]> Git Repo - linux.git/blame - net/ipv4/tcp_input.c
[TCP]: Comment fastpath_cnt_hint off-by-one trap
[linux.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <[email protected]>
12 * Mark Evans, <[email protected]>
13 * Corey Minyard <[email protected]>
14 * Florian La Roche, <[email protected]>
15 * Charles Hedrick, <[email protected]>
16 * Linus Torvalds, <[email protected]>
17 * Alan Cox, <[email protected]>
18 * Matthew Dillon, <[email protected]>
19 * Arnt Gulbrandsen, <[email protected]>
20 * Jorge Cwik, <[email protected]>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
1030 * it means that the receiver is rather inconsistent with itself reporting
1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032 * perfectly valid, however, in light of RFC2018 which explicitly states
1033 * that "SACK block MUST reflect the newest segment. Even if the newest
1034 * segment is going to be discarded ...", not that it looks very clever
1035 * in case of head skb. Due to potentional receiver driven attacks, we
1036 * choose to avoid immediate execution of a walk in write queue due to
1037 * reneging and defer head skb's loss recovery to standard loss recovery
1038 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
1039 *
1040 * Implements also blockage to start_seq wrap-around. Problem lies in the
1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042 * there's no guarantee that it will be before snd_nxt (n). The problem
1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044 * wrap (s_w):
1045 *
1046 * <- outs wnd -> <- wrapzone ->
1047 * u e n u_w e_w s n_w
1048 * | | | | | | |
1049 * |<------------+------+----- TCP seqno space --------------+---------->|
1050 * ...-- <2^31 ->| |<--------...
1051 * ...---- >2^31 ------>| |<--------...
1052 *
1053 * Current code wouldn't be vulnerable but it's better still to discard such
1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057 * equal to the ideal case (infinite seqno space without wrap caused issues).
1058 *
1059 * With D-SACK the lower bound is extended to cover sequence space below
1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061 * again, DSACK block must not to go across snd_una (for the same reason as
1062 * for the normal SACK blocks, explained above). But there all simplicity
1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064 * fully below undo_marker they do not affect behavior in anyway and can
1065 * therefore be safely ignored. In rare cases (which are more or less
1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067 * fragmentation and packet reordering past skb's retransmission. To consider
1068 * them correctly, the acceptable range must be extended even more though
1069 * the exact amount is rather hard to quantify. However, tp->max_window can
1070 * be used as an exaggerated estimate.
1da177e4 1071 */
5b3c9882
IJ
1072static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 u32 start_seq, u32 end_seq)
1074{
1075 /* Too far in future, or reversed (interpretation is ambiguous) */
1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 return 0;
1078
1079 /* Nasty start_seq wrap-around check (see comments above) */
1080 if (!before(start_seq, tp->snd_nxt))
1081 return 0;
1082
1083 /* In outstanding window? ...This is valid exit for DSACKs too.
1084 * start_seq == snd_una is non-sensical (see comments above)
1085 */
1086 if (after(start_seq, tp->snd_una))
1087 return 1;
1088
1089 if (!is_dsack || !tp->undo_marker)
1090 return 0;
1091
1092 /* ...Then it's D-SACK, and must reside below snd_una completely */
1093 if (!after(end_seq, tp->snd_una))
1094 return 0;
1095
1096 if (!before(start_seq, tp->undo_marker))
1097 return 1;
1098
1099 /* Too old */
1100 if (!after(end_seq, tp->undo_marker))
1101 return 0;
1102
1103 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 * start_seq < undo_marker and end_seq >= undo_marker.
1105 */
1106 return !before(start_seq, end_seq - tp->max_window);
1107}
1108
1109
d06e021d
DM
1110static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1111 struct tcp_sack_block_wire *sp, int num_sacks,
1112 u32 prior_snd_una)
1113{
1114 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1115 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1116 int dup_sack = 0;
1117
1118 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1119 dup_sack = 1;
e60402d0 1120 tcp_dsack_seen(tp);
d06e021d
DM
1121 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1122 } else if (num_sacks > 1) {
1123 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1124 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1125
1126 if (!after(end_seq_0, end_seq_1) &&
1127 !before(start_seq_0, start_seq_1)) {
1128 dup_sack = 1;
e60402d0 1129 tcp_dsack_seen(tp);
d06e021d
DM
1130 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1131 }
1132 }
1133
1134 /* D-SACK for already forgotten data... Do dumb counting. */
1135 if (dup_sack &&
1136 !after(end_seq_0, prior_snd_una) &&
1137 after(end_seq_0, tp->undo_marker))
1138 tp->undo_retrans--;
1139
1140 return dup_sack;
1141}
1142
1da177e4
LT
1143static int
1144tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1145{
6687e988 1146 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1147 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1148 unsigned char *ptr = (skb_transport_header(ack_skb) +
1149 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1150 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1151 struct sk_buff *cached_skb;
1da177e4
LT
1152 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1153 int reord = tp->packets_out;
1154 int prior_fackets;
1155 u32 lost_retrans = 0;
1156 int flag = 0;
7769f406 1157 int found_dup_sack = 0;
fda03fbb 1158 int cached_fack_count;
1da177e4 1159 int i;
fda03fbb 1160 int first_sack_index;
1da177e4 1161
d738cd8f 1162 if (!tp->sacked_out) {
1da177e4 1163 tp->fackets_out = 0;
d738cd8f
IJ
1164 tp->highest_sack = tp->snd_una;
1165 }
1da177e4
LT
1166 prior_fackets = tp->fackets_out;
1167
d06e021d
DM
1168 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1169 num_sacks, prior_snd_una);
1170 if (found_dup_sack)
49ff4bb4 1171 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1172
1173 /* Eliminate too old ACKs, but take into
1174 * account more or less fresh ones, they can
1175 * contain valid SACK info.
1176 */
1177 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1178 return 0;
1179
6a438bbe
SH
1180 /* SACK fastpath:
1181 * if the only SACK change is the increase of the end_seq of
1182 * the first block then only apply that SACK block
1183 * and use retrans queue hinting otherwise slowpath */
1184 flag = 1;
6f74651a
BE
1185 for (i = 0; i < num_sacks; i++) {
1186 __be32 start_seq = sp[i].start_seq;
1187 __be32 end_seq = sp[i].end_seq;
6a438bbe 1188
6f74651a 1189 if (i == 0) {
6a438bbe
SH
1190 if (tp->recv_sack_cache[i].start_seq != start_seq)
1191 flag = 0;
1192 } else {
1193 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1194 (tp->recv_sack_cache[i].end_seq != end_seq))
1195 flag = 0;
1196 }
1197 tp->recv_sack_cache[i].start_seq = start_seq;
1198 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1199 }
8a3c3a97
BE
1200 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1201 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1202 tp->recv_sack_cache[i].start_seq = 0;
1203 tp->recv_sack_cache[i].end_seq = 0;
1204 }
6a438bbe 1205
fda03fbb 1206 first_sack_index = 0;
6a438bbe
SH
1207 if (flag)
1208 num_sacks = 1;
1209 else {
1210 int j;
1211 tp->fastpath_skb_hint = NULL;
1212
1213 /* order SACK blocks to allow in order walk of the retrans queue */
1214 for (i = num_sacks-1; i > 0; i--) {
1215 for (j = 0; j < i; j++){
1216 if (after(ntohl(sp[j].start_seq),
1217 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1218 struct tcp_sack_block_wire tmp;
1219
1220 tmp = sp[j];
1221 sp[j] = sp[j+1];
1222 sp[j+1] = tmp;
fda03fbb
BE
1223
1224 /* Track where the first SACK block goes to */
1225 if (j == first_sack_index)
1226 first_sack_index = j+1;
6a438bbe
SH
1227 }
1228
1229 }
1230 }
1231 }
1232
1233 /* clear flag as used for different purpose in following code */
1234 flag = 0;
1235
fda03fbb
BE
1236 /* Use SACK fastpath hint if valid */
1237 cached_skb = tp->fastpath_skb_hint;
1238 cached_fack_count = tp->fastpath_cnt_hint;
1239 if (!cached_skb) {
fe067e8a 1240 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1241 cached_fack_count = 0;
1242 }
1243
6a438bbe
SH
1244 for (i=0; i<num_sacks; i++, sp++) {
1245 struct sk_buff *skb;
1246 __u32 start_seq = ntohl(sp->start_seq);
1247 __u32 end_seq = ntohl(sp->end_seq);
1248 int fack_count;
7769f406 1249 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1250
18f02545
IJ
1251 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1252 if (dup_sack) {
1253 if (!tp->undo_marker)
1254 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1255 else
1256 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1257 } else {
1258 /* Don't count olds caused by ACK reordering */
1259 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1260 !after(end_seq, tp->snd_una))
1261 continue;
18f02545 1262 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1263 }
5b3c9882 1264 continue;
18f02545 1265 }
5b3c9882 1266
fda03fbb
BE
1267 skb = cached_skb;
1268 fack_count = cached_fack_count;
1da177e4
LT
1269
1270 /* Event "B" in the comment above. */
1271 if (after(end_seq, tp->high_seq))
1272 flag |= FLAG_DATA_LOST;
1273
fe067e8a 1274 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1275 int in_sack, pcount;
1276 u8 sacked;
1da177e4 1277
fe067e8a
DM
1278 if (skb == tcp_send_head(sk))
1279 break;
1280
fda03fbb
BE
1281 cached_skb = skb;
1282 cached_fack_count = fack_count;
1283 if (i == first_sack_index) {
1284 tp->fastpath_skb_hint = skb;
1285 tp->fastpath_cnt_hint = fack_count;
1286 }
6a438bbe 1287
1da177e4
LT
1288 /* The retransmission queue is always in order, so
1289 * we can short-circuit the walk early.
1290 */
6475be16 1291 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1292 break;
1293
3c05d92e
HX
1294 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1295 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1296
6475be16
DM
1297 pcount = tcp_skb_pcount(skb);
1298
3c05d92e
HX
1299 if (pcount > 1 && !in_sack &&
1300 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1301 unsigned int pkt_len;
1302
3c05d92e
HX
1303 in_sack = !after(start_seq,
1304 TCP_SKB_CB(skb)->seq);
1305
1306 if (!in_sack)
6475be16
DM
1307 pkt_len = (start_seq -
1308 TCP_SKB_CB(skb)->seq);
1309 else
1310 pkt_len = (end_seq -
1311 TCP_SKB_CB(skb)->seq);
7967168c 1312 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1313 break;
1314 pcount = tcp_skb_pcount(skb);
1315 }
1316
1317 fack_count += pcount;
1da177e4 1318
6475be16
DM
1319 sacked = TCP_SKB_CB(skb)->sacked;
1320
1da177e4
LT
1321 /* Account D-SACK for retransmitted packet. */
1322 if ((dup_sack && in_sack) &&
1323 (sacked & TCPCB_RETRANS) &&
1324 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1325 tp->undo_retrans--;
1326
1327 /* The frame is ACKed. */
1328 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1329 if (sacked&TCPCB_RETRANS) {
1330 if ((dup_sack && in_sack) &&
1331 (sacked&TCPCB_SACKED_ACKED))
1332 reord = min(fack_count, reord);
1333 } else {
1334 /* If it was in a hole, we detected reordering. */
1335 if (fack_count < prior_fackets &&
1336 !(sacked&TCPCB_SACKED_ACKED))
1337 reord = min(fack_count, reord);
1338 }
1339
1340 /* Nothing to do; acked frame is about to be dropped. */
1341 continue;
1342 }
1343
1344 if ((sacked&TCPCB_SACKED_RETRANS) &&
1345 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1346 (!lost_retrans || after(end_seq, lost_retrans)))
1347 lost_retrans = end_seq;
1348
1349 if (!in_sack)
1350 continue;
1351
1352 if (!(sacked&TCPCB_SACKED_ACKED)) {
1353 if (sacked & TCPCB_SACKED_RETRANS) {
1354 /* If the segment is not tagged as lost,
1355 * we do not clear RETRANS, believing
1356 * that retransmission is still in flight.
1357 */
1358 if (sacked & TCPCB_LOST) {
1359 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1360 tp->lost_out -= tcp_skb_pcount(skb);
1361 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1362
1363 /* clear lost hint */
1364 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1365 }
1366 } else {
1367 /* New sack for not retransmitted frame,
1368 * which was in hole. It is reordering.
1369 */
1370 if (!(sacked & TCPCB_RETRANS) &&
1371 fack_count < prior_fackets)
1372 reord = min(fack_count, reord);
1373
1374 if (sacked & TCPCB_LOST) {
1375 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1376 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1377
1378 /* clear lost hint */
1379 tp->retransmit_skb_hint = NULL;
1da177e4 1380 }
4dc2665e
IJ
1381 /* SACK enhanced F-RTO detection.
1382 * Set flag if and only if non-rexmitted
1383 * segments below frto_highmark are
1384 * SACKed (RFC4138; Appendix B).
1385 * Clearing correct due to in-order walk
1386 */
1387 if (after(end_seq, tp->frto_highmark)) {
1388 flag &= ~FLAG_ONLY_ORIG_SACKED;
1389 } else {
1390 if (!(sacked & TCPCB_RETRANS))
1391 flag |= FLAG_ONLY_ORIG_SACKED;
1392 }
1da177e4
LT
1393 }
1394
1395 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1396 flag |= FLAG_DATA_SACKED;
1397 tp->sacked_out += tcp_skb_pcount(skb);
1398
1399 if (fack_count > tp->fackets_out)
1400 tp->fackets_out = fack_count;
d738cd8f
IJ
1401
1402 if (after(TCP_SKB_CB(skb)->seq,
1403 tp->highest_sack))
1404 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1405 } else {
1406 if (dup_sack && (sacked&TCPCB_RETRANS))
1407 reord = min(fack_count, reord);
1408 }
1409
1410 /* D-SACK. We can detect redundant retransmission
1411 * in S|R and plain R frames and clear it.
1412 * undo_retrans is decreased above, L|R frames
1413 * are accounted above as well.
1414 */
1415 if (dup_sack &&
1416 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1417 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1418 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1419 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1420 }
1421 }
1422 }
1423
1424 /* Check for lost retransmit. This superb idea is
1425 * borrowed from "ratehalving". Event "C".
1426 * Later note: FACK people cheated me again 8),
1427 * we have to account for reordering! Ugly,
1428 * but should help.
1429 */
6687e988 1430 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1431 struct sk_buff *skb;
1432
fe067e8a
DM
1433 tcp_for_write_queue(skb, sk) {
1434 if (skb == tcp_send_head(sk))
1435 break;
1da177e4
LT
1436 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1437 break;
1438 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1439 continue;
1440 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1441 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
e60402d0 1442 (tcp_is_fack(tp) ||
1da177e4
LT
1443 !before(lost_retrans,
1444 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1445 tp->mss_cache))) {
1da177e4
LT
1446 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1447 tp->retrans_out -= tcp_skb_pcount(skb);
1448
6a438bbe
SH
1449 /* clear lost hint */
1450 tp->retransmit_skb_hint = NULL;
1451
1da177e4
LT
1452 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1453 tp->lost_out += tcp_skb_pcount(skb);
1454 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1455 flag |= FLAG_DATA_SACKED;
1456 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1457 }
1458 }
1459 }
1460 }
1461
86426c22
IJ
1462 tcp_verify_left_out(tp);
1463
288035f9 1464 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1465 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1466 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1467
1468#if FASTRETRANS_DEBUG > 0
1469 BUG_TRAP((int)tp->sacked_out >= 0);
1470 BUG_TRAP((int)tp->lost_out >= 0);
1471 BUG_TRAP((int)tp->retrans_out >= 0);
1472 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1473#endif
1474 return flag;
1475}
1476
95eacd27
IJ
1477/* If we receive more dupacks than we expected counting segments
1478 * in assumption of absent reordering, interpret this as reordering.
1479 * The only another reason could be bug in receiver TCP.
30935cf4 1480 */
4ddf6676
IJ
1481static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1482{
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 u32 holes;
1485
1486 holes = max(tp->lost_out, 1U);
1487 holes = min(holes, tp->packets_out);
1488
1489 if ((tp->sacked_out + holes) > tp->packets_out) {
1490 tp->sacked_out = tp->packets_out - holes;
1491 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1492 }
1493}
1494
1495/* Emulate SACKs for SACKless connection: account for a new dupack. */
1496
1497static void tcp_add_reno_sack(struct sock *sk)
1498{
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 tp->sacked_out++;
1501 tcp_check_reno_reordering(sk, 0);
005903bc 1502 tcp_verify_left_out(tp);
4ddf6676
IJ
1503}
1504
1505/* Account for ACK, ACKing some data in Reno Recovery phase. */
1506
1507static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1508{
1509 struct tcp_sock *tp = tcp_sk(sk);
1510
1511 if (acked > 0) {
1512 /* One ACK acked hole. The rest eat duplicate ACKs. */
1513 if (acked-1 >= tp->sacked_out)
1514 tp->sacked_out = 0;
1515 else
1516 tp->sacked_out -= acked-1;
1517 }
1518 tcp_check_reno_reordering(sk, acked);
005903bc 1519 tcp_verify_left_out(tp);
4ddf6676
IJ
1520}
1521
1522static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1523{
1524 tp->sacked_out = 0;
4ddf6676
IJ
1525}
1526
95eacd27
IJ
1527/* F-RTO can only be used if TCP has never retransmitted anything other than
1528 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1529 */
46d0de4e 1530int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1531{
1532 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1533 struct sk_buff *skb;
1534
575ee714 1535 if (!sysctl_tcp_frto)
46d0de4e 1536 return 0;
bdaae17d 1537
4dc2665e
IJ
1538 if (IsSackFrto())
1539 return 1;
1540
46d0de4e
IJ
1541 /* Avoid expensive walking of rexmit queue if possible */
1542 if (tp->retrans_out > 1)
1543 return 0;
1544
fe067e8a
DM
1545 skb = tcp_write_queue_head(sk);
1546 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1547 tcp_for_write_queue_from(skb, sk) {
1548 if (skb == tcp_send_head(sk))
1549 break;
46d0de4e
IJ
1550 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1551 return 0;
1552 /* Short-circuit when first non-SACKed skb has been checked */
1553 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1554 break;
1555 }
1556 return 1;
bdaae17d
IJ
1557}
1558
30935cf4
IJ
1559/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1560 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1561 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1562 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1563 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1564 * bits are handled if the Loss state is really to be entered (in
1565 * tcp_enter_frto_loss).
7487c48c
IJ
1566 *
1567 * Do like tcp_enter_loss() would; when RTO expires the second time it
1568 * does:
1569 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1570 */
1571void tcp_enter_frto(struct sock *sk)
1572{
6687e988 1573 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1574 struct tcp_sock *tp = tcp_sk(sk);
1575 struct sk_buff *skb;
1576
7487c48c 1577 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1578 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1579 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1580 !icsk->icsk_retransmits)) {
6687e988 1581 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1582 /* Our state is too optimistic in ssthresh() call because cwnd
1583 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1584 * recovery has not yet completed. Pattern would be this: RTO,
1585 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1586 * up here twice).
1587 * RFC4138 should be more specific on what to do, even though
1588 * RTO is quite unlikely to occur after the first Cumulative ACK
1589 * due to back-off and complexity of triggering events ...
1590 */
1591 if (tp->frto_counter) {
1592 u32 stored_cwnd;
1593 stored_cwnd = tp->snd_cwnd;
1594 tp->snd_cwnd = 2;
1595 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1596 tp->snd_cwnd = stored_cwnd;
1597 } else {
1598 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1599 }
1600 /* ... in theory, cong.control module could do "any tricks" in
1601 * ssthresh(), which means that ca_state, lost bits and lost_out
1602 * counter would have to be faked before the call occurs. We
1603 * consider that too expensive, unlikely and hacky, so modules
1604 * using these in ssthresh() must deal these incompatibility
1605 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1606 */
6687e988 1607 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1608 }
1609
1da177e4
LT
1610 tp->undo_marker = tp->snd_una;
1611 tp->undo_retrans = 0;
1612
fe067e8a 1613 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1614 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1615 tp->undo_marker = 0;
d1a54c6a 1616 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1617 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1618 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1619 }
005903bc 1620 tcp_verify_left_out(tp);
1da177e4 1621
4dc2665e
IJ
1622 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1623 * The last condition is necessary at least in tp->frto_counter case.
1624 */
1625 if (IsSackFrto() && (tp->frto_counter ||
1626 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1627 after(tp->high_seq, tp->snd_una)) {
1628 tp->frto_highmark = tp->high_seq;
1629 } else {
1630 tp->frto_highmark = tp->snd_nxt;
1631 }
7b0eb22b
IJ
1632 tcp_set_ca_state(sk, TCP_CA_Disorder);
1633 tp->high_seq = tp->snd_nxt;
7487c48c 1634 tp->frto_counter = 1;
1da177e4
LT
1635}
1636
1637/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1638 * which indicates that we should follow the traditional RTO recovery,
1639 * i.e. mark everything lost and do go-back-N retransmission.
1640 */
d1a54c6a 1641static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1642{
1643 struct tcp_sock *tp = tcp_sk(sk);
1644 struct sk_buff *skb;
1da177e4 1645
1da177e4 1646 tp->lost_out = 0;
d1a54c6a 1647 tp->retrans_out = 0;
e60402d0 1648 if (tcp_is_reno(tp))
9bff40fd 1649 tcp_reset_reno_sack(tp);
1da177e4 1650
fe067e8a
DM
1651 tcp_for_write_queue(skb, sk) {
1652 if (skb == tcp_send_head(sk))
1653 break;
d1a54c6a
IJ
1654 /*
1655 * Count the retransmission made on RTO correctly (only when
1656 * waiting for the first ACK and did not get it)...
1657 */
1658 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1659 /* For some reason this R-bit might get cleared? */
1660 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1661 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1662 /* ...enter this if branch just for the first segment */
1663 flag |= FLAG_DATA_ACKED;
1664 } else {
009a2e3e
IJ
1665 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1666 tp->undo_marker = 0;
d1a54c6a
IJ
1667 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1668 }
1da177e4 1669
9bff40fd
IJ
1670 /* Don't lost mark skbs that were fwd transmitted after RTO */
1671 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1672 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1673 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1674 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1675 }
1676 }
005903bc 1677 tcp_verify_left_out(tp);
1da177e4 1678
95c4922b 1679 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1680 tp->snd_cwnd_cnt = 0;
1681 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
1682 tp->frto_counter = 0;
1683
1684 tp->reordering = min_t(unsigned int, tp->reordering,
1685 sysctl_tcp_reordering);
6687e988 1686 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1687 tp->high_seq = tp->frto_highmark;
1688 TCP_ECN_queue_cwr(tp);
6a438bbe 1689
b7689205 1690 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1691}
1692
1693void tcp_clear_retrans(struct tcp_sock *tp)
1694{
1da177e4
LT
1695 tp->retrans_out = 0;
1696
1697 tp->fackets_out = 0;
1698 tp->sacked_out = 0;
1699 tp->lost_out = 0;
1700
1701 tp->undo_marker = 0;
1702 tp->undo_retrans = 0;
1703}
1704
1705/* Enter Loss state. If "how" is not zero, forget all SACK information
1706 * and reset tags completely, otherwise preserve SACKs. If receiver
1707 * dropped its ofo queue, we will know this due to reneging detection.
1708 */
1709void tcp_enter_loss(struct sock *sk, int how)
1710{
6687e988 1711 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 struct sk_buff *skb;
1714 int cnt = 0;
1715
1716 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1717 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1718 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1719 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1720 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1721 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1722 }
1723 tp->snd_cwnd = 1;
1724 tp->snd_cwnd_cnt = 0;
1725 tp->snd_cwnd_stamp = tcp_time_stamp;
1726
9772efb9 1727 tp->bytes_acked = 0;
1da177e4
LT
1728 tcp_clear_retrans(tp);
1729
b7689205
IJ
1730 if (!how) {
1731 /* Push undo marker, if it was plain RTO and nothing
1732 * was retransmitted. */
1da177e4 1733 tp->undo_marker = tp->snd_una;
b7689205
IJ
1734 tcp_clear_retrans_hints_partial(tp);
1735 } else {
1736 tcp_clear_all_retrans_hints(tp);
1737 }
1da177e4 1738
fe067e8a
DM
1739 tcp_for_write_queue(skb, sk) {
1740 if (skb == tcp_send_head(sk))
1741 break;
1da177e4
LT
1742 cnt += tcp_skb_pcount(skb);
1743 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1744 tp->undo_marker = 0;
1745 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1746 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1747 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1748 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1749 tp->lost_out += tcp_skb_pcount(skb);
1750 } else {
1751 tp->sacked_out += tcp_skb_pcount(skb);
1752 tp->fackets_out = cnt;
1753 }
1754 }
005903bc 1755 tcp_verify_left_out(tp);
1da177e4
LT
1756
1757 tp->reordering = min_t(unsigned int, tp->reordering,
1758 sysctl_tcp_reordering);
6687e988 1759 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1760 tp->high_seq = tp->snd_nxt;
1761 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1762 /* Abort FRTO algorithm if one is in progress */
1763 tp->frto_counter = 0;
1da177e4
LT
1764}
1765
463c84b9 1766static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1767{
1768 struct sk_buff *skb;
1769
1770 /* If ACK arrived pointing to a remembered SACK,
1771 * it means that our remembered SACKs do not reflect
1772 * real state of receiver i.e.
1773 * receiver _host_ is heavily congested (or buggy).
1774 * Do processing similar to RTO timeout.
1775 */
fe067e8a 1776 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1777 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1778 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1779 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1780
1781 tcp_enter_loss(sk, 1);
6687e988 1782 icsk->icsk_retransmits++;
fe067e8a 1783 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1784 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1785 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1786 return 1;
1787 }
1788 return 0;
1789}
1790
1791static inline int tcp_fackets_out(struct tcp_sock *tp)
1792{
e60402d0 1793 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1794}
1795
463c84b9 1796static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1797{
463c84b9 1798 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1799}
1800
9e412ba7 1801static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1802{
9e412ba7
IJ
1803 struct tcp_sock *tp = tcp_sk(sk);
1804
1da177e4 1805 return tp->packets_out &&
fe067e8a 1806 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1807}
1808
1809/* Linux NewReno/SACK/FACK/ECN state machine.
1810 * --------------------------------------
1811 *
1812 * "Open" Normal state, no dubious events, fast path.
1813 * "Disorder" In all the respects it is "Open",
1814 * but requires a bit more attention. It is entered when
1815 * we see some SACKs or dupacks. It is split of "Open"
1816 * mainly to move some processing from fast path to slow one.
1817 * "CWR" CWND was reduced due to some Congestion Notification event.
1818 * It can be ECN, ICMP source quench, local device congestion.
1819 * "Recovery" CWND was reduced, we are fast-retransmitting.
1820 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1821 *
1822 * tcp_fastretrans_alert() is entered:
1823 * - each incoming ACK, if state is not "Open"
1824 * - when arrived ACK is unusual, namely:
1825 * * SACK
1826 * * Duplicate ACK.
1827 * * ECN ECE.
1828 *
1829 * Counting packets in flight is pretty simple.
1830 *
1831 * in_flight = packets_out - left_out + retrans_out
1832 *
1833 * packets_out is SND.NXT-SND.UNA counted in packets.
1834 *
1835 * retrans_out is number of retransmitted segments.
1836 *
1837 * left_out is number of segments left network, but not ACKed yet.
1838 *
1839 * left_out = sacked_out + lost_out
1840 *
1841 * sacked_out: Packets, which arrived to receiver out of order
1842 * and hence not ACKed. With SACKs this number is simply
1843 * amount of SACKed data. Even without SACKs
1844 * it is easy to give pretty reliable estimate of this number,
1845 * counting duplicate ACKs.
1846 *
1847 * lost_out: Packets lost by network. TCP has no explicit
1848 * "loss notification" feedback from network (for now).
1849 * It means that this number can be only _guessed_.
1850 * Actually, it is the heuristics to predict lossage that
1851 * distinguishes different algorithms.
1852 *
1853 * F.e. after RTO, when all the queue is considered as lost,
1854 * lost_out = packets_out and in_flight = retrans_out.
1855 *
1856 * Essentially, we have now two algorithms counting
1857 * lost packets.
1858 *
1859 * FACK: It is the simplest heuristics. As soon as we decided
1860 * that something is lost, we decide that _all_ not SACKed
1861 * packets until the most forward SACK are lost. I.e.
1862 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1863 * It is absolutely correct estimate, if network does not reorder
1864 * packets. And it loses any connection to reality when reordering
1865 * takes place. We use FACK by default until reordering
1866 * is suspected on the path to this destination.
1867 *
1868 * NewReno: when Recovery is entered, we assume that one segment
1869 * is lost (classic Reno). While we are in Recovery and
1870 * a partial ACK arrives, we assume that one more packet
1871 * is lost (NewReno). This heuristics are the same in NewReno
1872 * and SACK.
1873 *
1874 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1875 * deflation etc. CWND is real congestion window, never inflated, changes
1876 * only according to classic VJ rules.
1877 *
1878 * Really tricky (and requiring careful tuning) part of algorithm
1879 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1880 * The first determines the moment _when_ we should reduce CWND and,
1881 * hence, slow down forward transmission. In fact, it determines the moment
1882 * when we decide that hole is caused by loss, rather than by a reorder.
1883 *
1884 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1885 * holes, caused by lost packets.
1886 *
1887 * And the most logically complicated part of algorithm is undo
1888 * heuristics. We detect false retransmits due to both too early
1889 * fast retransmit (reordering) and underestimated RTO, analyzing
1890 * timestamps and D-SACKs. When we detect that some segments were
1891 * retransmitted by mistake and CWND reduction was wrong, we undo
1892 * window reduction and abort recovery phase. This logic is hidden
1893 * inside several functions named tcp_try_undo_<something>.
1894 */
1895
1896/* This function decides, when we should leave Disordered state
1897 * and enter Recovery phase, reducing congestion window.
1898 *
1899 * Main question: may we further continue forward transmission
1900 * with the same cwnd?
1901 */
9e412ba7 1902static int tcp_time_to_recover(struct sock *sk)
1da177e4 1903{
9e412ba7 1904 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1905 __u32 packets_out;
1906
52c63f1e
IJ
1907 /* Do not perform any recovery during FRTO algorithm */
1908 if (tp->frto_counter)
1909 return 0;
1910
1da177e4
LT
1911 /* Trick#1: The loss is proven. */
1912 if (tp->lost_out)
1913 return 1;
1914
1915 /* Not-A-Trick#2 : Classic rule... */
1916 if (tcp_fackets_out(tp) > tp->reordering)
1917 return 1;
1918
1919 /* Trick#3 : when we use RFC2988 timer restart, fast
1920 * retransmit can be triggered by timeout of queue head.
1921 */
9e412ba7 1922 if (tcp_head_timedout(sk))
1da177e4
LT
1923 return 1;
1924
1925 /* Trick#4: It is still not OK... But will it be useful to delay
1926 * recovery more?
1927 */
1928 packets_out = tp->packets_out;
1929 if (packets_out <= tp->reordering &&
1930 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1931 !tcp_may_send_now(sk)) {
1da177e4
LT
1932 /* We have nothing to send. This connection is limited
1933 * either by receiver window or by application.
1934 */
1935 return 1;
1936 }
1937
1938 return 0;
1939}
1940
d8f4f223
IJ
1941/* RFC: This is from the original, I doubt that this is necessary at all:
1942 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1943 * retransmitted past LOST markings in the first place? I'm not fully sure
1944 * about undo and end of connection cases, which can cause R without L?
1945 */
1946static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1947 struct sk_buff *skb)
1948{
1949 if ((tp->retransmit_skb_hint != NULL) &&
1950 before(TCP_SKB_CB(skb)->seq,
1951 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1952 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1953}
1954
1da177e4 1955/* Mark head of queue up as lost. */
9e412ba7 1956static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1957 int packets, u32 high_seq)
1958{
9e412ba7 1959 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1960 struct sk_buff *skb;
6a438bbe 1961 int cnt;
1da177e4 1962
6a438bbe
SH
1963 BUG_TRAP(packets <= tp->packets_out);
1964 if (tp->lost_skb_hint) {
1965 skb = tp->lost_skb_hint;
1966 cnt = tp->lost_cnt_hint;
1967 } else {
fe067e8a 1968 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1969 cnt = 0;
1970 }
1da177e4 1971
fe067e8a
DM
1972 tcp_for_write_queue_from(skb, sk) {
1973 if (skb == tcp_send_head(sk))
1974 break;
6a438bbe
SH
1975 /* TODO: do this better */
1976 /* this is not the most efficient way to do this... */
1977 tp->lost_skb_hint = skb;
1978 tp->lost_cnt_hint = cnt;
1979 cnt += tcp_skb_pcount(skb);
1980 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1981 break;
1982 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1983 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1984 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1985 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1986 }
1987 }
005903bc 1988 tcp_verify_left_out(tp);
1da177e4
LT
1989}
1990
1991/* Account newly detected lost packet(s) */
1992
9e412ba7 1993static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1994{
9e412ba7
IJ
1995 struct tcp_sock *tp = tcp_sk(sk);
1996
e60402d0 1997 if (tcp_is_fack(tp)) {
1da177e4
LT
1998 int lost = tp->fackets_out - tp->reordering;
1999 if (lost <= 0)
2000 lost = 1;
9e412ba7 2001 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 2002 } else {
9e412ba7 2003 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
2004 }
2005
2006 /* New heuristics: it is possible only after we switched
2007 * to restart timer each time when something is ACKed.
2008 * Hence, we can detect timed out packets during fast
2009 * retransmit without falling to slow start.
2010 */
e60402d0 2011 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2012 struct sk_buff *skb;
2013
6a438bbe 2014 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2015 : tcp_write_queue_head(sk);
6a438bbe 2016
fe067e8a
DM
2017 tcp_for_write_queue_from(skb, sk) {
2018 if (skb == tcp_send_head(sk))
2019 break;
6a438bbe
SH
2020 if (!tcp_skb_timedout(sk, skb))
2021 break;
2022
2023 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2024 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2025 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2026 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2027 }
2028 }
6a438bbe
SH
2029
2030 tp->scoreboard_skb_hint = skb;
2031
005903bc 2032 tcp_verify_left_out(tp);
1da177e4
LT
2033 }
2034}
2035
2036/* CWND moderation, preventing bursts due to too big ACKs
2037 * in dubious situations.
2038 */
2039static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2040{
2041 tp->snd_cwnd = min(tp->snd_cwnd,
2042 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2043 tp->snd_cwnd_stamp = tcp_time_stamp;
2044}
2045
72dc5b92
SH
2046/* Lower bound on congestion window is slow start threshold
2047 * unless congestion avoidance choice decides to overide it.
2048 */
2049static inline u32 tcp_cwnd_min(const struct sock *sk)
2050{
2051 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2052
2053 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2054}
2055
1da177e4 2056/* Decrease cwnd each second ack. */
1e757f99 2057static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2058{
6687e988 2059 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2060 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2061
49ff4bb4 2062 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2063 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2064 tp->snd_cwnd_cnt = decr&1;
2065 decr >>= 1;
1da177e4 2066
1e757f99
IJ
2067 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2068 tp->snd_cwnd -= decr;
1da177e4 2069
1e757f99
IJ
2070 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2071 tp->snd_cwnd_stamp = tcp_time_stamp;
2072 }
1da177e4
LT
2073}
2074
2075/* Nothing was retransmitted or returned timestamp is less
2076 * than timestamp of the first retransmission.
2077 */
2078static inline int tcp_packet_delayed(struct tcp_sock *tp)
2079{
2080 return !tp->retrans_stamp ||
2081 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2082 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2083}
2084
2085/* Undo procedures. */
2086
2087#if FASTRETRANS_DEBUG > 1
9e412ba7 2088static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2089{
9e412ba7 2090 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2091 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2092
1da177e4
LT
2093 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2094 msg,
2095 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2096 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2097 tp->snd_ssthresh, tp->prior_ssthresh,
2098 tp->packets_out);
2099}
2100#else
2101#define DBGUNDO(x...) do { } while (0)
2102#endif
2103
6687e988 2104static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2105{
6687e988
ACM
2106 struct tcp_sock *tp = tcp_sk(sk);
2107
1da177e4 2108 if (tp->prior_ssthresh) {
6687e988
ACM
2109 const struct inet_connection_sock *icsk = inet_csk(sk);
2110
2111 if (icsk->icsk_ca_ops->undo_cwnd)
2112 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2113 else
2114 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2115
2116 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2117 tp->snd_ssthresh = tp->prior_ssthresh;
2118 TCP_ECN_withdraw_cwr(tp);
2119 }
2120 } else {
2121 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2122 }
2123 tcp_moderate_cwnd(tp);
2124 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2125
2126 /* There is something screwy going on with the retrans hints after
2127 an undo */
5af4ec23 2128 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2129}
2130
2131static inline int tcp_may_undo(struct tcp_sock *tp)
2132{
2133 return tp->undo_marker &&
2134 (!tp->undo_retrans || tcp_packet_delayed(tp));
2135}
2136
2137/* People celebrate: "We love our President!" */
9e412ba7 2138static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2139{
9e412ba7
IJ
2140 struct tcp_sock *tp = tcp_sk(sk);
2141
1da177e4
LT
2142 if (tcp_may_undo(tp)) {
2143 /* Happy end! We did not retransmit anything
2144 * or our original transmission succeeded.
2145 */
9e412ba7 2146 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2147 tcp_undo_cwr(sk, 1);
2148 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2149 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2150 else
2151 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2152 tp->undo_marker = 0;
2153 }
e60402d0 2154 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2155 /* Hold old state until something *above* high_seq
2156 * is ACKed. For Reno it is MUST to prevent false
2157 * fast retransmits (RFC2582). SACK TCP is safe. */
2158 tcp_moderate_cwnd(tp);
2159 return 1;
2160 }
6687e988 2161 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2162 return 0;
2163}
2164
2165/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2166static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2167{
9e412ba7
IJ
2168 struct tcp_sock *tp = tcp_sk(sk);
2169
1da177e4 2170 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2171 DBGUNDO(sk, "D-SACK");
6687e988 2172 tcp_undo_cwr(sk, 1);
1da177e4
LT
2173 tp->undo_marker = 0;
2174 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2175 }
2176}
2177
2178/* Undo during fast recovery after partial ACK. */
2179
9e412ba7 2180static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2181{
9e412ba7 2182 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2183 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2184 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2185
2186 if (tcp_may_undo(tp)) {
2187 /* Plain luck! Hole if filled with delayed
2188 * packet, rather than with a retransmit.
2189 */
2190 if (tp->retrans_out == 0)
2191 tp->retrans_stamp = 0;
2192
6687e988 2193 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2194
9e412ba7 2195 DBGUNDO(sk, "Hoe");
6687e988 2196 tcp_undo_cwr(sk, 0);
1da177e4
LT
2197 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2198
2199 /* So... Do not make Hoe's retransmit yet.
2200 * If the first packet was delayed, the rest
2201 * ones are most probably delayed as well.
2202 */
2203 failed = 0;
2204 }
2205 return failed;
2206}
2207
2208/* Undo during loss recovery after partial ACK. */
9e412ba7 2209static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2210{
9e412ba7
IJ
2211 struct tcp_sock *tp = tcp_sk(sk);
2212
1da177e4
LT
2213 if (tcp_may_undo(tp)) {
2214 struct sk_buff *skb;
fe067e8a
DM
2215 tcp_for_write_queue(skb, sk) {
2216 if (skb == tcp_send_head(sk))
2217 break;
1da177e4
LT
2218 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2219 }
6a438bbe 2220
5af4ec23 2221 tcp_clear_all_retrans_hints(tp);
6a438bbe 2222
9e412ba7 2223 DBGUNDO(sk, "partial loss");
1da177e4 2224 tp->lost_out = 0;
6687e988 2225 tcp_undo_cwr(sk, 1);
1da177e4 2226 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2227 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2228 tp->undo_marker = 0;
e60402d0 2229 if (tcp_is_sack(tp))
6687e988 2230 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2231 return 1;
2232 }
2233 return 0;
2234}
2235
6687e988 2236static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2237{
6687e988 2238 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2239 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2240 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2241 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2242}
2243
9e412ba7 2244static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2245{
9e412ba7
IJ
2246 struct tcp_sock *tp = tcp_sk(sk);
2247
86426c22
IJ
2248 tcp_verify_left_out(tp);
2249
1da177e4
LT
2250 if (tp->retrans_out == 0)
2251 tp->retrans_stamp = 0;
2252
2253 if (flag&FLAG_ECE)
3cfe3baa 2254 tcp_enter_cwr(sk, 1);
1da177e4 2255
6687e988 2256 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2257 int state = TCP_CA_Open;
2258
d02596e3 2259 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2260 state = TCP_CA_Disorder;
2261
6687e988
ACM
2262 if (inet_csk(sk)->icsk_ca_state != state) {
2263 tcp_set_ca_state(sk, state);
1da177e4
LT
2264 tp->high_seq = tp->snd_nxt;
2265 }
2266 tcp_moderate_cwnd(tp);
2267 } else {
1e757f99 2268 tcp_cwnd_down(sk, flag);
1da177e4
LT
2269 }
2270}
2271
5d424d5a
JH
2272static void tcp_mtup_probe_failed(struct sock *sk)
2273{
2274 struct inet_connection_sock *icsk = inet_csk(sk);
2275
2276 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2277 icsk->icsk_mtup.probe_size = 0;
2278}
2279
2280static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2281{
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 struct inet_connection_sock *icsk = inet_csk(sk);
2284
2285 /* FIXME: breaks with very large cwnd */
2286 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2287 tp->snd_cwnd = tp->snd_cwnd *
2288 tcp_mss_to_mtu(sk, tp->mss_cache) /
2289 icsk->icsk_mtup.probe_size;
2290 tp->snd_cwnd_cnt = 0;
2291 tp->snd_cwnd_stamp = tcp_time_stamp;
2292 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2293
2294 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2295 icsk->icsk_mtup.probe_size = 0;
2296 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2297}
2298
2299
1da177e4
LT
2300/* Process an event, which can update packets-in-flight not trivially.
2301 * Main goal of this function is to calculate new estimate for left_out,
2302 * taking into account both packets sitting in receiver's buffer and
2303 * packets lost by network.
2304 *
2305 * Besides that it does CWND reduction, when packet loss is detected
2306 * and changes state of machine.
2307 *
2308 * It does _not_ decide what to send, it is made in function
2309 * tcp_xmit_retransmit_queue().
2310 */
2311static void
1b6d427b 2312tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2313{
6687e988 2314 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2315 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2316 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2317 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2318 (tp->fackets_out > tp->reordering));
1da177e4
LT
2319
2320 /* Some technical things:
2321 * 1. Reno does not count dupacks (sacked_out) automatically. */
2322 if (!tp->packets_out)
2323 tp->sacked_out = 0;
91fed7a1
IJ
2324
2325 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2326 tp->fackets_out = 0;
2327
e905a9ed 2328 /* Now state machine starts.
1da177e4
LT
2329 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2330 if (flag&FLAG_ECE)
2331 tp->prior_ssthresh = 0;
2332
2333 /* B. In all the states check for reneging SACKs. */
463c84b9 2334 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2335 return;
2336
2337 /* C. Process data loss notification, provided it is valid. */
2338 if ((flag&FLAG_DATA_LOST) &&
2339 before(tp->snd_una, tp->high_seq) &&
6687e988 2340 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2341 tp->fackets_out > tp->reordering) {
9e412ba7 2342 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2343 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2344 }
2345
005903bc
IJ
2346 /* D. Check consistency of the current state. */
2347 tcp_verify_left_out(tp);
1da177e4
LT
2348
2349 /* E. Check state exit conditions. State can be terminated
2350 * when high_seq is ACKed. */
6687e988 2351 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2352 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2353 tp->retrans_stamp = 0;
2354 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2355 switch (icsk->icsk_ca_state) {
1da177e4 2356 case TCP_CA_Loss:
6687e988 2357 icsk->icsk_retransmits = 0;
9e412ba7 2358 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2359 return;
2360 break;
2361
2362 case TCP_CA_CWR:
2363 /* CWR is to be held something *above* high_seq
2364 * is ACKed for CWR bit to reach receiver. */
2365 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2366 tcp_complete_cwr(sk);
2367 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2368 }
2369 break;
2370
2371 case TCP_CA_Disorder:
9e412ba7 2372 tcp_try_undo_dsack(sk);
1da177e4
LT
2373 if (!tp->undo_marker ||
2374 /* For SACK case do not Open to allow to undo
2375 * catching for all duplicate ACKs. */
e60402d0 2376 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2377 tp->undo_marker = 0;
6687e988 2378 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2379 }
2380 break;
2381
2382 case TCP_CA_Recovery:
e60402d0 2383 if (tcp_is_reno(tp))
1da177e4 2384 tcp_reset_reno_sack(tp);
9e412ba7 2385 if (tcp_try_undo_recovery(sk))
1da177e4 2386 return;
6687e988 2387 tcp_complete_cwr(sk);
1da177e4
LT
2388 break;
2389 }
2390 }
2391
2392 /* F. Process state. */
6687e988 2393 switch (icsk->icsk_ca_state) {
1da177e4 2394 case TCP_CA_Recovery:
2e605294 2395 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2396 if (tcp_is_reno(tp) && is_dupack)
6687e988 2397 tcp_add_reno_sack(sk);
1b6d427b
IJ
2398 } else
2399 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2400 break;
2401 case TCP_CA_Loss:
2402 if (flag&FLAG_DATA_ACKED)
6687e988 2403 icsk->icsk_retransmits = 0;
9e412ba7 2404 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2405 tcp_moderate_cwnd(tp);
2406 tcp_xmit_retransmit_queue(sk);
2407 return;
2408 }
6687e988 2409 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2410 return;
2411 /* Loss is undone; fall through to processing in Open state. */
2412 default:
e60402d0 2413 if (tcp_is_reno(tp)) {
2e605294 2414 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2415 tcp_reset_reno_sack(tp);
2416 if (is_dupack)
6687e988 2417 tcp_add_reno_sack(sk);
1da177e4
LT
2418 }
2419
6687e988 2420 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2421 tcp_try_undo_dsack(sk);
1da177e4 2422
9e412ba7
IJ
2423 if (!tcp_time_to_recover(sk)) {
2424 tcp_try_to_open(sk, flag);
1da177e4
LT
2425 return;
2426 }
2427
5d424d5a
JH
2428 /* MTU probe failure: don't reduce cwnd */
2429 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2430 icsk->icsk_mtup.probe_size &&
0e7b1368 2431 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2432 tcp_mtup_probe_failed(sk);
2433 /* Restores the reduction we did in tcp_mtup_probe() */
2434 tp->snd_cwnd++;
2435 tcp_simple_retransmit(sk);
2436 return;
2437 }
2438
1da177e4
LT
2439 /* Otherwise enter Recovery state */
2440
e60402d0 2441 if (tcp_is_reno(tp))
1da177e4
LT
2442 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2443 else
2444 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2445
2446 tp->high_seq = tp->snd_nxt;
2447 tp->prior_ssthresh = 0;
2448 tp->undo_marker = tp->snd_una;
2449 tp->undo_retrans = tp->retrans_out;
2450
6687e988 2451 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2452 if (!(flag&FLAG_ECE))
6687e988
ACM
2453 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2454 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2455 TCP_ECN_queue_cwr(tp);
2456 }
2457
9772efb9 2458 tp->bytes_acked = 0;
1da177e4 2459 tp->snd_cwnd_cnt = 0;
6687e988 2460 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2461 }
2462
2e605294 2463 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2464 tcp_update_scoreboard(sk);
1e757f99 2465 tcp_cwnd_down(sk, flag);
1da177e4
LT
2466 tcp_xmit_retransmit_queue(sk);
2467}
2468
2469/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2470 * with this code. (Supersedes RFC1323)
1da177e4 2471 */
2d2abbab 2472static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2473{
1da177e4
LT
2474 /* RTTM Rule: A TSecr value received in a segment is used to
2475 * update the averaged RTT measurement only if the segment
2476 * acknowledges some new data, i.e., only if it advances the
2477 * left edge of the send window.
2478 *
2479 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2480 * 1998/04/10 Andrey V. Savochkin <[email protected]>
2481 *
2482 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2483 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2484 * samples are accepted even from very old segments: f.e., when rtt=1
2485 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2486 * answer arrives rto becomes 120 seconds! If at least one of segments
2487 * in window is lost... Voila. --ANK (010210)
2488 */
463c84b9
ACM
2489 struct tcp_sock *tp = tcp_sk(sk);
2490 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2491 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2492 tcp_set_rto(sk);
2493 inet_csk(sk)->icsk_backoff = 0;
2494 tcp_bound_rto(sk);
1da177e4
LT
2495}
2496
2d2abbab 2497static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2498{
2499 /* We don't have a timestamp. Can only use
2500 * packets that are not retransmitted to determine
2501 * rtt estimates. Also, we must not reset the
2502 * backoff for rto until we get a non-retransmitted
2503 * packet. This allows us to deal with a situation
2504 * where the network delay has increased suddenly.
2505 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2506 */
2507
2508 if (flag & FLAG_RETRANS_DATA_ACKED)
2509 return;
2510
2d2abbab 2511 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2512 tcp_set_rto(sk);
2513 inet_csk(sk)->icsk_backoff = 0;
2514 tcp_bound_rto(sk);
1da177e4
LT
2515}
2516
463c84b9 2517static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2518 const s32 seq_rtt)
1da177e4 2519{
463c84b9 2520 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2521 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2522 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2523 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2524 else if (seq_rtt >= 0)
2d2abbab 2525 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2526}
2527
16751347 2528static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2529 u32 in_flight, int good)
1da177e4 2530{
6687e988 2531 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2532 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2533 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2534}
2535
1da177e4
LT
2536/* Restart timer after forward progress on connection.
2537 * RFC2988 recommends to restart timer to now+rto.
2538 */
6728e7dc 2539static void tcp_rearm_rto(struct sock *sk)
1da177e4 2540{
9e412ba7
IJ
2541 struct tcp_sock *tp = tcp_sk(sk);
2542
1da177e4 2543 if (!tp->packets_out) {
463c84b9 2544 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2545 } else {
3f421baa 2546 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2547 }
2548}
2549
7c46a03e 2550/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2551static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2552{
2553 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2554 u32 packets_acked;
1da177e4 2555
7c46a03e 2556 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2557
2558 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2559 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2560 return 0;
2561 packets_acked -= tcp_skb_pcount(skb);
2562
2563 if (packets_acked) {
1da177e4 2564 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2565 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2566 }
2567
13fcf850 2568 return packets_acked;
1da177e4
LT
2569}
2570
7c46a03e
IJ
2571/* Remove acknowledged frames from the retransmission queue. If our packet
2572 * is before the ack sequence we can discard it as it's confirmed to have
2573 * arrived at the other end.
2574 */
2575static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2576{
2577 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2578 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2579 struct sk_buff *skb;
7c46a03e 2580 u32 now = tcp_time_stamp;
13fcf850 2581 int fully_acked = 1;
7c46a03e 2582 int flag = 0;
6418204f 2583 int prior_packets = tp->packets_out;
7c46a03e 2584 s32 seq_rtt = -1;
b9ce204f 2585 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2586
7c46a03e 2587 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2588 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2589 u32 end_seq;
2590 u32 packets_acked;
7c46a03e 2591 u8 sacked = scb->sacked;
1da177e4 2592
1da177e4 2593 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2594 if (tcp_skb_pcount(skb) == 1 ||
2595 !after(tp->snd_una, scb->seq))
2596 break;
2597
2598 packets_acked = tcp_tso_acked(sk, skb);
2599 if (!packets_acked)
2600 break;
2601
2602 fully_acked = 0;
2603 end_seq = tp->snd_una;
2604 } else {
2605 packets_acked = tcp_skb_pcount(skb);
2606 end_seq = scb->end_seq;
1da177e4
LT
2607 }
2608
5d424d5a 2609 /* MTU probing checks */
7c46a03e
IJ
2610 if (fully_acked && icsk->icsk_mtup.probe_size &&
2611 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2612 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2613 }
2614
1da177e4
LT
2615 if (sacked) {
2616 if (sacked & TCPCB_RETRANS) {
2de979bd 2617 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2618 tp->retrans_out -= packets_acked;
7c46a03e 2619 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2620 seq_rtt = -1;
009a2e3e
IJ
2621 if ((flag & FLAG_DATA_ACKED) ||
2622 (packets_acked > 1))
2623 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2624 } else if (seq_rtt < 0) {
1da177e4 2625 seq_rtt = now - scb->when;
13fcf850
IJ
2626 if (fully_acked)
2627 last_ackt = skb->tstamp;
a61bbcf2 2628 }
7c46a03e 2629
1da177e4 2630 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2631 tp->sacked_out -= packets_acked;
1da177e4 2632 if (sacked & TCPCB_LOST)
13fcf850 2633 tp->lost_out -= packets_acked;
7c46a03e
IJ
2634
2635 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2636 !before(end_seq, tp->snd_up))
2637 tp->urg_mode = 0;
2d2abbab 2638 } else if (seq_rtt < 0) {
1da177e4 2639 seq_rtt = now - scb->when;
13fcf850
IJ
2640 if (fully_acked)
2641 last_ackt = skb->tstamp;
2d2abbab 2642 }
13fcf850
IJ
2643 tp->packets_out -= packets_acked;
2644
009a2e3e
IJ
2645 /* Initial outgoing SYN's get put onto the write_queue
2646 * just like anything else we transmit. It is not
2647 * true data, and if we misinform our callers that
2648 * this ACK acks real data, we will erroneously exit
2649 * connection startup slow start one packet too
2650 * quickly. This is severely frowned upon behavior.
2651 */
2652 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2653 flag |= FLAG_DATA_ACKED;
2654 } else {
2655 flag |= FLAG_SYN_ACKED;
2656 tp->retrans_stamp = 0;
2657 }
2658
13fcf850
IJ
2659 if (!fully_acked)
2660 break;
2661
fe067e8a 2662 tcp_unlink_write_queue(skb, sk);
1da177e4 2663 sk_stream_free_skb(sk, skb);
5af4ec23 2664 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2665 }
2666
7c46a03e 2667 if (flag & FLAG_ACKED) {
6418204f 2668 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2669 const struct tcp_congestion_ops *ca_ops
2670 = inet_csk(sk)->icsk_ca_ops;
2671
7c46a03e 2672 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2673 tcp_rearm_rto(sk);
317a76f9 2674
91fed7a1 2675 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2676 /* hint's skb might be NULL but we don't need to care */
2677 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2678 tp->fastpath_cnt_hint);
e60402d0 2679 if (tcp_is_reno(tp))
1b6d427b
IJ
2680 tcp_remove_reno_sacks(sk, pkts_acked);
2681
30cfd0ba
SH
2682 if (ca_ops->pkts_acked) {
2683 s32 rtt_us = -1;
2684
2685 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2686 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2687 /* High resolution needed and available? */
2688 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2689 !ktime_equal(last_ackt,
2690 net_invalid_timestamp()))
2691 rtt_us = ktime_us_delta(ktime_get_real(),
2692 last_ackt);
2693 else if (seq_rtt > 0)
2694 rtt_us = jiffies_to_usecs(seq_rtt);
2695 }
b9ce204f 2696
30cfd0ba
SH
2697 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2698 }
1da177e4
LT
2699 }
2700
2701#if FASTRETRANS_DEBUG > 0
2702 BUG_TRAP((int)tp->sacked_out >= 0);
2703 BUG_TRAP((int)tp->lost_out >= 0);
2704 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2705 if (!tp->packets_out && tcp_is_sack(tp)) {
6687e988 2706 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2707 if (tp->lost_out) {
2708 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2709 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2710 tp->lost_out = 0;
2711 }
2712 if (tp->sacked_out) {
2713 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2714 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2715 tp->sacked_out = 0;
2716 }
2717 if (tp->retrans_out) {
2718 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2719 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2720 tp->retrans_out = 0;
2721 }
2722 }
2723#endif
2724 *seq_rtt_p = seq_rtt;
7c46a03e 2725 return flag;
1da177e4
LT
2726}
2727
2728static void tcp_ack_probe(struct sock *sk)
2729{
463c84b9
ACM
2730 const struct tcp_sock *tp = tcp_sk(sk);
2731 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2732
2733 /* Was it a usable window open? */
2734
fe067e8a 2735 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2736 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2737 icsk->icsk_backoff = 0;
2738 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2739 /* Socket must be waked up by subsequent tcp_data_snd_check().
2740 * This function is not for random using!
2741 */
2742 } else {
463c84b9 2743 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2744 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2745 TCP_RTO_MAX);
1da177e4
LT
2746 }
2747}
2748
6687e988 2749static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2750{
2751 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2752 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2753}
2754
6687e988 2755static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2756{
6687e988 2757 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2758 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2759 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2760}
2761
2762/* Check that window update is acceptable.
2763 * The function assumes that snd_una<=ack<=snd_next.
2764 */
463c84b9
ACM
2765static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2766 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2767{
2768 return (after(ack, tp->snd_una) ||
2769 after(ack_seq, tp->snd_wl1) ||
2770 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2771}
2772
2773/* Update our send window.
2774 *
2775 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2776 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2777 */
9e412ba7
IJ
2778static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2779 u32 ack_seq)
1da177e4 2780{
9e412ba7 2781 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2782 int flag = 0;
aa8223c7 2783 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2784
aa8223c7 2785 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2786 nwin <<= tp->rx_opt.snd_wscale;
2787
2788 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2789 flag |= FLAG_WIN_UPDATE;
2790 tcp_update_wl(tp, ack, ack_seq);
2791
2792 if (tp->snd_wnd != nwin) {
2793 tp->snd_wnd = nwin;
2794
2795 /* Note, it is the only place, where
2796 * fast path is recovered for sending TCP.
2797 */
2ad41065 2798 tp->pred_flags = 0;
9e412ba7 2799 tcp_fast_path_check(sk);
1da177e4
LT
2800
2801 if (nwin > tp->max_window) {
2802 tp->max_window = nwin;
d83d8461 2803 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2804 }
2805 }
2806 }
2807
2808 tp->snd_una = ack;
2809
2810 return flag;
2811}
2812
9ead9a1d
IJ
2813/* A very conservative spurious RTO response algorithm: reduce cwnd and
2814 * continue in congestion avoidance.
2815 */
2816static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2817{
2818 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2819 tp->snd_cwnd_cnt = 0;
46323655 2820 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2821 tcp_moderate_cwnd(tp);
2822}
2823
3cfe3baa
IJ
2824/* A conservative spurious RTO response algorithm: reduce cwnd using
2825 * rate halving and continue in congestion avoidance.
2826 */
2827static void tcp_ratehalving_spur_to_response(struct sock *sk)
2828{
3cfe3baa 2829 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2830}
2831
e317f6f6 2832static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2833{
e317f6f6
IJ
2834 if (flag&FLAG_ECE)
2835 tcp_ratehalving_spur_to_response(sk);
2836 else
2837 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2838}
2839
30935cf4
IJ
2840/* F-RTO spurious RTO detection algorithm (RFC4138)
2841 *
6408d206
IJ
2842 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2843 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2844 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2845 * On First ACK, send two new segments out.
2846 * On Second ACK, RTO was likely spurious. Do spurious response (response
2847 * algorithm is not part of the F-RTO detection algorithm
2848 * given in RFC4138 but can be selected separately).
2849 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2850 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2851 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2852 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2853 *
2854 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2855 * original window even after we transmit two new data segments.
2856 *
4dc2665e
IJ
2857 * SACK version:
2858 * on first step, wait until first cumulative ACK arrives, then move to
2859 * the second step. In second step, the next ACK decides.
2860 *
30935cf4
IJ
2861 * F-RTO is implemented (mainly) in four functions:
2862 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2863 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2864 * called when tcp_use_frto() showed green light
2865 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2866 * - tcp_enter_frto_loss() is called if there is not enough evidence
2867 * to prove that the RTO is indeed spurious. It transfers the control
2868 * from F-RTO to the conventional RTO recovery
2869 */
2e605294 2870static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2871{
2872 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2873
005903bc 2874 tcp_verify_left_out(tp);
e905a9ed 2875
7487c48c
IJ
2876 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2877 if (flag&FLAG_DATA_ACKED)
2878 inet_csk(sk)->icsk_retransmits = 0;
2879
009a2e3e
IJ
2880 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2881 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2882 tp->undo_marker = 0;
2883
95c4922b 2884 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2885 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2886 return 1;
95c4922b
IJ
2887 }
2888
e60402d0 2889 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2890 /* RFC4138 shortcoming in step 2; should also have case c):
2891 * ACK isn't duplicate nor advances window, e.g., opposite dir
2892 * data, winupdate
2893 */
2e605294 2894 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2895 return 1;
2896
2897 if (!(flag&FLAG_DATA_ACKED)) {
2898 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2899 flag);
2900 return 1;
2901 }
2902 } else {
2903 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2904 /* Prevent sending of new data. */
2905 tp->snd_cwnd = min(tp->snd_cwnd,
2906 tcp_packets_in_flight(tp));
2907 return 1;
2908 }
6408d206 2909
d551e454 2910 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2911 (!(flag&FLAG_FORWARD_PROGRESS) ||
2912 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2913 /* RFC4138 shortcoming (see comment above) */
2914 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2915 return 1;
2916
2917 tcp_enter_frto_loss(sk, 3, flag);
2918 return 1;
2919 }
1da177e4
LT
2920 }
2921
2922 if (tp->frto_counter == 1) {
575ee714
IJ
2923 /* Sending of the next skb must be allowed or no FRTO */
2924 if (!tcp_send_head(sk) ||
2925 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2926 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2927 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2928 flag);
575ee714
IJ
2929 return 1;
2930 }
2931
1da177e4 2932 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2933 tp->frto_counter = 2;
7c9a4a5b 2934 return 1;
d551e454 2935 } else {
3cfe3baa
IJ
2936 switch (sysctl_tcp_frto_response) {
2937 case 2:
e317f6f6 2938 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2939 break;
2940 case 1:
2941 tcp_conservative_spur_to_response(tp);
2942 break;
2943 default:
2944 tcp_ratehalving_spur_to_response(sk);
2945 break;
3ff50b79 2946 }
94d0ea77 2947 tp->frto_counter = 0;
009a2e3e 2948 tp->undo_marker = 0;
912d8f0b 2949 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2950 }
7c9a4a5b 2951 return 0;
1da177e4
LT
2952}
2953
1da177e4
LT
2954/* This routine deals with incoming acks, but not outgoing ones. */
2955static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2956{
6687e988 2957 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2958 struct tcp_sock *tp = tcp_sk(sk);
2959 u32 prior_snd_una = tp->snd_una;
2960 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2961 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2962 u32 prior_in_flight;
2963 s32 seq_rtt;
2964 int prior_packets;
7c9a4a5b 2965 int frto_cwnd = 0;
1da177e4
LT
2966
2967 /* If the ack is newer than sent or older than previous acks
2968 * then we can probably ignore it.
2969 */
2970 if (after(ack, tp->snd_nxt))
2971 goto uninteresting_ack;
2972
2973 if (before(ack, prior_snd_una))
2974 goto old_ack;
2975
2e605294
IJ
2976 if (after(ack, prior_snd_una))
2977 flag |= FLAG_SND_UNA_ADVANCED;
2978
3fdf3f0c
DO
2979 if (sysctl_tcp_abc) {
2980 if (icsk->icsk_ca_state < TCP_CA_CWR)
2981 tp->bytes_acked += ack - prior_snd_una;
2982 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2983 /* we assume just one segment left network */
2984 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2985 }
9772efb9 2986
1da177e4
LT
2987 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2988 /* Window is constant, pure forward advance.
2989 * No more checks are required.
2990 * Note, we use the fact that SND.UNA>=SND.WL2.
2991 */
2992 tcp_update_wl(tp, ack, ack_seq);
2993 tp->snd_una = ack;
1da177e4
LT
2994 flag |= FLAG_WIN_UPDATE;
2995
6687e988 2996 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2997
1da177e4
LT
2998 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2999 } else {
3000 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3001 flag |= FLAG_DATA;
3002 else
3003 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3004
9e412ba7 3005 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
3006
3007 if (TCP_SKB_CB(skb)->sacked)
3008 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3009
aa8223c7 3010 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3011 flag |= FLAG_ECE;
3012
6687e988 3013 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3014 }
3015
3016 /* We passed data and got it acked, remove any soft error
3017 * log. Something worked...
3018 */
3019 sk->sk_err_soft = 0;
3020 tp->rcv_tstamp = tcp_time_stamp;
3021 prior_packets = tp->packets_out;
3022 if (!prior_packets)
3023 goto no_queue;
3024
3025 prior_in_flight = tcp_packets_in_flight(tp);
3026
3027 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3028 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4 3029
3de96471
IJ
3030 /* Guarantee sacktag reordering detection against wrap-arounds */
3031 if (before(tp->frto_highmark, tp->snd_una))
3032 tp->frto_highmark = 0;
1da177e4 3033 if (tp->frto_counter)
2e605294 3034 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3035
6687e988 3036 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3037 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3038 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3039 tcp_may_raise_cwnd(sk, flag))
16751347 3040 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3041 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3042 } else {
7c9a4a5b 3043 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3044 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3045 }
3046
3047 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3048 dst_confirm(sk->sk_dst_cache);
3049
3050 return 1;
3051
3052no_queue:
6687e988 3053 icsk->icsk_probes_out = 0;
1da177e4
LT
3054
3055 /* If this ack opens up a zero window, clear backoff. It was
3056 * being used to time the probes, and is probably far higher than
3057 * it needs to be for normal retransmission.
3058 */
fe067e8a 3059 if (tcp_send_head(sk))
1da177e4
LT
3060 tcp_ack_probe(sk);
3061 return 1;
3062
3063old_ack:
3064 if (TCP_SKB_CB(skb)->sacked)
3065 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3066
3067uninteresting_ack:
3068 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3069 return 0;
3070}
3071
3072
3073/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3074 * But, this can also be called on packets in the established flow when
3075 * the fast version below fails.
3076 */
3077void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3078{
3079 unsigned char *ptr;
aa8223c7 3080 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3081 int length=(th->doff*4)-sizeof(struct tcphdr);
3082
3083 ptr = (unsigned char *)(th + 1);
3084 opt_rx->saw_tstamp = 0;
3085
2de979bd 3086 while (length > 0) {
e905a9ed 3087 int opcode=*ptr++;
1da177e4
LT
3088 int opsize;
3089
3090 switch (opcode) {
3091 case TCPOPT_EOL:
3092 return;
3093 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3094 length--;
3095 continue;
3096 default:
3097 opsize=*ptr++;
3098 if (opsize < 2) /* "silly options" */
3099 return;
3100 if (opsize > length)
3101 return; /* don't parse partial options */
2de979bd 3102 switch (opcode) {
1da177e4 3103 case TCPOPT_MSS:
2de979bd 3104 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3105 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3106 if (in_mss) {
3107 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3108 in_mss = opt_rx->user_mss;
3109 opt_rx->mss_clamp = in_mss;
3110 }
3111 }
3112 break;
3113 case TCPOPT_WINDOW:
2de979bd 3114 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3115 if (sysctl_tcp_window_scaling) {
3116 __u8 snd_wscale = *(__u8 *) ptr;
3117 opt_rx->wscale_ok = 1;
3118 if (snd_wscale > 14) {
2de979bd 3119 if (net_ratelimit())
1da177e4
LT
3120 printk(KERN_INFO "tcp_parse_options: Illegal window "
3121 "scaling value %d >14 received.\n",
3122 snd_wscale);
3123 snd_wscale = 14;
3124 }
3125 opt_rx->snd_wscale = snd_wscale;
3126 }
3127 break;
3128 case TCPOPT_TIMESTAMP:
2de979bd 3129 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3130 if ((estab && opt_rx->tstamp_ok) ||
3131 (!estab && sysctl_tcp_timestamps)) {
3132 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3133 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3134 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3135 }
3136 }
3137 break;
3138 case TCPOPT_SACK_PERM:
2de979bd 3139 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3140 if (sysctl_tcp_sack) {
3141 opt_rx->sack_ok = 1;
3142 tcp_sack_reset(opt_rx);
3143 }
3144 }
3145 break;
3146
3147 case TCPOPT_SACK:
2de979bd 3148 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3149 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3150 opt_rx->sack_ok) {
3151 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3152 }
d7ea5b91 3153 break;
cfb6eeb4
YH
3154#ifdef CONFIG_TCP_MD5SIG
3155 case TCPOPT_MD5SIG:
3156 /*
3157 * The MD5 Hash has already been
3158 * checked (see tcp_v{4,6}_do_rcv()).
3159 */
3160 break;
3161#endif
3ff50b79
SH
3162 }
3163
e905a9ed
YH
3164 ptr+=opsize-2;
3165 length-=opsize;
3ff50b79 3166 }
1da177e4
LT
3167 }
3168}
3169
3170/* Fast parse options. This hopes to only see timestamps.
3171 * If it is wrong it falls back on tcp_parse_options().
3172 */
40efc6fa
SH
3173static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3174 struct tcp_sock *tp)
1da177e4
LT
3175{
3176 if (th->doff == sizeof(struct tcphdr)>>2) {
3177 tp->rx_opt.saw_tstamp = 0;
3178 return 0;
3179 } else if (tp->rx_opt.tstamp_ok &&
3180 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3181 __be32 *ptr = (__be32 *)(th + 1);
3182 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3183 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3184 tp->rx_opt.saw_tstamp = 1;
3185 ++ptr;
3186 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3187 ++ptr;
3188 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3189 return 1;
3190 }
3191 }
3192 tcp_parse_options(skb, &tp->rx_opt, 1);
3193 return 1;
3194}
3195
3196static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3197{
3198 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3199 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3200}
3201
3202static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3203{
3204 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3205 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3206 * extra check below makes sure this can only happen
3207 * for pure ACK frames. -DaveM
3208 *
3209 * Not only, also it occurs for expired timestamps.
3210 */
3211
2de979bd 3212 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3213 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3214 tcp_store_ts_recent(tp);
3215 }
3216}
3217
3218/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3219 *
3220 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3221 * it can pass through stack. So, the following predicate verifies that
3222 * this segment is not used for anything but congestion avoidance or
3223 * fast retransmit. Moreover, we even are able to eliminate most of such
3224 * second order effects, if we apply some small "replay" window (~RTO)
3225 * to timestamp space.
3226 *
3227 * All these measures still do not guarantee that we reject wrapped ACKs
3228 * on networks with high bandwidth, when sequence space is recycled fastly,
3229 * but it guarantees that such events will be very rare and do not affect
3230 * connection seriously. This doesn't look nice, but alas, PAWS is really
3231 * buggy extension.
3232 *
3233 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3234 * states that events when retransmit arrives after original data are rare.
3235 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3236 * the biggest problem on large power networks even with minor reordering.
3237 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3238 * up to bandwidth of 18Gigabit/sec. 8) ]
3239 */
3240
463c84b9 3241static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3242{
463c84b9 3243 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3244 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3245 u32 seq = TCP_SKB_CB(skb)->seq;
3246 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3247
3248 return (/* 1. Pure ACK with correct sequence number. */
3249 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3250
3251 /* 2. ... and duplicate ACK. */
3252 ack == tp->snd_una &&
3253
3254 /* 3. ... and does not update window. */
3255 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3256
3257 /* 4. ... and sits in replay window. */
463c84b9 3258 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3259}
3260
463c84b9 3261static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3262{
463c84b9 3263 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3264 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3265 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3266 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3267}
3268
3269/* Check segment sequence number for validity.
3270 *
3271 * Segment controls are considered valid, if the segment
3272 * fits to the window after truncation to the window. Acceptability
3273 * of data (and SYN, FIN, of course) is checked separately.
3274 * See tcp_data_queue(), for example.
3275 *
3276 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3277 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3278 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3279 * (borrowed from freebsd)
3280 */
3281
3282static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3283{
3284 return !before(end_seq, tp->rcv_wup) &&
3285 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3286}
3287
3288/* When we get a reset we do this. */
3289static void tcp_reset(struct sock *sk)
3290{
3291 /* We want the right error as BSD sees it (and indeed as we do). */
3292 switch (sk->sk_state) {
3293 case TCP_SYN_SENT:
3294 sk->sk_err = ECONNREFUSED;
3295 break;
3296 case TCP_CLOSE_WAIT:
3297 sk->sk_err = EPIPE;
3298 break;
3299 case TCP_CLOSE:
3300 return;
3301 default:
3302 sk->sk_err = ECONNRESET;
3303 }
3304
3305 if (!sock_flag(sk, SOCK_DEAD))
3306 sk->sk_error_report(sk);
3307
3308 tcp_done(sk);
3309}
3310
3311/*
3312 * Process the FIN bit. This now behaves as it is supposed to work
3313 * and the FIN takes effect when it is validly part of sequence
3314 * space. Not before when we get holes.
3315 *
3316 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3317 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3318 * TIME-WAIT)
3319 *
3320 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3321 * close and we go into CLOSING (and later onto TIME-WAIT)
3322 *
3323 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3324 */
3325static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3326{
3327 struct tcp_sock *tp = tcp_sk(sk);
3328
463c84b9 3329 inet_csk_schedule_ack(sk);
1da177e4
LT
3330
3331 sk->sk_shutdown |= RCV_SHUTDOWN;
3332 sock_set_flag(sk, SOCK_DONE);
3333
3334 switch (sk->sk_state) {
3335 case TCP_SYN_RECV:
3336 case TCP_ESTABLISHED:
3337 /* Move to CLOSE_WAIT */
3338 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3339 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3340 break;
3341
3342 case TCP_CLOSE_WAIT:
3343 case TCP_CLOSING:
3344 /* Received a retransmission of the FIN, do
3345 * nothing.
3346 */
3347 break;
3348 case TCP_LAST_ACK:
3349 /* RFC793: Remain in the LAST-ACK state. */
3350 break;
3351
3352 case TCP_FIN_WAIT1:
3353 /* This case occurs when a simultaneous close
3354 * happens, we must ack the received FIN and
3355 * enter the CLOSING state.
3356 */
3357 tcp_send_ack(sk);
3358 tcp_set_state(sk, TCP_CLOSING);
3359 break;
3360 case TCP_FIN_WAIT2:
3361 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3362 tcp_send_ack(sk);
3363 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3364 break;
3365 default:
3366 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3367 * cases we should never reach this piece of code.
3368 */
3369 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3370 __FUNCTION__, sk->sk_state);
3371 break;
3ff50b79 3372 }
1da177e4
LT
3373
3374 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3375 * Probably, we should reset in this case. For now drop them.
3376 */
3377 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3378 if (tcp_is_sack(tp))
1da177e4
LT
3379 tcp_sack_reset(&tp->rx_opt);
3380 sk_stream_mem_reclaim(sk);
3381
3382 if (!sock_flag(sk, SOCK_DEAD)) {
3383 sk->sk_state_change(sk);
3384
3385 /* Do not send POLL_HUP for half duplex close. */
3386 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3387 sk->sk_state == TCP_CLOSE)
3388 sk_wake_async(sk, 1, POLL_HUP);
3389 else
3390 sk_wake_async(sk, 1, POLL_IN);
3391 }
3392}
3393
40efc6fa 3394static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3395{
3396 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3397 if (before(seq, sp->start_seq))
3398 sp->start_seq = seq;
3399 if (after(end_seq, sp->end_seq))
3400 sp->end_seq = end_seq;
3401 return 1;
3402 }
3403 return 0;
3404}
3405
40efc6fa 3406static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3407{
e60402d0 3408 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3409 if (before(seq, tp->rcv_nxt))
3410 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3411 else
3412 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3413
3414 tp->rx_opt.dsack = 1;
3415 tp->duplicate_sack[0].start_seq = seq;
3416 tp->duplicate_sack[0].end_seq = end_seq;
3417 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3418 }
3419}
3420
40efc6fa 3421static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3422{
3423 if (!tp->rx_opt.dsack)
3424 tcp_dsack_set(tp, seq, end_seq);
3425 else
3426 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3427}
3428
3429static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3430{
3431 struct tcp_sock *tp = tcp_sk(sk);
3432
3433 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3434 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3435 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3436 tcp_enter_quickack_mode(sk);
1da177e4 3437
e60402d0 3438 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3439 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3440
3441 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3442 end_seq = tp->rcv_nxt;
3443 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3444 }
3445 }
3446
3447 tcp_send_ack(sk);
3448}
3449
3450/* These routines update the SACK block as out-of-order packets arrive or
3451 * in-order packets close up the sequence space.
3452 */
3453static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3454{
3455 int this_sack;
3456 struct tcp_sack_block *sp = &tp->selective_acks[0];
3457 struct tcp_sack_block *swalk = sp+1;
3458
3459 /* See if the recent change to the first SACK eats into
3460 * or hits the sequence space of other SACK blocks, if so coalesce.
3461 */
3462 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3463 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3464 int i;
3465
3466 /* Zap SWALK, by moving every further SACK up by one slot.
3467 * Decrease num_sacks.
3468 */
3469 tp->rx_opt.num_sacks--;
3470 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3471 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3472 sp[i] = sp[i+1];
3473 continue;
3474 }
3475 this_sack++, swalk++;
3476 }
3477}
3478
40efc6fa 3479static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3480{
3481 __u32 tmp;
3482
3483 tmp = sack1->start_seq;
3484 sack1->start_seq = sack2->start_seq;
3485 sack2->start_seq = tmp;
3486
3487 tmp = sack1->end_seq;
3488 sack1->end_seq = sack2->end_seq;
3489 sack2->end_seq = tmp;
3490}
3491
3492static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3493{
3494 struct tcp_sock *tp = tcp_sk(sk);
3495 struct tcp_sack_block *sp = &tp->selective_acks[0];
3496 int cur_sacks = tp->rx_opt.num_sacks;
3497 int this_sack;
3498
3499 if (!cur_sacks)
3500 goto new_sack;
3501
3502 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3503 if (tcp_sack_extend(sp, seq, end_seq)) {
3504 /* Rotate this_sack to the first one. */
3505 for (; this_sack>0; this_sack--, sp--)
3506 tcp_sack_swap(sp, sp-1);
3507 if (cur_sacks > 1)
3508 tcp_sack_maybe_coalesce(tp);
3509 return;
3510 }
3511 }
3512
3513 /* Could not find an adjacent existing SACK, build a new one,
3514 * put it at the front, and shift everyone else down. We
3515 * always know there is at least one SACK present already here.
3516 *
3517 * If the sack array is full, forget about the last one.
3518 */
3519 if (this_sack >= 4) {
3520 this_sack--;
3521 tp->rx_opt.num_sacks--;
3522 sp--;
3523 }
2de979bd 3524 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3525 *sp = *(sp-1);
3526
3527new_sack:
3528 /* Build the new head SACK, and we're done. */
3529 sp->start_seq = seq;
3530 sp->end_seq = end_seq;
3531 tp->rx_opt.num_sacks++;
3532 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3533}
3534
3535/* RCV.NXT advances, some SACKs should be eaten. */
3536
3537static void tcp_sack_remove(struct tcp_sock *tp)
3538{
3539 struct tcp_sack_block *sp = &tp->selective_acks[0];
3540 int num_sacks = tp->rx_opt.num_sacks;
3541 int this_sack;
3542
3543 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3544 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3545 tp->rx_opt.num_sacks = 0;
3546 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3547 return;
3548 }
3549
2de979bd 3550 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3551 /* Check if the start of the sack is covered by RCV.NXT. */
3552 if (!before(tp->rcv_nxt, sp->start_seq)) {
3553 int i;
3554
3555 /* RCV.NXT must cover all the block! */
3556 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3557
3558 /* Zap this SACK, by moving forward any other SACKS. */
3559 for (i=this_sack+1; i < num_sacks; i++)
3560 tp->selective_acks[i-1] = tp->selective_acks[i];
3561 num_sacks--;
3562 continue;
3563 }
3564 this_sack++;
3565 sp++;
3566 }
3567 if (num_sacks != tp->rx_opt.num_sacks) {
3568 tp->rx_opt.num_sacks = num_sacks;
3569 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3570 }
3571}
3572
3573/* This one checks to see if we can put data from the
3574 * out_of_order queue into the receive_queue.
3575 */
3576static void tcp_ofo_queue(struct sock *sk)
3577{
3578 struct tcp_sock *tp = tcp_sk(sk);
3579 __u32 dsack_high = tp->rcv_nxt;
3580 struct sk_buff *skb;
3581
3582 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3583 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3584 break;
3585
3586 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3587 __u32 dsack = dsack_high;
3588 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3589 dsack_high = TCP_SKB_CB(skb)->end_seq;
3590 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3591 }
3592
3593 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3594 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3595 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3596 __kfree_skb(skb);
3597 continue;
3598 }
3599 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3600 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3601 TCP_SKB_CB(skb)->end_seq);
3602
8728b834 3603 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3604 __skb_queue_tail(&sk->sk_receive_queue, skb);
3605 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3606 if (tcp_hdr(skb)->fin)
3607 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3608 }
3609}
3610
3611static int tcp_prune_queue(struct sock *sk);
3612
3613static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3614{
aa8223c7 3615 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3616 struct tcp_sock *tp = tcp_sk(sk);
3617 int eaten = -1;
3618
3619 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3620 goto drop;
3621
1da177e4
LT
3622 __skb_pull(skb, th->doff*4);
3623
3624 TCP_ECN_accept_cwr(tp, skb);
3625
3626 if (tp->rx_opt.dsack) {
3627 tp->rx_opt.dsack = 0;
3628 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3629 4 - tp->rx_opt.tstamp_ok);
3630 }
3631
3632 /* Queue data for delivery to the user.
3633 * Packets in sequence go to the receive queue.
3634 * Out of sequence packets to the out_of_order_queue.
3635 */
3636 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3637 if (tcp_receive_window(tp) == 0)
3638 goto out_of_window;
3639
3640 /* Ok. In sequence. In window. */
3641 if (tp->ucopy.task == current &&
3642 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3643 sock_owned_by_user(sk) && !tp->urg_data) {
3644 int chunk = min_t(unsigned int, skb->len,
3645 tp->ucopy.len);
3646
3647 __set_current_state(TASK_RUNNING);
3648
3649 local_bh_enable();
3650 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3651 tp->ucopy.len -= chunk;
3652 tp->copied_seq += chunk;
3653 eaten = (chunk == skb->len && !th->fin);
3654 tcp_rcv_space_adjust(sk);
3655 }
3656 local_bh_disable();
3657 }
3658
3659 if (eaten <= 0) {
3660queue_and_out:
3661 if (eaten < 0 &&
3662 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3663 !sk_stream_rmem_schedule(sk, skb))) {
3664 if (tcp_prune_queue(sk) < 0 ||
3665 !sk_stream_rmem_schedule(sk, skb))
3666 goto drop;
3667 }
3668 sk_stream_set_owner_r(skb, sk);
3669 __skb_queue_tail(&sk->sk_receive_queue, skb);
3670 }
3671 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3672 if (skb->len)
9e412ba7 3673 tcp_event_data_recv(sk, skb);
2de979bd 3674 if (th->fin)
1da177e4
LT
3675 tcp_fin(skb, sk, th);
3676
b03efcfb 3677 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3678 tcp_ofo_queue(sk);
3679
3680 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3681 * gap in queue is filled.
3682 */
b03efcfb 3683 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3684 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3685 }
3686
3687 if (tp->rx_opt.num_sacks)
3688 tcp_sack_remove(tp);
3689
9e412ba7 3690 tcp_fast_path_check(sk);
1da177e4
LT
3691
3692 if (eaten > 0)
3693 __kfree_skb(skb);
3694 else if (!sock_flag(sk, SOCK_DEAD))
3695 sk->sk_data_ready(sk, 0);
3696 return;
3697 }
3698
3699 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3700 /* A retransmit, 2nd most common case. Force an immediate ack. */
3701 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3702 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3703
3704out_of_window:
463c84b9
ACM
3705 tcp_enter_quickack_mode(sk);
3706 inet_csk_schedule_ack(sk);
1da177e4
LT
3707drop:
3708 __kfree_skb(skb);
3709 return;
3710 }
3711
3712 /* Out of window. F.e. zero window probe. */
3713 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3714 goto out_of_window;
3715
463c84b9 3716 tcp_enter_quickack_mode(sk);
1da177e4
LT
3717
3718 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3719 /* Partial packet, seq < rcv_next < end_seq */
3720 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3721 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3722 TCP_SKB_CB(skb)->end_seq);
3723
3724 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3725
1da177e4
LT
3726 /* If window is closed, drop tail of packet. But after
3727 * remembering D-SACK for its head made in previous line.
3728 */
3729 if (!tcp_receive_window(tp))
3730 goto out_of_window;
3731 goto queue_and_out;
3732 }
3733
3734 TCP_ECN_check_ce(tp, skb);
3735
3736 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3737 !sk_stream_rmem_schedule(sk, skb)) {
3738 if (tcp_prune_queue(sk) < 0 ||
3739 !sk_stream_rmem_schedule(sk, skb))
3740 goto drop;
3741 }
3742
3743 /* Disable header prediction. */
3744 tp->pred_flags = 0;
463c84b9 3745 inet_csk_schedule_ack(sk);
1da177e4
LT
3746
3747 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3748 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3749
3750 sk_stream_set_owner_r(skb, sk);
3751
3752 if (!skb_peek(&tp->out_of_order_queue)) {
3753 /* Initial out of order segment, build 1 SACK. */
e60402d0 3754 if (tcp_is_sack(tp)) {
1da177e4
LT
3755 tp->rx_opt.num_sacks = 1;
3756 tp->rx_opt.dsack = 0;
3757 tp->rx_opt.eff_sacks = 1;
3758 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3759 tp->selective_acks[0].end_seq =
3760 TCP_SKB_CB(skb)->end_seq;
3761 }
3762 __skb_queue_head(&tp->out_of_order_queue,skb);
3763 } else {
3764 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3765 u32 seq = TCP_SKB_CB(skb)->seq;
3766 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3767
3768 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3769 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3770
3771 if (!tp->rx_opt.num_sacks ||
3772 tp->selective_acks[0].end_seq != seq)
3773 goto add_sack;
3774
3775 /* Common case: data arrive in order after hole. */
3776 tp->selective_acks[0].end_seq = end_seq;
3777 return;
3778 }
3779
3780 /* Find place to insert this segment. */
3781 do {
3782 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3783 break;
3784 } while ((skb1 = skb1->prev) !=
3785 (struct sk_buff*)&tp->out_of_order_queue);
3786
3787 /* Do skb overlap to previous one? */
3788 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3789 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3790 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3791 /* All the bits are present. Drop. */
3792 __kfree_skb(skb);
3793 tcp_dsack_set(tp, seq, end_seq);
3794 goto add_sack;
3795 }
3796 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3797 /* Partial overlap. */
3798 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3799 } else {
3800 skb1 = skb1->prev;
3801 }
3802 }
3803 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3804
1da177e4
LT
3805 /* And clean segments covered by new one as whole. */
3806 while ((skb1 = skb->next) !=
3807 (struct sk_buff*)&tp->out_of_order_queue &&
3808 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3809 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3810 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3811 break;
3812 }
8728b834 3813 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3814 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3815 __kfree_skb(skb1);
3816 }
3817
3818add_sack:
e60402d0 3819 if (tcp_is_sack(tp))
1da177e4
LT
3820 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3821 }
3822}
3823
3824/* Collapse contiguous sequence of skbs head..tail with
3825 * sequence numbers start..end.
3826 * Segments with FIN/SYN are not collapsed (only because this
3827 * simplifies code)
3828 */
3829static void
8728b834
DM
3830tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3831 struct sk_buff *head, struct sk_buff *tail,
3832 u32 start, u32 end)
1da177e4
LT
3833{
3834 struct sk_buff *skb;
3835
caa20d9a 3836 /* First, check that queue is collapsible and find
1da177e4
LT
3837 * the point where collapsing can be useful. */
3838 for (skb = head; skb != tail; ) {
3839 /* No new bits? It is possible on ofo queue. */
3840 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3841 struct sk_buff *next = skb->next;
8728b834 3842 __skb_unlink(skb, list);
1da177e4
LT
3843 __kfree_skb(skb);
3844 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3845 skb = next;
3846 continue;
3847 }
3848
3849 /* The first skb to collapse is:
3850 * - not SYN/FIN and
3851 * - bloated or contains data before "start" or
3852 * overlaps to the next one.
3853 */
aa8223c7 3854 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3855 (tcp_win_from_space(skb->truesize) > skb->len ||
3856 before(TCP_SKB_CB(skb)->seq, start) ||
3857 (skb->next != tail &&
3858 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3859 break;
3860
3861 /* Decided to skip this, advance start seq. */
3862 start = TCP_SKB_CB(skb)->end_seq;
3863 skb = skb->next;
3864 }
aa8223c7 3865 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3866 return;
3867
3868 while (before(start, end)) {
3869 struct sk_buff *nskb;
3870 int header = skb_headroom(skb);
3871 int copy = SKB_MAX_ORDER(header, 0);
3872
3873 /* Too big header? This can happen with IPv6. */
3874 if (copy < 0)
3875 return;
3876 if (end-start < copy)
3877 copy = end-start;
3878 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3879 if (!nskb)
3880 return;
c51957da 3881
98e399f8 3882 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3883 skb_set_network_header(nskb, (skb_network_header(skb) -
3884 skb->head));
3885 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3886 skb->head));
1da177e4
LT
3887 skb_reserve(nskb, header);
3888 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3889 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3890 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3891 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3892 sk_stream_set_owner_r(nskb, sk);
3893
3894 /* Copy data, releasing collapsed skbs. */
3895 while (copy > 0) {
3896 int offset = start - TCP_SKB_CB(skb)->seq;
3897 int size = TCP_SKB_CB(skb)->end_seq - start;
3898
09a62660 3899 BUG_ON(offset < 0);
1da177e4
LT
3900 if (size > 0) {
3901 size = min(copy, size);
3902 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3903 BUG();
3904 TCP_SKB_CB(nskb)->end_seq += size;
3905 copy -= size;
3906 start += size;
3907 }
3908 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3909 struct sk_buff *next = skb->next;
8728b834 3910 __skb_unlink(skb, list);
1da177e4
LT
3911 __kfree_skb(skb);
3912 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3913 skb = next;
aa8223c7
ACM
3914 if (skb == tail ||
3915 tcp_hdr(skb)->syn ||
3916 tcp_hdr(skb)->fin)
1da177e4
LT
3917 return;
3918 }
3919 }
3920 }
3921}
3922
3923/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3924 * and tcp_collapse() them until all the queue is collapsed.
3925 */
3926static void tcp_collapse_ofo_queue(struct sock *sk)
3927{
3928 struct tcp_sock *tp = tcp_sk(sk);
3929 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3930 struct sk_buff *head;
3931 u32 start, end;
3932
3933 if (skb == NULL)
3934 return;
3935
3936 start = TCP_SKB_CB(skb)->seq;
3937 end = TCP_SKB_CB(skb)->end_seq;
3938 head = skb;
3939
3940 for (;;) {
3941 skb = skb->next;
3942
3943 /* Segment is terminated when we see gap or when
3944 * we are at the end of all the queue. */
3945 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3946 after(TCP_SKB_CB(skb)->seq, end) ||
3947 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3948 tcp_collapse(sk, &tp->out_of_order_queue,
3949 head, skb, start, end);
1da177e4
LT
3950 head = skb;
3951 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3952 break;
3953 /* Start new segment */
3954 start = TCP_SKB_CB(skb)->seq;
3955 end = TCP_SKB_CB(skb)->end_seq;
3956 } else {
3957 if (before(TCP_SKB_CB(skb)->seq, start))
3958 start = TCP_SKB_CB(skb)->seq;
3959 if (after(TCP_SKB_CB(skb)->end_seq, end))
3960 end = TCP_SKB_CB(skb)->end_seq;
3961 }
3962 }
3963}
3964
3965/* Reduce allocated memory if we can, trying to get
3966 * the socket within its memory limits again.
3967 *
3968 * Return less than zero if we should start dropping frames
3969 * until the socket owning process reads some of the data
3970 * to stabilize the situation.
3971 */
3972static int tcp_prune_queue(struct sock *sk)
3973{
e905a9ed 3974 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3975
3976 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3977
3978 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3979
3980 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3981 tcp_clamp_window(sk);
1da177e4
LT
3982 else if (tcp_memory_pressure)
3983 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3984
3985 tcp_collapse_ofo_queue(sk);
8728b834
DM
3986 tcp_collapse(sk, &sk->sk_receive_queue,
3987 sk->sk_receive_queue.next,
1da177e4
LT
3988 (struct sk_buff*)&sk->sk_receive_queue,
3989 tp->copied_seq, tp->rcv_nxt);
3990 sk_stream_mem_reclaim(sk);
3991
3992 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3993 return 0;
3994
3995 /* Collapsing did not help, destructive actions follow.
3996 * This must not ever occur. */
3997
3998 /* First, purge the out_of_order queue. */
b03efcfb
DM
3999 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4000 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
4001 __skb_queue_purge(&tp->out_of_order_queue);
4002
4003 /* Reset SACK state. A conforming SACK implementation will
4004 * do the same at a timeout based retransmit. When a connection
4005 * is in a sad state like this, we care only about integrity
4006 * of the connection not performance.
4007 */
e60402d0 4008 if (tcp_is_sack(tp))
1da177e4
LT
4009 tcp_sack_reset(&tp->rx_opt);
4010 sk_stream_mem_reclaim(sk);
4011 }
4012
4013 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4014 return 0;
4015
4016 /* If we are really being abused, tell the caller to silently
4017 * drop receive data on the floor. It will get retransmitted
4018 * and hopefully then we'll have sufficient space.
4019 */
4020 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4021
4022 /* Massive buffer overcommit. */
4023 tp->pred_flags = 0;
4024 return -1;
4025}
4026
4027
4028/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4029 * As additional protections, we do not touch cwnd in retransmission phases,
4030 * and if application hit its sndbuf limit recently.
4031 */
4032void tcp_cwnd_application_limited(struct sock *sk)
4033{
4034 struct tcp_sock *tp = tcp_sk(sk);
4035
6687e988 4036 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4037 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4038 /* Limited by application or receiver window. */
d254bcdb
IJ
4039 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4040 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4041 if (win_used < tp->snd_cwnd) {
6687e988 4042 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4043 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4044 }
4045 tp->snd_cwnd_used = 0;
4046 }
4047 tp->snd_cwnd_stamp = tcp_time_stamp;
4048}
4049
9e412ba7 4050static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4051{
9e412ba7
IJ
4052 struct tcp_sock *tp = tcp_sk(sk);
4053
0d9901df
DM
4054 /* If the user specified a specific send buffer setting, do
4055 * not modify it.
4056 */
4057 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4058 return 0;
4059
4060 /* If we are under global TCP memory pressure, do not expand. */
4061 if (tcp_memory_pressure)
4062 return 0;
4063
4064 /* If we are under soft global TCP memory pressure, do not expand. */
4065 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4066 return 0;
4067
4068 /* If we filled the congestion window, do not expand. */
4069 if (tp->packets_out >= tp->snd_cwnd)
4070 return 0;
4071
4072 return 1;
4073}
1da177e4
LT
4074
4075/* When incoming ACK allowed to free some skb from write_queue,
4076 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4077 * on the exit from tcp input handler.
4078 *
4079 * PROBLEM: sndbuf expansion does not work well with largesend.
4080 */
4081static void tcp_new_space(struct sock *sk)
4082{
4083 struct tcp_sock *tp = tcp_sk(sk);
4084
9e412ba7 4085 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4086 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4087 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4088 demanded = max_t(unsigned int, tp->snd_cwnd,
4089 tp->reordering + 1);
4090 sndmem *= 2*demanded;
4091 if (sndmem > sk->sk_sndbuf)
4092 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4093 tp->snd_cwnd_stamp = tcp_time_stamp;
4094 }
4095
4096 sk->sk_write_space(sk);
4097}
4098
40efc6fa 4099static void tcp_check_space(struct sock *sk)
1da177e4
LT
4100{
4101 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4102 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4103 if (sk->sk_socket &&
4104 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4105 tcp_new_space(sk);
4106 }
4107}
4108
9e412ba7 4109static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4110{
9e412ba7 4111 tcp_push_pending_frames(sk);
1da177e4
LT
4112 tcp_check_space(sk);
4113}
4114
4115/*
4116 * Check if sending an ack is needed.
4117 */
4118static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4119{
4120 struct tcp_sock *tp = tcp_sk(sk);
4121
4122 /* More than one full frame received... */
463c84b9 4123 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4124 /* ... and right edge of window advances far enough.
4125 * (tcp_recvmsg() will send ACK otherwise). Or...
4126 */
4127 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4128 /* We ACK each frame or... */
463c84b9 4129 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4130 /* We have out of order data. */
4131 (ofo_possible &&
4132 skb_peek(&tp->out_of_order_queue))) {
4133 /* Then ack it now */
4134 tcp_send_ack(sk);
4135 } else {
4136 /* Else, send delayed ack. */
4137 tcp_send_delayed_ack(sk);
4138 }
4139}
4140
40efc6fa 4141static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4142{
463c84b9 4143 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4144 /* We sent a data segment already. */
4145 return;
4146 }
4147 __tcp_ack_snd_check(sk, 1);
4148}
4149
4150/*
4151 * This routine is only called when we have urgent data
caa20d9a 4152 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4153 * moved inline now as tcp_urg is only called from one
4154 * place. We handle URGent data wrong. We have to - as
4155 * BSD still doesn't use the correction from RFC961.
4156 * For 1003.1g we should support a new option TCP_STDURG to permit
4157 * either form (or just set the sysctl tcp_stdurg).
4158 */
e905a9ed 4159
1da177e4
LT
4160static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4161{
4162 struct tcp_sock *tp = tcp_sk(sk);
4163 u32 ptr = ntohs(th->urg_ptr);
4164
4165 if (ptr && !sysctl_tcp_stdurg)
4166 ptr--;
4167 ptr += ntohl(th->seq);
4168
4169 /* Ignore urgent data that we've already seen and read. */
4170 if (after(tp->copied_seq, ptr))
4171 return;
4172
4173 /* Do not replay urg ptr.
4174 *
4175 * NOTE: interesting situation not covered by specs.
4176 * Misbehaving sender may send urg ptr, pointing to segment,
4177 * which we already have in ofo queue. We are not able to fetch
4178 * such data and will stay in TCP_URG_NOTYET until will be eaten
4179 * by recvmsg(). Seems, we are not obliged to handle such wicked
4180 * situations. But it is worth to think about possibility of some
4181 * DoSes using some hypothetical application level deadlock.
4182 */
4183 if (before(ptr, tp->rcv_nxt))
4184 return;
4185
4186 /* Do we already have a newer (or duplicate) urgent pointer? */
4187 if (tp->urg_data && !after(ptr, tp->urg_seq))
4188 return;
4189
4190 /* Tell the world about our new urgent pointer. */
4191 sk_send_sigurg(sk);
4192
4193 /* We may be adding urgent data when the last byte read was
4194 * urgent. To do this requires some care. We cannot just ignore
4195 * tp->copied_seq since we would read the last urgent byte again
4196 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4197 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4198 *
4199 * NOTE. Double Dutch. Rendering to plain English: author of comment
4200 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4201 * and expect that both A and B disappear from stream. This is _wrong_.
4202 * Though this happens in BSD with high probability, this is occasional.
4203 * Any application relying on this is buggy. Note also, that fix "works"
4204 * only in this artificial test. Insert some normal data between A and B and we will
4205 * decline of BSD again. Verdict: it is better to remove to trap
4206 * buggy users.
4207 */
4208 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4209 !sock_flag(sk, SOCK_URGINLINE) &&
4210 tp->copied_seq != tp->rcv_nxt) {
4211 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4212 tp->copied_seq++;
4213 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4214 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4215 __kfree_skb(skb);
4216 }
4217 }
4218
4219 tp->urg_data = TCP_URG_NOTYET;
4220 tp->urg_seq = ptr;
4221
4222 /* Disable header prediction. */
4223 tp->pred_flags = 0;
4224}
4225
4226/* This is the 'fast' part of urgent handling. */
4227static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4228{
4229 struct tcp_sock *tp = tcp_sk(sk);
4230
4231 /* Check if we get a new urgent pointer - normally not. */
4232 if (th->urg)
4233 tcp_check_urg(sk,th);
4234
4235 /* Do we wait for any urgent data? - normally not... */
4236 if (tp->urg_data == TCP_URG_NOTYET) {
4237 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4238 th->syn;
4239
e905a9ed 4240 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4241 if (ptr < skb->len) {
4242 u8 tmp;
4243 if (skb_copy_bits(skb, ptr, &tmp, 1))
4244 BUG();
4245 tp->urg_data = TCP_URG_VALID | tmp;
4246 if (!sock_flag(sk, SOCK_DEAD))
4247 sk->sk_data_ready(sk, 0);
4248 }
4249 }
4250}
4251
4252static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4253{
4254 struct tcp_sock *tp = tcp_sk(sk);
4255 int chunk = skb->len - hlen;
4256 int err;
4257
4258 local_bh_enable();
60476372 4259 if (skb_csum_unnecessary(skb))
1da177e4
LT
4260 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4261 else
4262 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4263 tp->ucopy.iov);
4264
4265 if (!err) {
4266 tp->ucopy.len -= chunk;
4267 tp->copied_seq += chunk;
4268 tcp_rcv_space_adjust(sk);
4269 }
4270
4271 local_bh_disable();
4272 return err;
4273}
4274
b51655b9 4275static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4276{
b51655b9 4277 __sum16 result;
1da177e4
LT
4278
4279 if (sock_owned_by_user(sk)) {
4280 local_bh_enable();
4281 result = __tcp_checksum_complete(skb);
4282 local_bh_disable();
4283 } else {
4284 result = __tcp_checksum_complete(skb);
4285 }
4286 return result;
4287}
4288
40efc6fa 4289static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4290{
60476372 4291 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4292 __tcp_checksum_complete_user(sk, skb);
4293}
4294
1a2449a8
CL
4295#ifdef CONFIG_NET_DMA
4296static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4297{
4298 struct tcp_sock *tp = tcp_sk(sk);
4299 int chunk = skb->len - hlen;
4300 int dma_cookie;
4301 int copied_early = 0;
4302
4303 if (tp->ucopy.wakeup)
e905a9ed 4304 return 0;
1a2449a8
CL
4305
4306 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4307 tp->ucopy.dma_chan = get_softnet_dma();
4308
60476372 4309 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4310
4311 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4312 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4313
4314 if (dma_cookie < 0)
4315 goto out;
4316
4317 tp->ucopy.dma_cookie = dma_cookie;
4318 copied_early = 1;
4319
4320 tp->ucopy.len -= chunk;
4321 tp->copied_seq += chunk;
4322 tcp_rcv_space_adjust(sk);
4323
4324 if ((tp->ucopy.len == 0) ||
aa8223c7 4325 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4326 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4327 tp->ucopy.wakeup = 1;
4328 sk->sk_data_ready(sk, 0);
4329 }
4330 } else if (chunk > 0) {
4331 tp->ucopy.wakeup = 1;
4332 sk->sk_data_ready(sk, 0);
4333 }
4334out:
4335 return copied_early;
4336}
4337#endif /* CONFIG_NET_DMA */
4338
1da177e4 4339/*
e905a9ed 4340 * TCP receive function for the ESTABLISHED state.
1da177e4 4341 *
e905a9ed 4342 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4343 * disabled when:
4344 * - A zero window was announced from us - zero window probing
e905a9ed 4345 * is only handled properly in the slow path.
1da177e4
LT
4346 * - Out of order segments arrived.
4347 * - Urgent data is expected.
4348 * - There is no buffer space left
4349 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4350 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4351 * - Data is sent in both directions. Fast path only supports pure senders
4352 * or pure receivers (this means either the sequence number or the ack
4353 * value must stay constant)
4354 * - Unexpected TCP option.
4355 *
e905a9ed 4356 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4357 * receive procedure patterned after RFC793 to handle all cases.
4358 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4359 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4360 * tcp_data_queue when everything is OK.
4361 */
4362int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4363 struct tcphdr *th, unsigned len)
4364{
4365 struct tcp_sock *tp = tcp_sk(sk);
4366
4367 /*
4368 * Header prediction.
e905a9ed 4369 * The code loosely follows the one in the famous
1da177e4 4370 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4371 *
4372 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4373 * on a device interrupt, to call tcp_recv function
4374 * on the receive process context and checksum and copy
4375 * the buffer to user space. smart...
4376 *
e905a9ed 4377 * Our current scheme is not silly either but we take the
1da177e4
LT
4378 * extra cost of the net_bh soft interrupt processing...
4379 * We do checksum and copy also but from device to kernel.
4380 */
4381
4382 tp->rx_opt.saw_tstamp = 0;
4383
4384 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4385 * if header_prediction is to be made
1da177e4
LT
4386 * 'S' will always be tp->tcp_header_len >> 2
4387 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4388 * turn it off (when there are holes in the receive
1da177e4
LT
4389 * space for instance)
4390 * PSH flag is ignored.
4391 */
4392
4393 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4394 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4395 int tcp_header_len = tp->tcp_header_len;
4396
4397 /* Timestamp header prediction: tcp_header_len
4398 * is automatically equal to th->doff*4 due to pred_flags
4399 * match.
4400 */
4401
4402 /* Check timestamp */
4403 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4404 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4405
4406 /* No? Slow path! */
4f3608b7 4407 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4408 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4409 goto slow_path;
4410
4411 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4412 ++ptr;
1da177e4
LT
4413 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4414 ++ptr;
4415 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4416
4417 /* If PAWS failed, check it more carefully in slow path */
4418 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4419 goto slow_path;
4420
4421 /* DO NOT update ts_recent here, if checksum fails
4422 * and timestamp was corrupted part, it will result
4423 * in a hung connection since we will drop all
4424 * future packets due to the PAWS test.
4425 */
4426 }
4427
4428 if (len <= tcp_header_len) {
4429 /* Bulk data transfer: sender */
4430 if (len == tcp_header_len) {
4431 /* Predicted packet is in window by definition.
4432 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4433 * Hence, check seq<=rcv_wup reduces to:
4434 */
4435 if (tcp_header_len ==
4436 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4437 tp->rcv_nxt == tp->rcv_wup)
4438 tcp_store_ts_recent(tp);
4439
1da177e4
LT
4440 /* We know that such packets are checksummed
4441 * on entry.
4442 */
4443 tcp_ack(sk, skb, 0);
e905a9ed 4444 __kfree_skb(skb);
9e412ba7 4445 tcp_data_snd_check(sk);
1da177e4
LT
4446 return 0;
4447 } else { /* Header too small */
4448 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4449 goto discard;
4450 }
4451 } else {
4452 int eaten = 0;
1a2449a8 4453 int copied_early = 0;
1da177e4 4454
1a2449a8
CL
4455 if (tp->copied_seq == tp->rcv_nxt &&
4456 len - tcp_header_len <= tp->ucopy.len) {
4457#ifdef CONFIG_NET_DMA
4458 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4459 copied_early = 1;
4460 eaten = 1;
4461 }
4462#endif
4463 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4464 __set_current_state(TASK_RUNNING);
1da177e4 4465
1a2449a8
CL
4466 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4467 eaten = 1;
4468 }
4469 if (eaten) {
1da177e4
LT
4470 /* Predicted packet is in window by definition.
4471 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4472 * Hence, check seq<=rcv_wup reduces to:
4473 */
4474 if (tcp_header_len ==
4475 (sizeof(struct tcphdr) +
4476 TCPOLEN_TSTAMP_ALIGNED) &&
4477 tp->rcv_nxt == tp->rcv_wup)
4478 tcp_store_ts_recent(tp);
4479
463c84b9 4480 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4481
4482 __skb_pull(skb, tcp_header_len);
4483 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4484 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4485 }
1a2449a8
CL
4486 if (copied_early)
4487 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4488 }
4489 if (!eaten) {
4490 if (tcp_checksum_complete_user(sk, skb))
4491 goto csum_error;
4492
4493 /* Predicted packet is in window by definition.
4494 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4495 * Hence, check seq<=rcv_wup reduces to:
4496 */
4497 if (tcp_header_len ==
4498 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4499 tp->rcv_nxt == tp->rcv_wup)
4500 tcp_store_ts_recent(tp);
4501
463c84b9 4502 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4503
4504 if ((int)skb->truesize > sk->sk_forward_alloc)
4505 goto step5;
4506
4507 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4508
4509 /* Bulk data transfer: receiver */
4510 __skb_pull(skb,tcp_header_len);
4511 __skb_queue_tail(&sk->sk_receive_queue, skb);
4512 sk_stream_set_owner_r(skb, sk);
4513 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4514 }
4515
9e412ba7 4516 tcp_event_data_recv(sk, skb);
1da177e4
LT
4517
4518 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4519 /* Well, only one small jumplet in fast path... */
4520 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4521 tcp_data_snd_check(sk);
463c84b9 4522 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4523 goto no_ack;
4524 }
4525
31432412 4526 __tcp_ack_snd_check(sk, 0);
1da177e4 4527no_ack:
1a2449a8
CL
4528#ifdef CONFIG_NET_DMA
4529 if (copied_early)
4530 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4531 else
4532#endif
1da177e4
LT
4533 if (eaten)
4534 __kfree_skb(skb);
4535 else
4536 sk->sk_data_ready(sk, 0);
4537 return 0;
4538 }
4539 }
4540
4541slow_path:
4542 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4543 goto csum_error;
4544
4545 /*
4546 * RFC1323: H1. Apply PAWS check first.
4547 */
4548 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4549 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4550 if (!th->rst) {
4551 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4552 tcp_send_dupack(sk, skb);
4553 goto discard;
4554 }
4555 /* Resets are accepted even if PAWS failed.
4556
4557 ts_recent update must be made after we are sure
4558 that the packet is in window.
4559 */
4560 }
4561
4562 /*
4563 * Standard slow path.
4564 */
4565
4566 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4567 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4568 * (RST) segments are validated by checking their SEQ-fields."
4569 * And page 69: "If an incoming segment is not acceptable,
4570 * an acknowledgment should be sent in reply (unless the RST bit
4571 * is set, if so drop the segment and return)".
4572 */
4573 if (!th->rst)
4574 tcp_send_dupack(sk, skb);
4575 goto discard;
4576 }
4577
2de979bd 4578 if (th->rst) {
1da177e4
LT
4579 tcp_reset(sk);
4580 goto discard;
4581 }
4582
4583 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4584
4585 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4586 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4587 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4588 tcp_reset(sk);
4589 return 1;
4590 }
4591
4592step5:
2de979bd 4593 if (th->ack)
1da177e4
LT
4594 tcp_ack(sk, skb, FLAG_SLOWPATH);
4595
463c84b9 4596 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4597
4598 /* Process urgent data. */
4599 tcp_urg(sk, skb, th);
4600
4601 /* step 7: process the segment text */
4602 tcp_data_queue(sk, skb);
4603
9e412ba7 4604 tcp_data_snd_check(sk);
1da177e4
LT
4605 tcp_ack_snd_check(sk);
4606 return 0;
4607
4608csum_error:
4609 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4610
4611discard:
4612 __kfree_skb(skb);
4613 return 0;
4614}
4615
4616static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4617 struct tcphdr *th, unsigned len)
4618{
4619 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4620 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4621 int saved_clamp = tp->rx_opt.mss_clamp;
4622
4623 tcp_parse_options(skb, &tp->rx_opt, 0);
4624
4625 if (th->ack) {
4626 /* rfc793:
4627 * "If the state is SYN-SENT then
4628 * first check the ACK bit
4629 * If the ACK bit is set
4630 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4631 * a reset (unless the RST bit is set, if so drop
4632 * the segment and return)"
4633 *
4634 * We do not send data with SYN, so that RFC-correct
4635 * test reduces to:
4636 */
4637 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4638 goto reset_and_undo;
4639
4640 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4641 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4642 tcp_time_stamp)) {
4643 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4644 goto reset_and_undo;
4645 }
4646
4647 /* Now ACK is acceptable.
4648 *
4649 * "If the RST bit is set
4650 * If the ACK was acceptable then signal the user "error:
4651 * connection reset", drop the segment, enter CLOSED state,
4652 * delete TCB, and return."
4653 */
4654
4655 if (th->rst) {
4656 tcp_reset(sk);
4657 goto discard;
4658 }
4659
4660 /* rfc793:
4661 * "fifth, if neither of the SYN or RST bits is set then
4662 * drop the segment and return."
4663 *
4664 * See note below!
4665 * --ANK(990513)
4666 */
4667 if (!th->syn)
4668 goto discard_and_undo;
4669
4670 /* rfc793:
4671 * "If the SYN bit is on ...
4672 * are acceptable then ...
4673 * (our SYN has been ACKed), change the connection
4674 * state to ESTABLISHED..."
4675 */
4676
4677 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4678
4679 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4680 tcp_ack(sk, skb, FLAG_SLOWPATH);
4681
4682 /* Ok.. it's good. Set up sequence numbers and
4683 * move to established.
4684 */
4685 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4686 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4687
4688 /* RFC1323: The window in SYN & SYN/ACK segments is
4689 * never scaled.
4690 */
4691 tp->snd_wnd = ntohs(th->window);
4692 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4693
4694 if (!tp->rx_opt.wscale_ok) {
4695 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4696 tp->window_clamp = min(tp->window_clamp, 65535U);
4697 }
4698
4699 if (tp->rx_opt.saw_tstamp) {
4700 tp->rx_opt.tstamp_ok = 1;
4701 tp->tcp_header_len =
4702 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4703 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4704 tcp_store_ts_recent(tp);
4705 } else {
4706 tp->tcp_header_len = sizeof(struct tcphdr);
4707 }
4708
e60402d0
IJ
4709 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4710 tcp_enable_fack(tp);
1da177e4 4711
5d424d5a 4712 tcp_mtup_init(sk);
d83d8461 4713 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4714 tcp_initialize_rcv_mss(sk);
4715
4716 /* Remember, tcp_poll() does not lock socket!
4717 * Change state from SYN-SENT only after copied_seq
4718 * is initialized. */
4719 tp->copied_seq = tp->rcv_nxt;
e16aa207 4720 smp_mb();
1da177e4
LT
4721 tcp_set_state(sk, TCP_ESTABLISHED);
4722
6b877699
VY
4723 security_inet_conn_established(sk, skb);
4724
1da177e4 4725 /* Make sure socket is routed, for correct metrics. */
8292a17a 4726 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4727
4728 tcp_init_metrics(sk);
4729
6687e988 4730 tcp_init_congestion_control(sk);
317a76f9 4731
1da177e4
LT
4732 /* Prevent spurious tcp_cwnd_restart() on first data
4733 * packet.
4734 */
4735 tp->lsndtime = tcp_time_stamp;
4736
4737 tcp_init_buffer_space(sk);
4738
4739 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4740 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4741
4742 if (!tp->rx_opt.snd_wscale)
4743 __tcp_fast_path_on(tp, tp->snd_wnd);
4744 else
4745 tp->pred_flags = 0;
4746
4747 if (!sock_flag(sk, SOCK_DEAD)) {
4748 sk->sk_state_change(sk);
4749 sk_wake_async(sk, 0, POLL_OUT);
4750 }
4751
295f7324
ACM
4752 if (sk->sk_write_pending ||
4753 icsk->icsk_accept_queue.rskq_defer_accept ||
4754 icsk->icsk_ack.pingpong) {
1da177e4
LT
4755 /* Save one ACK. Data will be ready after
4756 * several ticks, if write_pending is set.
4757 *
4758 * It may be deleted, but with this feature tcpdumps
4759 * look so _wonderfully_ clever, that I was not able
4760 * to stand against the temptation 8) --ANK
4761 */
463c84b9 4762 inet_csk_schedule_ack(sk);
295f7324
ACM
4763 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4764 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4765 tcp_incr_quickack(sk);
4766 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4767 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4768 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4769
4770discard:
4771 __kfree_skb(skb);
4772 return 0;
4773 } else {
4774 tcp_send_ack(sk);
4775 }
4776 return -1;
4777 }
4778
4779 /* No ACK in the segment */
4780
4781 if (th->rst) {
4782 /* rfc793:
4783 * "If the RST bit is set
4784 *
4785 * Otherwise (no ACK) drop the segment and return."
4786 */
4787
4788 goto discard_and_undo;
4789 }
4790
4791 /* PAWS check. */
4792 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4793 goto discard_and_undo;
4794
4795 if (th->syn) {
4796 /* We see SYN without ACK. It is attempt of
4797 * simultaneous connect with crossed SYNs.
4798 * Particularly, it can be connect to self.
4799 */
4800 tcp_set_state(sk, TCP_SYN_RECV);
4801
4802 if (tp->rx_opt.saw_tstamp) {
4803 tp->rx_opt.tstamp_ok = 1;
4804 tcp_store_ts_recent(tp);
4805 tp->tcp_header_len =
4806 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4807 } else {
4808 tp->tcp_header_len = sizeof(struct tcphdr);
4809 }
4810
4811 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4812 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4813
4814 /* RFC1323: The window in SYN & SYN/ACK segments is
4815 * never scaled.
4816 */
4817 tp->snd_wnd = ntohs(th->window);
4818 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4819 tp->max_window = tp->snd_wnd;
4820
4821 TCP_ECN_rcv_syn(tp, th);
1da177e4 4822
5d424d5a 4823 tcp_mtup_init(sk);
d83d8461 4824 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4825 tcp_initialize_rcv_mss(sk);
4826
4827
4828 tcp_send_synack(sk);
4829#if 0
4830 /* Note, we could accept data and URG from this segment.
4831 * There are no obstacles to make this.
4832 *
4833 * However, if we ignore data in ACKless segments sometimes,
4834 * we have no reasons to accept it sometimes.
4835 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4836 * is not flawless. So, discard packet for sanity.
4837 * Uncomment this return to process the data.
4838 */
4839 return -1;
4840#else
4841 goto discard;
4842#endif
4843 }
4844 /* "fifth, if neither of the SYN or RST bits is set then
4845 * drop the segment and return."
4846 */
4847
4848discard_and_undo:
4849 tcp_clear_options(&tp->rx_opt);
4850 tp->rx_opt.mss_clamp = saved_clamp;
4851 goto discard;
4852
4853reset_and_undo:
4854 tcp_clear_options(&tp->rx_opt);
4855 tp->rx_opt.mss_clamp = saved_clamp;
4856 return 1;
4857}
4858
4859
4860/*
4861 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4862 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4863 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4864 * address independent.
4865 */
e905a9ed 4866
1da177e4
LT
4867int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4868 struct tcphdr *th, unsigned len)
4869{
4870 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4871 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4872 int queued = 0;
4873
4874 tp->rx_opt.saw_tstamp = 0;
4875
4876 switch (sk->sk_state) {
4877 case TCP_CLOSE:
4878 goto discard;
4879
4880 case TCP_LISTEN:
2de979bd 4881 if (th->ack)
1da177e4
LT
4882 return 1;
4883
2de979bd 4884 if (th->rst)
1da177e4
LT
4885 goto discard;
4886
2de979bd 4887 if (th->syn) {
8292a17a 4888 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4889 return 1;
4890
e905a9ed
YH
4891 /* Now we have several options: In theory there is
4892 * nothing else in the frame. KA9Q has an option to
1da177e4 4893 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4894 * syn up to the [to be] advertised window and
4895 * Solaris 2.1 gives you a protocol error. For now
4896 * we just ignore it, that fits the spec precisely
1da177e4
LT
4897 * and avoids incompatibilities. It would be nice in
4898 * future to drop through and process the data.
4899 *
e905a9ed 4900 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4901 * queue this data.
4902 * But, this leaves one open to an easy denial of
e905a9ed 4903 * service attack, and SYN cookies can't defend
1da177e4 4904 * against this problem. So, we drop the data
fb7e2399
MN
4905 * in the interest of security over speed unless
4906 * it's still in use.
1da177e4 4907 */
fb7e2399
MN
4908 kfree_skb(skb);
4909 return 0;
1da177e4
LT
4910 }
4911 goto discard;
4912
4913 case TCP_SYN_SENT:
1da177e4
LT
4914 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4915 if (queued >= 0)
4916 return queued;
4917
4918 /* Do step6 onward by hand. */
4919 tcp_urg(sk, skb, th);
4920 __kfree_skb(skb);
9e412ba7 4921 tcp_data_snd_check(sk);
1da177e4
LT
4922 return 0;
4923 }
4924
4925 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4926 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4927 if (!th->rst) {
4928 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4929 tcp_send_dupack(sk, skb);
4930 goto discard;
4931 }
4932 /* Reset is accepted even if it did not pass PAWS. */
4933 }
4934
4935 /* step 1: check sequence number */
4936 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4937 if (!th->rst)
4938 tcp_send_dupack(sk, skb);
4939 goto discard;
4940 }
4941
4942 /* step 2: check RST bit */
2de979bd 4943 if (th->rst) {
1da177e4
LT
4944 tcp_reset(sk);
4945 goto discard;
4946 }
4947
4948 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4949
4950 /* step 3: check security and precedence [ignored] */
4951
4952 /* step 4:
4953 *
4954 * Check for a SYN in window.
4955 */
4956 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4957 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4958 tcp_reset(sk);
4959 return 1;
4960 }
4961
4962 /* step 5: check the ACK field */
4963 if (th->ack) {
4964 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4965
2de979bd 4966 switch (sk->sk_state) {
1da177e4
LT
4967 case TCP_SYN_RECV:
4968 if (acceptable) {
4969 tp->copied_seq = tp->rcv_nxt;
e16aa207 4970 smp_mb();
1da177e4
LT
4971 tcp_set_state(sk, TCP_ESTABLISHED);
4972 sk->sk_state_change(sk);
4973
4974 /* Note, that this wakeup is only for marginal
4975 * crossed SYN case. Passively open sockets
4976 * are not waked up, because sk->sk_sleep ==
4977 * NULL and sk->sk_socket == NULL.
4978 */
4979 if (sk->sk_socket) {
4980 sk_wake_async(sk,0,POLL_OUT);
4981 }
4982
4983 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4984 tp->snd_wnd = ntohs(th->window) <<
4985 tp->rx_opt.snd_wscale;
4986 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4987 TCP_SKB_CB(skb)->seq);
4988
4989 /* tcp_ack considers this ACK as duplicate
4990 * and does not calculate rtt.
4991 * Fix it at least with timestamps.
4992 */
4993 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4994 !tp->srtt)
2d2abbab 4995 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4996
4997 if (tp->rx_opt.tstamp_ok)
4998 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4999
5000 /* Make sure socket is routed, for
5001 * correct metrics.
5002 */
8292a17a 5003 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
5004
5005 tcp_init_metrics(sk);
5006
6687e988 5007 tcp_init_congestion_control(sk);
317a76f9 5008
1da177e4
LT
5009 /* Prevent spurious tcp_cwnd_restart() on
5010 * first data packet.
5011 */
5012 tp->lsndtime = tcp_time_stamp;
5013
5d424d5a 5014 tcp_mtup_init(sk);
1da177e4
LT
5015 tcp_initialize_rcv_mss(sk);
5016 tcp_init_buffer_space(sk);
5017 tcp_fast_path_on(tp);
5018 } else {
5019 return 1;
5020 }
5021 break;
5022
5023 case TCP_FIN_WAIT1:
5024 if (tp->snd_una == tp->write_seq) {
5025 tcp_set_state(sk, TCP_FIN_WAIT2);
5026 sk->sk_shutdown |= SEND_SHUTDOWN;
5027 dst_confirm(sk->sk_dst_cache);
5028
5029 if (!sock_flag(sk, SOCK_DEAD))
5030 /* Wake up lingering close() */
5031 sk->sk_state_change(sk);
5032 else {
5033 int tmo;
5034
5035 if (tp->linger2 < 0 ||
5036 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5037 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5038 tcp_done(sk);
5039 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5040 return 1;
5041 }
5042
463c84b9 5043 tmo = tcp_fin_time(sk);
1da177e4 5044 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5045 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5046 } else if (th->fin || sock_owned_by_user(sk)) {
5047 /* Bad case. We could lose such FIN otherwise.
5048 * It is not a big problem, but it looks confusing
5049 * and not so rare event. We still can lose it now,
5050 * if it spins in bh_lock_sock(), but it is really
5051 * marginal case.
5052 */
463c84b9 5053 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5054 } else {
5055 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5056 goto discard;
5057 }
5058 }
5059 }
5060 break;
5061
5062 case TCP_CLOSING:
5063 if (tp->snd_una == tp->write_seq) {
5064 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5065 goto discard;
5066 }
5067 break;
5068
5069 case TCP_LAST_ACK:
5070 if (tp->snd_una == tp->write_seq) {
5071 tcp_update_metrics(sk);
5072 tcp_done(sk);
5073 goto discard;
5074 }
5075 break;
5076 }
5077 } else
5078 goto discard;
5079
5080 /* step 6: check the URG bit */
5081 tcp_urg(sk, skb, th);
5082
5083 /* step 7: process the segment text */
5084 switch (sk->sk_state) {
5085 case TCP_CLOSE_WAIT:
5086 case TCP_CLOSING:
5087 case TCP_LAST_ACK:
5088 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5089 break;
5090 case TCP_FIN_WAIT1:
5091 case TCP_FIN_WAIT2:
5092 /* RFC 793 says to queue data in these states,
e905a9ed 5093 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5094 * BSD 4.4 also does reset.
5095 */
5096 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5097 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5098 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5099 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5100 tcp_reset(sk);
5101 return 1;
5102 }
5103 }
5104 /* Fall through */
e905a9ed 5105 case TCP_ESTABLISHED:
1da177e4
LT
5106 tcp_data_queue(sk, skb);
5107 queued = 1;
5108 break;
5109 }
5110
5111 /* tcp_data could move socket to TIME-WAIT */
5112 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5113 tcp_data_snd_check(sk);
1da177e4
LT
5114 tcp_ack_snd_check(sk);
5115 }
5116
e905a9ed 5117 if (!queued) {
1da177e4
LT
5118discard:
5119 __kfree_skb(skb);
5120 }
5121 return 0;
5122}
5123
5124EXPORT_SYMBOL(sysctl_tcp_ecn);
5125EXPORT_SYMBOL(sysctl_tcp_reordering);
5126EXPORT_SYMBOL(tcp_parse_options);
5127EXPORT_SYMBOL(tcp_rcv_established);
5128EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5129EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 1.158235 seconds and 4 git commands to generate.