ail_lock);
f997ee21
DW
3693 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3694 while (lip != NULL) {
3695 if (lip->li_type == XFS_LI_CUI) {
3696 cuip = (struct xfs_cui_log_item *)lip;
3697 if (cuip->cui_format.cui_id == cui_id) {
3698 /*
3699 * Drop the CUD reference to the CUI. This
3700 * removes the CUI from the AIL and frees it.
3701 */
57e80956 3702 spin_unlock(&ailp->ail_lock);
f997ee21 3703 xfs_cui_release(cuip);
57e80956 3704 spin_lock(&ailp->ail_lock);
f997ee21
DW
3705 break;
3706 }
3707 }
3708 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3709 }
3710
3711 xfs_trans_ail_cursor_done(&cur);
57e80956 3712 spin_unlock(&ailp->ail_lock);
f997ee21
DW
3713
3714 return 0;
3715}
3716
77d61fe4
DW
3717/*
3718 * Copy an BUI format buffer from the given buf, and into the destination
3719 * BUI format structure. The BUI/BUD items were designed not to need any
3720 * special alignment handling.
3721 */
3722static int
3723xfs_bui_copy_format(
3724 struct xfs_log_iovec *buf,
3725 struct xfs_bui_log_format *dst_bui_fmt)
3726{
3727 struct xfs_bui_log_format *src_bui_fmt;
3728 uint len;
3729
3730 src_bui_fmt = buf->i_addr;
3731 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3732
3733 if (buf->i_len == len) {
3734 memcpy(dst_bui_fmt, src_bui_fmt, len);
3735 return 0;
3736 }
3737 return -EFSCORRUPTED;
3738}
3739
3740/*
3741 * This routine is called to create an in-core extent bmap update
3742 * item from the bui format structure which was logged on disk.
3743 * It allocates an in-core bui, copies the extents from the format
3744 * structure into it, and adds the bui to the AIL with the given
3745 * LSN.
3746 */
3747STATIC int
3748xlog_recover_bui_pass2(
3749 struct xlog *log,
3750 struct xlog_recover_item *item,
3751 xfs_lsn_t lsn)
3752{
3753 int error;
3754 struct xfs_mount *mp = log->l_mp;
3755 struct xfs_bui_log_item *buip;
3756 struct xfs_bui_log_format *bui_formatp;
3757
3758 bui_formatp = item->ri_buf[0].i_addr;
3759
3760 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3761 return -EFSCORRUPTED;
3762 buip = xfs_bui_init(mp);
3763 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3764 if (error) {
3765 xfs_bui_item_free(buip);
3766 return error;
3767 }
3768 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3769
57e80956 3770 spin_lock(&log->l_ailp->ail_lock);
77d61fe4
DW
3771 /*
3772 * The RUI has two references. One for the RUD and one for RUI to ensure
3773 * it makes it into the AIL. Insert the RUI into the AIL directly and
3774 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3775 * AIL lock.
3776 */
3777 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3778 xfs_bui_release(buip);
3779 return 0;
3780}
3781
3782
3783/*
3784 * This routine is called when an BUD format structure is found in a committed
3785 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3786 * was still in the log. To do this it searches the AIL for the BUI with an id
3787 * equal to that in the BUD format structure. If we find it we drop the BUD
3788 * reference, which removes the BUI from the AIL and frees it.
3789 */
3790STATIC int
3791xlog_recover_bud_pass2(
3792 struct xlog *log,
3793 struct xlog_recover_item *item)
3794{
3795 struct xfs_bud_log_format *bud_formatp;
3796 struct xfs_bui_log_item *buip = NULL;
3797 struct xfs_log_item *lip;
c8ce540d 3798 uint64_t bui_id;
77d61fe4
DW
3799 struct xfs_ail_cursor cur;
3800 struct xfs_ail *ailp = log->l_ailp;
3801
3802 bud_formatp = item->ri_buf[0].i_addr;
3803 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3804 return -EFSCORRUPTED;
3805 bui_id = bud_formatp->bud_bui_id;
3806
3807 /*
3808 * Search for the BUI with the id in the BUD format structure in the
3809 * AIL.
3810 */
57e80956 3811 spin_lock(&ailp->ail_lock);
77d61fe4
DW
3812 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3813 while (lip != NULL) {
3814 if (lip->li_type == XFS_LI_BUI) {
3815 buip = (struct xfs_bui_log_item *)lip;
3816 if (buip->bui_format.bui_id == bui_id) {
3817 /*
3818 * Drop the BUD reference to the BUI. This
3819 * removes the BUI from the AIL and frees it.
3820 */
57e80956 3821 spin_unlock(&ailp->ail_lock);
77d61fe4 3822 xfs_bui_release(buip);
57e80956 3823 spin_lock(&ailp->ail_lock);
77d61fe4
DW
3824 break;
3825 }
3826 }
3827 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3828 }
3829
3830 xfs_trans_ail_cursor_done(&cur);
57e80956 3831 spin_unlock(&ailp->ail_lock);
77d61fe4
DW
3832
3833 return 0;
3834}
3835
28c8e41a
DC
3836/*
3837 * This routine is called when an inode create format structure is found in a
3838 * committed transaction in the log. It's purpose is to initialise the inodes
3839 * being allocated on disk. This requires us to get inode cluster buffers that
6e7c2b4d 3840 * match the range to be initialised, stamped with inode templates and written
28c8e41a
DC
3841 * by delayed write so that subsequent modifications will hit the cached buffer
3842 * and only need writing out at the end of recovery.
3843 */
3844STATIC int
3845xlog_recover_do_icreate_pass2(
3846 struct xlog *log,
3847 struct list_head *buffer_list,
3848 xlog_recover_item_t *item)
3849{
3850 struct xfs_mount *mp = log->l_mp;
3851 struct xfs_icreate_log *icl;
3852 xfs_agnumber_t agno;
3853 xfs_agblock_t agbno;
3854 unsigned int count;
3855 unsigned int isize;
3856 xfs_agblock_t length;
fc0d1656
BF
3857 int bb_per_cluster;
3858 int cancel_count;
3859 int nbufs;
3860 int i;
28c8e41a
DC
3861
3862 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3863 if (icl->icl_type != XFS_LI_ICREATE) {
3864 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3865 return -EINVAL;
28c8e41a
DC
3866 }
3867
3868 if (icl->icl_size != 1) {
3869 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3870 return -EINVAL;
28c8e41a
DC
3871 }
3872
3873 agno = be32_to_cpu(icl->icl_ag);
3874 if (agno >= mp->m_sb.sb_agcount) {
3875 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3876 return -EINVAL;
28c8e41a
DC
3877 }
3878 agbno = be32_to_cpu(icl->icl_agbno);
3879 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3880 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3881 return -EINVAL;
28c8e41a
DC
3882 }
3883 isize = be32_to_cpu(icl->icl_isize);
3884 if (isize != mp->m_sb.sb_inodesize) {
3885 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3886 return -EINVAL;
28c8e41a
DC
3887 }
3888 count = be32_to_cpu(icl->icl_count);
3889 if (!count) {
3890 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3891 return -EINVAL;
28c8e41a
DC
3892 }
3893 length = be32_to_cpu(icl->icl_length);
3894 if (!length || length >= mp->m_sb.sb_agblocks) {
3895 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3896 return -EINVAL;
28c8e41a
DC
3897 }
3898
7f43c907
BF
3899 /*
3900 * The inode chunk is either full or sparse and we only support
3901 * m_ialloc_min_blks sized sparse allocations at this time.
3902 */
3903 if (length != mp->m_ialloc_blks &&
3904 length != mp->m_ialloc_min_blks) {
3905 xfs_warn(log->l_mp,
3906 "%s: unsupported chunk length", __FUNCTION__);
3907 return -EINVAL;
3908 }
3909
3910 /* verify inode count is consistent with extent length */
3911 if ((count >> mp->m_sb.sb_inopblog) != length) {
3912 xfs_warn(log->l_mp,
3913 "%s: inconsistent inode count and chunk length",
3914 __FUNCTION__);
2451337d 3915 return -EINVAL;
28c8e41a
DC
3916 }
3917
3918 /*
fc0d1656
BF
3919 * The icreate transaction can cover multiple cluster buffers and these
3920 * buffers could have been freed and reused. Check the individual
3921 * buffers for cancellation so we don't overwrite anything written after
3922 * a cancellation.
3923 */
83dcdb44
DW
3924 bb_per_cluster = XFS_FSB_TO_BB(mp, mp->m_blocks_per_cluster);
3925 nbufs = length / mp->m_blocks_per_cluster;
fc0d1656
BF
3926 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3927 xfs_daddr_t daddr;
3928
3929 daddr = XFS_AGB_TO_DADDR(mp, agno,
83dcdb44 3930 agbno + i * mp->m_blocks_per_cluster);
fc0d1656
BF
3931 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3932 cancel_count++;
3933 }
3934
3935 /*
3936 * We currently only use icreate for a single allocation at a time. This
3937 * means we should expect either all or none of the buffers to be
3938 * cancelled. Be conservative and skip replay if at least one buffer is
3939 * cancelled, but warn the user that something is awry if the buffers
3940 * are not consistent.
28c8e41a 3941 *
fc0d1656
BF
3942 * XXX: This must be refined to only skip cancelled clusters once we use
3943 * icreate for multiple chunk allocations.
28c8e41a 3944 */
fc0d1656
BF
3945 ASSERT(!cancel_count || cancel_count == nbufs);
3946 if (cancel_count) {
3947 if (cancel_count != nbufs)
3948 xfs_warn(mp,
3949 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3950 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3951 return 0;
78d57e45 3952 }
28c8e41a 3953
78d57e45 3954 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3955 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3956 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3957}
3958
00574da1
ZYW
3959STATIC void
3960xlog_recover_buffer_ra_pass2(
3961 struct xlog *log,
3962 struct xlog_recover_item *item)
3963{
3964 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3965 struct xfs_mount *mp = log->l_mp;
3966
84a5b730 3967 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3968 buf_f->blf_len, buf_f->blf_flags)) {
3969 return;
3970 }
3971
3972 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3973 buf_f->blf_len, NULL);
3974}
3975
3976STATIC void
3977xlog_recover_inode_ra_pass2(
3978 struct xlog *log,
3979 struct xlog_recover_item *item)
3980{
3981 struct xfs_inode_log_format ilf_buf;
3982 struct xfs_inode_log_format *ilfp;
3983 struct xfs_mount *mp = log->l_mp;
3984 int error;
3985
3986 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3987 ilfp = item->ri_buf[0].i_addr;
3988 } else {
3989 ilfp = &ilf_buf;
3990 memset(ilfp, 0, sizeof(*ilfp));
3991 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3992 if (error)
3993 return;
3994 }
3995
84a5b730 3996 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3997 return;
3998
3999 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 4000 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
4001}
4002
4003STATIC void
4004xlog_recover_dquot_ra_pass2(
4005 struct xlog *log,
4006 struct xlog_recover_item *item)
4007{
4008 struct xfs_mount *mp = log->l_mp;
4009 struct xfs_disk_dquot *recddq;
4010 struct xfs_dq_logformat *dq_f;
4011 uint type;
7d6a13f0 4012 int len;
00574da1
ZYW
4013
4014
4015 if (mp->m_qflags == 0)
4016 return;
4017
4018 recddq = item->ri_buf[1].i_addr;
4019 if (recddq == NULL)
4020 return;
4021 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4022 return;
4023
4024 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4025 ASSERT(type);
4026 if (log->l_quotaoffs_flag & type)
4027 return;
4028
4029 dq_f = item->ri_buf[0].i_addr;
4030 ASSERT(dq_f);
4031 ASSERT(dq_f->qlf_len == 1);
4032
7d6a13f0
DC
4033 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4034 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4035 return;
4036
4037 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4038 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
4039}
4040
4041STATIC void
4042xlog_recover_ra_pass2(
4043 struct xlog *log,
4044 struct xlog_recover_item *item)
4045{
4046 switch (ITEM_TYPE(item)) {
4047 case XFS_LI_BUF:
4048 xlog_recover_buffer_ra_pass2(log, item);
4049 break;
4050 case XFS_LI_INODE:
4051 xlog_recover_inode_ra_pass2(log, item);
4052 break;
4053 case XFS_LI_DQUOT:
4054 xlog_recover_dquot_ra_pass2(log, item);
4055 break;
4056 case XFS_LI_EFI:
4057 case XFS_LI_EFD:
4058 case XFS_LI_QUOTAOFF:
9e88b5d8
DW
4059 case XFS_LI_RUI:
4060 case XFS_LI_RUD:
f997ee21
DW
4061 case XFS_LI_CUI:
4062 case XFS_LI_CUD:
77d61fe4
DW
4063 case XFS_LI_BUI:
4064 case XFS_LI_BUD:
00574da1
ZYW
4065 default:
4066 break;
4067 }
4068}
4069
d0450948 4070STATIC int
c9f71f5f 4071xlog_recover_commit_pass1(
ad223e60
MT
4072 struct xlog *log,
4073 struct xlog_recover *trans,
4074 struct xlog_recover_item *item)
d0450948 4075{
c9f71f5f 4076 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
4077
4078 switch (ITEM_TYPE(item)) {
4079 case XFS_LI_BUF:
c9f71f5f
CH
4080 return xlog_recover_buffer_pass1(log, item);
4081 case XFS_LI_QUOTAOFF:
4082 return xlog_recover_quotaoff_pass1(log, item);
d0450948 4083 case XFS_LI_INODE:
d0450948 4084 case XFS_LI_EFI:
d0450948 4085 case XFS_LI_EFD:
c9f71f5f 4086 case XFS_LI_DQUOT:
28c8e41a 4087 case XFS_LI_ICREATE:
9e88b5d8
DW
4088 case XFS_LI_RUI:
4089 case XFS_LI_RUD:
f997ee21
DW
4090 case XFS_LI_CUI:
4091 case XFS_LI_CUD:
77d61fe4
DW
4092 case XFS_LI_BUI:
4093 case XFS_LI_BUD:
c9f71f5f 4094 /* nothing to do in pass 1 */
d0450948 4095 return 0;
c9f71f5f 4096 default:
a0fa2b67
DC
4097 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4098 __func__, ITEM_TYPE(item));
c9f71f5f 4099 ASSERT(0);
2451337d 4100 return -EIO;
c9f71f5f
CH
4101 }
4102}
4103
4104STATIC int
4105xlog_recover_commit_pass2(
ad223e60
MT
4106 struct xlog *log,
4107 struct xlog_recover *trans,
4108 struct list_head *buffer_list,
4109 struct xlog_recover_item *item)
c9f71f5f
CH
4110{
4111 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4112
4113 switch (ITEM_TYPE(item)) {
4114 case XFS_LI_BUF:
50d5c8d8
DC
4115 return xlog_recover_buffer_pass2(log, buffer_list, item,
4116 trans->r_lsn);
c9f71f5f 4117 case XFS_LI_INODE:
50d5c8d8
DC
4118 return xlog_recover_inode_pass2(log, buffer_list, item,
4119 trans->r_lsn);
c9f71f5f
CH
4120 case XFS_LI_EFI:
4121 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4122 case XFS_LI_EFD:
4123 return xlog_recover_efd_pass2(log, item);
9e88b5d8
DW
4124 case XFS_LI_RUI:
4125 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4126 case XFS_LI_RUD:
4127 return xlog_recover_rud_pass2(log, item);
f997ee21
DW
4128 case XFS_LI_CUI:
4129 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4130 case XFS_LI_CUD:
4131 return xlog_recover_cud_pass2(log, item);
77d61fe4
DW
4132 case XFS_LI_BUI:
4133 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4134 case XFS_LI_BUD:
4135 return xlog_recover_bud_pass2(log, item);
d0450948 4136 case XFS_LI_DQUOT:
50d5c8d8
DC
4137 return xlog_recover_dquot_pass2(log, buffer_list, item,
4138 trans->r_lsn);
28c8e41a
DC
4139 case XFS_LI_ICREATE:
4140 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 4141 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
4142 /* nothing to do in pass2 */
4143 return 0;
d0450948 4144 default:
a0fa2b67
DC
4145 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4146 __func__, ITEM_TYPE(item));
d0450948 4147 ASSERT(0);
2451337d 4148 return -EIO;
d0450948
CH
4149 }
4150}
4151
00574da1
ZYW
4152STATIC int
4153xlog_recover_items_pass2(
4154 struct xlog *log,
4155 struct xlog_recover *trans,
4156 struct list_head *buffer_list,
4157 struct list_head *item_list)
4158{
4159 struct xlog_recover_item *item;
4160 int error = 0;
4161
4162 list_for_each_entry(item, item_list, ri_list) {
4163 error = xlog_recover_commit_pass2(log, trans,
4164 buffer_list, item);
4165 if (error)
4166 return error;
4167 }
4168
4169 return error;
4170}
4171
d0450948
CH
4172/*
4173 * Perform the transaction.
4174 *
4175 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4176 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4177 */
1da177e4
LT
4178STATIC int
4179xlog_recover_commit_trans(
ad223e60 4180 struct xlog *log,
d0450948 4181 struct xlog_recover *trans,
12818d24
BF
4182 int pass,
4183 struct list_head *buffer_list)
1da177e4 4184{
00574da1 4185 int error = 0;
00574da1
ZYW
4186 int items_queued = 0;
4187 struct xlog_recover_item *item;
4188 struct xlog_recover_item *next;
00574da1
ZYW
4189 LIST_HEAD (ra_list);
4190 LIST_HEAD (done_list);
4191
4192 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 4193
39775431 4194 hlist_del_init(&trans->r_list);
d0450948
CH
4195
4196 error = xlog_recover_reorder_trans(log, trans, pass);
4197 if (error)
1da177e4 4198 return error;
d0450948 4199
00574da1 4200 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
4201 switch (pass) {
4202 case XLOG_RECOVER_PASS1:
c9f71f5f 4203 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
4204 break;
4205 case XLOG_RECOVER_PASS2:
00574da1
ZYW
4206 xlog_recover_ra_pass2(log, item);
4207 list_move_tail(&item->ri_list, &ra_list);
4208 items_queued++;
4209 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4210 error = xlog_recover_items_pass2(log, trans,
12818d24 4211 buffer_list, &ra_list);
00574da1
ZYW
4212 list_splice_tail_init(&ra_list, &done_list);
4213 items_queued = 0;
4214 }
4215
43ff2122
CH
4216 break;
4217 default:
4218 ASSERT(0);
4219 }
4220
d0450948 4221 if (error)
43ff2122 4222 goto out;
d0450948
CH
4223 }
4224
00574da1
ZYW
4225out:
4226 if (!list_empty(&ra_list)) {
4227 if (!error)
4228 error = xlog_recover_items_pass2(log, trans,
12818d24 4229 buffer_list, &ra_list);
00574da1
ZYW
4230 list_splice_tail_init(&ra_list, &done_list);
4231 }
4232
4233 if (!list_empty(&done_list))
4234 list_splice_init(&done_list, &trans->r_itemq);
4235
12818d24 4236 return error;
1da177e4
LT
4237}
4238
76560669
DC
4239STATIC void
4240xlog_recover_add_item(
4241 struct list_head *head)
4242{
4243 xlog_recover_item_t *item;
4244
4245 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4246 INIT_LIST_HEAD(&item->ri_list);
4247 list_add_tail(&item->ri_list, head);
4248}
4249
1da177e4 4250STATIC int
76560669
DC
4251xlog_recover_add_to_cont_trans(
4252 struct xlog *log,
4253 struct xlog_recover *trans,
b2a922cd 4254 char *dp,
76560669 4255 int len)
1da177e4 4256{
76560669 4257 xlog_recover_item_t *item;
b2a922cd 4258 char *ptr, *old_ptr;
76560669
DC
4259 int old_len;
4260
89cebc84
BF
4261 /*
4262 * If the transaction is empty, the header was split across this and the
4263 * previous record. Copy the rest of the header.
4264 */
76560669 4265 if (list_empty(&trans->r_itemq)) {
848ccfc8 4266 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
4267 if (len > sizeof(struct xfs_trans_header)) {
4268 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4269 return -EIO;
4270 }
4271
76560669 4272 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 4273 ptr = (char *)&trans->r_theader +
89cebc84 4274 sizeof(struct xfs_trans_header) - len;
76560669
DC
4275 memcpy(ptr, dp, len);
4276 return 0;
4277 }
89cebc84 4278
76560669
DC
4279 /* take the tail entry */
4280 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4281
4282 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4283 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4284
664b60f6 4285 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
76560669
DC
4286 memcpy(&ptr[old_len], dp, len);
4287 item->ri_buf[item->ri_cnt-1].i_len += len;
4288 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4289 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
4290 return 0;
4291}
4292
76560669
DC
4293/*
4294 * The next region to add is the start of a new region. It could be
4295 * a whole region or it could be the first part of a new region. Because
4296 * of this, the assumption here is that the type and size fields of all
4297 * format structures fit into the first 32 bits of the structure.
4298 *
4299 * This works because all regions must be 32 bit aligned. Therefore, we
4300 * either have both fields or we have neither field. In the case we have
4301 * neither field, the data part of the region is zero length. We only have
4302 * a log_op_header and can throw away the header since a new one will appear
4303 * later. If we have at least 4 bytes, then we can determine how many regions
4304 * will appear in the current log item.
4305 */
4306STATIC int
4307xlog_recover_add_to_trans(
4308 struct xlog *log,
4309 struct xlog_recover *trans,
b2a922cd 4310 char *dp,
76560669
DC
4311 int len)
4312{
06b11321 4313 struct xfs_inode_log_format *in_f; /* any will do */
76560669 4314 xlog_recover_item_t *item;
b2a922cd 4315 char *ptr;
76560669
DC
4316
4317 if (!len)
4318 return 0;
4319 if (list_empty(&trans->r_itemq)) {
4320 /* we need to catch log corruptions here */
4321 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4322 xfs_warn(log->l_mp, "%s: bad header magic number",
4323 __func__);
4324 ASSERT(0);
4325 return -EIO;
4326 }
89cebc84
BF
4327
4328 if (len > sizeof(struct xfs_trans_header)) {
4329 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4330 ASSERT(0);
4331 return -EIO;
4332 }
4333
4334 /*
4335 * The transaction header can be arbitrarily split across op
4336 * records. If we don't have the whole thing here, copy what we
4337 * do have and handle the rest in the next record.
4338 */
4339 if (len == sizeof(struct xfs_trans_header))
76560669
DC
4340 xlog_recover_add_item(&trans->r_itemq);
4341 memcpy(&trans->r_theader, dp, len);
4342 return 0;
4343 }
4344
4345 ptr = kmem_alloc(len, KM_SLEEP);
4346 memcpy(ptr, dp, len);
06b11321 4347 in_f = (struct xfs_inode_log_format *)ptr;
76560669
DC
4348
4349 /* take the tail entry */
4350 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4351 if (item->ri_total != 0 &&
4352 item->ri_total == item->ri_cnt) {
4353 /* tail item is in use, get a new one */
4354 xlog_recover_add_item(&trans->r_itemq);
4355 item = list_entry(trans->r_itemq.prev,
4356 xlog_recover_item_t, ri_list);
4357 }
4358
4359 if (item->ri_total == 0) { /* first region to be added */
4360 if (in_f->ilf_size == 0 ||
4361 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4362 xfs_warn(log->l_mp,
4363 "bad number of regions (%d) in inode log format",
4364 in_f->ilf_size);
4365 ASSERT(0);
4366 kmem_free(ptr);
4367 return -EIO;
4368 }
4369
4370 item->ri_total = in_f->ilf_size;
4371 item->ri_buf =
4372 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4373 KM_SLEEP);
4374 }
4375 ASSERT(item->ri_total > item->ri_cnt);
4376 /* Description region is ri_buf[0] */
4377 item->ri_buf[item->ri_cnt].i_addr = ptr;
4378 item->ri_buf[item->ri_cnt].i_len = len;
4379 item->ri_cnt++;
4380 trace_xfs_log_recover_item_add(log, trans, item, 0);
4381 return 0;
4382}
b818cca1 4383
76560669
DC
4384/*
4385 * Free up any resources allocated by the transaction
4386 *
4387 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4388 */
4389STATIC void
4390xlog_recover_free_trans(
4391 struct xlog_recover *trans)
4392{
4393 xlog_recover_item_t *item, *n;
4394 int i;
4395
39775431
BF
4396 hlist_del_init(&trans->r_list);
4397
76560669
DC
4398 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4399 /* Free the regions in the item. */
4400 list_del(&item->ri_list);
4401 for (i = 0; i < item->ri_cnt; i++)
4402 kmem_free(item->ri_buf[i].i_addr);
4403 /* Free the item itself */
4404 kmem_free(item->ri_buf);
4405 kmem_free(item);
4406 }
4407 /* Free the transaction recover structure */
4408 kmem_free(trans);
4409}
4410
e9131e50
DC
4411/*
4412 * On error or completion, trans is freed.
4413 */
1da177e4 4414STATIC int
eeb11688
DC
4415xlog_recovery_process_trans(
4416 struct xlog *log,
4417 struct xlog_recover *trans,
b2a922cd 4418 char *dp,
eeb11688
DC
4419 unsigned int len,
4420 unsigned int flags,
12818d24
BF
4421 int pass,
4422 struct list_head *buffer_list)
1da177e4 4423{
e9131e50
DC
4424 int error = 0;
4425 bool freeit = false;
eeb11688
DC
4426
4427 /* mask off ophdr transaction container flags */
4428 flags &= ~XLOG_END_TRANS;
4429 if (flags & XLOG_WAS_CONT_TRANS)
4430 flags &= ~XLOG_CONTINUE_TRANS;
4431
88b863db
DC
4432 /*
4433 * Callees must not free the trans structure. We'll decide if we need to
4434 * free it or not based on the operation being done and it's result.
4435 */
eeb11688
DC
4436 switch (flags) {
4437 /* expected flag values */
4438 case 0:
4439 case XLOG_CONTINUE_TRANS:
4440 error = xlog_recover_add_to_trans(log, trans, dp, len);
4441 break;
4442 case XLOG_WAS_CONT_TRANS:
4443 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4444 break;
4445 case XLOG_COMMIT_TRANS:
12818d24
BF
4446 error = xlog_recover_commit_trans(log, trans, pass,
4447 buffer_list);
88b863db
DC
4448 /* success or fail, we are now done with this transaction. */
4449 freeit = true;
eeb11688
DC
4450 break;
4451
4452 /* unexpected flag values */
4453 case XLOG_UNMOUNT_TRANS:
e9131e50 4454 /* just skip trans */
eeb11688 4455 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 4456 freeit = true;
eeb11688
DC
4457 break;
4458 case XLOG_START_TRANS:
eeb11688
DC
4459 default:
4460 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4461 ASSERT(0);
e9131e50 4462 error = -EIO;
eeb11688
DC
4463 break;
4464 }
e9131e50
DC
4465 if (error || freeit)
4466 xlog_recover_free_trans(trans);
eeb11688
DC
4467 return error;
4468}
4469
b818cca1
DC
4470/*
4471 * Lookup the transaction recovery structure associated with the ID in the
4472 * current ophdr. If the transaction doesn't exist and the start flag is set in
4473 * the ophdr, then allocate a new transaction for future ID matches to find.
4474 * Either way, return what we found during the lookup - an existing transaction
4475 * or nothing.
4476 */
eeb11688
DC
4477STATIC struct xlog_recover *
4478xlog_recover_ophdr_to_trans(
4479 struct hlist_head rhash[],
4480 struct xlog_rec_header *rhead,
4481 struct xlog_op_header *ohead)
4482{
4483 struct xlog_recover *trans;
4484 xlog_tid_t tid;
4485 struct hlist_head *rhp;
4486
4487 tid = be32_to_cpu(ohead->oh_tid);
4488 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4489 hlist_for_each_entry(trans, rhp, r_list) {
4490 if (trans->r_log_tid == tid)
4491 return trans;
4492 }
eeb11688
DC
4493
4494 /*
b818cca1
DC
4495 * skip over non-start transaction headers - we could be
4496 * processing slack space before the next transaction starts
4497 */
4498 if (!(ohead->oh_flags & XLOG_START_TRANS))
4499 return NULL;
4500
4501 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4502
4503 /*
4504 * This is a new transaction so allocate a new recovery container to
4505 * hold the recovery ops that will follow.
4506 */
4507 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4508 trans->r_log_tid = tid;
4509 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4510 INIT_LIST_HEAD(&trans->r_itemq);
4511 INIT_HLIST_NODE(&trans->r_list);
4512 hlist_add_head(&trans->r_list, rhp);
4513
4514 /*
4515 * Nothing more to do for this ophdr. Items to be added to this new
4516 * transaction will be in subsequent ophdr containers.
eeb11688 4517 */
eeb11688
DC
4518 return NULL;
4519}
4520
4521STATIC int
4522xlog_recover_process_ophdr(
4523 struct xlog *log,
4524 struct hlist_head rhash[],
4525 struct xlog_rec_header *rhead,
4526 struct xlog_op_header *ohead,
b2a922cd
CH
4527 char *dp,
4528 char *end,
12818d24
BF
4529 int pass,
4530 struct list_head *buffer_list)
eeb11688
DC
4531{
4532 struct xlog_recover *trans;
eeb11688 4533 unsigned int len;
12818d24 4534 int error;
eeb11688
DC
4535
4536 /* Do we understand who wrote this op? */
4537 if (ohead->oh_clientid != XFS_TRANSACTION &&
4538 ohead->oh_clientid != XFS_LOG) {
4539 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4540 __func__, ohead->oh_clientid);
4541 ASSERT(0);
4542 return -EIO;
4543 }
4544
4545 /*
4546 * Check the ophdr contains all the data it is supposed to contain.
4547 */
4548 len = be32_to_cpu(ohead->oh_len);
4549 if (dp + len > end) {
4550 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4551 WARN_ON(1);
4552 return -EIO;
4553 }
4554
4555 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4556 if (!trans) {
4557 /* nothing to do, so skip over this ophdr */
4558 return 0;
4559 }
4560
12818d24
BF
4561 /*
4562 * The recovered buffer queue is drained only once we know that all
4563 * recovery items for the current LSN have been processed. This is
4564 * required because:
4565 *
4566 * - Buffer write submission updates the metadata LSN of the buffer.
4567 * - Log recovery skips items with a metadata LSN >= the current LSN of
4568 * the recovery item.
4569 * - Separate recovery items against the same metadata buffer can share
4570 * a current LSN. I.e., consider that the LSN of a recovery item is
4571 * defined as the starting LSN of the first record in which its
4572 * transaction appears, that a record can hold multiple transactions,
4573 * and/or that a transaction can span multiple records.
4574 *
4575 * In other words, we are allowed to submit a buffer from log recovery
4576 * once per current LSN. Otherwise, we may incorrectly skip recovery
4577 * items and cause corruption.
4578 *
4579 * We don't know up front whether buffers are updated multiple times per
4580 * LSN. Therefore, track the current LSN of each commit log record as it
4581 * is processed and drain the queue when it changes. Use commit records
4582 * because they are ordered correctly by the logging code.
4583 */
4584 if (log->l_recovery_lsn != trans->r_lsn &&
4585 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4586 error = xfs_buf_delwri_submit(buffer_list);
4587 if (error)
4588 return error;
4589 log->l_recovery_lsn = trans->r_lsn;
4590 }
4591
e9131e50 4592 return xlog_recovery_process_trans(log, trans, dp, len,
12818d24 4593 ohead->oh_flags, pass, buffer_list);
1da177e4
LT
4594}
4595
4596/*
4597 * There are two valid states of the r_state field. 0 indicates that the
4598 * transaction structure is in a normal state. We have either seen the
4599 * start of the transaction or the last operation we added was not a partial
4600 * operation. If the last operation we added to the transaction was a
4601 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4602 *
4603 * NOTE: skip LRs with 0 data length.
4604 */
4605STATIC int
4606xlog_recover_process_data(
9a8d2fdb 4607 struct xlog *log,
f0a76953 4608 struct hlist_head rhash[],
9a8d2fdb 4609 struct xlog_rec_header *rhead,
b2a922cd 4610 char *dp,
12818d24
BF
4611 int pass,
4612 struct list_head *buffer_list)
1da177e4 4613{
eeb11688 4614 struct xlog_op_header *ohead;
b2a922cd 4615 char *end;
1da177e4 4616 int num_logops;
1da177e4 4617 int error;
1da177e4 4618
eeb11688 4619 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4620 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4621
4622 /* check the log format matches our own - else we can't recover */
4623 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4624 return -EIO;
1da177e4 4625
5cd9cee9 4626 trace_xfs_log_recover_record(log, rhead, pass);
eeb11688
DC
4627 while ((dp < end) && num_logops) {
4628
4629 ohead = (struct xlog_op_header *)dp;
4630 dp += sizeof(*ohead);
4631 ASSERT(dp <= end);
4632
4633 /* errors will abort recovery */
4634 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
12818d24 4635 dp, end, pass, buffer_list);
eeb11688
DC
4636 if (error)
4637 return error;
4638
67fcb7bf 4639 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4640 num_logops--;
4641 }
4642 return 0;
4643}
4644
dc42375d 4645/* Recover the EFI if necessary. */
3c1e2bbe 4646STATIC int
1da177e4 4647xlog_recover_process_efi(
dc42375d
DW
4648 struct xfs_mount *mp,
4649 struct xfs_ail *ailp,
4650 struct xfs_log_item *lip)
1da177e4 4651{
dc42375d
DW
4652 struct xfs_efi_log_item *efip;
4653 int error;
1da177e4
LT
4654
4655 /*
dc42375d 4656 * Skip EFIs that we've already processed.
1da177e4 4657 */
dc42375d
DW
4658 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4659 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4660 return 0;
1da177e4 4661
57e80956 4662 spin_unlock(&ailp->ail_lock);
dc42375d 4663 error = xfs_efi_recover(mp, efip);
57e80956 4664 spin_lock(&ailp->ail_lock);
1da177e4 4665
dc42375d
DW
4666 return error;
4667}
6bc43af3 4668
dc42375d
DW
4669/* Release the EFI since we're cancelling everything. */
4670STATIC void
4671xlog_recover_cancel_efi(
4672 struct xfs_mount *mp,
4673 struct xfs_ail *ailp,
4674 struct xfs_log_item *lip)
4675{
4676 struct xfs_efi_log_item *efip;
1da177e4 4677
dc42375d 4678 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
fc6149d8 4679
57e80956 4680 spin_unlock(&ailp->ail_lock);
dc42375d 4681 xfs_efi_release(efip);
57e80956 4682 spin_lock(&ailp->ail_lock);
dc42375d
DW
4683}
4684
9e88b5d8
DW
4685/* Recover the RUI if necessary. */
4686STATIC int
4687xlog_recover_process_rui(
4688 struct xfs_mount *mp,
4689 struct xfs_ail *ailp,
4690 struct xfs_log_item *lip)
4691{
4692 struct xfs_rui_log_item *ruip;
4693 int error;
4694
4695 /*
4696 * Skip RUIs that we've already processed.
4697 */
4698 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4699 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4700 return 0;
4701
57e80956 4702 spin_unlock(&ailp->ail_lock);
9e88b5d8 4703 error = xfs_rui_recover(mp, ruip);
57e80956 4704 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
4705
4706 return error;
4707}
4708
4709/* Release the RUI since we're cancelling everything. */
4710STATIC void
4711xlog_recover_cancel_rui(
4712 struct xfs_mount *mp,
4713 struct xfs_ail *ailp,
4714 struct xfs_log_item *lip)
4715{
4716 struct xfs_rui_log_item *ruip;
4717
4718 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4719
57e80956 4720 spin_unlock(&ailp->ail_lock);
9e88b5d8 4721 xfs_rui_release(ruip);
57e80956 4722 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
4723}
4724
f997ee21
DW
4725/* Recover the CUI if necessary. */
4726STATIC int
4727xlog_recover_process_cui(
fbfa977d 4728 struct xfs_trans *parent_tp,
f997ee21 4729 struct xfs_ail *ailp,
fbfa977d 4730 struct xfs_log_item *lip)
f997ee21
DW
4731{
4732 struct xfs_cui_log_item *cuip;
4733 int error;
4734
4735 /*
4736 * Skip CUIs that we've already processed.
4737 */
4738 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4739 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4740 return 0;
4741
57e80956 4742 spin_unlock(&ailp->ail_lock);
fbfa977d 4743 error = xfs_cui_recover(parent_tp, cuip);
57e80956 4744 spin_lock(&ailp->ail_lock);
f997ee21
DW
4745
4746 return error;
4747}
4748
4749/* Release the CUI since we're cancelling everything. */
4750STATIC void
4751xlog_recover_cancel_cui(
4752 struct xfs_mount *mp,
4753 struct xfs_ail *ailp,
4754 struct xfs_log_item *lip)
4755{
4756 struct xfs_cui_log_item *cuip;
4757
4758 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4759
57e80956 4760 spin_unlock(&ailp->ail_lock);
f997ee21 4761 xfs_cui_release(cuip);
57e80956 4762 spin_lock(&ailp->ail_lock);
f997ee21
DW
4763}
4764
77d61fe4
DW
4765/* Recover the BUI if necessary. */
4766STATIC int
4767xlog_recover_process_bui(
fbfa977d 4768 struct xfs_trans *parent_tp,
77d61fe4 4769 struct xfs_ail *ailp,
fbfa977d 4770 struct xfs_log_item *lip)
77d61fe4
DW
4771{
4772 struct xfs_bui_log_item *buip;
4773 int error;
4774
4775 /*
4776 * Skip BUIs that we've already processed.
4777 */
4778 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4779 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4780 return 0;
4781
57e80956 4782 spin_unlock(&ailp->ail_lock);
fbfa977d 4783 error = xfs_bui_recover(parent_tp, buip);
57e80956 4784 spin_lock(&ailp->ail_lock);
77d61fe4
DW
4785
4786 return error;
4787}
4788
4789/* Release the BUI since we're cancelling everything. */
4790STATIC void
4791xlog_recover_cancel_bui(
4792 struct xfs_mount *mp,
4793 struct xfs_ail *ailp,
4794 struct xfs_log_item *lip)
4795{
4796 struct xfs_bui_log_item *buip;
4797
4798 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4799
57e80956 4800 spin_unlock(&ailp->ail_lock);
77d61fe4 4801 xfs_bui_release(buip);
57e80956 4802 spin_lock(&ailp->ail_lock);
77d61fe4
DW
4803}
4804
dc42375d
DW
4805/* Is this log item a deferred action intent? */
4806static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4807{
4808 switch (lip->li_type) {
4809 case XFS_LI_EFI:
9e88b5d8 4810 case XFS_LI_RUI:
f997ee21 4811 case XFS_LI_CUI:
77d61fe4 4812 case XFS_LI_BUI:
dc42375d
DW
4813 return true;
4814 default:
4815 return false;
4816 }
1da177e4
LT
4817}
4818
50995582
DW
4819/* Take all the collected deferred ops and finish them in order. */
4820static int
4821xlog_finish_defer_ops(
fbfa977d 4822 struct xfs_trans *parent_tp)
50995582 4823{
fbfa977d 4824 struct xfs_mount *mp = parent_tp->t_mountp;
50995582
DW
4825 struct xfs_trans *tp;
4826 int64_t freeblks;
4827 uint resblks;
4828 int error;
4829
4830 /*
4831 * We're finishing the defer_ops that accumulated as a result of
4832 * recovering unfinished intent items during log recovery. We
4833 * reserve an itruncate transaction because it is the largest
4834 * permanent transaction type. Since we're the only user of the fs
4835 * right now, take 93% (15/16) of the available free blocks. Use
4836 * weird math to avoid a 64-bit division.
4837 */
4838 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4839 if (freeblks <= 0)
4840 return -ENOSPC;
4841 resblks = min_t(int64_t, UINT_MAX, freeblks);
4842 resblks = (resblks * 15) >> 4;
4843 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4844 0, XFS_TRANS_RESERVE, &tp);
4845 if (error)
4846 return error;
91ef75b6 4847 /* transfer all collected dfops to this transaction */
ce356d64 4848 xfs_defer_move(tp, parent_tp);
50995582 4849
50995582 4850 return xfs_trans_commit(tp);
50995582
DW
4851}
4852
1da177e4 4853/*
dc42375d
DW
4854 * When this is called, all of the log intent items which did not have
4855 * corresponding log done items should be in the AIL. What we do now
4856 * is update the data structures associated with each one.
1da177e4 4857 *
dc42375d
DW
4858 * Since we process the log intent items in normal transactions, they
4859 * will be removed at some point after the commit. This prevents us
4860 * from just walking down the list processing each one. We'll use a
4861 * flag in the intent item to skip those that we've already processed
4862 * and use the AIL iteration mechanism's generation count to try to
4863 * speed this up at least a bit.
1da177e4 4864 *
dc42375d
DW
4865 * When we start, we know that the intents are the only things in the
4866 * AIL. As we process them, however, other items are added to the
4867 * AIL.
1da177e4 4868 */
3c1e2bbe 4869STATIC int
dc42375d 4870xlog_recover_process_intents(
f0b2efad 4871 struct xlog *log)
1da177e4 4872{
fbfa977d 4873 struct xfs_trans *parent_tp;
27d8d5fe 4874 struct xfs_ail_cursor cur;
50995582 4875 struct xfs_log_item *lip;
a9c21c1b 4876 struct xfs_ail *ailp;
fbfa977d 4877 int error;
7bf7a193 4878#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4879 xfs_lsn_t last_lsn;
7bf7a193 4880#endif
1da177e4 4881
fbfa977d
BF
4882 /*
4883 * The intent recovery handlers commit transactions to complete recovery
4884 * for individual intents, but any new deferred operations that are
4885 * queued during that process are held off until the very end. The
4886 * purpose of this transaction is to serve as a container for deferred
4887 * operations. Each intent recovery handler must transfer dfops here
4888 * before its local transaction commits, and we'll finish the entire
4889 * list below.
4890 */
4891 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4892 if (error)
4893 return error;
4894
a9c21c1b 4895 ailp = log->l_ailp;
57e80956 4896 spin_lock(&ailp->ail_lock);
a9c21c1b 4897 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
7bf7a193 4898#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4899 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
7bf7a193 4900#endif
1da177e4
LT
4901 while (lip != NULL) {
4902 /*
dc42375d
DW
4903 * We're done when we see something other than an intent.
4904 * There should be no intents left in the AIL now.
1da177e4 4905 */
dc42375d 4906 if (!xlog_item_is_intent(lip)) {
27d8d5fe 4907#ifdef DEBUG
a9c21c1b 4908 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4909 ASSERT(!xlog_item_is_intent(lip));
27d8d5fe 4910#endif
1da177e4
LT
4911 break;
4912 }
4913
4914 /*
dc42375d
DW
4915 * We should never see a redo item with a LSN higher than
4916 * the last transaction we found in the log at the start
4917 * of recovery.
1da177e4 4918 */
dc42375d 4919 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
1da177e4 4920
50995582
DW
4921 /*
4922 * NOTE: If your intent processing routine can create more
4923 * deferred ops, you /must/ attach them to the dfops in this
4924 * routine or else those subsequent intents will get
4925 * replayed in the wrong order!
4926 */
dc42375d
DW
4927 switch (lip->li_type) {
4928 case XFS_LI_EFI:
4929 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4930 break;
9e88b5d8
DW
4931 case XFS_LI_RUI:
4932 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4933 break;
f997ee21 4934 case XFS_LI_CUI:
fbfa977d 4935 error = xlog_recover_process_cui(parent_tp, ailp, lip);
f997ee21 4936 break;
77d61fe4 4937 case XFS_LI_BUI:
fbfa977d 4938 error = xlog_recover_process_bui(parent_tp, ailp, lip);
77d61fe4 4939 break;
dc42375d 4940 }
27d8d5fe
DC
4941 if (error)
4942 goto out;
a9c21c1b 4943 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4944 }
27d8d5fe 4945out:
e4a1e29c 4946 xfs_trans_ail_cursor_done(&cur);
57e80956 4947 spin_unlock(&ailp->ail_lock);
fbfa977d
BF
4948 if (!error)
4949 error = xlog_finish_defer_ops(parent_tp);
4950 xfs_trans_cancel(parent_tp);
50995582 4951
3c1e2bbe 4952 return error;
1da177e4
LT
4953}
4954
f0b2efad 4955/*
dc42375d
DW
4956 * A cancel occurs when the mount has failed and we're bailing out.
4957 * Release all pending log intent items so they don't pin the AIL.
f0b2efad
BF
4958 */
4959STATIC int
dc42375d 4960xlog_recover_cancel_intents(
f0b2efad
BF
4961 struct xlog *log)
4962{
4963 struct xfs_log_item *lip;
f0b2efad
BF
4964 int error = 0;
4965 struct xfs_ail_cursor cur;
4966 struct xfs_ail *ailp;
4967
4968 ailp = log->l_ailp;
57e80956 4969 spin_lock(&ailp->ail_lock);
f0b2efad
BF
4970 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4971 while (lip != NULL) {
4972 /*
dc42375d
DW
4973 * We're done when we see something other than an intent.
4974 * There should be no intents left in the AIL now.
f0b2efad 4975 */
dc42375d 4976 if (!xlog_item_is_intent(lip)) {
f0b2efad
BF
4977#ifdef DEBUG
4978 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4979 ASSERT(!xlog_item_is_intent(lip));
f0b2efad
BF
4980#endif
4981 break;
4982 }
4983
dc42375d
DW
4984 switch (lip->li_type) {
4985 case XFS_LI_EFI:
4986 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4987 break;
9e88b5d8
DW
4988 case XFS_LI_RUI:
4989 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4990 break;
f997ee21
DW
4991 case XFS_LI_CUI:
4992 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4993 break;
77d61fe4
DW
4994 case XFS_LI_BUI:
4995 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4996 break;
dc42375d 4997 }
f0b2efad
BF
4998
4999 lip = xfs_trans_ail_cursor_next(ailp, &cur);
5000 }
5001
5002 xfs_trans_ail_cursor_done(&cur);
57e80956 5003 spin_unlock(&ailp->ail_lock);
f0b2efad
BF
5004 return error;
5005}
5006
1da177e4
LT
5007/*
5008 * This routine performs a transaction to null out a bad inode pointer
5009 * in an agi unlinked inode hash bucket.
5010 */
5011STATIC void
5012xlog_recover_clear_agi_bucket(
5013 xfs_mount_t *mp,
5014 xfs_agnumber_t agno,
5015 int bucket)
5016{
5017 xfs_trans_t *tp;
5018 xfs_agi_t *agi;
5019 xfs_buf_t *agibp;
5020 int offset;
5021 int error;
5022
253f4911 5023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
e5720eec 5024 if (error)
253f4911 5025 goto out_error;
1da177e4 5026
5e1be0fb
CH
5027 error = xfs_read_agi(mp, tp, agno, &agibp);
5028 if (error)
e5720eec 5029 goto out_abort;
1da177e4 5030
5e1be0fb 5031 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5032 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
5033 offset = offsetof(xfs_agi_t, agi_unlinked) +
5034 (sizeof(xfs_agino_t) * bucket);
5035 xfs_trans_log_buf(tp, agibp, offset,
5036 (offset + sizeof(xfs_agino_t) - 1));
5037
70393313 5038 error = xfs_trans_commit(tp);
e5720eec
DC
5039 if (error)
5040 goto out_error;
5041 return;
5042
5043out_abort:
4906e215 5044 xfs_trans_cancel(tp);
e5720eec 5045out_error:
a0fa2b67 5046 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 5047 return;
1da177e4
LT
5048}
5049
23fac50f
CH
5050STATIC xfs_agino_t
5051xlog_recover_process_one_iunlink(
5052 struct xfs_mount *mp,
5053 xfs_agnumber_t agno,
5054 xfs_agino_t agino,
5055 int bucket)
5056{
5057 struct xfs_buf *ibp;
5058 struct xfs_dinode *dip;
5059 struct xfs_inode *ip;
5060 xfs_ino_t ino;
5061 int error;
5062
5063 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 5064 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
5065 if (error)
5066 goto fail;
5067
5068 /*
5069 * Get the on disk inode to find the next inode in the bucket.
5070 */
475ee413 5071 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 5072 if (error)
0e446673 5073 goto fail_iput;
23fac50f 5074
17c12bcd 5075 xfs_iflags_clear(ip, XFS_IRECOVERY);
54d7b5c1 5076 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 5077 ASSERT(VFS_I(ip)->i_mode != 0);
23fac50f
CH
5078
5079 /* setup for the next pass */
5080 agino = be32_to_cpu(dip->di_next_unlinked);
5081 xfs_buf_relse(ibp);
5082
5083 /*
5084 * Prevent any DMAPI event from being sent when the reference on
5085 * the inode is dropped.
5086 */
5087 ip->i_d.di_dmevmask = 0;
5088
44a8736b 5089 xfs_irele(ip);
23fac50f
CH
5090 return agino;
5091
0e446673 5092 fail_iput:
44a8736b 5093 xfs_irele(ip);
23fac50f
CH
5094 fail:
5095 /*
5096 * We can't read in the inode this bucket points to, or this inode
5097 * is messed up. Just ditch this bucket of inodes. We will lose
5098 * some inodes and space, but at least we won't hang.
5099 *
5100 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5101 * clear the inode pointer in the bucket.
5102 */
5103 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5104 return NULLAGINO;
5105}
5106
1da177e4
LT
5107/*
5108 * xlog_iunlink_recover
5109 *
5110 * This is called during recovery to process any inodes which
5111 * we unlinked but not freed when the system crashed. These
5112 * inodes will be on the lists in the AGI blocks. What we do
5113 * here is scan all the AGIs and fully truncate and free any
5114 * inodes found on the lists. Each inode is removed from the
5115 * lists when it has been fully truncated and is freed. The
5116 * freeing of the inode and its removal from the list must be
5117 * atomic.
5118 */
d96f8f89 5119STATIC void
1da177e4 5120xlog_recover_process_iunlinks(
9a8d2fdb 5121 struct xlog *log)
1da177e4
LT
5122{
5123 xfs_mount_t *mp;
5124 xfs_agnumber_t agno;
5125 xfs_agi_t *agi;
5126 xfs_buf_t *agibp;
1da177e4 5127 xfs_agino_t agino;
1da177e4
LT
5128 int bucket;
5129 int error;
1da177e4
LT
5130
5131 mp = log->l_mp;
5132
1da177e4
LT
5133 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5134 /*
5135 * Find the agi for this ag.
5136 */
5e1be0fb
CH
5137 error = xfs_read_agi(mp, NULL, agno, &agibp);
5138 if (error) {
5139 /*
5140 * AGI is b0rked. Don't process it.
5141 *
5142 * We should probably mark the filesystem as corrupt
5143 * after we've recovered all the ag's we can....
5144 */
5145 continue;
1da177e4 5146 }
d97d32ed
JK
5147 /*
5148 * Unlock the buffer so that it can be acquired in the normal
5149 * course of the transaction to truncate and free each inode.
5150 * Because we are not racing with anyone else here for the AGI
5151 * buffer, we don't even need to hold it locked to read the
5152 * initial unlinked bucket entries out of the buffer. We keep
5153 * buffer reference though, so that it stays pinned in memory
5154 * while we need the buffer.
5155 */
1da177e4 5156 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 5157 xfs_buf_unlock(agibp);
1da177e4
LT
5158
5159 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 5160 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 5161 while (agino != NULLAGINO) {
23fac50f
CH
5162 agino = xlog_recover_process_one_iunlink(mp,
5163 agno, agino, bucket);
1da177e4
LT
5164 }
5165 }
d97d32ed 5166 xfs_buf_rele(agibp);
1da177e4 5167 }
1da177e4
LT
5168}
5169
0e446be4 5170STATIC int
1da177e4 5171xlog_unpack_data(
9a8d2fdb 5172 struct xlog_rec_header *rhead,
b2a922cd 5173 char *dp,
9a8d2fdb 5174 struct xlog *log)
1da177e4
LT
5175{
5176 int i, j, k;
1da177e4 5177
b53e675d 5178 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 5179 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 5180 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
5181 dp += BBSIZE;
5182 }
5183
62118709 5184 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 5185 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 5186 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
5187 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5188 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 5189 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
5190 dp += BBSIZE;
5191 }
5192 }
0e446be4
CH
5193
5194 return 0;
1da177e4
LT
5195}
5196
9d94901f 5197/*
b94fb2d1 5198 * CRC check, unpack and process a log record.
9d94901f
BF
5199 */
5200STATIC int
5201xlog_recover_process(
5202 struct xlog *log,
5203 struct hlist_head rhash[],
5204 struct xlog_rec_header *rhead,
5205 char *dp,
12818d24
BF
5206 int pass,
5207 struct list_head *buffer_list)
9d94901f
BF
5208{
5209 int error;
cae028df 5210 __le32 old_crc = rhead->h_crc;
b94fb2d1
BF
5211 __le32 crc;
5212
cae028df 5213
6528250b
BF
5214 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5215
b94fb2d1 5216 /*
6528250b
BF
5217 * Nothing else to do if this is a CRC verification pass. Just return
5218 * if this a record with a non-zero crc. Unfortunately, mkfs always
cae028df 5219 * sets old_crc to 0 so we must consider this valid even on v5 supers.
6528250b
BF
5220 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5221 * know precisely what failed.
5222 */
5223 if (pass == XLOG_RECOVER_CRCPASS) {
cae028df 5224 if (old_crc && crc != old_crc)
6528250b
BF
5225 return -EFSBADCRC;
5226 return 0;
5227 }
5228
5229 /*
5230 * We're in the normal recovery path. Issue a warning if and only if the
5231 * CRC in the header is non-zero. This is an advisory warning and the
5232 * zero CRC check prevents warnings from being emitted when upgrading
5233 * the kernel from one that does not add CRCs by default.
b94fb2d1 5234 */
cae028df
DC
5235 if (crc != old_crc) {
5236 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
b94fb2d1
BF
5237 xfs_alert(log->l_mp,
5238 "log record CRC mismatch: found 0x%x, expected 0x%x.",
cae028df 5239 le32_to_cpu(old_crc),
b94fb2d1
BF
5240 le32_to_cpu(crc));
5241 xfs_hex_dump(dp, 32);
5242 }
5243
5244 /*
5245 * If the filesystem is CRC enabled, this mismatch becomes a
5246 * fatal log corruption failure.
5247 */
5248 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5249 return -EFSCORRUPTED;
5250 }
9d94901f
BF
5251
5252 error = xlog_unpack_data(rhead, dp, log);
5253 if (error)
5254 return error;
5255
12818d24
BF
5256 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5257 buffer_list);
9d94901f
BF
5258}
5259
1da177e4
LT
5260STATIC int
5261xlog_valid_rec_header(
9a8d2fdb
MT
5262 struct xlog *log,
5263 struct xlog_rec_header *rhead,
1da177e4
LT
5264 xfs_daddr_t blkno)
5265{
5266 int hlen;
5267
69ef921b 5268 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
5269 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5270 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5271 return -EFSCORRUPTED;
1da177e4
LT
5272 }
5273 if (unlikely(
5274 (!rhead->h_version ||
b53e675d 5275 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 5276 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 5277 __func__, be32_to_cpu(rhead->h_version));
2451337d 5278 return -EIO;
1da177e4
LT
5279 }
5280
5281 /* LR body must have data or it wouldn't have been written */
b53e675d 5282 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
5283 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5284 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5285 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5286 return -EFSCORRUPTED;
1da177e4
LT
5287 }
5288 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5289 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5290 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5291 return -EFSCORRUPTED;
1da177e4
LT
5292 }
5293 return 0;
5294}
5295
5296/*
5297 * Read the log from tail to head and process the log records found.
5298 * Handle the two cases where the tail and head are in the same cycle
5299 * and where the active portion of the log wraps around the end of
5300 * the physical log separately. The pass parameter is passed through
5301 * to the routines called to process the data and is not looked at
5302 * here.
5303 */
5304STATIC int
5305xlog_do_recovery_pass(
9a8d2fdb 5306 struct xlog *log,
1da177e4
LT
5307 xfs_daddr_t head_blk,
5308 xfs_daddr_t tail_blk,
d7f37692
BF
5309 int pass,
5310 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
5311{
5312 xlog_rec_header_t *rhead;
284f1c2c 5313 xfs_daddr_t blk_no, rblk_no;
d7f37692 5314 xfs_daddr_t rhead_blk;
b2a922cd 5315 char *offset;
1da177e4 5316 xfs_buf_t *hbp, *dbp;
a70f9fe5 5317 int error = 0, h_size, h_len;
12818d24 5318 int error2 = 0;
1da177e4
LT
5319 int bblks, split_bblks;
5320 int hblks, split_hblks, wrapped_hblks;
39775431 5321 int i;
f0a76953 5322 struct hlist_head rhash[XLOG_RHASH_SIZE];
12818d24 5323 LIST_HEAD (buffer_list);
1da177e4
LT
5324
5325 ASSERT(head_blk != tail_blk);
a4c9b34d 5326 blk_no = rhead_blk = tail_blk;
1da177e4 5327
39775431
BF
5328 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5329 INIT_HLIST_HEAD(&rhash[i]);
5330
1da177e4
LT
5331 /*
5332 * Read the header of the tail block and get the iclog buffer size from
5333 * h_size. Use this to tell how many sectors make up the log header.
5334 */
62118709 5335 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
5336 /*
5337 * When using variable length iclogs, read first sector of
5338 * iclog header and extract the header size from it. Get a
5339 * new hbp that is the correct size.
5340 */
5341 hbp = xlog_get_bp(log, 1);
5342 if (!hbp)
2451337d 5343 return -ENOMEM;
076e6acb
CH
5344
5345 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5346 if (error)
1da177e4 5347 goto bread_err1;
076e6acb 5348
1da177e4
LT
5349 rhead = (xlog_rec_header_t *)offset;
5350 error = xlog_valid_rec_header(log, rhead, tail_blk);
5351 if (error)
5352 goto bread_err1;
a70f9fe5
BF
5353
5354 /*
5355 * xfsprogs has a bug where record length is based on lsunit but
5356 * h_size (iclog size) is hardcoded to 32k. Now that we
5357 * unconditionally CRC verify the unmount record, this means the
5358 * log buffer can be too small for the record and cause an
5359 * overrun.
5360 *
5361 * Detect this condition here. Use lsunit for the buffer size as
5362 * long as this looks like the mkfs case. Otherwise, return an
5363 * error to avoid a buffer overrun.
5364 */
b53e675d 5365 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
5366 h_len = be32_to_cpu(rhead->h_len);
5367 if (h_len > h_size) {
5368 if (h_len <= log->l_mp->m_logbsize &&
5369 be32_to_cpu(rhead->h_num_logops) == 1) {
5370 xfs_warn(log->l_mp,
5371 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5372 h_size, log->l_mp->m_logbsize);
5373 h_size = log->l_mp->m_logbsize;
5374 } else
5375 return -EFSCORRUPTED;
5376 }
5377
b53e675d 5378 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
5379 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5380 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5381 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5382 hblks++;
5383 xlog_put_bp(hbp);
5384 hbp = xlog_get_bp(log, hblks);
5385 } else {
5386 hblks = 1;
5387 }
5388 } else {
69ce58f0 5389 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
5390 hblks = 1;
5391 hbp = xlog_get_bp(log, 1);
5392 h_size = XLOG_BIG_RECORD_BSIZE;
5393 }
5394
5395 if (!hbp)
2451337d 5396 return -ENOMEM;
1da177e4
LT
5397 dbp = xlog_get_bp(log, BTOBB(h_size));
5398 if (!dbp) {
5399 xlog_put_bp(hbp);
2451337d 5400 return -ENOMEM;
1da177e4
LT
5401 }
5402
5403 memset(rhash, 0, sizeof(rhash));
970fd3f0 5404 if (tail_blk > head_blk) {
1da177e4
LT
5405 /*
5406 * Perform recovery around the end of the physical log.
5407 * When the head is not on the same cycle number as the tail,
970fd3f0 5408 * we can't do a sequential recovery.
1da177e4 5409 */
1da177e4
LT
5410 while (blk_no < log->l_logBBsize) {
5411 /*
5412 * Check for header wrapping around physical end-of-log
5413 */
62926044 5414 offset = hbp->b_addr;
1da177e4
LT
5415 split_hblks = 0;
5416 wrapped_hblks = 0;
5417 if (blk_no + hblks <= log->l_logBBsize) {
5418 /* Read header in one read */
076e6acb
CH
5419 error = xlog_bread(log, blk_no, hblks, hbp,
5420 &offset);
1da177e4
LT
5421 if (error)
5422 goto bread_err2;
1da177e4
LT
5423 } else {
5424 /* This LR is split across physical log end */
5425 if (blk_no != log->l_logBBsize) {
5426 /* some data before physical log end */
5427 ASSERT(blk_no <= INT_MAX);
5428 split_hblks = log->l_logBBsize - (int)blk_no;
5429 ASSERT(split_hblks > 0);
076e6acb
CH
5430 error = xlog_bread(log, blk_no,
5431 split_hblks, hbp,
5432 &offset);
5433 if (error)
1da177e4 5434 goto bread_err2;
1da177e4 5435 }
076e6acb 5436
1da177e4
LT
5437 /*
5438 * Note: this black magic still works with
5439 * large sector sizes (non-512) only because:
5440 * - we increased the buffer size originally
5441 * by 1 sector giving us enough extra space
5442 * for the second read;
5443 * - the log start is guaranteed to be sector
5444 * aligned;
5445 * - we read the log end (LR header start)
5446 * _first_, then the log start (LR header end)
5447 * - order is important.
5448 */
234f56ac 5449 wrapped_hblks = hblks - split_hblks;
44396476
DC
5450 error = xlog_bread_offset(log, 0,
5451 wrapped_hblks, hbp,
5452 offset + BBTOB(split_hblks));
1da177e4
LT
5453 if (error)
5454 goto bread_err2;
1da177e4
LT
5455 }
5456 rhead = (xlog_rec_header_t *)offset;
5457 error = xlog_valid_rec_header(log, rhead,
5458 split_hblks ? blk_no : 0);
5459 if (error)
5460 goto bread_err2;
5461
b53e675d 5462 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
5463 blk_no += hblks;
5464
284f1c2c
BF
5465 /*
5466 * Read the log record data in multiple reads if it
5467 * wraps around the end of the log. Note that if the
5468 * header already wrapped, blk_no could point past the
5469 * end of the log. The record data is contiguous in
5470 * that case.
5471 */
5472 if (blk_no + bblks <= log->l_logBBsize ||
5473 blk_no >= log->l_logBBsize) {
0703a8e1 5474 rblk_no = xlog_wrap_logbno(log, blk_no);
284f1c2c 5475 error = xlog_bread(log, rblk_no, bblks, dbp,
076e6acb 5476 &offset);
1da177e4
LT
5477 if (error)
5478 goto bread_err2;
1da177e4
LT
5479 } else {
5480 /* This log record is split across the
5481 * physical end of log */
62926044 5482 offset = dbp->b_addr;
1da177e4
LT
5483 split_bblks = 0;
5484 if (blk_no != log->l_logBBsize) {
5485 /* some data is before the physical
5486 * end of log */
5487 ASSERT(!wrapped_hblks);
5488 ASSERT(blk_no <= INT_MAX);
5489 split_bblks =
5490 log->l_logBBsize - (int)blk_no;
5491 ASSERT(split_bblks > 0);
076e6acb
CH
5492 error = xlog_bread(log, blk_no,
5493 split_bblks, dbp,
5494 &offset);
5495 if (error)
1da177e4 5496 goto bread_err2;
1da177e4 5497 }
076e6acb 5498
1da177e4
LT
5499 /*
5500 * Note: this black magic still works with
5501 * large sector sizes (non-512) only because:
5502 * - we increased the buffer size originally
5503 * by 1 sector giving us enough extra space
5504 * for the second read;
5505 * - the log start is guaranteed to be sector
5506 * aligned;
5507 * - we read the log end (LR header start)
5508 * _first_, then the log start (LR header end)
5509 * - order is important.
5510 */
44396476 5511 error = xlog_bread_offset(log, 0,
009507b0 5512 bblks - split_bblks, dbp,
44396476 5513 offset + BBTOB(split_bblks));
076e6acb
CH
5514 if (error)
5515 goto bread_err2;
1da177e4 5516 }
0e446be4 5517
9d94901f 5518 error = xlog_recover_process(log, rhash, rhead, offset,
12818d24 5519 pass, &buffer_list);
0e446be4 5520 if (error)
1da177e4 5521 goto bread_err2;
d7f37692 5522
1da177e4 5523 blk_no += bblks;
d7f37692 5524 rhead_blk = blk_no;
1da177e4
LT
5525 }
5526
5527 ASSERT(blk_no >= log->l_logBBsize);
5528 blk_no -= log->l_logBBsize;
d7f37692 5529 rhead_blk = blk_no;
970fd3f0 5530 }
1da177e4 5531
970fd3f0
ES
5532 /* read first part of physical log */
5533 while (blk_no < head_blk) {
5534 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5535 if (error)
5536 goto bread_err2;
076e6acb 5537
970fd3f0
ES
5538 rhead = (xlog_rec_header_t *)offset;
5539 error = xlog_valid_rec_header(log, rhead, blk_no);
5540 if (error)
5541 goto bread_err2;
076e6acb 5542
970fd3f0
ES
5543 /* blocks in data section */
5544 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5545 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5546 &offset);
5547 if (error)
5548 goto bread_err2;
076e6acb 5549
12818d24
BF
5550 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5551 &buffer_list);
970fd3f0
ES
5552 if (error)
5553 goto bread_err2;
d7f37692 5554
970fd3f0 5555 blk_no += bblks + hblks;
d7f37692 5556 rhead_blk = blk_no;
1da177e4
LT
5557 }
5558
5559 bread_err2:
5560 xlog_put_bp(dbp);
5561 bread_err1:
5562 xlog_put_bp(hbp);
d7f37692 5563
12818d24
BF
5564 /*
5565 * Submit buffers that have been added from the last record processed,
5566 * regardless of error status.
5567 */
5568 if (!list_empty(&buffer_list))
5569 error2 = xfs_buf_delwri_submit(&buffer_list);
5570
d7f37692
BF
5571 if (error && first_bad)
5572 *first_bad = rhead_blk;
5573
39775431
BF
5574 /*
5575 * Transactions are freed at commit time but transactions without commit
5576 * records on disk are never committed. Free any that may be left in the
5577 * hash table.
5578 */
5579 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5580 struct hlist_node *tmp;
5581 struct xlog_recover *trans;
5582
5583 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5584 xlog_recover_free_trans(trans);
5585 }
5586
12818d24 5587 return error ? error : error2;
1da177e4
LT
5588}
5589
5590/*
5591 * Do the recovery of the log. We actually do this in two phases.
5592 * The two passes are necessary in order to implement the function
5593 * of cancelling a record written into the log. The first pass
5594 * determines those things which have been cancelled, and the
5595 * second pass replays log items normally except for those which
5596 * have been cancelled. The handling of the replay and cancellations
5597 * takes place in the log item type specific routines.
5598 *
5599 * The table of items which have cancel records in the log is allocated
5600 * and freed at this level, since only here do we know when all of
5601 * the log recovery has been completed.
5602 */
5603STATIC int
5604xlog_do_log_recovery(
9a8d2fdb 5605 struct xlog *log,
1da177e4
LT
5606 xfs_daddr_t head_blk,
5607 xfs_daddr_t tail_blk)
5608{
d5689eaa 5609 int error, i;
1da177e4
LT
5610
5611 ASSERT(head_blk != tail_blk);
5612
5613 /*
5614 * First do a pass to find all of the cancelled buf log items.
5615 * Store them in the buf_cancel_table for use in the second pass.
5616 */
d5689eaa
CH
5617 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5618 sizeof(struct list_head),
1da177e4 5619 KM_SLEEP);
d5689eaa
CH
5620 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5621 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5622
1da177e4 5623 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5624 XLOG_RECOVER_PASS1, NULL);
1da177e4 5625 if (error != 0) {
f0e2d93c 5626 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5627 log->l_buf_cancel_table = NULL;
5628 return error;
5629 }
5630 /*
5631 * Then do a second pass to actually recover the items in the log.
5632 * When it is complete free the table of buf cancel items.
5633 */
5634 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5635 XLOG_RECOVER_PASS2, NULL);
1da177e4 5636#ifdef DEBUG
6d192a9b 5637 if (!error) {
1da177e4
LT
5638 int i;
5639
5640 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 5641 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
5642 }
5643#endif /* DEBUG */
5644
f0e2d93c 5645 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5646 log->l_buf_cancel_table = NULL;
5647
5648 return error;
5649}
5650
5651/*
5652 * Do the actual recovery
5653 */
5654STATIC int
5655xlog_do_recover(
9a8d2fdb 5656 struct xlog *log,
1da177e4
LT
5657 xfs_daddr_t head_blk,
5658 xfs_daddr_t tail_blk)
5659{
a798011c 5660 struct xfs_mount *mp = log->l_mp;
1da177e4
LT
5661 int error;
5662 xfs_buf_t *bp;
5663 xfs_sb_t *sbp;
5664
e67d3d42
BF
5665 trace_xfs_log_recover(log, head_blk, tail_blk);
5666
1da177e4
LT
5667 /*
5668 * First replay the images in the log.
5669 */
5670 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 5671 if (error)
1da177e4 5672 return error;
1da177e4
LT
5673
5674 /*
5675 * If IO errors happened during recovery, bail out.
5676 */
a798011c 5677 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 5678 return -EIO;
1da177e4
LT
5679 }
5680
5681 /*
5682 * We now update the tail_lsn since much of the recovery has completed
5683 * and there may be space available to use. If there were no extent
5684 * or iunlinks, we can free up the entire log and set the tail_lsn to
5685 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5686 * lsn of the last known good LR on disk. If there are extent frees
5687 * or iunlinks they will have some entries in the AIL; so we look at
5688 * the AIL to determine how to set the tail_lsn.
5689 */
a798011c 5690 xlog_assign_tail_lsn(mp);
1da177e4
LT
5691
5692 /*
5693 * Now that we've finished replaying all buffer and inode
98021821 5694 * updates, re-read in the superblock and reverify it.
1da177e4 5695 */
a798011c 5696 bp = xfs_getsb(mp, 0);
1157b32c 5697 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
b68c0821 5698 ASSERT(!(bp->b_flags & XBF_WRITE));
0cac682f 5699 bp->b_flags |= XBF_READ;
1813dd64 5700 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 5701
6af88cda 5702 error = xfs_buf_submit(bp);
d64e31a2 5703 if (error) {
a798011c 5704 if (!XFS_FORCED_SHUTDOWN(mp)) {
595bff75
DC
5705 xfs_buf_ioerror_alert(bp, __func__);
5706 ASSERT(0);
5707 }
1da177e4
LT
5708 xfs_buf_relse(bp);
5709 return error;
5710 }
5711
5712 /* Convert superblock from on-disk format */
a798011c 5713 sbp = &mp->m_sb;
98021821 5714 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4
LT
5715 xfs_buf_relse(bp);
5716
a798011c
DC
5717 /* re-initialise in-core superblock and geometry structures */
5718 xfs_reinit_percpu_counters(mp);
5719 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5720 if (error) {
5721 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5722 return error;
5723 }
52548852 5724 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5478eead 5725
1da177e4
LT
5726 xlog_recover_check_summary(log);
5727
5728 /* Normal transactions can now occur */
5729 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5730 return 0;
5731}
5732
5733/*
5734 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5735 *
5736 * Return error or zero.
5737 */
5738int
5739xlog_recover(
9a8d2fdb 5740 struct xlog *log)
1da177e4
LT
5741{
5742 xfs_daddr_t head_blk, tail_blk;
5743 int error;
5744
5745 /* find the tail of the log */
a45086e2
BF
5746 error = xlog_find_tail(log, &head_blk, &tail_blk);
5747 if (error)
1da177e4
LT
5748 return error;
5749
a45086e2
BF
5750 /*
5751 * The superblock was read before the log was available and thus the LSN
5752 * could not be verified. Check the superblock LSN against the current
5753 * LSN now that it's known.
5754 */
5755 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5756 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5757 return -EINVAL;
5758
1da177e4
LT
5759 if (tail_blk != head_blk) {
5760 /* There used to be a comment here:
5761 *
5762 * disallow recovery on read-only mounts. note -- mount
5763 * checks for ENOSPC and turns it into an intelligent
5764 * error message.
5765 * ...but this is no longer true. Now, unless you specify
5766 * NORECOVERY (in which case this function would never be
5767 * called), we just go ahead and recover. We do this all
5768 * under the vfs layer, so we can get away with it unless
5769 * the device itself is read-only, in which case we fail.
5770 */
3a02ee18 5771 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5772 return error;
5773 }
5774
e721f504
DC
5775 /*
5776 * Version 5 superblock log feature mask validation. We know the
5777 * log is dirty so check if there are any unknown log features
5778 * in what we need to recover. If there are unknown features
5779 * (e.g. unsupported transactions, then simply reject the
5780 * attempt at recovery before touching anything.
5781 */
5782 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5783 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5784 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5785 xfs_warn(log->l_mp,
f41febd2 5786"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5787 (log->l_mp->m_sb.sb_features_log_incompat &
5788 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5789 xfs_warn(log->l_mp,
5790"The log can not be fully and/or safely recovered by this kernel.");
5791 xfs_warn(log->l_mp,
5792"Please recover the log on a kernel that supports the unknown features.");
2451337d 5793 return -EINVAL;
e721f504
DC
5794 }
5795
2e227178
BF
5796 /*
5797 * Delay log recovery if the debug hook is set. This is debug
5798 * instrumention to coordinate simulation of I/O failures with
5799 * log recovery.
5800 */
5801 if (xfs_globals.log_recovery_delay) {
5802 xfs_notice(log->l_mp,
5803 "Delaying log recovery for %d seconds.",
5804 xfs_globals.log_recovery_delay);
5805 msleep(xfs_globals.log_recovery_delay * 1000);
5806 }
5807
a0fa2b67
DC
5808 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5809 log->l_mp->m_logname ? log->l_mp->m_logname
5810 : "internal");
1da177e4
LT
5811
5812 error = xlog_do_recover(log, head_blk, tail_blk);
5813 log->l_flags |= XLOG_RECOVERY_NEEDED;
5814 }
5815 return error;
5816}
5817
5818/*
5819 * In the first part of recovery we replay inodes and buffers and build
5820 * up the list of extent free items which need to be processed. Here
5821 * we process the extent free items and clean up the on disk unlinked
5822 * inode lists. This is separated from the first part of recovery so
5823 * that the root and real-time bitmap inodes can be read in from disk in
5824 * between the two stages. This is necessary so that we can free space
5825 * in the real-time portion of the file system.
5826 */
5827int
5828xlog_recover_finish(
9a8d2fdb 5829 struct xlog *log)
1da177e4
LT
5830{
5831 /*
5832 * Now we're ready to do the transactions needed for the
5833 * rest of recovery. Start with completing all the extent
5834 * free intent records and then process the unlinked inode
5835 * lists. At this point, we essentially run in normal mode
5836 * except that we're still performing recovery actions
5837 * rather than accepting new requests.
5838 */
5839 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe 5840 int error;
dc42375d 5841 error = xlog_recover_process_intents(log);
3c1e2bbe 5842 if (error) {
dc42375d 5843 xfs_alert(log->l_mp, "Failed to recover intents");
3c1e2bbe
DC
5844 return error;
5845 }
9e88b5d8 5846
1da177e4 5847 /*
dc42375d 5848 * Sync the log to get all the intents out of the AIL.
1da177e4
LT
5849 * This isn't absolutely necessary, but it helps in
5850 * case the unlink transactions would have problems
dc42375d 5851 * pushing the intents out of the way.
1da177e4 5852 */
a14a348b 5853 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5854
4249023a 5855 xlog_recover_process_iunlinks(log);
1da177e4
LT
5856
5857 xlog_recover_check_summary(log);
5858
a0fa2b67
DC
5859 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5860 log->l_mp->m_logname ? log->l_mp->m_logname
5861 : "internal");
1da177e4
LT
5862 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5863 } else {
a0fa2b67 5864 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5865 }
5866 return 0;
5867}
5868
f0b2efad
BF
5869int
5870xlog_recover_cancel(
5871 struct xlog *log)
5872{
5873 int error = 0;
5874
5875 if (log->l_flags & XLOG_RECOVERY_NEEDED)
dc42375d 5876 error = xlog_recover_cancel_intents(log);
f0b2efad
BF
5877
5878 return error;
5879}
1da177e4
LT
5880
5881#if defined(DEBUG)
5882/*
5883 * Read all of the agf and agi counters and check that they
5884 * are consistent with the superblock counters.
5885 */
e89fbb5e 5886STATIC void
1da177e4 5887xlog_recover_check_summary(
9a8d2fdb 5888 struct xlog *log)
1da177e4
LT
5889{
5890 xfs_mount_t *mp;
5891 xfs_agf_t *agfp;
1da177e4
LT
5892 xfs_buf_t *agfbp;
5893 xfs_buf_t *agibp;
1da177e4 5894 xfs_agnumber_t agno;
c8ce540d
DW
5895 uint64_t freeblks;
5896 uint64_t itotal;
5897 uint64_t ifree;
5e1be0fb 5898 int error;
1da177e4
LT
5899
5900 mp = log->l_mp;
5901
5902 freeblks = 0LL;
5903 itotal = 0LL;
5904 ifree = 0LL;
5905 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
5906 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5907 if (error) {
a0fa2b67
DC
5908 xfs_alert(mp, "%s agf read failed agno %d error %d",
5909 __func__, agno, error);
4805621a
CH
5910 } else {
5911 agfp = XFS_BUF_TO_AGF(agfbp);
5912 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5913 be32_to_cpu(agfp->agf_flcount);
5914 xfs_buf_relse(agfbp);
1da177e4 5915 }
1da177e4 5916
5e1be0fb 5917 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5918 if (error) {
5919 xfs_alert(mp, "%s agi read failed agno %d error %d",
5920 __func__, agno, error);
5921 } else {
5e1be0fb 5922 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5923
5e1be0fb
CH
5924 itotal += be32_to_cpu(agi->agi_count);
5925 ifree += be32_to_cpu(agi->agi_freecount);
5926 xfs_buf_relse(agibp);
5927 }
1da177e4 5928 }
1da177e4
LT
5929}
5930#endif /* DEBUG */
This page took 2.061426 seconds and 4 git commands to generate.