]> Git Repo - linux.git/blame - mm/hmm.c
mm/hmm: Hold a mmgrab from hmm to mm
[linux.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <[email protected]>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/mm.h>
12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
29#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
133ff0ea 30
6b368cd4 31#if IS_ENABLED(CONFIG_HMM_MIRROR)
c0b12405
JG
32static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
33
704f3f2c
JG
34static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
35{
36 struct hmm *hmm = READ_ONCE(mm->hmm);
37
38 if (hmm && kref_get_unless_zero(&hmm->kref))
39 return hmm;
40
41 return NULL;
42}
43
44/**
45 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
46 *
47 * @mm: mm struct to attach to
704f3f2c
JG
48 * Returns: returns an HMM object, either by referencing the existing
49 * (per-process) object, or by creating a new one.
133ff0ea 50 *
704f3f2c
JG
51 * This is not intended to be used directly by device drivers. If mm already
52 * has an HMM struct then it get a reference on it and returns it. Otherwise
53 * it allocates an HMM struct, initializes it, associate it with the mm and
54 * returns it.
133ff0ea 55 */
704f3f2c 56static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 57{
704f3f2c 58 struct hmm *hmm = mm_get_hmm(mm);
c0b12405 59 bool cleanup = false;
133ff0ea 60
c0b12405
JG
61 if (hmm)
62 return hmm;
63
64 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
65 if (!hmm)
66 return NULL;
a3e0d41c 67 init_waitqueue_head(&hmm->wq);
c0b12405
JG
68 INIT_LIST_HEAD(&hmm->mirrors);
69 init_rwsem(&hmm->mirrors_sem);
c0b12405 70 hmm->mmu_notifier.ops = NULL;
da4c3c73 71 INIT_LIST_HEAD(&hmm->ranges);
a3e0d41c 72 mutex_init(&hmm->lock);
704f3f2c 73 kref_init(&hmm->kref);
a3e0d41c
JG
74 hmm->notifiers = 0;
75 hmm->dead = false;
c0b12405 76 hmm->mm = mm;
c8a53b2d 77 mmgrab(hmm->mm);
c0b12405 78
c0b12405
JG
79 spin_lock(&mm->page_table_lock);
80 if (!mm->hmm)
81 mm->hmm = hmm;
82 else
83 cleanup = true;
84 spin_unlock(&mm->page_table_lock);
85
86a2d598
RC
86 if (cleanup)
87 goto error;
88
89 /*
90 * We should only get here if hold the mmap_sem in write mode ie on
91 * registration of first mirror through hmm_mirror_register()
92 */
93 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
94 if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
95 goto error_mm;
c0b12405 96
704f3f2c 97 return hmm;
86a2d598
RC
98
99error_mm:
100 spin_lock(&mm->page_table_lock);
101 if (mm->hmm == hmm)
102 mm->hmm = NULL;
103 spin_unlock(&mm->page_table_lock);
104error:
c8a53b2d 105 mmdrop(hmm->mm);
86a2d598
RC
106 kfree(hmm);
107 return NULL;
133ff0ea
JG
108}
109
6d7c3cde
JG
110static void hmm_free_rcu(struct rcu_head *rcu)
111{
112 kfree(container_of(rcu, struct hmm, rcu));
113}
114
704f3f2c
JG
115static void hmm_free(struct kref *kref)
116{
117 struct hmm *hmm = container_of(kref, struct hmm, kref);
118 struct mm_struct *mm = hmm->mm;
119
120 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
121
122 spin_lock(&mm->page_table_lock);
123 if (mm->hmm == hmm)
124 mm->hmm = NULL;
125 spin_unlock(&mm->page_table_lock);
126
c8a53b2d 127 mmdrop(hmm->mm);
6d7c3cde 128 mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
704f3f2c
JG
129}
130
131static inline void hmm_put(struct hmm *hmm)
132{
133 kref_put(&hmm->kref, hmm_free);
134}
135
a3e0d41c 136static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
c0b12405 137{
6d7c3cde 138 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 139 struct hmm_mirror *mirror;
da4c3c73
JG
140 struct hmm_range *range;
141
6d7c3cde
JG
142 /* Bail out if hmm is in the process of being freed */
143 if (!kref_get_unless_zero(&hmm->kref))
144 return;
145
a3e0d41c
JG
146 /* Report this HMM as dying. */
147 hmm->dead = true;
da4c3c73 148
a3e0d41c
JG
149 /* Wake-up everyone waiting on any range. */
150 mutex_lock(&hmm->lock);
085ea250 151 list_for_each_entry(range, &hmm->ranges, list)
da4c3c73 152 range->valid = false;
a3e0d41c
JG
153 wake_up_all(&hmm->wq);
154 mutex_unlock(&hmm->lock);
e1401513
RC
155
156 down_write(&hmm->mirrors_sem);
157 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
158 list);
159 while (mirror) {
160 list_del_init(&mirror->list);
161 if (mirror->ops->release) {
162 /*
085ea250
RC
163 * Drop mirrors_sem so the release callback can wait
164 * on any pending work that might itself trigger a
165 * mmu_notifier callback and thus would deadlock with
166 * us.
e1401513
RC
167 */
168 up_write(&hmm->mirrors_sem);
169 mirror->ops->release(mirror);
170 down_write(&hmm->mirrors_sem);
171 }
172 mirror = list_first_entry_or_null(&hmm->mirrors,
173 struct hmm_mirror, list);
174 }
175 up_write(&hmm->mirrors_sem);
704f3f2c
JG
176
177 hmm_put(hmm);
e1401513
RC
178}
179
93065ac7 180static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 181 const struct mmu_notifier_range *nrange)
c0b12405 182{
6d7c3cde 183 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
a3e0d41c 184 struct hmm_mirror *mirror;
ec131b2d 185 struct hmm_update update;
a3e0d41c
JG
186 struct hmm_range *range;
187 int ret = 0;
c0b12405 188
6d7c3cde
JG
189 if (!kref_get_unless_zero(&hmm->kref))
190 return 0;
c0b12405 191
a3e0d41c
JG
192 update.start = nrange->start;
193 update.end = nrange->end;
ec131b2d 194 update.event = HMM_UPDATE_INVALIDATE;
dfcd6660 195 update.blockable = mmu_notifier_range_blockable(nrange);
a3e0d41c 196
dfcd6660 197 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
198 mutex_lock(&hmm->lock);
199 else if (!mutex_trylock(&hmm->lock)) {
200 ret = -EAGAIN;
201 goto out;
202 }
203 hmm->notifiers++;
204 list_for_each_entry(range, &hmm->ranges, list) {
205 if (update.end < range->start || update.start >= range->end)
206 continue;
207
208 range->valid = false;
209 }
210 mutex_unlock(&hmm->lock);
211
dfcd6660 212 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
213 down_read(&hmm->mirrors_sem);
214 else if (!down_read_trylock(&hmm->mirrors_sem)) {
215 ret = -EAGAIN;
216 goto out;
217 }
218 list_for_each_entry(mirror, &hmm->mirrors, list) {
219 int ret;
220
221 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
085ea250
RC
222 if (!update.blockable && ret == -EAGAIN)
223 break;
a3e0d41c
JG
224 }
225 up_read(&hmm->mirrors_sem);
226
227out:
704f3f2c
JG
228 hmm_put(hmm);
229 return ret;
c0b12405
JG
230}
231
232static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 233 const struct mmu_notifier_range *nrange)
c0b12405 234{
6d7c3cde 235 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 236
6d7c3cde
JG
237 if (!kref_get_unless_zero(&hmm->kref))
238 return;
c0b12405 239
a3e0d41c
JG
240 mutex_lock(&hmm->lock);
241 hmm->notifiers--;
242 if (!hmm->notifiers) {
243 struct hmm_range *range;
244
245 list_for_each_entry(range, &hmm->ranges, list) {
246 if (range->valid)
247 continue;
248 range->valid = true;
249 }
250 wake_up_all(&hmm->wq);
251 }
252 mutex_unlock(&hmm->lock);
253
704f3f2c 254 hmm_put(hmm);
c0b12405
JG
255}
256
257static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 258 .release = hmm_release,
c0b12405
JG
259 .invalidate_range_start = hmm_invalidate_range_start,
260 .invalidate_range_end = hmm_invalidate_range_end,
261};
262
263/*
264 * hmm_mirror_register() - register a mirror against an mm
265 *
266 * @mirror: new mirror struct to register
267 * @mm: mm to register against
085ea250 268 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
c0b12405
JG
269 *
270 * To start mirroring a process address space, the device driver must register
271 * an HMM mirror struct.
272 *
273 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
274 */
275int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
276{
277 /* Sanity check */
278 if (!mm || !mirror || !mirror->ops)
279 return -EINVAL;
280
704f3f2c 281 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
282 if (!mirror->hmm)
283 return -ENOMEM;
284
285 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
286 list_add(&mirror->list, &mirror->hmm->mirrors);
287 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
288
289 return 0;
290}
291EXPORT_SYMBOL(hmm_mirror_register);
292
293/*
294 * hmm_mirror_unregister() - unregister a mirror
295 *
085ea250 296 * @mirror: mirror struct to unregister
c0b12405
JG
297 *
298 * Stop mirroring a process address space, and cleanup.
299 */
300void hmm_mirror_unregister(struct hmm_mirror *mirror)
301{
704f3f2c 302 struct hmm *hmm = READ_ONCE(mirror->hmm);
c01cbba2 303
704f3f2c 304 if (hmm == NULL)
c01cbba2 305 return;
c0b12405
JG
306
307 down_write(&hmm->mirrors_sem);
e1401513 308 list_del_init(&mirror->list);
704f3f2c 309 /* To protect us against double unregister ... */
c01cbba2 310 mirror->hmm = NULL;
c0b12405 311 up_write(&hmm->mirrors_sem);
c01cbba2 312
704f3f2c 313 hmm_put(hmm);
c0b12405
JG
314}
315EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 316
74eee180
JG
317struct hmm_vma_walk {
318 struct hmm_range *range;
992de9a8 319 struct dev_pagemap *pgmap;
74eee180
JG
320 unsigned long last;
321 bool fault;
322 bool block;
74eee180
JG
323};
324
2aee09d8
JG
325static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
326 bool write_fault, uint64_t *pfn)
74eee180 327{
9b1ae605 328 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 329 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 330 struct hmm_range *range = hmm_vma_walk->range;
74eee180 331 struct vm_area_struct *vma = walk->vma;
50a7ca3c 332 vm_fault_t ret;
74eee180
JG
333
334 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 335 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
336 ret = handle_mm_fault(vma, addr, flags);
337 if (ret & VM_FAULT_RETRY)
73231612 338 return -EAGAIN;
50a7ca3c 339 if (ret & VM_FAULT_ERROR) {
f88a1e90 340 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
341 return -EFAULT;
342 }
343
73231612 344 return -EBUSY;
74eee180
JG
345}
346
da4c3c73
JG
347static int hmm_pfns_bad(unsigned long addr,
348 unsigned long end,
349 struct mm_walk *walk)
350{
c719547f
JG
351 struct hmm_vma_walk *hmm_vma_walk = walk->private;
352 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 353 uint64_t *pfns = range->pfns;
da4c3c73
JG
354 unsigned long i;
355
356 i = (addr - range->start) >> PAGE_SHIFT;
357 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 358 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
359
360 return 0;
361}
362
5504ed29
JG
363/*
364 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
365 * @start: range virtual start address (inclusive)
366 * @end: range virtual end address (exclusive)
2aee09d8
JG
367 * @fault: should we fault or not ?
368 * @write_fault: write fault ?
5504ed29 369 * @walk: mm_walk structure
085ea250 370 * Return: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
371 *
372 * This function will be called whenever pmd_none() or pte_none() returns true,
373 * or whenever there is no page directory covering the virtual address range.
374 */
2aee09d8
JG
375static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
376 bool fault, bool write_fault,
377 struct mm_walk *walk)
da4c3c73 378{
74eee180
JG
379 struct hmm_vma_walk *hmm_vma_walk = walk->private;
380 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 381 uint64_t *pfns = range->pfns;
63d5066f 382 unsigned long i, page_size;
da4c3c73 383
74eee180 384 hmm_vma_walk->last = addr;
63d5066f
JG
385 page_size = hmm_range_page_size(range);
386 i = (addr - range->start) >> range->page_shift;
387
388 for (; addr < end; addr += page_size, i++) {
f88a1e90 389 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 390 if (fault || write_fault) {
74eee180 391 int ret;
da4c3c73 392
2aee09d8
JG
393 ret = hmm_vma_do_fault(walk, addr, write_fault,
394 &pfns[i]);
73231612 395 if (ret != -EBUSY)
74eee180
JG
396 return ret;
397 }
398 }
399
73231612 400 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
401}
402
403static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
404 uint64_t pfns, uint64_t cpu_flags,
405 bool *fault, bool *write_fault)
406{
f88a1e90
JG
407 struct hmm_range *range = hmm_vma_walk->range;
408
2aee09d8
JG
409 if (!hmm_vma_walk->fault)
410 return;
411
023a019a
JG
412 /*
413 * So we not only consider the individual per page request we also
414 * consider the default flags requested for the range. The API can
415 * be use in 2 fashions. The first one where the HMM user coalesce
416 * multiple page fault into one request and set flags per pfns for
417 * of those faults. The second one where the HMM user want to pre-
418 * fault a range with specific flags. For the latter one it is a
419 * waste to have the user pre-fill the pfn arrays with a default
420 * flags value.
421 */
422 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
423
2aee09d8 424 /* We aren't ask to do anything ... */
f88a1e90 425 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 426 return;
f88a1e90
JG
427 /* If this is device memory than only fault if explicitly requested */
428 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
429 /* Do we fault on device memory ? */
430 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
431 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
432 *fault = true;
433 }
2aee09d8
JG
434 return;
435 }
f88a1e90
JG
436
437 /* If CPU page table is not valid then we need to fault */
438 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
439 /* Need to write fault ? */
440 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
441 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
442 *write_fault = true;
2aee09d8
JG
443 *fault = true;
444 }
445}
446
447static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
448 const uint64_t *pfns, unsigned long npages,
449 uint64_t cpu_flags, bool *fault,
450 bool *write_fault)
451{
452 unsigned long i;
453
454 if (!hmm_vma_walk->fault) {
455 *fault = *write_fault = false;
456 return;
457 }
458
a3e0d41c 459 *fault = *write_fault = false;
2aee09d8
JG
460 for (i = 0; i < npages; ++i) {
461 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
462 fault, write_fault);
a3e0d41c 463 if ((*write_fault))
2aee09d8
JG
464 return;
465 }
466}
467
468static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
469 struct mm_walk *walk)
470{
471 struct hmm_vma_walk *hmm_vma_walk = walk->private;
472 struct hmm_range *range = hmm_vma_walk->range;
473 bool fault, write_fault;
474 unsigned long i, npages;
475 uint64_t *pfns;
476
477 i = (addr - range->start) >> PAGE_SHIFT;
478 npages = (end - addr) >> PAGE_SHIFT;
479 pfns = &range->pfns[i];
480 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
481 0, &fault, &write_fault);
482 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
483}
484
f88a1e90 485static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
486{
487 if (pmd_protnone(pmd))
488 return 0;
f88a1e90
JG
489 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
490 range->flags[HMM_PFN_WRITE] :
491 range->flags[HMM_PFN_VALID];
da4c3c73
JG
492}
493
992de9a8
JG
494static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
495{
496 if (!pud_present(pud))
497 return 0;
498 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
499 range->flags[HMM_PFN_WRITE] :
500 range->flags[HMM_PFN_VALID];
501}
502
53f5c3f4
JG
503static int hmm_vma_handle_pmd(struct mm_walk *walk,
504 unsigned long addr,
505 unsigned long end,
506 uint64_t *pfns,
507 pmd_t pmd)
508{
992de9a8 509#ifdef CONFIG_TRANSPARENT_HUGEPAGE
53f5c3f4 510 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 511 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 512 unsigned long pfn, npages, i;
2aee09d8 513 bool fault, write_fault;
f88a1e90 514 uint64_t cpu_flags;
53f5c3f4 515
2aee09d8 516 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 517 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
518 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
519 &fault, &write_fault);
53f5c3f4 520
2aee09d8
JG
521 if (pmd_protnone(pmd) || fault || write_fault)
522 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
523
524 pfn = pmd_pfn(pmd) + pte_index(addr);
992de9a8
JG
525 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
526 if (pmd_devmap(pmd)) {
527 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
528 hmm_vma_walk->pgmap);
529 if (unlikely(!hmm_vma_walk->pgmap))
530 return -EBUSY;
531 }
391aab11 532 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
533 }
534 if (hmm_vma_walk->pgmap) {
535 put_dev_pagemap(hmm_vma_walk->pgmap);
536 hmm_vma_walk->pgmap = NULL;
537 }
53f5c3f4
JG
538 hmm_vma_walk->last = end;
539 return 0;
992de9a8
JG
540#else
541 /* If THP is not enabled then we should never reach that code ! */
542 return -EINVAL;
543#endif
53f5c3f4
JG
544}
545
f88a1e90 546static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 547{
789c2af8 548 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 549 return 0;
f88a1e90
JG
550 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
551 range->flags[HMM_PFN_WRITE] :
552 range->flags[HMM_PFN_VALID];
2aee09d8
JG
553}
554
53f5c3f4
JG
555static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
556 unsigned long end, pmd_t *pmdp, pte_t *ptep,
557 uint64_t *pfn)
558{
559 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 560 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 561 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
562 bool fault, write_fault;
563 uint64_t cpu_flags;
53f5c3f4 564 pte_t pte = *ptep;
f88a1e90 565 uint64_t orig_pfn = *pfn;
53f5c3f4 566
f88a1e90 567 *pfn = range->values[HMM_PFN_NONE];
73231612 568 fault = write_fault = false;
53f5c3f4
JG
569
570 if (pte_none(pte)) {
73231612
JG
571 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
572 &fault, &write_fault);
2aee09d8 573 if (fault || write_fault)
53f5c3f4
JG
574 goto fault;
575 return 0;
576 }
577
578 if (!pte_present(pte)) {
579 swp_entry_t entry = pte_to_swp_entry(pte);
580
581 if (!non_swap_entry(entry)) {
2aee09d8 582 if (fault || write_fault)
53f5c3f4
JG
583 goto fault;
584 return 0;
585 }
586
587 /*
588 * This is a special swap entry, ignore migration, use
589 * device and report anything else as error.
590 */
591 if (is_device_private_entry(entry)) {
f88a1e90
JG
592 cpu_flags = range->flags[HMM_PFN_VALID] |
593 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 594 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
595 range->flags[HMM_PFN_WRITE] : 0;
596 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
597 &fault, &write_fault);
598 if (fault || write_fault)
599 goto fault;
391aab11
JG
600 *pfn = hmm_device_entry_from_pfn(range,
601 swp_offset(entry));
f88a1e90 602 *pfn |= cpu_flags;
53f5c3f4
JG
603 return 0;
604 }
605
606 if (is_migration_entry(entry)) {
2aee09d8 607 if (fault || write_fault) {
53f5c3f4
JG
608 pte_unmap(ptep);
609 hmm_vma_walk->last = addr;
610 migration_entry_wait(vma->vm_mm,
2aee09d8 611 pmdp, addr);
73231612 612 return -EBUSY;
53f5c3f4
JG
613 }
614 return 0;
615 }
616
617 /* Report error for everything else */
f88a1e90 618 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 619 return -EFAULT;
73231612
JG
620 } else {
621 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
622 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
623 &fault, &write_fault);
53f5c3f4
JG
624 }
625
2aee09d8 626 if (fault || write_fault)
53f5c3f4
JG
627 goto fault;
628
992de9a8
JG
629 if (pte_devmap(pte)) {
630 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
631 hmm_vma_walk->pgmap);
632 if (unlikely(!hmm_vma_walk->pgmap))
633 return -EBUSY;
634 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
635 *pfn = range->values[HMM_PFN_SPECIAL];
636 return -EFAULT;
637 }
638
391aab11 639 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
640 return 0;
641
642fault:
992de9a8
JG
643 if (hmm_vma_walk->pgmap) {
644 put_dev_pagemap(hmm_vma_walk->pgmap);
645 hmm_vma_walk->pgmap = NULL;
646 }
53f5c3f4
JG
647 pte_unmap(ptep);
648 /* Fault any virtual address we were asked to fault */
2aee09d8 649 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
650}
651
da4c3c73
JG
652static int hmm_vma_walk_pmd(pmd_t *pmdp,
653 unsigned long start,
654 unsigned long end,
655 struct mm_walk *walk)
656{
74eee180
JG
657 struct hmm_vma_walk *hmm_vma_walk = walk->private;
658 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 659 struct vm_area_struct *vma = walk->vma;
ff05c0c6 660 uint64_t *pfns = range->pfns;
da4c3c73 661 unsigned long addr = start, i;
da4c3c73 662 pte_t *ptep;
d08faca0 663 pmd_t pmd;
da4c3c73 664
da4c3c73
JG
665
666again:
d08faca0
JG
667 pmd = READ_ONCE(*pmdp);
668 if (pmd_none(pmd))
da4c3c73
JG
669 return hmm_vma_walk_hole(start, end, walk);
670
d08faca0 671 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
672 return hmm_pfns_bad(start, end, walk);
673
d08faca0
JG
674 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
675 bool fault, write_fault;
676 unsigned long npages;
677 uint64_t *pfns;
678
679 i = (addr - range->start) >> PAGE_SHIFT;
680 npages = (end - addr) >> PAGE_SHIFT;
681 pfns = &range->pfns[i];
682
683 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
684 0, &fault, &write_fault);
685 if (fault || write_fault) {
686 hmm_vma_walk->last = addr;
687 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 688 return -EBUSY;
d08faca0
JG
689 }
690 return 0;
691 } else if (!pmd_present(pmd))
692 return hmm_pfns_bad(start, end, walk);
da4c3c73 693
d08faca0 694 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
695 /*
696 * No need to take pmd_lock here, even if some other threads
697 * is splitting the huge pmd we will get that event through
698 * mmu_notifier callback.
699 *
700 * So just read pmd value and check again its a transparent
701 * huge or device mapping one and compute corresponding pfn
702 * values.
703 */
704 pmd = pmd_read_atomic(pmdp);
705 barrier();
706 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
707 goto again;
74eee180 708
d08faca0 709 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 710 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
711 }
712
d08faca0
JG
713 /*
714 * We have handled all the valid case above ie either none, migration,
715 * huge or transparent huge. At this point either it is a valid pmd
716 * entry pointing to pte directory or it is a bad pmd that will not
717 * recover.
718 */
719 if (pmd_bad(pmd))
da4c3c73
JG
720 return hmm_pfns_bad(start, end, walk);
721
722 ptep = pte_offset_map(pmdp, addr);
d08faca0 723 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 724 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 725 int r;
74eee180 726
53f5c3f4
JG
727 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
728 if (r) {
729 /* hmm_vma_handle_pte() did unmap pte directory */
730 hmm_vma_walk->last = addr;
731 return r;
74eee180 732 }
da4c3c73 733 }
992de9a8
JG
734 if (hmm_vma_walk->pgmap) {
735 /*
736 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
737 * so that we can leverage get_dev_pagemap() optimization which
738 * will not re-take a reference on a pgmap if we already have
739 * one.
740 */
741 put_dev_pagemap(hmm_vma_walk->pgmap);
742 hmm_vma_walk->pgmap = NULL;
743 }
da4c3c73
JG
744 pte_unmap(ptep - 1);
745
53f5c3f4 746 hmm_vma_walk->last = addr;
da4c3c73
JG
747 return 0;
748}
749
992de9a8
JG
750static int hmm_vma_walk_pud(pud_t *pudp,
751 unsigned long start,
752 unsigned long end,
753 struct mm_walk *walk)
754{
755 struct hmm_vma_walk *hmm_vma_walk = walk->private;
756 struct hmm_range *range = hmm_vma_walk->range;
757 unsigned long addr = start, next;
758 pmd_t *pmdp;
759 pud_t pud;
760 int ret;
761
762again:
763 pud = READ_ONCE(*pudp);
764 if (pud_none(pud))
765 return hmm_vma_walk_hole(start, end, walk);
766
767 if (pud_huge(pud) && pud_devmap(pud)) {
768 unsigned long i, npages, pfn;
769 uint64_t *pfns, cpu_flags;
770 bool fault, write_fault;
771
772 if (!pud_present(pud))
773 return hmm_vma_walk_hole(start, end, walk);
774
775 i = (addr - range->start) >> PAGE_SHIFT;
776 npages = (end - addr) >> PAGE_SHIFT;
777 pfns = &range->pfns[i];
778
779 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
780 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
781 cpu_flags, &fault, &write_fault);
782 if (fault || write_fault)
783 return hmm_vma_walk_hole_(addr, end, fault,
784 write_fault, walk);
785
992de9a8
JG
786 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
787 for (i = 0; i < npages; ++i, ++pfn) {
788 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
789 hmm_vma_walk->pgmap);
790 if (unlikely(!hmm_vma_walk->pgmap))
791 return -EBUSY;
391aab11
JG
792 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
793 cpu_flags;
992de9a8
JG
794 }
795 if (hmm_vma_walk->pgmap) {
796 put_dev_pagemap(hmm_vma_walk->pgmap);
797 hmm_vma_walk->pgmap = NULL;
798 }
799 hmm_vma_walk->last = end;
800 return 0;
992de9a8
JG
801 }
802
803 split_huge_pud(walk->vma, pudp, addr);
804 if (pud_none(*pudp))
805 goto again;
806
807 pmdp = pmd_offset(pudp, addr);
808 do {
809 next = pmd_addr_end(addr, end);
810 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
811 if (ret)
812 return ret;
813 } while (pmdp++, addr = next, addr != end);
814
815 return 0;
816}
817
63d5066f
JG
818static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
819 unsigned long start, unsigned long end,
820 struct mm_walk *walk)
821{
822#ifdef CONFIG_HUGETLB_PAGE
823 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
824 struct hmm_vma_walk *hmm_vma_walk = walk->private;
825 struct hmm_range *range = hmm_vma_walk->range;
826 struct vm_area_struct *vma = walk->vma;
827 struct hstate *h = hstate_vma(vma);
828 uint64_t orig_pfn, cpu_flags;
829 bool fault, write_fault;
830 spinlock_t *ptl;
831 pte_t entry;
832 int ret = 0;
833
834 size = 1UL << huge_page_shift(h);
835 mask = size - 1;
836 if (range->page_shift != PAGE_SHIFT) {
837 /* Make sure we are looking at full page. */
838 if (start & mask)
839 return -EINVAL;
840 if (end < (start + size))
841 return -EINVAL;
842 pfn_inc = size >> PAGE_SHIFT;
843 } else {
844 pfn_inc = 1;
845 size = PAGE_SIZE;
846 }
847
848
849 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
850 entry = huge_ptep_get(pte);
851
852 i = (start - range->start) >> range->page_shift;
853 orig_pfn = range->pfns[i];
854 range->pfns[i] = range->values[HMM_PFN_NONE];
855 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
856 fault = write_fault = false;
857 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
858 &fault, &write_fault);
859 if (fault || write_fault) {
860 ret = -ENOENT;
861 goto unlock;
862 }
863
864 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
865 for (; addr < end; addr += size, i++, pfn += pfn_inc)
391aab11
JG
866 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
867 cpu_flags;
63d5066f
JG
868 hmm_vma_walk->last = end;
869
870unlock:
871 spin_unlock(ptl);
872
873 if (ret == -ENOENT)
874 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
875
876 return ret;
877#else /* CONFIG_HUGETLB_PAGE */
878 return -EINVAL;
879#endif
880}
881
f88a1e90
JG
882static void hmm_pfns_clear(struct hmm_range *range,
883 uint64_t *pfns,
33cd47dc
JG
884 unsigned long addr,
885 unsigned long end)
886{
887 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 888 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
889}
890
da4c3c73 891/*
a3e0d41c 892 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 893 * @range: range
a3e0d41c
JG
894 * @mm: the mm struct for the range of virtual address
895 * @start: start virtual address (inclusive)
896 * @end: end virtual address (exclusive)
63d5066f 897 * @page_shift: expect page shift for the range
a3e0d41c 898 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 899 *
a3e0d41c 900 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 901 */
a3e0d41c 902int hmm_range_register(struct hmm_range *range,
e36acfe6 903 struct hmm_mirror *mirror,
a3e0d41c 904 unsigned long start,
63d5066f
JG
905 unsigned long end,
906 unsigned page_shift)
da4c3c73 907{
63d5066f 908 unsigned long mask = ((1UL << page_shift) - 1UL);
e36acfe6 909 struct hmm *hmm = mirror->hmm;
63d5066f 910
a3e0d41c 911 range->valid = false;
704f3f2c
JG
912 range->hmm = NULL;
913
63d5066f
JG
914 if ((start & mask) || (end & mask))
915 return -EINVAL;
916 if (start >= end)
da4c3c73
JG
917 return -EINVAL;
918
63d5066f 919 range->page_shift = page_shift;
a3e0d41c
JG
920 range->start = start;
921 range->end = end;
922
704f3f2c 923 /* Check if hmm_mm_destroy() was call. */
e36acfe6 924 if (hmm->mm == NULL || hmm->dead)
a3e0d41c 925 return -EFAULT;
da4c3c73 926
085ea250
RC
927 /* Initialize range to track CPU page table updates. */
928 mutex_lock(&hmm->lock);
855ce7d2 929
085ea250 930 range->hmm = hmm;
e36acfe6 931 kref_get(&hmm->kref);
085ea250 932 list_add_rcu(&range->list, &hmm->ranges);
86586a41 933
704f3f2c 934 /*
a3e0d41c
JG
935 * If there are any concurrent notifiers we have to wait for them for
936 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 937 */
085ea250 938 if (!hmm->notifiers)
a3e0d41c 939 range->valid = true;
085ea250 940 mutex_unlock(&hmm->lock);
a3e0d41c
JG
941
942 return 0;
da4c3c73 943}
a3e0d41c 944EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
945
946/*
a3e0d41c
JG
947 * hmm_range_unregister() - stop tracking change to CPU page table over a range
948 * @range: range
da4c3c73
JG
949 *
950 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 951 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 952 */
a3e0d41c 953void hmm_range_unregister(struct hmm_range *range)
da4c3c73 954{
085ea250
RC
955 struct hmm *hmm = range->hmm;
956
704f3f2c 957 /* Sanity check this really should not happen. */
085ea250 958 if (hmm == NULL || range->end <= range->start)
a3e0d41c 959 return;
da4c3c73 960
085ea250 961 mutex_lock(&hmm->lock);
da4c3c73 962 list_del_rcu(&range->list);
085ea250 963 mutex_unlock(&hmm->lock);
da4c3c73 964
a3e0d41c
JG
965 /* Drop reference taken by hmm_range_register() */
966 range->valid = false;
085ea250 967 hmm_put(hmm);
704f3f2c 968 range->hmm = NULL;
da4c3c73 969}
a3e0d41c
JG
970EXPORT_SYMBOL(hmm_range_unregister);
971
972/*
973 * hmm_range_snapshot() - snapshot CPU page table for a range
974 * @range: range
085ea250 975 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
a3e0d41c
JG
976 * permission (for instance asking for write and range is read only),
977 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
978 * vma or it is illegal to access that range), number of valid pages
979 * in range->pfns[] (from range start address).
980 *
981 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
982 * validity is tracked by range struct. See in include/linux/hmm.h for example
983 * on how to use.
984 */
985long hmm_range_snapshot(struct hmm_range *range)
986{
63d5066f 987 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
988 unsigned long start = range->start, end;
989 struct hmm_vma_walk hmm_vma_walk;
990 struct hmm *hmm = range->hmm;
991 struct vm_area_struct *vma;
992 struct mm_walk mm_walk;
993
994 /* Check if hmm_mm_destroy() was call. */
995 if (hmm->mm == NULL || hmm->dead)
996 return -EFAULT;
997
998 do {
999 /* If range is no longer valid force retry. */
1000 if (!range->valid)
1001 return -EAGAIN;
1002
1003 vma = find_vma(hmm->mm, start);
63d5066f 1004 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
1005 return -EFAULT;
1006
63d5066f 1007 if (is_vm_hugetlb_page(vma)) {
1c2308f0
JG
1008 if (huge_page_shift(hstate_vma(vma)) !=
1009 range->page_shift &&
63d5066f
JG
1010 range->page_shift != PAGE_SHIFT)
1011 return -EINVAL;
1012 } else {
1013 if (range->page_shift != PAGE_SHIFT)
1014 return -EINVAL;
1015 }
1016
a3e0d41c
JG
1017 if (!(vma->vm_flags & VM_READ)) {
1018 /*
1019 * If vma do not allow read access, then assume that it
1020 * does not allow write access, either. HMM does not
1021 * support architecture that allow write without read.
1022 */
1023 hmm_pfns_clear(range, range->pfns,
1024 range->start, range->end);
1025 return -EPERM;
1026 }
1027
1028 range->vma = vma;
992de9a8 1029 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1030 hmm_vma_walk.last = start;
1031 hmm_vma_walk.fault = false;
1032 hmm_vma_walk.range = range;
1033 mm_walk.private = &hmm_vma_walk;
1034 end = min(range->end, vma->vm_end);
1035
1036 mm_walk.vma = vma;
1037 mm_walk.mm = vma->vm_mm;
1038 mm_walk.pte_entry = NULL;
1039 mm_walk.test_walk = NULL;
1040 mm_walk.hugetlb_entry = NULL;
992de9a8 1041 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1042 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1043 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1044 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1045
1046 walk_page_range(start, end, &mm_walk);
1047 start = end;
1048 } while (start < range->end);
1049
1050 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1051}
1052EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
1053
1054/*
73231612 1055 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 1056 * @range: range being faulted
74eee180 1057 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1058 * Return: number of valid pages in range->pfns[] (from range start
73231612
JG
1059 * address). This may be zero. If the return value is negative,
1060 * then one of the following values may be returned:
1061 *
1062 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 1063 * invalid vma (for instance device file vma).
73231612
JG
1064 * -ENOMEM: Out of memory.
1065 * -EPERM: Invalid permission (for instance asking for write and
1066 * range is read only).
1067 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1068 * happens if block argument is false.
1069 * -EBUSY: If the the range is being invalidated and you should wait
1070 * for invalidation to finish.
1071 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1072 * that range), number of valid pages in range->pfns[] (from
1073 * range start address).
74eee180
JG
1074 *
1075 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
1076 * any memory migration if the memory being faulted is not accessible by CPUs
1077 * and caller does not ask for migration.
74eee180 1078 *
ff05c0c6
JG
1079 * On error, for one virtual address in the range, the function will mark the
1080 * corresponding HMM pfn entry with an error flag.
74eee180 1081 */
73231612 1082long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 1083{
63d5066f 1084 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 1085 unsigned long start = range->start, end;
74eee180 1086 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
1087 struct hmm *hmm = range->hmm;
1088 struct vm_area_struct *vma;
74eee180 1089 struct mm_walk mm_walk;
74eee180
JG
1090 int ret;
1091
a3e0d41c
JG
1092 /* Check if hmm_mm_destroy() was call. */
1093 if (hmm->mm == NULL || hmm->dead)
1094 return -EFAULT;
704f3f2c 1095
a3e0d41c
JG
1096 do {
1097 /* If range is no longer valid force retry. */
1098 if (!range->valid) {
1099 up_read(&hmm->mm->mmap_sem);
1100 return -EAGAIN;
1101 }
74eee180 1102
a3e0d41c 1103 vma = find_vma(hmm->mm, start);
63d5066f 1104 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1105 return -EFAULT;
704f3f2c 1106
63d5066f
JG
1107 if (is_vm_hugetlb_page(vma)) {
1108 if (huge_page_shift(hstate_vma(vma)) !=
1109 range->page_shift &&
1110 range->page_shift != PAGE_SHIFT)
1111 return -EINVAL;
1112 } else {
1113 if (range->page_shift != PAGE_SHIFT)
1114 return -EINVAL;
1115 }
1116
a3e0d41c
JG
1117 if (!(vma->vm_flags & VM_READ)) {
1118 /*
1119 * If vma do not allow read access, then assume that it
1120 * does not allow write access, either. HMM does not
1121 * support architecture that allow write without read.
1122 */
1123 hmm_pfns_clear(range, range->pfns,
1124 range->start, range->end);
1125 return -EPERM;
1126 }
74eee180 1127
a3e0d41c 1128 range->vma = vma;
992de9a8 1129 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1130 hmm_vma_walk.last = start;
1131 hmm_vma_walk.fault = true;
1132 hmm_vma_walk.block = block;
1133 hmm_vma_walk.range = range;
1134 mm_walk.private = &hmm_vma_walk;
1135 end = min(range->end, vma->vm_end);
1136
1137 mm_walk.vma = vma;
1138 mm_walk.mm = vma->vm_mm;
1139 mm_walk.pte_entry = NULL;
1140 mm_walk.test_walk = NULL;
1141 mm_walk.hugetlb_entry = NULL;
992de9a8 1142 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1143 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1144 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1145 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1146
1147 do {
1148 ret = walk_page_range(start, end, &mm_walk);
1149 start = hmm_vma_walk.last;
1150
1151 /* Keep trying while the range is valid. */
1152 } while (ret == -EBUSY && range->valid);
1153
1154 if (ret) {
1155 unsigned long i;
1156
1157 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1158 hmm_pfns_clear(range, &range->pfns[i],
1159 hmm_vma_walk.last, range->end);
1160 return ret;
1161 }
1162 start = end;
74eee180 1163
a3e0d41c 1164 } while (start < range->end);
704f3f2c 1165
73231612 1166 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1167}
73231612 1168EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
1169
1170/**
1171 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1172 * @range: range being faulted
1173 * @device: device against to dma map page to
1174 * @daddrs: dma address of mapped pages
1175 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1176 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
55c0ece8
JG
1177 * drop and you need to try again, some other error value otherwise
1178 *
1179 * Note same usage pattern as hmm_range_fault().
1180 */
1181long hmm_range_dma_map(struct hmm_range *range,
1182 struct device *device,
1183 dma_addr_t *daddrs,
1184 bool block)
1185{
1186 unsigned long i, npages, mapped;
1187 long ret;
1188
1189 ret = hmm_range_fault(range, block);
1190 if (ret <= 0)
1191 return ret ? ret : -EBUSY;
1192
1193 npages = (range->end - range->start) >> PAGE_SHIFT;
1194 for (i = 0, mapped = 0; i < npages; ++i) {
1195 enum dma_data_direction dir = DMA_TO_DEVICE;
1196 struct page *page;
1197
1198 /*
1199 * FIXME need to update DMA API to provide invalid DMA address
1200 * value instead of a function to test dma address value. This
1201 * would remove lot of dumb code duplicated accross many arch.
1202 *
1203 * For now setting it to 0 here is good enough as the pfns[]
1204 * value is what is use to check what is valid and what isn't.
1205 */
1206 daddrs[i] = 0;
1207
391aab11 1208 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1209 if (page == NULL)
1210 continue;
1211
1212 /* Check if range is being invalidated */
1213 if (!range->valid) {
1214 ret = -EBUSY;
1215 goto unmap;
1216 }
1217
1218 /* If it is read and write than map bi-directional. */
1219 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1220 dir = DMA_BIDIRECTIONAL;
1221
1222 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1223 if (dma_mapping_error(device, daddrs[i])) {
1224 ret = -EFAULT;
1225 goto unmap;
1226 }
1227
1228 mapped++;
1229 }
1230
1231 return mapped;
1232
1233unmap:
1234 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1235 enum dma_data_direction dir = DMA_TO_DEVICE;
1236 struct page *page;
1237
391aab11 1238 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1239 if (page == NULL)
1240 continue;
1241
1242 if (dma_mapping_error(device, daddrs[i]))
1243 continue;
1244
1245 /* If it is read and write than map bi-directional. */
1246 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1247 dir = DMA_BIDIRECTIONAL;
1248
1249 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1250 mapped--;
1251 }
1252
1253 return ret;
1254}
1255EXPORT_SYMBOL(hmm_range_dma_map);
1256
1257/**
1258 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1259 * @range: range being unmapped
1260 * @vma: the vma against which the range (optional)
1261 * @device: device against which dma map was done
1262 * @daddrs: dma address of mapped pages
1263 * @dirty: dirty page if it had the write flag set
085ea250 1264 * Return: number of page unmapped on success, -EINVAL otherwise
55c0ece8
JG
1265 *
1266 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1267 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1268 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1269 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1270 */
1271long hmm_range_dma_unmap(struct hmm_range *range,
1272 struct vm_area_struct *vma,
1273 struct device *device,
1274 dma_addr_t *daddrs,
1275 bool dirty)
1276{
1277 unsigned long i, npages;
1278 long cpages = 0;
1279
1280 /* Sanity check. */
1281 if (range->end <= range->start)
1282 return -EINVAL;
1283 if (!daddrs)
1284 return -EINVAL;
1285 if (!range->pfns)
1286 return -EINVAL;
1287
1288 npages = (range->end - range->start) >> PAGE_SHIFT;
1289 for (i = 0; i < npages; ++i) {
1290 enum dma_data_direction dir = DMA_TO_DEVICE;
1291 struct page *page;
1292
391aab11 1293 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1294 if (page == NULL)
1295 continue;
1296
1297 /* If it is read and write than map bi-directional. */
1298 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1299 dir = DMA_BIDIRECTIONAL;
1300
1301 /*
1302 * See comments in function description on why it is
1303 * safe here to call set_page_dirty()
1304 */
1305 if (dirty)
1306 set_page_dirty(page);
1307 }
1308
1309 /* Unmap and clear pfns/dma address */
1310 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1311 range->pfns[i] = range->values[HMM_PFN_NONE];
1312 /* FIXME see comments in hmm_vma_dma_map() */
1313 daddrs[i] = 0;
1314 cpages++;
1315 }
1316
1317 return cpages;
1318}
1319EXPORT_SYMBOL(hmm_range_dma_unmap);
c0b12405 1320#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
4ef589dc
JG
1321
1322
df6ad698 1323#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
4ef589dc
JG
1324struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1325 unsigned long addr)
1326{
1327 struct page *page;
1328
1329 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1330 if (!page)
1331 return NULL;
1332 lock_page(page);
1333 return page;
1334}
1335EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1336
1337
1338static void hmm_devmem_ref_release(struct percpu_ref *ref)
1339{
1340 struct hmm_devmem *devmem;
1341
1342 devmem = container_of(ref, struct hmm_devmem, ref);
1343 complete(&devmem->completion);
1344}
1345
1346static void hmm_devmem_ref_exit(void *data)
1347{
1348 struct percpu_ref *ref = data;
1349 struct hmm_devmem *devmem;
1350
1351 devmem = container_of(ref, struct hmm_devmem, ref);
bbecd94e 1352 wait_for_completion(&devmem->completion);
4ef589dc 1353 percpu_ref_exit(ref);
4ef589dc
JG
1354}
1355
bbecd94e 1356static void hmm_devmem_ref_kill(struct percpu_ref *ref)
4ef589dc 1357{
4ef589dc 1358 percpu_ref_kill(ref);
4ef589dc
JG
1359}
1360
b57e622e 1361static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
4ef589dc
JG
1362 unsigned long addr,
1363 const struct page *page,
1364 unsigned int flags,
1365 pmd_t *pmdp)
1366{
1367 struct hmm_devmem *devmem = page->pgmap->data;
1368
1369 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1370}
1371
1372static void hmm_devmem_free(struct page *page, void *data)
1373{
1374 struct hmm_devmem *devmem = data;
1375
2fa147bd
DW
1376 page->mapping = NULL;
1377
4ef589dc
JG
1378 devmem->ops->free(devmem, page);
1379}
1380
4ef589dc
JG
1381/*
1382 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1383 *
1384 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1385 * @device: device struct to bind the resource too
1386 * @size: size in bytes of the device memory to add
085ea250 1387 * Return: pointer to new hmm_devmem struct ERR_PTR otherwise
4ef589dc
JG
1388 *
1389 * This function first finds an empty range of physical address big enough to
1390 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1391 * in turn allocates struct pages. It does not do anything beyond that; all
1392 * events affecting the memory will go through the various callbacks provided
1393 * by hmm_devmem_ops struct.
1394 *
1395 * Device driver should call this function during device initialization and
1396 * is then responsible of memory management. HMM only provides helpers.
1397 */
1398struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1399 struct device *device,
1400 unsigned long size)
1401{
1402 struct hmm_devmem *devmem;
1403 resource_size_t addr;
bbecd94e 1404 void *result;
4ef589dc
JG
1405 int ret;
1406
e7638488 1407 dev_pagemap_get_ops();
4ef589dc 1408
58ef15b7 1409 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
4ef589dc
JG
1410 if (!devmem)
1411 return ERR_PTR(-ENOMEM);
1412
1413 init_completion(&devmem->completion);
1414 devmem->pfn_first = -1UL;
1415 devmem->pfn_last = -1UL;
1416 devmem->resource = NULL;
1417 devmem->device = device;
1418 devmem->ops = ops;
1419
1420 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1421 0, GFP_KERNEL);
1422 if (ret)
58ef15b7 1423 return ERR_PTR(ret);
4ef589dc 1424
58ef15b7 1425 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
4ef589dc 1426 if (ret)
58ef15b7 1427 return ERR_PTR(ret);
4ef589dc
JG
1428
1429 size = ALIGN(size, PA_SECTION_SIZE);
1430 addr = min((unsigned long)iomem_resource.end,
1431 (1UL << MAX_PHYSMEM_BITS) - 1);
1432 addr = addr - size + 1UL;
1433
1434 /*
1435 * FIXME add a new helper to quickly walk resource tree and find free
1436 * range
1437 *
1438 * FIXME what about ioport_resource resource ?
1439 */
1440 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1441 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1442 if (ret != REGION_DISJOINT)
1443 continue;
1444
1445 devmem->resource = devm_request_mem_region(device, addr, size,
1446 dev_name(device));
58ef15b7
DW
1447 if (!devmem->resource)
1448 return ERR_PTR(-ENOMEM);
4ef589dc
JG
1449 break;
1450 }
58ef15b7
DW
1451 if (!devmem->resource)
1452 return ERR_PTR(-ERANGE);
4ef589dc
JG
1453
1454 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1455 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1456 devmem->pfn_last = devmem->pfn_first +
1457 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1458 devmem->page_fault = hmm_devmem_fault;
4ef589dc 1459
bbecd94e
DW
1460 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1461 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1462 devmem->pagemap.page_free = hmm_devmem_free;
1463 devmem->pagemap.altmap_valid = false;
1464 devmem->pagemap.ref = &devmem->ref;
1465 devmem->pagemap.data = devmem;
1466 devmem->pagemap.kill = hmm_devmem_ref_kill;
4ef589dc 1467
bbecd94e
DW
1468 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1469 if (IS_ERR(result))
1470 return result;
4ef589dc 1471 return devmem;
4ef589dc 1472}
02917e9f 1473EXPORT_SYMBOL_GPL(hmm_devmem_add);
4ef589dc 1474
d3df0a42
JG
1475struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1476 struct device *device,
1477 struct resource *res)
1478{
1479 struct hmm_devmem *devmem;
bbecd94e 1480 void *result;
d3df0a42
JG
1481 int ret;
1482
1483 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1484 return ERR_PTR(-EINVAL);
1485
e7638488 1486 dev_pagemap_get_ops();
d3df0a42 1487
58ef15b7 1488 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
d3df0a42
JG
1489 if (!devmem)
1490 return ERR_PTR(-ENOMEM);
1491
1492 init_completion(&devmem->completion);
1493 devmem->pfn_first = -1UL;
1494 devmem->pfn_last = -1UL;
1495 devmem->resource = res;
1496 devmem->device = device;
1497 devmem->ops = ops;
1498
1499 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1500 0, GFP_KERNEL);
1501 if (ret)
58ef15b7 1502 return ERR_PTR(ret);
d3df0a42 1503
58ef15b7
DW
1504 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1505 &devmem->ref);
d3df0a42 1506 if (ret)
58ef15b7 1507 return ERR_PTR(ret);
d3df0a42
JG
1508
1509 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1510 devmem->pfn_last = devmem->pfn_first +
1511 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1512 devmem->page_fault = hmm_devmem_fault;
d3df0a42 1513
bbecd94e
DW
1514 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1515 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1516 devmem->pagemap.page_free = hmm_devmem_free;
1517 devmem->pagemap.altmap_valid = false;
1518 devmem->pagemap.ref = &devmem->ref;
1519 devmem->pagemap.data = devmem;
1520 devmem->pagemap.kill = hmm_devmem_ref_kill;
d3df0a42 1521
bbecd94e
DW
1522 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1523 if (IS_ERR(result))
1524 return result;
d3df0a42 1525 return devmem;
d3df0a42 1526}
02917e9f 1527EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
d3df0a42 1528
858b54da
JG
1529/*
1530 * A device driver that wants to handle multiple devices memory through a
1531 * single fake device can use hmm_device to do so. This is purely a helper
1532 * and it is not needed to make use of any HMM functionality.
1533 */
1534#define HMM_DEVICE_MAX 256
1535
1536static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1537static DEFINE_SPINLOCK(hmm_device_lock);
1538static struct class *hmm_device_class;
1539static dev_t hmm_device_devt;
1540
1541static void hmm_device_release(struct device *device)
1542{
1543 struct hmm_device *hmm_device;
1544
1545 hmm_device = container_of(device, struct hmm_device, device);
1546 spin_lock(&hmm_device_lock);
1547 clear_bit(hmm_device->minor, hmm_device_mask);
1548 spin_unlock(&hmm_device_lock);
1549
1550 kfree(hmm_device);
1551}
1552
1553struct hmm_device *hmm_device_new(void *drvdata)
1554{
1555 struct hmm_device *hmm_device;
1556
1557 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1558 if (!hmm_device)
1559 return ERR_PTR(-ENOMEM);
1560
1561 spin_lock(&hmm_device_lock);
1562 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1563 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1564 spin_unlock(&hmm_device_lock);
1565 kfree(hmm_device);
1566 return ERR_PTR(-EBUSY);
1567 }
1568 set_bit(hmm_device->minor, hmm_device_mask);
1569 spin_unlock(&hmm_device_lock);
1570
1571 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1572 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1573 hmm_device->minor);
1574 hmm_device->device.release = hmm_device_release;
1575 dev_set_drvdata(&hmm_device->device, drvdata);
1576 hmm_device->device.class = hmm_device_class;
1577 device_initialize(&hmm_device->device);
1578
1579 return hmm_device;
1580}
1581EXPORT_SYMBOL(hmm_device_new);
1582
1583void hmm_device_put(struct hmm_device *hmm_device)
1584{
1585 put_device(&hmm_device->device);
1586}
1587EXPORT_SYMBOL(hmm_device_put);
1588
1589static int __init hmm_init(void)
1590{
1591 int ret;
1592
1593 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1594 HMM_DEVICE_MAX,
1595 "hmm_device");
1596 if (ret)
1597 return ret;
1598
1599 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1600 if (IS_ERR(hmm_device_class)) {
1601 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1602 return PTR_ERR(hmm_device_class);
1603 }
1604 return 0;
1605}
1606
1607device_initcall(hmm_init);
df6ad698 1608#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
This page took 0.411624 seconds and 4 git commands to generate.