]>
Commit | Line | Data |
---|---|---|
6cd32099 BH |
1 | /* |
2 | * Windfarm PowerMac thermal control. | |
3 | * Control loops for RackMack3,1 (Xserve G5) | |
4 | * | |
5 | * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. | |
6 | * | |
7 | * Use and redistribute under the terms of the GNU GPL v2. | |
8 | */ | |
9 | #include <linux/types.h> | |
10 | #include <linux/errno.h> | |
11 | #include <linux/kernel.h> | |
12 | #include <linux/device.h> | |
13 | #include <linux/platform_device.h> | |
14 | #include <linux/reboot.h> | |
15 | #include <asm/prom.h> | |
16 | #include <asm/smu.h> | |
17 | ||
18 | #include "windfarm.h" | |
19 | #include "windfarm_pid.h" | |
20 | #include "windfarm_mpu.h" | |
21 | ||
22 | #define VERSION "1.0" | |
23 | ||
24 | #undef DEBUG | |
25 | #undef LOTSA_DEBUG | |
26 | ||
27 | #ifdef DEBUG | |
28 | #define DBG(args...) printk(args) | |
29 | #else | |
30 | #define DBG(args...) do { } while(0) | |
31 | #endif | |
32 | ||
33 | #ifdef LOTSA_DEBUG | |
34 | #define DBG_LOTS(args...) printk(args) | |
35 | #else | |
36 | #define DBG_LOTS(args...) do { } while(0) | |
37 | #endif | |
38 | ||
39 | /* define this to force CPU overtemp to 60 degree, useful for testing | |
40 | * the overtemp code | |
41 | */ | |
42 | #undef HACKED_OVERTEMP | |
43 | ||
44 | /* We currently only handle 2 chips */ | |
45 | #define NR_CHIPS 2 | |
46 | #define NR_CPU_FANS 3 * NR_CHIPS | |
47 | ||
48 | /* Controls and sensors */ | |
49 | static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; | |
50 | static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; | |
51 | static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; | |
52 | static struct wf_sensor *backside_temp; | |
53 | static struct wf_sensor *slots_temp; | |
54 | static struct wf_sensor *dimms_temp; | |
55 | ||
56 | static struct wf_control *cpu_fans[NR_CHIPS][3]; | |
57 | static struct wf_control *backside_fan; | |
58 | static struct wf_control *slots_fan; | |
59 | static struct wf_control *cpufreq_clamp; | |
60 | ||
61 | /* We keep a temperature history for average calculation of 180s */ | |
62 | #define CPU_TEMP_HIST_SIZE 180 | |
63 | ||
64 | /* PID loop state */ | |
65 | static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; | |
66 | static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; | |
67 | static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; | |
68 | static int cpu_thist_pt; | |
69 | static s64 cpu_thist_total; | |
70 | static s32 cpu_all_tmax = 100 << 16; | |
71 | static struct wf_pid_state backside_pid; | |
72 | static int backside_tick; | |
73 | static struct wf_pid_state slots_pid; | |
74 | static int slots_tick; | |
75 | static int slots_speed; | |
76 | static struct wf_pid_state dimms_pid; | |
77 | static int dimms_output_clamp; | |
78 | ||
79 | static int nr_chips; | |
80 | static bool have_all_controls; | |
81 | static bool have_all_sensors; | |
82 | static bool started; | |
83 | ||
84 | static int failure_state; | |
85 | #define FAILURE_SENSOR 1 | |
86 | #define FAILURE_FAN 2 | |
87 | #define FAILURE_PERM 4 | |
88 | #define FAILURE_LOW_OVERTEMP 8 | |
89 | #define FAILURE_HIGH_OVERTEMP 16 | |
90 | ||
91 | /* Overtemp values */ | |
92 | #define LOW_OVER_AVERAGE 0 | |
93 | #define LOW_OVER_IMMEDIATE (10 << 16) | |
94 | #define LOW_OVER_CLEAR ((-10) << 16) | |
95 | #define HIGH_OVER_IMMEDIATE (14 << 16) | |
96 | #define HIGH_OVER_AVERAGE (10 << 16) | |
97 | #define HIGH_OVER_IMMEDIATE (14 << 16) | |
98 | ||
99 | ||
100 | static void cpu_max_all_fans(void) | |
101 | { | |
102 | int i; | |
103 | ||
104 | /* We max all CPU fans in case of a sensor error. We also do the | |
105 | * cpufreq clamping now, even if it's supposedly done later by the | |
106 | * generic code anyway, we do it earlier here to react faster | |
107 | */ | |
108 | if (cpufreq_clamp) | |
109 | wf_control_set_max(cpufreq_clamp); | |
110 | for (i = 0; i < nr_chips; i++) { | |
111 | if (cpu_fans[i][0]) | |
112 | wf_control_set_max(cpu_fans[i][0]); | |
113 | if (cpu_fans[i][1]) | |
114 | wf_control_set_max(cpu_fans[i][1]); | |
115 | if (cpu_fans[i][2]) | |
116 | wf_control_set_max(cpu_fans[i][2]); | |
117 | } | |
118 | } | |
119 | ||
120 | static int cpu_check_overtemp(s32 temp) | |
121 | { | |
122 | int new_state = 0; | |
123 | s32 t_avg, t_old; | |
124 | static bool first = true; | |
125 | ||
126 | /* First check for immediate overtemps */ | |
127 | if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { | |
128 | new_state |= FAILURE_LOW_OVERTEMP; | |
129 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) | |
130 | printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" | |
131 | " temperature !\n"); | |
132 | } | |
133 | if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { | |
134 | new_state |= FAILURE_HIGH_OVERTEMP; | |
135 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) | |
136 | printk(KERN_ERR "windfarm: Critical overtemp due to" | |
137 | " immediate CPU temperature !\n"); | |
138 | } | |
139 | ||
140 | /* | |
141 | * The first time around, initialize the array with the first | |
142 | * temperature reading | |
143 | */ | |
144 | if (first) { | |
145 | int i; | |
146 | ||
147 | cpu_thist_total = 0; | |
148 | for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { | |
149 | cpu_thist[i] = temp; | |
150 | cpu_thist_total += temp; | |
151 | } | |
152 | first = false; | |
153 | } | |
154 | ||
155 | /* | |
156 | * We calculate a history of max temperatures and use that for the | |
157 | * overtemp management | |
158 | */ | |
159 | t_old = cpu_thist[cpu_thist_pt]; | |
160 | cpu_thist[cpu_thist_pt] = temp; | |
161 | cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; | |
162 | cpu_thist_total -= t_old; | |
163 | cpu_thist_total += temp; | |
164 | t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; | |
165 | ||
166 | DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", | |
167 | FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); | |
168 | ||
169 | /* Now check for average overtemps */ | |
170 | if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { | |
171 | new_state |= FAILURE_LOW_OVERTEMP; | |
172 | if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) | |
173 | printk(KERN_ERR "windfarm: Overtemp due to average CPU" | |
174 | " temperature !\n"); | |
175 | } | |
176 | if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { | |
177 | new_state |= FAILURE_HIGH_OVERTEMP; | |
178 | if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) | |
179 | printk(KERN_ERR "windfarm: Critical overtemp due to" | |
180 | " average CPU temperature !\n"); | |
181 | } | |
182 | ||
183 | /* Now handle overtemp conditions. We don't currently use the windfarm | |
184 | * overtemp handling core as it's not fully suited to the needs of those | |
185 | * new machine. This will be fixed later. | |
186 | */ | |
187 | if (new_state) { | |
188 | /* High overtemp -> immediate shutdown */ | |
189 | if (new_state & FAILURE_HIGH_OVERTEMP) | |
190 | machine_power_off(); | |
191 | if ((failure_state & new_state) != new_state) | |
192 | cpu_max_all_fans(); | |
193 | failure_state |= new_state; | |
194 | } else if ((failure_state & FAILURE_LOW_OVERTEMP) && | |
195 | (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { | |
196 | printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); | |
197 | failure_state &= ~FAILURE_LOW_OVERTEMP; | |
198 | } | |
199 | ||
200 | return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); | |
201 | } | |
202 | ||
203 | static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) | |
204 | { | |
205 | s32 dtemp, volts, amps; | |
206 | int rc; | |
207 | ||
208 | /* Get diode temperature */ | |
209 | rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); | |
210 | if (rc) { | |
211 | DBG(" CPU%d: temp reading error !\n", cpu); | |
212 | return -EIO; | |
213 | } | |
214 | DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); | |
215 | *temp = dtemp; | |
216 | ||
217 | /* Get voltage */ | |
218 | rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); | |
219 | if (rc) { | |
220 | DBG(" CPU%d, volts reading error !\n", cpu); | |
221 | return -EIO; | |
222 | } | |
223 | DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts))); | |
224 | ||
225 | /* Get current */ | |
226 | rc = wf_sensor_get(sens_cpu_amps[cpu], &s); | |
227 | if (rc) { | |
228 | DBG(" CPU%d, current reading error !\n", cpu); | |
229 | return -EIO; | |
230 | } | |
231 | DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps))); | |
232 | ||
233 | /* Calculate power */ | |
234 | ||
235 | /* Scale voltage and current raw sensor values according to fixed scales | |
236 | * obtained in Darwin and calculate power from I and V | |
237 | */ | |
238 | *power = (((u64)volts) * ((u64)amps)) >> 16; | |
239 | ||
240 | DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power))); | |
241 | ||
242 | return 0; | |
243 | ||
244 | } | |
245 | ||
246 | static void cpu_fans_tick(void) | |
247 | { | |
248 | int err, cpu, i; | |
249 | s32 speed, temp, power, t_max = 0; | |
250 | ||
251 | DBG_LOTS("* cpu fans_tick_split()\n"); | |
252 | ||
253 | for (cpu = 0; cpu < nr_chips; ++cpu) { | |
254 | struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; | |
255 | ||
256 | /* Read current speed */ | |
257 | wf_control_get(cpu_fans[cpu][0], &sp->target); | |
258 | ||
259 | err = read_one_cpu_vals(cpu, &temp, &power); | |
260 | if (err) { | |
261 | failure_state |= FAILURE_SENSOR; | |
262 | cpu_max_all_fans(); | |
263 | return; | |
264 | } | |
265 | ||
266 | /* Keep track of highest temp */ | |
267 | t_max = max(t_max, temp); | |
268 | ||
269 | /* Handle possible overtemps */ | |
270 | if (cpu_check_overtemp(t_max)) | |
271 | return; | |
272 | ||
273 | /* Run PID */ | |
274 | wf_cpu_pid_run(sp, power, temp); | |
275 | ||
276 | DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target); | |
277 | ||
278 | /* Apply DIMMs clamp */ | |
279 | speed = max(sp->target, dimms_output_clamp); | |
280 | ||
281 | /* Apply result to all cpu fans */ | |
282 | for (i = 0; i < 3; i++) { | |
283 | err = wf_control_set(cpu_fans[cpu][i], speed); | |
284 | if (err) { | |
285 | pr_warning("wf_rm31: Fan %s reports error %d\n", | |
286 | cpu_fans[cpu][i]->name, err); | |
287 | failure_state |= FAILURE_FAN; | |
288 | } | |
289 | } | |
290 | } | |
291 | } | |
292 | ||
293 | /* Implementation... */ | |
294 | static int cpu_setup_pid(int cpu) | |
295 | { | |
296 | struct wf_cpu_pid_param pid; | |
297 | const struct mpu_data *mpu = cpu_mpu_data[cpu]; | |
298 | s32 tmax, ttarget, ptarget; | |
299 | int fmin, fmax, hsize; | |
300 | ||
301 | /* Get PID params from the appropriate MPU EEPROM */ | |
302 | tmax = mpu->tmax << 16; | |
303 | ttarget = mpu->ttarget << 16; | |
304 | ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; | |
305 | ||
306 | DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", | |
307 | cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); | |
308 | ||
309 | /* We keep a global tmax for overtemp calculations */ | |
310 | if (tmax < cpu_all_tmax) | |
311 | cpu_all_tmax = tmax; | |
312 | ||
313 | /* Set PID min/max by using the rear fan min/max */ | |
314 | fmin = wf_control_get_min(cpu_fans[cpu][0]); | |
315 | fmax = wf_control_get_max(cpu_fans[cpu][0]); | |
316 | DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); | |
317 | ||
318 | /* History size */ | |
319 | hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); | |
320 | DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); | |
321 | ||
322 | /* Initialize PID loop */ | |
323 | pid.interval = 1; /* seconds */ | |
324 | pid.history_len = hsize; | |
325 | pid.gd = mpu->pid_gd; | |
326 | pid.gp = mpu->pid_gp; | |
327 | pid.gr = mpu->pid_gr; | |
328 | pid.tmax = tmax; | |
329 | pid.ttarget = ttarget; | |
330 | pid.pmaxadj = ptarget; | |
331 | pid.min = fmin; | |
332 | pid.max = fmax; | |
333 | ||
334 | wf_cpu_pid_init(&cpu_pid[cpu], &pid); | |
335 | cpu_pid[cpu].target = 4000; | |
336 | ||
337 | return 0; | |
338 | } | |
339 | ||
340 | /* Backside/U3 fan */ | |
341 | static struct wf_pid_param backside_param = { | |
342 | .interval = 1, | |
343 | .history_len = 2, | |
344 | .gd = 0x00500000, | |
345 | .gp = 0x0004cccc, | |
346 | .gr = 0, | |
347 | .itarget = 70 << 16, | |
348 | .additive = 0, | |
349 | .min = 20, | |
350 | .max = 100, | |
351 | }; | |
352 | ||
353 | /* DIMMs temperature (clamp the backside fan) */ | |
354 | static struct wf_pid_param dimms_param = { | |
355 | .interval = 1, | |
356 | .history_len = 20, | |
357 | .gd = 0, | |
358 | .gp = 0, | |
359 | .gr = 0x06553600, | |
360 | .itarget = 50 << 16, | |
361 | .additive = 0, | |
362 | .min = 4000, | |
363 | .max = 14000, | |
364 | }; | |
365 | ||
366 | static void backside_fan_tick(void) | |
367 | { | |
368 | s32 temp, dtemp; | |
369 | int speed, dspeed, fan_min; | |
370 | int err; | |
371 | ||
372 | if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick) | |
373 | return; | |
374 | if (--backside_tick > 0) | |
375 | return; | |
376 | backside_tick = backside_pid.param.interval; | |
377 | ||
378 | DBG_LOTS("* backside fans tick\n"); | |
379 | ||
380 | /* Update fan speed from actual fans */ | |
381 | err = wf_control_get(backside_fan, &speed); | |
382 | if (!err) | |
383 | backside_pid.target = speed; | |
384 | ||
385 | err = wf_sensor_get(backside_temp, &temp); | |
386 | if (err) { | |
387 | printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n", | |
388 | err); | |
389 | failure_state |= FAILURE_SENSOR; | |
390 | wf_control_set_max(backside_fan); | |
391 | return; | |
392 | } | |
393 | speed = wf_pid_run(&backside_pid, temp); | |
394 | ||
395 | DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", | |
396 | FIX32TOPRINT(temp), speed); | |
397 | ||
398 | err = wf_sensor_get(dimms_temp, &dtemp); | |
399 | if (err) { | |
400 | printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n", | |
401 | err); | |
402 | failure_state |= FAILURE_SENSOR; | |
403 | wf_control_set_max(backside_fan); | |
404 | return; | |
405 | } | |
406 | dspeed = wf_pid_run(&dimms_pid, dtemp); | |
407 | dimms_output_clamp = dspeed; | |
408 | ||
409 | fan_min = (dspeed * 100) / 14000; | |
410 | fan_min = max(fan_min, backside_param.min); | |
411 | speed = max(speed, fan_min); | |
412 | ||
413 | err = wf_control_set(backside_fan, speed); | |
414 | if (err) { | |
415 | printk(KERN_WARNING "windfarm: backside fan error %d\n", err); | |
416 | failure_state |= FAILURE_FAN; | |
417 | } | |
418 | } | |
419 | ||
420 | static void backside_setup_pid(void) | |
421 | { | |
422 | /* first time initialize things */ | |
423 | s32 fmin = wf_control_get_min(backside_fan); | |
424 | s32 fmax = wf_control_get_max(backside_fan); | |
425 | struct wf_pid_param param; | |
426 | ||
427 | param = backside_param; | |
428 | param.min = max(param.min, fmin); | |
429 | param.max = min(param.max, fmax); | |
430 | wf_pid_init(&backside_pid, ¶m); | |
431 | ||
432 | param = dimms_param; | |
433 | wf_pid_init(&dimms_pid, ¶m); | |
434 | ||
435 | backside_tick = 1; | |
436 | ||
437 | pr_info("wf_rm31: Backside control loop started.\n"); | |
438 | } | |
439 | ||
440 | /* Slots fan */ | |
441 | static const struct wf_pid_param slots_param = { | |
fe956a1d AK |
442 | .interval = 1, |
443 | .history_len = 20, | |
444 | .gd = 0, | |
445 | .gp = 0, | |
446 | .gr = 0x00100000, | |
447 | .itarget = 3200000, | |
448 | .additive = 0, | |
449 | .min = 20, | |
450 | .max = 100, | |
6cd32099 BH |
451 | }; |
452 | ||
453 | static void slots_fan_tick(void) | |
454 | { | |
455 | s32 temp; | |
456 | int speed; | |
457 | int err; | |
458 | ||
459 | if (!slots_fan || !slots_temp || !slots_tick) | |
460 | return; | |
461 | if (--slots_tick > 0) | |
462 | return; | |
463 | slots_tick = slots_pid.param.interval; | |
464 | ||
465 | DBG_LOTS("* slots fans tick\n"); | |
466 | ||
467 | err = wf_sensor_get(slots_temp, &temp); | |
468 | if (err) { | |
469 | pr_warning("wf_rm31: slots temp sensor error %d\n", err); | |
470 | failure_state |= FAILURE_SENSOR; | |
471 | wf_control_set_max(slots_fan); | |
472 | return; | |
473 | } | |
474 | speed = wf_pid_run(&slots_pid, temp); | |
475 | ||
476 | DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n", | |
477 | FIX32TOPRINT(temp), speed); | |
478 | ||
479 | slots_speed = speed; | |
480 | err = wf_control_set(slots_fan, speed); | |
481 | if (err) { | |
482 | printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err); | |
483 | failure_state |= FAILURE_FAN; | |
484 | } | |
485 | } | |
486 | ||
487 | static void slots_setup_pid(void) | |
488 | { | |
489 | /* first time initialize things */ | |
490 | s32 fmin = wf_control_get_min(slots_fan); | |
491 | s32 fmax = wf_control_get_max(slots_fan); | |
492 | struct wf_pid_param param = slots_param; | |
493 | ||
494 | param.min = max(param.min, fmin); | |
495 | param.max = min(param.max, fmax); | |
496 | wf_pid_init(&slots_pid, ¶m); | |
497 | slots_tick = 1; | |
498 | ||
499 | pr_info("wf_rm31: Slots control loop started.\n"); | |
500 | } | |
501 | ||
502 | static void set_fail_state(void) | |
503 | { | |
504 | cpu_max_all_fans(); | |
505 | ||
506 | if (backside_fan) | |
507 | wf_control_set_max(backside_fan); | |
508 | if (slots_fan) | |
509 | wf_control_set_max(slots_fan); | |
510 | } | |
511 | ||
512 | static void rm31_tick(void) | |
513 | { | |
514 | int i, last_failure; | |
515 | ||
516 | if (!started) { | |
517 | started = 1; | |
518 | printk(KERN_INFO "windfarm: CPUs control loops started.\n"); | |
519 | for (i = 0; i < nr_chips; ++i) { | |
520 | if (cpu_setup_pid(i) < 0) { | |
521 | failure_state = FAILURE_PERM; | |
522 | set_fail_state(); | |
523 | break; | |
524 | } | |
525 | } | |
526 | DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); | |
527 | ||
528 | backside_setup_pid(); | |
529 | slots_setup_pid(); | |
530 | ||
531 | #ifdef HACKED_OVERTEMP | |
532 | cpu_all_tmax = 60 << 16; | |
533 | #endif | |
534 | } | |
535 | ||
536 | /* Permanent failure, bail out */ | |
537 | if (failure_state & FAILURE_PERM) | |
538 | return; | |
539 | ||
540 | /* | |
541 | * Clear all failure bits except low overtemp which will be eventually | |
542 | * cleared by the control loop itself | |
543 | */ | |
544 | last_failure = failure_state; | |
545 | failure_state &= FAILURE_LOW_OVERTEMP; | |
546 | backside_fan_tick(); | |
547 | slots_fan_tick(); | |
548 | ||
549 | /* We do CPUs last because they can be clamped high by | |
550 | * DIMM temperature | |
551 | */ | |
552 | cpu_fans_tick(); | |
553 | ||
554 | DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n", | |
555 | last_failure, failure_state); | |
556 | ||
557 | /* Check for failures. Any failure causes cpufreq clamping */ | |
558 | if (failure_state && last_failure == 0 && cpufreq_clamp) | |
559 | wf_control_set_max(cpufreq_clamp); | |
560 | if (failure_state == 0 && last_failure && cpufreq_clamp) | |
561 | wf_control_set_min(cpufreq_clamp); | |
562 | ||
563 | /* That's it for now, we might want to deal with other failures | |
564 | * differently in the future though | |
565 | */ | |
566 | } | |
567 | ||
568 | static void rm31_new_control(struct wf_control *ct) | |
569 | { | |
570 | bool all_controls; | |
571 | ||
572 | if (!strcmp(ct->name, "cpu-fan-a-0")) | |
573 | cpu_fans[0][0] = ct; | |
574 | else if (!strcmp(ct->name, "cpu-fan-b-0")) | |
575 | cpu_fans[0][1] = ct; | |
576 | else if (!strcmp(ct->name, "cpu-fan-c-0")) | |
577 | cpu_fans[0][2] = ct; | |
578 | else if (!strcmp(ct->name, "cpu-fan-a-1")) | |
579 | cpu_fans[1][0] = ct; | |
580 | else if (!strcmp(ct->name, "cpu-fan-b-1")) | |
581 | cpu_fans[1][1] = ct; | |
582 | else if (!strcmp(ct->name, "cpu-fan-c-1")) | |
583 | cpu_fans[1][2] = ct; | |
584 | else if (!strcmp(ct->name, "backside-fan")) | |
585 | backside_fan = ct; | |
586 | else if (!strcmp(ct->name, "slots-fan")) | |
587 | slots_fan = ct; | |
588 | else if (!strcmp(ct->name, "cpufreq-clamp")) | |
589 | cpufreq_clamp = ct; | |
590 | ||
591 | all_controls = | |
592 | cpu_fans[0][0] && | |
593 | cpu_fans[0][1] && | |
594 | cpu_fans[0][2] && | |
595 | backside_fan && | |
596 | slots_fan; | |
597 | if (nr_chips > 1) | |
598 | all_controls &= | |
599 | cpu_fans[1][0] && | |
600 | cpu_fans[1][1] && | |
601 | cpu_fans[1][2]; | |
602 | have_all_controls = all_controls; | |
603 | } | |
604 | ||
605 | ||
606 | static void rm31_new_sensor(struct wf_sensor *sr) | |
607 | { | |
608 | bool all_sensors; | |
609 | ||
610 | if (!strcmp(sr->name, "cpu-diode-temp-0")) | |
611 | sens_cpu_temp[0] = sr; | |
612 | else if (!strcmp(sr->name, "cpu-diode-temp-1")) | |
613 | sens_cpu_temp[1] = sr; | |
614 | else if (!strcmp(sr->name, "cpu-voltage-0")) | |
615 | sens_cpu_volts[0] = sr; | |
616 | else if (!strcmp(sr->name, "cpu-voltage-1")) | |
617 | sens_cpu_volts[1] = sr; | |
618 | else if (!strcmp(sr->name, "cpu-current-0")) | |
619 | sens_cpu_amps[0] = sr; | |
620 | else if (!strcmp(sr->name, "cpu-current-1")) | |
621 | sens_cpu_amps[1] = sr; | |
622 | else if (!strcmp(sr->name, "backside-temp")) | |
623 | backside_temp = sr; | |
624 | else if (!strcmp(sr->name, "slots-temp")) | |
625 | slots_temp = sr; | |
626 | else if (!strcmp(sr->name, "dimms-temp")) | |
627 | dimms_temp = sr; | |
628 | ||
629 | all_sensors = | |
630 | sens_cpu_temp[0] && | |
631 | sens_cpu_volts[0] && | |
632 | sens_cpu_amps[0] && | |
633 | backside_temp && | |
634 | slots_temp && | |
635 | dimms_temp; | |
636 | if (nr_chips > 1) | |
637 | all_sensors &= | |
638 | sens_cpu_temp[1] && | |
639 | sens_cpu_volts[1] && | |
640 | sens_cpu_amps[1]; | |
641 | ||
642 | have_all_sensors = all_sensors; | |
643 | } | |
644 | ||
645 | static int rm31_wf_notify(struct notifier_block *self, | |
646 | unsigned long event, void *data) | |
647 | { | |
648 | switch (event) { | |
649 | case WF_EVENT_NEW_SENSOR: | |
650 | rm31_new_sensor(data); | |
651 | break; | |
652 | case WF_EVENT_NEW_CONTROL: | |
653 | rm31_new_control(data); | |
654 | break; | |
655 | case WF_EVENT_TICK: | |
656 | if (have_all_controls && have_all_sensors) | |
657 | rm31_tick(); | |
658 | } | |
659 | return 0; | |
660 | } | |
661 | ||
662 | static struct notifier_block rm31_events = { | |
663 | .notifier_call = rm31_wf_notify, | |
664 | }; | |
665 | ||
666 | static int wf_rm31_probe(struct platform_device *dev) | |
667 | { | |
668 | wf_register_client(&rm31_events); | |
669 | return 0; | |
670 | } | |
671 | ||
1da42fb6 | 672 | static int wf_rm31_remove(struct platform_device *dev) |
6cd32099 BH |
673 | { |
674 | wf_unregister_client(&rm31_events); | |
675 | ||
676 | /* should release all sensors and controls */ | |
677 | return 0; | |
678 | } | |
679 | ||
680 | static struct platform_driver wf_rm31_driver = { | |
681 | .probe = wf_rm31_probe, | |
682 | .remove = wf_rm31_remove, | |
683 | .driver = { | |
684 | .name = "windfarm", | |
685 | .owner = THIS_MODULE, | |
686 | }, | |
687 | }; | |
688 | ||
689 | static int __init wf_rm31_init(void) | |
690 | { | |
691 | struct device_node *cpu; | |
692 | int i; | |
693 | ||
694 | if (!of_machine_is_compatible("RackMac3,1")) | |
695 | return -ENODEV; | |
696 | ||
697 | /* Count the number of CPU cores */ | |
698 | nr_chips = 0; | |
c7c360ee | 699 | for_each_node_by_type(cpu, "cpu") |
6cd32099 BH |
700 | ++nr_chips; |
701 | if (nr_chips > NR_CHIPS) | |
702 | nr_chips = NR_CHIPS; | |
703 | ||
704 | pr_info("windfarm: Initializing for desktop G5 with %d chips\n", | |
705 | nr_chips); | |
706 | ||
707 | /* Get MPU data for each CPU */ | |
708 | for (i = 0; i < nr_chips; i++) { | |
709 | cpu_mpu_data[i] = wf_get_mpu(i); | |
710 | if (!cpu_mpu_data[i]) { | |
711 | pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i); | |
712 | return -ENXIO; | |
713 | } | |
714 | } | |
715 | ||
716 | #ifdef MODULE | |
717 | request_module("windfarm_fcu_controls"); | |
718 | request_module("windfarm_lm75_sensor"); | |
719 | request_module("windfarm_lm87_sensor"); | |
720 | request_module("windfarm_ad7417_sensor"); | |
721 | request_module("windfarm_max6690_sensor"); | |
722 | request_module("windfarm_cpufreq_clamp"); | |
723 | #endif /* MODULE */ | |
724 | ||
725 | platform_driver_register(&wf_rm31_driver); | |
726 | return 0; | |
727 | } | |
728 | ||
729 | static void __exit wf_rm31_exit(void) | |
730 | { | |
731 | platform_driver_unregister(&wf_rm31_driver); | |
732 | } | |
733 | ||
734 | module_init(wf_rm31_init); | |
735 | module_exit(wf_rm31_exit); | |
736 | ||
737 | MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>"); | |
738 | MODULE_DESCRIPTION("Thermal control for Xserve G5"); | |
739 | MODULE_LICENSE("GPL"); | |
740 | MODULE_ALIAS("platform:windfarm"); |