]>
Commit | Line | Data |
---|---|---|
a7905043 JB |
1 | #include "blk-rq-qos.h" |
2 | ||
a7905043 JB |
3 | /* |
4 | * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, | |
5 | * false if 'v' + 1 would be bigger than 'below'. | |
6 | */ | |
22f17952 | 7 | static bool atomic_inc_below(atomic_t *v, unsigned int below) |
a7905043 | 8 | { |
22f17952 | 9 | unsigned int cur = atomic_read(v); |
a7905043 JB |
10 | |
11 | for (;;) { | |
22f17952 | 12 | unsigned int old; |
a7905043 JB |
13 | |
14 | if (cur >= below) | |
15 | return false; | |
16 | old = atomic_cmpxchg(v, cur, cur + 1); | |
17 | if (old == cur) | |
18 | break; | |
19 | cur = old; | |
20 | } | |
21 | ||
22 | return true; | |
23 | } | |
24 | ||
22f17952 | 25 | bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit) |
a7905043 JB |
26 | { |
27 | return atomic_inc_below(&rq_wait->inflight, limit); | |
28 | } | |
29 | ||
e5045454 | 30 | void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio) |
a7905043 | 31 | { |
e5045454 | 32 | do { |
a7905043 | 33 | if (rqos->ops->cleanup) |
c1c80384 | 34 | rqos->ops->cleanup(rqos, bio); |
e5045454 JA |
35 | rqos = rqos->next; |
36 | } while (rqos); | |
a7905043 JB |
37 | } |
38 | ||
e5045454 | 39 | void __rq_qos_done(struct rq_qos *rqos, struct request *rq) |
a7905043 | 40 | { |
e5045454 | 41 | do { |
a7905043 JB |
42 | if (rqos->ops->done) |
43 | rqos->ops->done(rqos, rq); | |
e5045454 JA |
44 | rqos = rqos->next; |
45 | } while (rqos); | |
a7905043 JB |
46 | } |
47 | ||
e5045454 | 48 | void __rq_qos_issue(struct rq_qos *rqos, struct request *rq) |
a7905043 | 49 | { |
e5045454 | 50 | do { |
a7905043 JB |
51 | if (rqos->ops->issue) |
52 | rqos->ops->issue(rqos, rq); | |
e5045454 JA |
53 | rqos = rqos->next; |
54 | } while (rqos); | |
a7905043 JB |
55 | } |
56 | ||
e5045454 | 57 | void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq) |
a7905043 | 58 | { |
e5045454 | 59 | do { |
a7905043 JB |
60 | if (rqos->ops->requeue) |
61 | rqos->ops->requeue(rqos, rq); | |
e5045454 JA |
62 | rqos = rqos->next; |
63 | } while (rqos); | |
a7905043 JB |
64 | } |
65 | ||
e5045454 | 66 | void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio) |
a7905043 | 67 | { |
e5045454 | 68 | do { |
a7905043 | 69 | if (rqos->ops->throttle) |
d5337560 | 70 | rqos->ops->throttle(rqos, bio); |
e5045454 JA |
71 | rqos = rqos->next; |
72 | } while (rqos); | |
c1c80384 JB |
73 | } |
74 | ||
e5045454 | 75 | void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) |
c1c80384 | 76 | { |
e5045454 | 77 | do { |
c1c80384 JB |
78 | if (rqos->ops->track) |
79 | rqos->ops->track(rqos, rq, bio); | |
e5045454 JA |
80 | rqos = rqos->next; |
81 | } while (rqos); | |
a7905043 JB |
82 | } |
83 | ||
e5045454 | 84 | void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio) |
67b42d0b | 85 | { |
e5045454 | 86 | do { |
67b42d0b JB |
87 | if (rqos->ops->done_bio) |
88 | rqos->ops->done_bio(rqos, bio); | |
e5045454 JA |
89 | rqos = rqos->next; |
90 | } while (rqos); | |
67b42d0b JB |
91 | } |
92 | ||
a7905043 JB |
93 | /* |
94 | * Return true, if we can't increase the depth further by scaling | |
95 | */ | |
96 | bool rq_depth_calc_max_depth(struct rq_depth *rqd) | |
97 | { | |
98 | unsigned int depth; | |
99 | bool ret = false; | |
100 | ||
101 | /* | |
102 | * For QD=1 devices, this is a special case. It's important for those | |
103 | * to have one request ready when one completes, so force a depth of | |
104 | * 2 for those devices. On the backend, it'll be a depth of 1 anyway, | |
105 | * since the device can't have more than that in flight. If we're | |
106 | * scaling down, then keep a setting of 1/1/1. | |
107 | */ | |
108 | if (rqd->queue_depth == 1) { | |
109 | if (rqd->scale_step > 0) | |
110 | rqd->max_depth = 1; | |
111 | else { | |
112 | rqd->max_depth = 2; | |
113 | ret = true; | |
114 | } | |
115 | } else { | |
116 | /* | |
117 | * scale_step == 0 is our default state. If we have suffered | |
118 | * latency spikes, step will be > 0, and we shrink the | |
119 | * allowed write depths. If step is < 0, we're only doing | |
120 | * writes, and we allow a temporarily higher depth to | |
121 | * increase performance. | |
122 | */ | |
123 | depth = min_t(unsigned int, rqd->default_depth, | |
124 | rqd->queue_depth); | |
125 | if (rqd->scale_step > 0) | |
126 | depth = 1 + ((depth - 1) >> min(31, rqd->scale_step)); | |
127 | else if (rqd->scale_step < 0) { | |
128 | unsigned int maxd = 3 * rqd->queue_depth / 4; | |
129 | ||
130 | depth = 1 + ((depth - 1) << -rqd->scale_step); | |
131 | if (depth > maxd) { | |
132 | depth = maxd; | |
133 | ret = true; | |
134 | } | |
135 | } | |
136 | ||
137 | rqd->max_depth = depth; | |
138 | } | |
139 | ||
140 | return ret; | |
141 | } | |
142 | ||
143 | void rq_depth_scale_up(struct rq_depth *rqd) | |
144 | { | |
145 | /* | |
146 | * Hit max in previous round, stop here | |
147 | */ | |
148 | if (rqd->scaled_max) | |
149 | return; | |
150 | ||
151 | rqd->scale_step--; | |
152 | ||
153 | rqd->scaled_max = rq_depth_calc_max_depth(rqd); | |
154 | } | |
155 | ||
156 | /* | |
157 | * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we | |
158 | * had a latency violation. | |
159 | */ | |
160 | void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle) | |
161 | { | |
162 | /* | |
163 | * Stop scaling down when we've hit the limit. This also prevents | |
164 | * ->scale_step from going to crazy values, if the device can't | |
165 | * keep up. | |
166 | */ | |
167 | if (rqd->max_depth == 1) | |
168 | return; | |
169 | ||
170 | if (rqd->scale_step < 0 && hard_throttle) | |
171 | rqd->scale_step = 0; | |
172 | else | |
173 | rqd->scale_step++; | |
174 | ||
175 | rqd->scaled_max = false; | |
176 | rq_depth_calc_max_depth(rqd); | |
177 | } | |
178 | ||
84f60324 JB |
179 | struct rq_qos_wait_data { |
180 | struct wait_queue_entry wq; | |
181 | struct task_struct *task; | |
182 | struct rq_wait *rqw; | |
183 | acquire_inflight_cb_t *cb; | |
184 | void *private_data; | |
185 | bool got_token; | |
186 | }; | |
187 | ||
188 | static int rq_qos_wake_function(struct wait_queue_entry *curr, | |
189 | unsigned int mode, int wake_flags, void *key) | |
190 | { | |
191 | struct rq_qos_wait_data *data = container_of(curr, | |
192 | struct rq_qos_wait_data, | |
193 | wq); | |
194 | ||
195 | /* | |
196 | * If we fail to get a budget, return -1 to interrupt the wake up loop | |
197 | * in __wake_up_common. | |
198 | */ | |
199 | if (!data->cb(data->rqw, data->private_data)) | |
200 | return -1; | |
201 | ||
202 | data->got_token = true; | |
203 | list_del_init(&curr->entry); | |
204 | wake_up_process(data->task); | |
205 | return 1; | |
206 | } | |
207 | ||
208 | /** | |
209 | * rq_qos_wait - throttle on a rqw if we need to | |
210 | * @private_data - caller provided specific data | |
211 | * @acquire_inflight_cb - inc the rqw->inflight counter if we can | |
212 | * @cleanup_cb - the callback to cleanup in case we race with a waker | |
213 | * | |
214 | * This provides a uniform place for the rq_qos users to do their throttling. | |
215 | * Since you can end up with a lot of things sleeping at once, this manages the | |
216 | * waking up based on the resources available. The acquire_inflight_cb should | |
217 | * inc the rqw->inflight if we have the ability to do so, or return false if not | |
218 | * and then we will sleep until the room becomes available. | |
219 | * | |
220 | * cleanup_cb is in case that we race with a waker and need to cleanup the | |
221 | * inflight count accordingly. | |
222 | */ | |
223 | void rq_qos_wait(struct rq_wait *rqw, void *private_data, | |
224 | acquire_inflight_cb_t *acquire_inflight_cb, | |
225 | cleanup_cb_t *cleanup_cb) | |
226 | { | |
227 | struct rq_qos_wait_data data = { | |
228 | .wq = { | |
229 | .func = rq_qos_wake_function, | |
230 | .entry = LIST_HEAD_INIT(data.wq.entry), | |
231 | }, | |
232 | .task = current, | |
233 | .rqw = rqw, | |
234 | .cb = acquire_inflight_cb, | |
235 | .private_data = private_data, | |
236 | }; | |
237 | bool has_sleeper; | |
238 | ||
239 | has_sleeper = wq_has_sleeper(&rqw->wait); | |
240 | if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) | |
241 | return; | |
242 | ||
243 | prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE); | |
244 | do { | |
245 | if (data.got_token) | |
246 | break; | |
247 | if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) { | |
248 | finish_wait(&rqw->wait, &data.wq); | |
249 | ||
250 | /* | |
251 | * We raced with wbt_wake_function() getting a token, | |
252 | * which means we now have two. Put our local token | |
253 | * and wake anyone else potentially waiting for one. | |
254 | */ | |
255 | if (data.got_token) | |
256 | cleanup_cb(rqw, private_data); | |
257 | break; | |
258 | } | |
259 | io_schedule(); | |
260 | has_sleeper = false; | |
261 | } while (1); | |
262 | finish_wait(&rqw->wait, &data.wq); | |
263 | } | |
264 | ||
a7905043 JB |
265 | void rq_qos_exit(struct request_queue *q) |
266 | { | |
cc56694f ML |
267 | blk_mq_debugfs_unregister_queue_rqos(q); |
268 | ||
a7905043 JB |
269 | while (q->rq_qos) { |
270 | struct rq_qos *rqos = q->rq_qos; | |
271 | q->rq_qos = rqos->next; | |
272 | rqos->ops->exit(rqos); | |
273 | } | |
274 | } |