]> Git Repo - linux.git/blame - fs/btrfs/extent_io.c
Btrfs: replace tree->mapping with tree->private_data
[linux.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
de0022b9 113 unsigned long bio_flags;
771ed689
CM
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
ffbd517d
CM
118 unsigned int extent_locked:1;
119
70fd7614 120 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 121 unsigned int sync_io:1;
d1310b2e
CM
122};
123
d38ed27f
QW
124static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127{
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
fefdc557
QW
134 if (!set && (state->state & bits) == 0)
135 return;
d38ed27f 136 changeset->bytes_changed += state->end - state->start + 1;
53d32359 137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141}
142
0b32f4bb 143static noinline void flush_write_bio(void *data);
c2d904e0
JM
144static inline struct btrfs_fs_info *
145tree_fs_info(struct extent_io_tree *tree)
146{
c6100a4b
JB
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
c2d904e0 150}
0b32f4bb 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b
CM
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
4ac1f4ac 1942int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1943{
1944 int ret;
1945 int err = 0;
4ac1f4ac 1946 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
4a54c8c1 1947
47dc196a 1948 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1949 ret = clear_extent_bits(failure_tree, rec->start,
1950 rec->start + rec->len - 1,
91166212 1951 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1952 if (ret)
1953 err = ret;
1954
4ac1f4ac 1955 ret = clear_extent_bits(&inode->io_tree, rec->start,
53b381b3 1956 rec->start + rec->len - 1,
91166212 1957 EXTENT_DAMAGED);
53b381b3
DW
1958 if (ret && !err)
1959 err = ret;
4a54c8c1
JS
1960
1961 kfree(rec);
1962 return err;
1963}
1964
4a54c8c1
JS
1965/*
1966 * this bypasses the standard btrfs submit functions deliberately, as
1967 * the standard behavior is to write all copies in a raid setup. here we only
1968 * want to write the one bad copy. so we do the mapping for ourselves and issue
1969 * submit_bio directly.
3ec706c8 1970 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1971 * actually prevents the read that triggered the error from finishing.
1972 * currently, there can be no more than two copies of every data bit. thus,
1973 * exactly one rewrite is required.
1974 */
9d4f7f8a
NB
1975int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1976 u64 logical, struct page *page,
1977 unsigned int pg_offset, int mirror_num)
4a54c8c1 1978{
9d4f7f8a 1979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
908960c6 1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
9be3395b 1990 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1991 if (!bio)
1992 return -EIO;
4f024f37 1993 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1994 map_length = length;
1995
b5de8d0d
FM
1996 /*
1997 * Avoid races with device replace and make sure our bbio has devices
1998 * associated to its stripes that don't go away while we are doing the
1999 * read repair operation.
2000 */
2001 btrfs_bio_counter_inc_blocked(fs_info);
c725328c
LB
2002 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2003 /*
2004 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2005 * to update all raid stripes, but here we just want to correct
2006 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2007 * stripe's dev and sector.
2008 */
2009 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2010 &map_length, &bbio, 0);
2011 if (ret) {
2012 btrfs_bio_counter_dec(fs_info);
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 ASSERT(bbio->mirror_num == 1);
2017 } else {
2018 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2019 &map_length, &bbio, mirror_num);
2020 if (ret) {
2021 btrfs_bio_counter_dec(fs_info);
2022 bio_put(bio);
2023 return -EIO;
2024 }
2025 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2026 }
c725328c
LB
2027
2028 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2029 bio->bi_iter.bi_sector = sector;
c725328c 2030 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2031 btrfs_put_bbio(bbio);
4a54c8c1 2032 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2033 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2034 bio_put(bio);
2035 return -EIO;
2036 }
2037 bio->bi_bdev = dev->bdev;
70fd7614 2038 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2039 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2040
4e49ea4a 2041 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2042 /* try to remap that extent elsewhere? */
b5de8d0d 2043 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2044 bio_put(bio);
442a4f63 2045 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2046 return -EIO;
2047 }
2048
b14af3b4
DS
2049 btrfs_info_rl_in_rcu(fs_info,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
9d4f7f8a 2051 btrfs_ino(inode), start,
1203b681 2052 rcu_str_deref(dev->name), sector);
b5de8d0d 2053 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2054 bio_put(bio);
2055 return 0;
2056}
2057
2ff7e61e
JM
2058int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059 struct extent_buffer *eb, int mirror_num)
ea466794 2060{
ea466794
JB
2061 u64 start = eb->start;
2062 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2063 int ret = 0;
ea466794 2064
0b246afa 2065 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2066 return -EROFS;
2067
ea466794 2068 for (i = 0; i < num_pages; i++) {
fb85fc9a 2069 struct page *p = eb->pages[i];
1203b681 2070
9d4f7f8a 2071 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
09cbfeaf 2072 PAGE_SIZE, start, p,
1203b681 2073 start - page_offset(p), mirror_num);
ea466794
JB
2074 if (ret)
2075 break;
09cbfeaf 2076 start += PAGE_SIZE;
ea466794
JB
2077 }
2078
2079 return ret;
2080}
2081
4a54c8c1
JS
2082/*
2083 * each time an IO finishes, we do a fast check in the IO failure tree
2084 * to see if we need to process or clean up an io_failure_record
2085 */
b30cb441 2086int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
8b110e39 2087 unsigned int pg_offset)
4a54c8c1
JS
2088{
2089 u64 private;
4a54c8c1 2090 struct io_failure_record *failrec;
b30cb441 2091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2092 struct extent_state *state;
2093 int num_copies;
4a54c8c1 2094 int ret;
4a54c8c1
JS
2095
2096 private = 0;
b30cb441 2097 ret = count_range_bits(&inode->io_failure_tree, &private,
4a54c8c1
JS
2098 (u64)-1, 1, EXTENT_DIRTY, 0);
2099 if (!ret)
2100 return 0;
2101
b30cb441 2102 ret = get_state_failrec(&inode->io_failure_tree, start,
47dc196a 2103 &failrec);
4a54c8c1
JS
2104 if (ret)
2105 return 0;
2106
4a54c8c1
JS
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
ab8d0fc4
JM
2111 btrfs_debug(fs_info,
2112 "clean_io_failure: freeing dummy error at %llu",
2113 failrec->start);
4a54c8c1
JS
2114 goto out;
2115 }
908960c6
ID
2116 if (fs_info->sb->s_flags & MS_RDONLY)
2117 goto out;
4a54c8c1 2118
b30cb441
NB
2119 spin_lock(&inode->io_tree.lock);
2120 state = find_first_extent_bit_state(&inode->io_tree,
4a54c8c1
JS
2121 failrec->start,
2122 EXTENT_LOCKED);
b30cb441 2123 spin_unlock(&inode->io_tree.lock);
4a54c8c1 2124
883d0de4
MX
2125 if (state && state->start <= failrec->start &&
2126 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2127 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2128 failrec->len);
4a54c8c1 2129 if (num_copies > 1) {
b30cb441 2130 repair_io_failure(inode, start, failrec->len,
454ff3de 2131 failrec->logical, page,
1203b681 2132 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2133 }
2134 }
2135
2136out:
b30cb441 2137 free_io_failure(inode, failrec);
4a54c8c1 2138
454ff3de 2139 return 0;
4a54c8c1
JS
2140}
2141
f612496b
MX
2142/*
2143 * Can be called when
2144 * - hold extent lock
2145 * - under ordered extent
2146 * - the inode is freeing
2147 */
7ab7956e 2148void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2149{
7ab7956e 2150 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2151 struct io_failure_record *failrec;
2152 struct extent_state *state, *next;
2153
2154 if (RB_EMPTY_ROOT(&failure_tree->state))
2155 return;
2156
2157 spin_lock(&failure_tree->lock);
2158 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2159 while (state) {
2160 if (state->start > end)
2161 break;
2162
2163 ASSERT(state->end <= end);
2164
2165 next = next_state(state);
2166
47dc196a 2167 failrec = state->failrec;
f612496b
MX
2168 free_extent_state(state);
2169 kfree(failrec);
2170
2171 state = next;
2172 }
2173 spin_unlock(&failure_tree->lock);
2174}
2175
2fe6303e 2176int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2177 struct io_failure_record **failrec_ret)
4a54c8c1 2178{
ab8d0fc4 2179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2180 struct io_failure_record *failrec;
4a54c8c1 2181 struct extent_map *em;
4a54c8c1
JS
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2185 int ret;
4a54c8c1
JS
2186 u64 logical;
2187
47dc196a 2188 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2189 if (ret) {
2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 if (!failrec)
2192 return -ENOMEM;
2fe6303e 2193
4a54c8c1
JS
2194 failrec->start = start;
2195 failrec->len = end - start + 1;
2196 failrec->this_mirror = 0;
2197 failrec->bio_flags = 0;
2198 failrec->in_validation = 0;
2199
2200 read_lock(&em_tree->lock);
2201 em = lookup_extent_mapping(em_tree, start, failrec->len);
2202 if (!em) {
2203 read_unlock(&em_tree->lock);
2204 kfree(failrec);
2205 return -EIO;
2206 }
2207
68ba990f 2208 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2209 free_extent_map(em);
2210 em = NULL;
2211 }
2212 read_unlock(&em_tree->lock);
7a2d6a64 2213 if (!em) {
4a54c8c1
JS
2214 kfree(failrec);
2215 return -EIO;
2216 }
2fe6303e 2217
4a54c8c1
JS
2218 logical = start - em->start;
2219 logical = em->block_start + logical;
2220 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221 logical = em->block_start;
2222 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223 extent_set_compress_type(&failrec->bio_flags,
2224 em->compress_type);
2225 }
2fe6303e 2226
ab8d0fc4
JM
2227 btrfs_debug(fs_info,
2228 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2229 logical, start, failrec->len);
2fe6303e 2230
4a54c8c1
JS
2231 failrec->logical = logical;
2232 free_extent_map(em);
2233
2234 /* set the bits in the private failure tree */
2235 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2236 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2237 if (ret >= 0)
47dc196a 2238 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2239 /* set the bits in the inode's tree */
2240 if (ret >= 0)
ceeb0ae7 2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
ab8d0fc4
JM
2247 btrfs_debug(fs_info,
2248 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2249 failrec->logical, failrec->start, failrec->len,
2250 failrec->in_validation);
4a54c8c1
JS
2251 /*
2252 * when data can be on disk more than twice, add to failrec here
2253 * (e.g. with a list for failed_mirror) to make
2254 * clean_io_failure() clean all those errors at once.
2255 */
2256 }
2fe6303e
MX
2257
2258 *failrec_ret = failrec;
2259
2260 return 0;
2261}
2262
2263int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2264 struct io_failure_record *failrec, int failed_mirror)
2265{
ab8d0fc4 2266 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2267 int num_copies;
2268
ab8d0fc4 2269 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2270 if (num_copies == 1) {
2271 /*
2272 * we only have a single copy of the data, so don't bother with
2273 * all the retry and error correction code that follows. no
2274 * matter what the error is, it is very likely to persist.
2275 */
ab8d0fc4
JM
2276 btrfs_debug(fs_info,
2277 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2278 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2279 return 0;
4a54c8c1
JS
2280 }
2281
4a54c8c1
JS
2282 /*
2283 * there are two premises:
2284 * a) deliver good data to the caller
2285 * b) correct the bad sectors on disk
2286 */
2287 if (failed_bio->bi_vcnt > 1) {
2288 /*
2289 * to fulfill b), we need to know the exact failing sectors, as
2290 * we don't want to rewrite any more than the failed ones. thus,
2291 * we need separate read requests for the failed bio
2292 *
2293 * if the following BUG_ON triggers, our validation request got
2294 * merged. we need separate requests for our algorithm to work.
2295 */
2296 BUG_ON(failrec->in_validation);
2297 failrec->in_validation = 1;
2298 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2299 } else {
2300 /*
2301 * we're ready to fulfill a) and b) alongside. get a good copy
2302 * of the failed sector and if we succeed, we have setup
2303 * everything for repair_io_failure to do the rest for us.
2304 */
2305 if (failrec->in_validation) {
2306 BUG_ON(failrec->this_mirror != failed_mirror);
2307 failrec->in_validation = 0;
2308 failrec->this_mirror = 0;
2309 }
2310 failrec->failed_mirror = failed_mirror;
2311 failrec->this_mirror++;
2312 if (failrec->this_mirror == failed_mirror)
2313 failrec->this_mirror++;
4a54c8c1
JS
2314 }
2315
facc8a22 2316 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2317 btrfs_debug(fs_info,
2318 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2319 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2320 return 0;
4a54c8c1
JS
2321 }
2322
2fe6303e
MX
2323 return 1;
2324}
2325
2326
2327struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2328 struct io_failure_record *failrec,
2329 struct page *page, int pg_offset, int icsum,
8b110e39 2330 bio_end_io_t *endio_func, void *data)
2fe6303e 2331{
0b246afa 2332 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2333 struct bio *bio;
2334 struct btrfs_io_bio *btrfs_failed_bio;
2335 struct btrfs_io_bio *btrfs_bio;
2336
9be3395b 2337 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2338 if (!bio)
2339 return NULL;
2340
2341 bio->bi_end_io = endio_func;
4f024f37 2342 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2343 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2344 bio->bi_iter.bi_size = 0;
8b110e39 2345 bio->bi_private = data;
4a54c8c1 2346
facc8a22
MX
2347 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2348 if (btrfs_failed_bio->csum) {
facc8a22
MX
2349 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2350
2351 btrfs_bio = btrfs_io_bio(bio);
2352 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2353 icsum *= csum_size;
2354 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2355 csum_size);
2356 }
2357
2fe6303e
MX
2358 bio_add_page(bio, page, failrec->len, pg_offset);
2359
2360 return bio;
2361}
2362
2363/*
2364 * this is a generic handler for readpage errors (default
2365 * readpage_io_failed_hook). if other copies exist, read those and write back
2366 * good data to the failed position. does not investigate in remapping the
2367 * failed extent elsewhere, hoping the device will be smart enough to do this as
2368 * needed
2369 */
2370
2371static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2372 struct page *page, u64 start, u64 end,
2373 int failed_mirror)
2374{
2375 struct io_failure_record *failrec;
2376 struct inode *inode = page->mapping->host;
2377 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2378 struct bio *bio;
70fd7614 2379 int read_mode = 0;
2fe6303e
MX
2380 int ret;
2381
1f7ad75b 2382 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2383
2384 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2385 if (ret)
2386 return ret;
2387
2388 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2389 if (!ret) {
4ac1f4ac 2390 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2391 return -EIO;
2392 }
2393
2394 if (failed_bio->bi_vcnt > 1)
70fd7614 2395 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2396
2397 phy_offset >>= inode->i_sb->s_blocksize_bits;
2398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2399 start - page_offset(page),
8b110e39
MX
2400 (int)phy_offset, failed_bio->bi_end_io,
2401 NULL);
2fe6303e 2402 if (!bio) {
4ac1f4ac 2403 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2404 return -EIO;
2405 }
1f7ad75b 2406 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2407
ab8d0fc4
JM
2408 btrfs_debug(btrfs_sb(inode->i_sb),
2409 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2410 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2411
c6100a4b 2412 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2413 failrec->bio_flags, 0);
6c387ab2 2414 if (ret) {
4ac1f4ac 2415 free_io_failure(BTRFS_I(inode), failrec);
6c387ab2
MX
2416 bio_put(bio);
2417 }
2418
013bd4c3 2419 return ret;
4a54c8c1
JS
2420}
2421
d1310b2e
CM
2422/* lots and lots of room for performance fixes in the end_bio funcs */
2423
b5227c07 2424void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2425{
2426 int uptodate = (err == 0);
2427 struct extent_io_tree *tree;
3e2426bd 2428 int ret = 0;
87826df0
JM
2429
2430 tree = &BTRFS_I(page->mapping->host)->io_tree;
2431
c3988d63
DS
2432 if (tree->ops && tree->ops->writepage_end_io_hook)
2433 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2434 uptodate);
87826df0 2435
87826df0 2436 if (!uptodate) {
87826df0
JM
2437 ClearPageUptodate(page);
2438 SetPageError(page);
bff5baf8 2439 ret = err < 0 ? err : -EIO;
5dca6eea 2440 mapping_set_error(page->mapping, ret);
87826df0 2441 }
87826df0
JM
2442}
2443
d1310b2e
CM
2444/*
2445 * after a writepage IO is done, we need to:
2446 * clear the uptodate bits on error
2447 * clear the writeback bits in the extent tree for this IO
2448 * end_page_writeback if the page has no more pending IO
2449 *
2450 * Scheduling is not allowed, so the extent state tree is expected
2451 * to have one and only one object corresponding to this IO.
2452 */
4246a0b6 2453static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2454{
2c30c71b 2455 struct bio_vec *bvec;
d1310b2e
CM
2456 u64 start;
2457 u64 end;
2c30c71b 2458 int i;
d1310b2e 2459
2c30c71b 2460 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2461 struct page *page = bvec->bv_page;
0b246afa
JM
2462 struct inode *inode = page->mapping->host;
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2464
17a5adcc
AO
2465 /* We always issue full-page reads, but if some block
2466 * in a page fails to read, blk_update_request() will
2467 * advance bv_offset and adjust bv_len to compensate.
2468 * Print a warning for nonzero offsets, and an error
2469 * if they don't add up to a full page. */
09cbfeaf
KS
2470 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2471 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2472 btrfs_err(fs_info,
efe120a0
FH
2473 "partial page write in btrfs with offset %u and length %u",
2474 bvec->bv_offset, bvec->bv_len);
2475 else
0b246afa 2476 btrfs_info(fs_info,
5d163e0e 2477 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2478 bvec->bv_offset, bvec->bv_len);
2479 }
d1310b2e 2480
17a5adcc
AO
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2483
b5227c07 2484 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2485 end_page_writeback(page);
2c30c71b 2486 }
2b1f55b0 2487
d1310b2e 2488 bio_put(bio);
d1310b2e
CM
2489}
2490
883d0de4
MX
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494{
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
d1310b2e
CM
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
4246a0b6 2514static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2515{
2c30c71b 2516 struct bio_vec *bvec;
4246a0b6 2517 int uptodate = !bio->bi_error;
facc8a22 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2519 struct extent_io_tree *tree;
facc8a22 2520 u64 offset = 0;
d1310b2e
CM
2521 u64 start;
2522 u64 end;
facc8a22 2523 u64 len;
883d0de4
MX
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
5cf1ab56 2526 int mirror;
d1310b2e 2527 int ret;
2c30c71b 2528 int i;
d1310b2e 2529
2c30c71b 2530 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2531 struct page *page = bvec->bv_page;
a71754fc 2532 struct inode *inode = page->mapping->host;
ab8d0fc4 2533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2534
ab8d0fc4
JM
2535 btrfs_debug(fs_info,
2536 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2537 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2538 io_bio->mirror_num);
a71754fc 2539 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2540
17a5adcc
AO
2541 /* We always issue full-page reads, but if some block
2542 * in a page fails to read, blk_update_request() will
2543 * advance bv_offset and adjust bv_len to compensate.
2544 * Print a warning for nonzero offsets, and an error
2545 * if they don't add up to a full page. */
09cbfeaf
KS
2546 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2547 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2548 btrfs_err(fs_info,
2549 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2550 bvec->bv_offset, bvec->bv_len);
2551 else
ab8d0fc4
JM
2552 btrfs_info(fs_info,
2553 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2554 bvec->bv_offset, bvec->bv_len);
2555 }
d1310b2e 2556
17a5adcc
AO
2557 start = page_offset(page);
2558 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2559 len = bvec->bv_len;
d1310b2e 2560
9be3395b 2561 mirror = io_bio->mirror_num;
20c9801d 2562 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
5ee0844d 2566 if (ret)
d1310b2e 2567 uptodate = 0;
5ee0844d 2568 else
b30cb441
NB
2569 clean_io_failure(BTRFS_I(inode), start,
2570 page, 0);
d1310b2e 2571 }
ea466794 2572
f2a09da9
MX
2573 if (likely(uptodate))
2574 goto readpage_ok;
2575
20a7db8a 2576 if (tree->ops) {
5cf1ab56 2577 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2578 if (ret == -EAGAIN) {
2579 /*
2580 * Data inode's readpage_io_failed_hook() always
2581 * returns -EAGAIN.
2582 *
2583 * The generic bio_readpage_error handles errors
2584 * the following way: If possible, new read
2585 * requests are created and submitted and will
2586 * end up in end_bio_extent_readpage as well (if
2587 * we're lucky, not in the !uptodate case). In
2588 * that case it returns 0 and we just go on with
2589 * the next page in our bio. If it can't handle
2590 * the error it will return -EIO and we remain
2591 * responsible for that page.
2592 */
2593 ret = bio_readpage_error(bio, offset, page,
2594 start, end, mirror);
2595 if (ret == 0) {
2596 uptodate = !bio->bi_error;
2597 offset += len;
2598 continue;
2599 }
2600 }
2601
f4a8e656 2602 /*
9d0d1c8b
LB
2603 * metadata's readpage_io_failed_hook() always returns
2604 * -EIO and fixes nothing. -EIO is also returned if
2605 * data inode error could not be fixed.
f4a8e656 2606 */
9d0d1c8b 2607 ASSERT(ret == -EIO);
7e38326f 2608 }
f2a09da9 2609readpage_ok:
883d0de4 2610 if (likely(uptodate)) {
a71754fc 2611 loff_t i_size = i_size_read(inode);
09cbfeaf 2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2613 unsigned off;
a71754fc
JB
2614
2615 /* Zero out the end if this page straddles i_size */
09cbfeaf 2616 off = i_size & (PAGE_SIZE-1);
a583c026 2617 if (page->index == end_index && off)
09cbfeaf 2618 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2619 SetPageUptodate(page);
70dec807 2620 } else {
17a5adcc
AO
2621 ClearPageUptodate(page);
2622 SetPageError(page);
70dec807 2623 }
17a5adcc 2624 unlock_page(page);
facc8a22 2625 offset += len;
883d0de4
MX
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2c30c71b 2648 }
d1310b2e 2649
883d0de4
MX
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
facc8a22 2653 if (io_bio->end_io)
4246a0b6 2654 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2655 bio_put(bio);
d1310b2e
CM
2656}
2657
9be3395b
CM
2658/*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
88f794ed
MX
2662struct bio *
2663btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
d1310b2e 2665{
facc8a22 2666 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2667 struct bio *bio;
2668
9be3395b 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
d1310b2e
CM
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
4f024f37 2680 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
d1310b2e
CM
2685 }
2686 return bio;
2687}
2688
9be3395b
CM
2689struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690{
23ea8e5a
MX
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
9be3395b 2693
23ea8e5a
MX
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
2700 }
2701 return new;
2702}
9be3395b
CM
2703
2704/* this also allocates from the btrfs_bioset */
2705struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706{
facc8a22
MX
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
9be3395b
CM
2718}
2719
2720
1f7ad75b
MC
2721static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2722 unsigned long bio_flags)
d1310b2e 2723{
d1310b2e 2724 int ret = 0;
70dec807
CM
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
70dec807 2728 u64 start;
70dec807 2729
4eee4fa4 2730 start = page_offset(page) + bvec->bv_offset;
70dec807 2731
902b22f3 2732 bio->bi_private = NULL;
d1310b2e
CM
2733 bio_get(bio);
2734
20c9801d 2735 if (tree->ops)
c6100a4b 2736 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2737 mirror_num, bio_flags, start);
0b86a832 2738 else
4e49ea4a 2739 btrfsic_submit_bio(bio);
4a54c8c1 2740
d1310b2e
CM
2741 bio_put(bio);
2742 return ret;
2743}
2744
1f7ad75b 2745static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2746 unsigned long offset, size_t size, struct bio *bio,
2747 unsigned long bio_flags)
2748{
2749 int ret = 0;
20c9801d 2750 if (tree->ops)
81a75f67 2751 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2752 bio_flags);
3444a972
JM
2753 return ret;
2754
2755}
2756
1f7ad75b 2757static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2758 struct writeback_control *wbc,
d1310b2e
CM
2759 struct page *page, sector_t sector,
2760 size_t size, unsigned long offset,
2761 struct block_device *bdev,
2762 struct bio **bio_ret,
f188591e 2763 bio_end_io_t end_io_func,
c8b97818
CM
2764 int mirror_num,
2765 unsigned long prev_bio_flags,
005efedf
FM
2766 unsigned long bio_flags,
2767 bool force_bio_submit)
d1310b2e
CM
2768{
2769 int ret = 0;
2770 struct bio *bio;
c8b97818 2771 int contig = 0;
c8b97818 2772 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2773 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2774
2775 if (bio_ret && *bio_ret) {
2776 bio = *bio_ret;
c8b97818 2777 if (old_compressed)
4f024f37 2778 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2779 else
f73a1c7d 2780 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2781
2782 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2783 force_bio_submit ||
1f7ad75b 2784 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2785 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2786 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2787 if (ret < 0) {
2788 *bio_ret = NULL;
79787eaa 2789 return ret;
289454ad 2790 }
d1310b2e
CM
2791 bio = NULL;
2792 } else {
da2f0f74
CM
2793 if (wbc)
2794 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2795 return 0;
2796 }
2797 }
c8b97818 2798
b54ffb73
KO
2799 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2800 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2801 if (!bio)
2802 return -ENOMEM;
70dec807 2803
c8b97818 2804 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2805 bio->bi_end_io = end_io_func;
2806 bio->bi_private = tree;
1f7ad75b 2807 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2808 if (wbc) {
2809 wbc_init_bio(wbc, bio);
2810 wbc_account_io(wbc, page, page_size);
2811 }
70dec807 2812
d397712b 2813 if (bio_ret)
d1310b2e 2814 *bio_ret = bio;
d397712b 2815 else
1f7ad75b 2816 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2817
2818 return ret;
2819}
2820
48a3b636
ES
2821static void attach_extent_buffer_page(struct extent_buffer *eb,
2822 struct page *page)
d1310b2e
CM
2823{
2824 if (!PagePrivate(page)) {
2825 SetPagePrivate(page);
09cbfeaf 2826 get_page(page);
4f2de97a
JB
2827 set_page_private(page, (unsigned long)eb);
2828 } else {
2829 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2830 }
2831}
2832
4f2de97a 2833void set_page_extent_mapped(struct page *page)
d1310b2e 2834{
4f2de97a
JB
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
09cbfeaf 2837 get_page(page);
4f2de97a
JB
2838 set_page_private(page, EXTENT_PAGE_PRIVATE);
2839 }
d1310b2e
CM
2840}
2841
125bac01
MX
2842static struct extent_map *
2843__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2844 u64 start, u64 len, get_extent_t *get_extent,
2845 struct extent_map **em_cached)
2846{
2847 struct extent_map *em;
2848
2849 if (em_cached && *em_cached) {
2850 em = *em_cached;
cbc0e928 2851 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2852 start < extent_map_end(em)) {
490b54d6 2853 refcount_inc(&em->refs);
125bac01
MX
2854 return em;
2855 }
2856
2857 free_extent_map(em);
2858 *em_cached = NULL;
2859 }
2860
fc4f21b1 2861 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2862 if (em_cached && !IS_ERR_OR_NULL(em)) {
2863 BUG_ON(*em_cached);
490b54d6 2864 refcount_inc(&em->refs);
125bac01
MX
2865 *em_cached = em;
2866 }
2867 return em;
2868}
d1310b2e
CM
2869/*
2870 * basic readpage implementation. Locked extent state structs are inserted
2871 * into the tree that are removed when the IO is done (by the end_io
2872 * handlers)
79787eaa 2873 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2874 * return 0 on success, otherwise return error
d1310b2e 2875 */
9974090b
MX
2876static int __do_readpage(struct extent_io_tree *tree,
2877 struct page *page,
2878 get_extent_t *get_extent,
125bac01 2879 struct extent_map **em_cached,
9974090b 2880 struct bio **bio, int mirror_num,
1f7ad75b 2881 unsigned long *bio_flags, int read_flags,
005efedf 2882 u64 *prev_em_start)
d1310b2e
CM
2883{
2884 struct inode *inode = page->mapping->host;
4eee4fa4 2885 u64 start = page_offset(page);
09cbfeaf 2886 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2887 u64 end;
2888 u64 cur = start;
2889 u64 extent_offset;
2890 u64 last_byte = i_size_read(inode);
2891 u64 block_start;
2892 u64 cur_end;
2893 sector_t sector;
2894 struct extent_map *em;
2895 struct block_device *bdev;
baf863b9 2896 int ret = 0;
d1310b2e 2897 int nr = 0;
306e16ce 2898 size_t pg_offset = 0;
d1310b2e 2899 size_t iosize;
c8b97818 2900 size_t disk_io_size;
d1310b2e 2901 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2902 unsigned long this_bio_flag = 0;
d1310b2e
CM
2903
2904 set_page_extent_mapped(page);
2905
9974090b 2906 end = page_end;
90a887c9
DM
2907 if (!PageUptodate(page)) {
2908 if (cleancache_get_page(page) == 0) {
2909 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2910 unlock_extent(tree, start, end);
90a887c9
DM
2911 goto out;
2912 }
2913 }
2914
09cbfeaf 2915 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2916 char *userpage;
09cbfeaf 2917 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2918
2919 if (zero_offset) {
09cbfeaf 2920 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2921 userpage = kmap_atomic(page);
c8b97818
CM
2922 memset(userpage + zero_offset, 0, iosize);
2923 flush_dcache_page(page);
7ac687d9 2924 kunmap_atomic(userpage);
c8b97818
CM
2925 }
2926 }
d1310b2e 2927 while (cur <= end) {
005efedf 2928 bool force_bio_submit = false;
c8f2f24b 2929
d1310b2e
CM
2930 if (cur >= last_byte) {
2931 char *userpage;
507903b8
AJ
2932 struct extent_state *cached = NULL;
2933
09cbfeaf 2934 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2935 userpage = kmap_atomic(page);
306e16ce 2936 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2937 flush_dcache_page(page);
7ac687d9 2938 kunmap_atomic(userpage);
d1310b2e 2939 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2940 &cached, GFP_NOFS);
7f042a83
FM
2941 unlock_extent_cached(tree, cur,
2942 cur + iosize - 1,
2943 &cached, GFP_NOFS);
d1310b2e
CM
2944 break;
2945 }
125bac01
MX
2946 em = __get_extent_map(inode, page, pg_offset, cur,
2947 end - cur + 1, get_extent, em_cached);
c704005d 2948 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2949 SetPageError(page);
7f042a83 2950 unlock_extent(tree, cur, end);
d1310b2e
CM
2951 break;
2952 }
d1310b2e
CM
2953 extent_offset = cur - em->start;
2954 BUG_ON(extent_map_end(em) <= cur);
2955 BUG_ON(end < cur);
2956
261507a0 2957 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2958 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2959 extent_set_compress_type(&this_bio_flag,
2960 em->compress_type);
2961 }
c8b97818 2962
d1310b2e
CM
2963 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2964 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2965 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2966 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2967 disk_io_size = em->block_len;
2968 sector = em->block_start >> 9;
2969 } else {
2970 sector = (em->block_start + extent_offset) >> 9;
2971 disk_io_size = iosize;
2972 }
d1310b2e
CM
2973 bdev = em->bdev;
2974 block_start = em->block_start;
d899e052
YZ
2975 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2976 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2977
2978 /*
2979 * If we have a file range that points to a compressed extent
2980 * and it's followed by a consecutive file range that points to
2981 * to the same compressed extent (possibly with a different
2982 * offset and/or length, so it either points to the whole extent
2983 * or only part of it), we must make sure we do not submit a
2984 * single bio to populate the pages for the 2 ranges because
2985 * this makes the compressed extent read zero out the pages
2986 * belonging to the 2nd range. Imagine the following scenario:
2987 *
2988 * File layout
2989 * [0 - 8K] [8K - 24K]
2990 * | |
2991 * | |
2992 * points to extent X, points to extent X,
2993 * offset 4K, length of 8K offset 0, length 16K
2994 *
2995 * [extent X, compressed length = 4K uncompressed length = 16K]
2996 *
2997 * If the bio to read the compressed extent covers both ranges,
2998 * it will decompress extent X into the pages belonging to the
2999 * first range and then it will stop, zeroing out the remaining
3000 * pages that belong to the other range that points to extent X.
3001 * So here we make sure we submit 2 bios, one for the first
3002 * range and another one for the third range. Both will target
3003 * the same physical extent from disk, but we can't currently
3004 * make the compressed bio endio callback populate the pages
3005 * for both ranges because each compressed bio is tightly
3006 * coupled with a single extent map, and each range can have
3007 * an extent map with a different offset value relative to the
3008 * uncompressed data of our extent and different lengths. This
3009 * is a corner case so we prioritize correctness over
3010 * non-optimal behavior (submitting 2 bios for the same extent).
3011 */
3012 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3013 prev_em_start && *prev_em_start != (u64)-1 &&
3014 *prev_em_start != em->orig_start)
3015 force_bio_submit = true;
3016
3017 if (prev_em_start)
3018 *prev_em_start = em->orig_start;
3019
d1310b2e
CM
3020 free_extent_map(em);
3021 em = NULL;
3022
3023 /* we've found a hole, just zero and go on */
3024 if (block_start == EXTENT_MAP_HOLE) {
3025 char *userpage;
507903b8
AJ
3026 struct extent_state *cached = NULL;
3027
7ac687d9 3028 userpage = kmap_atomic(page);
306e16ce 3029 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3030 flush_dcache_page(page);
7ac687d9 3031 kunmap_atomic(userpage);
d1310b2e
CM
3032
3033 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3034 &cached, GFP_NOFS);
7f042a83
FM
3035 unlock_extent_cached(tree, cur,
3036 cur + iosize - 1,
3037 &cached, GFP_NOFS);
d1310b2e 3038 cur = cur + iosize;
306e16ce 3039 pg_offset += iosize;
d1310b2e
CM
3040 continue;
3041 }
3042 /* the get_extent function already copied into the page */
9655d298
CM
3043 if (test_range_bit(tree, cur, cur_end,
3044 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3045 check_page_uptodate(tree, page);
7f042a83 3046 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3047 cur = cur + iosize;
306e16ce 3048 pg_offset += iosize;
d1310b2e
CM
3049 continue;
3050 }
70dec807
CM
3051 /* we have an inline extent but it didn't get marked up
3052 * to date. Error out
3053 */
3054 if (block_start == EXTENT_MAP_INLINE) {
3055 SetPageError(page);
7f042a83 3056 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3057 cur = cur + iosize;
306e16ce 3058 pg_offset += iosize;
70dec807
CM
3059 continue;
3060 }
d1310b2e 3061
1f7ad75b
MC
3062 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3063 page, sector, disk_io_size, pg_offset,
c2df8bb4 3064 bdev, bio,
c8b97818
CM
3065 end_bio_extent_readpage, mirror_num,
3066 *bio_flags,
005efedf
FM
3067 this_bio_flag,
3068 force_bio_submit);
c8f2f24b
JB
3069 if (!ret) {
3070 nr++;
3071 *bio_flags = this_bio_flag;
3072 } else {
d1310b2e 3073 SetPageError(page);
7f042a83 3074 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3075 goto out;
edd33c99 3076 }
d1310b2e 3077 cur = cur + iosize;
306e16ce 3078 pg_offset += iosize;
d1310b2e 3079 }
90a887c9 3080out:
d1310b2e
CM
3081 if (!nr) {
3082 if (!PageError(page))
3083 SetPageUptodate(page);
3084 unlock_page(page);
3085 }
baf863b9 3086 return ret;
d1310b2e
CM
3087}
3088
9974090b
MX
3089static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3090 struct page *pages[], int nr_pages,
3091 u64 start, u64 end,
3092 get_extent_t *get_extent,
125bac01 3093 struct extent_map **em_cached,
9974090b 3094 struct bio **bio, int mirror_num,
1f7ad75b 3095 unsigned long *bio_flags,
808f80b4 3096 u64 *prev_em_start)
9974090b
MX
3097{
3098 struct inode *inode;
3099 struct btrfs_ordered_extent *ordered;
3100 int index;
3101
3102 inode = pages[0]->mapping->host;
3103 while (1) {
3104 lock_extent(tree, start, end);
a776c6fa 3105 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3106 end - start + 1);
3107 if (!ordered)
3108 break;
3109 unlock_extent(tree, start, end);
3110 btrfs_start_ordered_extent(inode, ordered, 1);
3111 btrfs_put_ordered_extent(ordered);
3112 }
3113
3114 for (index = 0; index < nr_pages; index++) {
125bac01 3115 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3116 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3117 put_page(pages[index]);
9974090b
MX
3118 }
3119}
3120
3121static void __extent_readpages(struct extent_io_tree *tree,
3122 struct page *pages[],
3123 int nr_pages, get_extent_t *get_extent,
125bac01 3124 struct extent_map **em_cached,
9974090b 3125 struct bio **bio, int mirror_num,
1f7ad75b 3126 unsigned long *bio_flags,
808f80b4 3127 u64 *prev_em_start)
9974090b 3128{
35a3621b 3129 u64 start = 0;
9974090b
MX
3130 u64 end = 0;
3131 u64 page_start;
3132 int index;
35a3621b 3133 int first_index = 0;
9974090b
MX
3134
3135 for (index = 0; index < nr_pages; index++) {
3136 page_start = page_offset(pages[index]);
3137 if (!end) {
3138 start = page_start;
09cbfeaf 3139 end = start + PAGE_SIZE - 1;
9974090b
MX
3140 first_index = index;
3141 } else if (end + 1 == page_start) {
09cbfeaf 3142 end += PAGE_SIZE;
9974090b
MX
3143 } else {
3144 __do_contiguous_readpages(tree, &pages[first_index],
3145 index - first_index, start,
125bac01
MX
3146 end, get_extent, em_cached,
3147 bio, mirror_num, bio_flags,
1f7ad75b 3148 prev_em_start);
9974090b 3149 start = page_start;
09cbfeaf 3150 end = start + PAGE_SIZE - 1;
9974090b
MX
3151 first_index = index;
3152 }
3153 }
3154
3155 if (end)
3156 __do_contiguous_readpages(tree, &pages[first_index],
3157 index - first_index, start,
125bac01 3158 end, get_extent, em_cached, bio,
1f7ad75b 3159 mirror_num, bio_flags,
808f80b4 3160 prev_em_start);
9974090b
MX
3161}
3162
3163static int __extent_read_full_page(struct extent_io_tree *tree,
3164 struct page *page,
3165 get_extent_t *get_extent,
3166 struct bio **bio, int mirror_num,
1f7ad75b 3167 unsigned long *bio_flags, int read_flags)
9974090b
MX
3168{
3169 struct inode *inode = page->mapping->host;
3170 struct btrfs_ordered_extent *ordered;
3171 u64 start = page_offset(page);
09cbfeaf 3172 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3173 int ret;
3174
3175 while (1) {
3176 lock_extent(tree, start, end);
a776c6fa 3177 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3178 PAGE_SIZE);
9974090b
MX
3179 if (!ordered)
3180 break;
3181 unlock_extent(tree, start, end);
3182 btrfs_start_ordered_extent(inode, ordered, 1);
3183 btrfs_put_ordered_extent(ordered);
3184 }
3185
125bac01 3186 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3187 bio_flags, read_flags, NULL);
9974090b
MX
3188 return ret;
3189}
3190
d1310b2e 3191int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3192 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3193{
3194 struct bio *bio = NULL;
c8b97818 3195 unsigned long bio_flags = 0;
d1310b2e
CM
3196 int ret;
3197
8ddc7d9c 3198 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3199 &bio_flags, 0);
d1310b2e 3200 if (bio)
1f7ad75b 3201 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3202 return ret;
3203}
d1310b2e 3204
3d4b9496 3205static void update_nr_written(struct writeback_control *wbc,
a9132667 3206 unsigned long nr_written)
11c8349b
CM
3207{
3208 wbc->nr_to_write -= nr_written;
11c8349b
CM
3209}
3210
d1310b2e 3211/*
40f76580
CM
3212 * helper for __extent_writepage, doing all of the delayed allocation setup.
3213 *
3214 * This returns 1 if our fill_delalloc function did all the work required
3215 * to write the page (copy into inline extent). In this case the IO has
3216 * been started and the page is already unlocked.
3217 *
3218 * This returns 0 if all went well (page still locked)
3219 * This returns < 0 if there were errors (page still locked)
d1310b2e 3220 */
40f76580
CM
3221static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 struct page *page, struct writeback_control *wbc,
3223 struct extent_page_data *epd,
3224 u64 delalloc_start,
3225 unsigned long *nr_written)
3226{
3227 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3228 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3229 u64 nr_delalloc;
3230 u64 delalloc_to_write = 0;
3231 u64 delalloc_end = 0;
3232 int ret;
3233 int page_started = 0;
3234
3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 return 0;
3237
3238 while (delalloc_end < page_end) {
3239 nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 page,
3241 &delalloc_start,
3242 &delalloc_end,
dcab6a3b 3243 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3244 if (nr_delalloc == 0) {
3245 delalloc_start = delalloc_end + 1;
3246 continue;
3247 }
3248 ret = tree->ops->fill_delalloc(inode, page,
3249 delalloc_start,
3250 delalloc_end,
3251 &page_started,
3252 nr_written);
3253 /* File system has been set read-only */
3254 if (ret) {
3255 SetPageError(page);
3256 /* fill_delalloc should be return < 0 for error
3257 * but just in case, we use > 0 here meaning the
3258 * IO is started, so we don't want to return > 0
3259 * unless things are going well.
3260 */
3261 ret = ret < 0 ? ret : -EIO;
3262 goto done;
3263 }
3264 /*
ea1754a0
KS
3265 * delalloc_end is already one less than the total length, so
3266 * we don't subtract one from PAGE_SIZE
40f76580
CM
3267 */
3268 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3269 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3270 delalloc_start = delalloc_end + 1;
3271 }
3272 if (wbc->nr_to_write < delalloc_to_write) {
3273 int thresh = 8192;
3274
3275 if (delalloc_to_write < thresh * 2)
3276 thresh = delalloc_to_write;
3277 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278 thresh);
3279 }
3280
3281 /* did the fill delalloc function already unlock and start
3282 * the IO?
3283 */
3284 if (page_started) {
3285 /*
3286 * we've unlocked the page, so we can't update
3287 * the mapping's writeback index, just update
3288 * nr_to_write.
3289 */
3290 wbc->nr_to_write -= *nr_written;
3291 return 1;
3292 }
3293
3294 ret = 0;
3295
3296done:
3297 return ret;
3298}
3299
3300/*
3301 * helper for __extent_writepage. This calls the writepage start hooks,
3302 * and does the loop to map the page into extents and bios.
3303 *
3304 * We return 1 if the IO is started and the page is unlocked,
3305 * 0 if all went well (page still locked)
3306 * < 0 if there were errors (page still locked)
3307 */
3308static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309 struct page *page,
3310 struct writeback_control *wbc,
3311 struct extent_page_data *epd,
3312 loff_t i_size,
3313 unsigned long nr_written,
3314 int write_flags, int *nr_ret)
d1310b2e 3315{
d1310b2e 3316 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3317 u64 start = page_offset(page);
09cbfeaf 3318 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3319 u64 end;
3320 u64 cur = start;
3321 u64 extent_offset;
d1310b2e
CM
3322 u64 block_start;
3323 u64 iosize;
3324 sector_t sector;
3325 struct extent_map *em;
3326 struct block_device *bdev;
7f3c74fb 3327 size_t pg_offset = 0;
d1310b2e 3328 size_t blocksize;
40f76580
CM
3329 int ret = 0;
3330 int nr = 0;
3331 bool compressed;
c8b97818 3332
247e743c 3333 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3334 ret = tree->ops->writepage_start_hook(page, start,
3335 page_end);
87826df0
JM
3336 if (ret) {
3337 /* Fixup worker will requeue */
3338 if (ret == -EBUSY)
3339 wbc->pages_skipped++;
3340 else
3341 redirty_page_for_writepage(wbc, page);
40f76580 3342
3d4b9496 3343 update_nr_written(wbc, nr_written);
247e743c 3344 unlock_page(page);
bcf93489 3345 return 1;
247e743c
CM
3346 }
3347 }
3348
11c8349b
CM
3349 /*
3350 * we don't want to touch the inode after unlocking the page,
3351 * so we update the mapping writeback index now
3352 */
3d4b9496 3353 update_nr_written(wbc, nr_written + 1);
771ed689 3354
d1310b2e 3355 end = page_end;
40f76580 3356 if (i_size <= start) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, start,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 goto done;
3361 }
3362
d1310b2e
CM
3363 blocksize = inode->i_sb->s_blocksize;
3364
3365 while (cur <= end) {
40f76580 3366 u64 em_end;
58409edd 3367
40f76580 3368 if (cur >= i_size) {
e6dcd2dc
CM
3369 if (tree->ops && tree->ops->writepage_end_io_hook)
3370 tree->ops->writepage_end_io_hook(page, cur,
3371 page_end, NULL, 1);
d1310b2e
CM
3372 break;
3373 }
fc4f21b1 3374 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3375 end - cur + 1, 1);
c704005d 3376 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3377 SetPageError(page);
61391d56 3378 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3379 break;
3380 }
3381
3382 extent_offset = cur - em->start;
40f76580
CM
3383 em_end = extent_map_end(em);
3384 BUG_ON(em_end <= cur);
d1310b2e 3385 BUG_ON(end < cur);
40f76580 3386 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3387 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3388 sector = (em->block_start + extent_offset) >> 9;
3389 bdev = em->bdev;
3390 block_start = em->block_start;
c8b97818 3391 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3392 free_extent_map(em);
3393 em = NULL;
3394
c8b97818
CM
3395 /*
3396 * compressed and inline extents are written through other
3397 * paths in the FS
3398 */
3399 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3400 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3401 /*
3402 * end_io notification does not happen here for
3403 * compressed extents
3404 */
3405 if (!compressed && tree->ops &&
3406 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3407 tree->ops->writepage_end_io_hook(page, cur,
3408 cur + iosize - 1,
3409 NULL, 1);
c8b97818
CM
3410 else if (compressed) {
3411 /* we don't want to end_page_writeback on
3412 * a compressed extent. this happens
3413 * elsewhere
3414 */
3415 nr++;
3416 }
3417
3418 cur += iosize;
7f3c74fb 3419 pg_offset += iosize;
d1310b2e
CM
3420 continue;
3421 }
c8b97818 3422
58409edd
DS
3423 set_range_writeback(tree, cur, cur + iosize - 1);
3424 if (!PageWriteback(page)) {
3425 btrfs_err(BTRFS_I(inode)->root->fs_info,
3426 "page %lu not writeback, cur %llu end %llu",
3427 page->index, cur, end);
d1310b2e 3428 }
7f3c74fb 3429
1f7ad75b
MC
3430 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3431 page, sector, iosize, pg_offset,
c2df8bb4 3432 bdev, &epd->bio,
58409edd
DS
3433 end_bio_extent_writepage,
3434 0, 0, 0, false);
fe01aa65 3435 if (ret) {
58409edd 3436 SetPageError(page);
fe01aa65
TK
3437 if (PageWriteback(page))
3438 end_page_writeback(page);
3439 }
d1310b2e 3440
d1310b2e 3441 cur = cur + iosize;
7f3c74fb 3442 pg_offset += iosize;
d1310b2e
CM
3443 nr++;
3444 }
40f76580
CM
3445done:
3446 *nr_ret = nr;
40f76580
CM
3447 return ret;
3448}
3449
3450/*
3451 * the writepage semantics are similar to regular writepage. extent
3452 * records are inserted to lock ranges in the tree, and as dirty areas
3453 * are found, they are marked writeback. Then the lock bits are removed
3454 * and the end_io handler clears the writeback ranges
3455 */
3456static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3457 void *data)
3458{
3459 struct inode *inode = page->mapping->host;
3460 struct extent_page_data *epd = data;
3461 u64 start = page_offset(page);
09cbfeaf 3462 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3463 int ret;
3464 int nr = 0;
3465 size_t pg_offset = 0;
3466 loff_t i_size = i_size_read(inode);
09cbfeaf 3467 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3468 int write_flags = 0;
40f76580
CM
3469 unsigned long nr_written = 0;
3470
3471 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3472 write_flags = REQ_SYNC;
40f76580
CM
3473
3474 trace___extent_writepage(page, inode, wbc);
3475
3476 WARN_ON(!PageLocked(page));
3477
3478 ClearPageError(page);
3479
09cbfeaf 3480 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3481 if (page->index > end_index ||
3482 (page->index == end_index && !pg_offset)) {
09cbfeaf 3483 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3484 unlock_page(page);
3485 return 0;
3486 }
3487
3488 if (page->index == end_index) {
3489 char *userpage;
3490
3491 userpage = kmap_atomic(page);
3492 memset(userpage + pg_offset, 0,
09cbfeaf 3493 PAGE_SIZE - pg_offset);
40f76580
CM
3494 kunmap_atomic(userpage);
3495 flush_dcache_page(page);
3496 }
3497
3498 pg_offset = 0;
3499
3500 set_page_extent_mapped(page);
3501
3502 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3503 if (ret == 1)
3504 goto done_unlocked;
3505 if (ret)
3506 goto done;
3507
3508 ret = __extent_writepage_io(inode, page, wbc, epd,
3509 i_size, nr_written, write_flags, &nr);
3510 if (ret == 1)
3511 goto done_unlocked;
3512
d1310b2e
CM
3513done:
3514 if (nr == 0) {
3515 /* make sure the mapping tag for page dirty gets cleared */
3516 set_page_writeback(page);
3517 end_page_writeback(page);
3518 }
61391d56
FM
3519 if (PageError(page)) {
3520 ret = ret < 0 ? ret : -EIO;
3521 end_extent_writepage(page, ret, start, page_end);
3522 }
d1310b2e 3523 unlock_page(page);
40f76580 3524 return ret;
771ed689 3525
11c8349b 3526done_unlocked:
d1310b2e
CM
3527 return 0;
3528}
3529
fd8b2b61 3530void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3531{
74316201
N
3532 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3533 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3534}
3535
0e378df1
CM
3536static noinline_for_stack int
3537lock_extent_buffer_for_io(struct extent_buffer *eb,
3538 struct btrfs_fs_info *fs_info,
3539 struct extent_page_data *epd)
0b32f4bb
JB
3540{
3541 unsigned long i, num_pages;
3542 int flush = 0;
3543 int ret = 0;
3544
3545 if (!btrfs_try_tree_write_lock(eb)) {
3546 flush = 1;
3547 flush_write_bio(epd);
3548 btrfs_tree_lock(eb);
3549 }
3550
3551 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3552 btrfs_tree_unlock(eb);
3553 if (!epd->sync_io)
3554 return 0;
3555 if (!flush) {
3556 flush_write_bio(epd);
3557 flush = 1;
3558 }
a098d8e8
CM
3559 while (1) {
3560 wait_on_extent_buffer_writeback(eb);
3561 btrfs_tree_lock(eb);
3562 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3563 break;
0b32f4bb 3564 btrfs_tree_unlock(eb);
0b32f4bb
JB
3565 }
3566 }
3567
51561ffe
JB
3568 /*
3569 * We need to do this to prevent races in people who check if the eb is
3570 * under IO since we can end up having no IO bits set for a short period
3571 * of time.
3572 */
3573 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3574 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3575 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3576 spin_unlock(&eb->refs_lock);
0b32f4bb 3577 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3578 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3579 -eb->len,
3580 fs_info->dirty_metadata_batch);
0b32f4bb 3581 ret = 1;
51561ffe
JB
3582 } else {
3583 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3584 }
3585
3586 btrfs_tree_unlock(eb);
3587
3588 if (!ret)
3589 return ret;
3590
3591 num_pages = num_extent_pages(eb->start, eb->len);
3592 for (i = 0; i < num_pages; i++) {
fb85fc9a 3593 struct page *p = eb->pages[i];
0b32f4bb
JB
3594
3595 if (!trylock_page(p)) {
3596 if (!flush) {
3597 flush_write_bio(epd);
3598 flush = 1;
3599 }
3600 lock_page(p);
3601 }
3602 }
3603
3604 return ret;
3605}
3606
3607static void end_extent_buffer_writeback(struct extent_buffer *eb)
3608{
3609 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3610 smp_mb__after_atomic();
0b32f4bb
JB
3611 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612}
3613
656f30db
FM
3614static void set_btree_ioerr(struct page *page)
3615{
3616 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3617
3618 SetPageError(page);
3619 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3620 return;
3621
3622 /*
3623 * If writeback for a btree extent that doesn't belong to a log tree
3624 * failed, increment the counter transaction->eb_write_errors.
3625 * We do this because while the transaction is running and before it's
3626 * committing (when we call filemap_fdata[write|wait]_range against
3627 * the btree inode), we might have
3628 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629 * returns an error or an error happens during writeback, when we're
3630 * committing the transaction we wouldn't know about it, since the pages
3631 * can be no longer dirty nor marked anymore for writeback (if a
3632 * subsequent modification to the extent buffer didn't happen before the
3633 * transaction commit), which makes filemap_fdata[write|wait]_range not
3634 * able to find the pages tagged with SetPageError at transaction
3635 * commit time. So if this happens we must abort the transaction,
3636 * otherwise we commit a super block with btree roots that point to
3637 * btree nodes/leafs whose content on disk is invalid - either garbage
3638 * or the content of some node/leaf from a past generation that got
3639 * cowed or deleted and is no longer valid.
3640 *
3641 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642 * not be enough - we need to distinguish between log tree extents vs
3643 * non-log tree extents, and the next filemap_fdatawait_range() call
3644 * will catch and clear such errors in the mapping - and that call might
3645 * be from a log sync and not from a transaction commit. Also, checking
3646 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647 * not done and would not be reliable - the eb might have been released
3648 * from memory and reading it back again means that flag would not be
3649 * set (since it's a runtime flag, not persisted on disk).
3650 *
3651 * Using the flags below in the btree inode also makes us achieve the
3652 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653 * writeback for all dirty pages and before filemap_fdatawait_range()
3654 * is called, the writeback for all dirty pages had already finished
3655 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656 * filemap_fdatawait_range() would return success, as it could not know
3657 * that writeback errors happened (the pages were no longer tagged for
3658 * writeback).
3659 */
3660 switch (eb->log_index) {
3661 case -1:
afcdd129 3662 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3663 break;
3664 case 0:
afcdd129 3665 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3666 break;
3667 case 1:
afcdd129 3668 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3669 break;
3670 default:
3671 BUG(); /* unexpected, logic error */
3672 }
3673}
3674
4246a0b6 3675static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3676{
2c30c71b 3677 struct bio_vec *bvec;
0b32f4bb 3678 struct extent_buffer *eb;
2c30c71b 3679 int i, done;
0b32f4bb 3680
2c30c71b 3681 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3682 struct page *page = bvec->bv_page;
3683
0b32f4bb
JB
3684 eb = (struct extent_buffer *)page->private;
3685 BUG_ON(!eb);
3686 done = atomic_dec_and_test(&eb->io_pages);
3687
4246a0b6
CH
3688 if (bio->bi_error ||
3689 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3690 ClearPageUptodate(page);
656f30db 3691 set_btree_ioerr(page);
0b32f4bb
JB
3692 }
3693
3694 end_page_writeback(page);
3695
3696 if (!done)
3697 continue;
3698
3699 end_extent_buffer_writeback(eb);
2c30c71b 3700 }
0b32f4bb
JB
3701
3702 bio_put(bio);
0b32f4bb
JB
3703}
3704
0e378df1 3705static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3706 struct btrfs_fs_info *fs_info,
3707 struct writeback_control *wbc,
3708 struct extent_page_data *epd)
3709{
3710 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3711 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3712 u64 offset = eb->start;
851cd173 3713 u32 nritems;
0b32f4bb 3714 unsigned long i, num_pages;
de0022b9 3715 unsigned long bio_flags = 0;
851cd173 3716 unsigned long start, end;
70fd7614 3717 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3718 int ret = 0;
0b32f4bb 3719
656f30db 3720 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3721 num_pages = num_extent_pages(eb->start, eb->len);
3722 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3723 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3724 bio_flags = EXTENT_BIO_TREE_LOG;
3725
851cd173
LB
3726 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3727 nritems = btrfs_header_nritems(eb);
3eb548ee 3728 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3729 end = btrfs_node_key_ptr_offset(nritems);
3730
b159fa28 3731 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3732 } else {
3733 /*
3734 * leaf:
3735 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3736 */
3737 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3738 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3739 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3740 }
3741
0b32f4bb 3742 for (i = 0; i < num_pages; i++) {
fb85fc9a 3743 struct page *p = eb->pages[i];
0b32f4bb
JB
3744
3745 clear_page_dirty_for_io(p);
3746 set_page_writeback(p);
1f7ad75b
MC
3747 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3748 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3749 &epd->bio,
1f7ad75b 3750 end_bio_extent_buffer_writepage,
005efedf 3751 0, epd->bio_flags, bio_flags, false);
de0022b9 3752 epd->bio_flags = bio_flags;
0b32f4bb 3753 if (ret) {
656f30db 3754 set_btree_ioerr(p);
fe01aa65
TK
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
0b32f4bb
JB
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
09cbfeaf 3762 offset += PAGE_SIZE;
3d4b9496 3763 update_nr_written(wbc, 1);
0b32f4bb
JB
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
bbf65cf0 3769 struct page *p = eb->pages[i];
81465028 3770 clear_page_dirty_for_io(p);
0b32f4bb
JB
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3789 .bio_flags = 0,
0b32f4bb
JB
3790 };
3791 int ret = 0;
3792 int done = 0;
3793 int nr_to_write_done = 0;
3794 struct pagevec pvec;
3795 int nr_pages;
3796 pgoff_t index;
3797 pgoff_t end; /* Inclusive */
3798 int scanned = 0;
3799 int tag;
3800
3801 pagevec_init(&pvec, 0);
3802 if (wbc->range_cyclic) {
3803 index = mapping->writeback_index; /* Start from prev offset */
3804 end = -1;
3805 } else {
09cbfeaf
KS
3806 index = wbc->range_start >> PAGE_SHIFT;
3807 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3808 scanned = 1;
3809 }
3810 if (wbc->sync_mode == WB_SYNC_ALL)
3811 tag = PAGECACHE_TAG_TOWRITE;
3812 else
3813 tag = PAGECACHE_TAG_DIRTY;
3814retry:
3815 if (wbc->sync_mode == WB_SYNC_ALL)
3816 tag_pages_for_writeback(mapping, index, end);
3817 while (!done && !nr_to_write_done && (index <= end) &&
3818 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3819 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3820 unsigned i;
3821
3822 scanned = 1;
3823 for (i = 0; i < nr_pages; i++) {
3824 struct page *page = pvec.pages[i];
3825
3826 if (!PagePrivate(page))
3827 continue;
3828
3829 if (!wbc->range_cyclic && page->index > end) {
3830 done = 1;
3831 break;
3832 }
3833
b5bae261
JB
3834 spin_lock(&mapping->private_lock);
3835 if (!PagePrivate(page)) {
3836 spin_unlock(&mapping->private_lock);
3837 continue;
3838 }
3839
0b32f4bb 3840 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3841
3842 /*
3843 * Shouldn't happen and normally this would be a BUG_ON
3844 * but no sense in crashing the users box for something
3845 * we can survive anyway.
3846 */
fae7f21c 3847 if (WARN_ON(!eb)) {
b5bae261 3848 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3849 continue;
3850 }
3851
b5bae261
JB
3852 if (eb == prev_eb) {
3853 spin_unlock(&mapping->private_lock);
0b32f4bb 3854 continue;
b5bae261 3855 }
0b32f4bb 3856
b5bae261
JB
3857 ret = atomic_inc_not_zero(&eb->refs);
3858 spin_unlock(&mapping->private_lock);
3859 if (!ret)
0b32f4bb 3860 continue;
0b32f4bb
JB
3861
3862 prev_eb = eb;
3863 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3864 if (!ret) {
3865 free_extent_buffer(eb);
3866 continue;
3867 }
3868
3869 ret = write_one_eb(eb, fs_info, wbc, &epd);
3870 if (ret) {
3871 done = 1;
3872 free_extent_buffer(eb);
3873 break;
3874 }
3875 free_extent_buffer(eb);
3876
3877 /*
3878 * the filesystem may choose to bump up nr_to_write.
3879 * We have to make sure to honor the new nr_to_write
3880 * at any time
3881 */
3882 nr_to_write_done = wbc->nr_to_write <= 0;
3883 }
3884 pagevec_release(&pvec);
3885 cond_resched();
3886 }
3887 if (!scanned && !done) {
3888 /*
3889 * We hit the last page and there is more work to be done: wrap
3890 * back to the start of the file
3891 */
3892 scanned = 1;
3893 index = 0;
3894 goto retry;
3895 }
3896 flush_write_bio(&epd);
3897 return ret;
3898}
3899
d1310b2e 3900/**
4bef0848 3901 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3902 * @mapping: address space structure to write
3903 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3904 * @writepage: function called for each page
3905 * @data: data passed to writepage function
3906 *
3907 * If a page is already under I/O, write_cache_pages() skips it, even
3908 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3909 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3910 * and msync() need to guarantee that all the data which was dirty at the time
3911 * the call was made get new I/O started against them. If wbc->sync_mode is
3912 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3913 * existing IO to complete.
3914 */
4242b64a 3915static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3916 struct writeback_control *wbc,
d2c3f4f6
CM
3917 writepage_t writepage, void *data,
3918 void (*flush_fn)(void *))
d1310b2e 3919{
7fd1a3f7 3920 struct inode *inode = mapping->host;
d1310b2e
CM
3921 int ret = 0;
3922 int done = 0;
f85d7d6c 3923 int nr_to_write_done = 0;
d1310b2e
CM
3924 struct pagevec pvec;
3925 int nr_pages;
3926 pgoff_t index;
3927 pgoff_t end; /* Inclusive */
a9132667
LB
3928 pgoff_t done_index;
3929 int range_whole = 0;
d1310b2e 3930 int scanned = 0;
f7aaa06b 3931 int tag;
d1310b2e 3932
7fd1a3f7
JB
3933 /*
3934 * We have to hold onto the inode so that ordered extents can do their
3935 * work when the IO finishes. The alternative to this is failing to add
3936 * an ordered extent if the igrab() fails there and that is a huge pain
3937 * to deal with, so instead just hold onto the inode throughout the
3938 * writepages operation. If it fails here we are freeing up the inode
3939 * anyway and we'd rather not waste our time writing out stuff that is
3940 * going to be truncated anyway.
3941 */
3942 if (!igrab(inode))
3943 return 0;
3944
d1310b2e
CM
3945 pagevec_init(&pvec, 0);
3946 if (wbc->range_cyclic) {
3947 index = mapping->writeback_index; /* Start from prev offset */
3948 end = -1;
3949 } else {
09cbfeaf
KS
3950 index = wbc->range_start >> PAGE_SHIFT;
3951 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3952 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3953 range_whole = 1;
d1310b2e
CM
3954 scanned = 1;
3955 }
f7aaa06b
JB
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag = PAGECACHE_TAG_TOWRITE;
3958 else
3959 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3960retry:
f7aaa06b
JB
3961 if (wbc->sync_mode == WB_SYNC_ALL)
3962 tag_pages_for_writeback(mapping, index, end);
a9132667 3963 done_index = index;
f85d7d6c 3964 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3965 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3966 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3967 unsigned i;
3968
3969 scanned = 1;
3970 for (i = 0; i < nr_pages; i++) {
3971 struct page *page = pvec.pages[i];
3972
a9132667 3973 done_index = page->index;
d1310b2e
CM
3974 /*
3975 * At this point we hold neither mapping->tree_lock nor
3976 * lock on the page itself: the page may be truncated or
3977 * invalidated (changing page->mapping to NULL), or even
3978 * swizzled back from swapper_space to tmpfs file
3979 * mapping
3980 */
c8f2f24b
JB
3981 if (!trylock_page(page)) {
3982 flush_fn(data);
3983 lock_page(page);
01d658f2 3984 }
d1310b2e
CM
3985
3986 if (unlikely(page->mapping != mapping)) {
3987 unlock_page(page);
3988 continue;
3989 }
3990
3991 if (!wbc->range_cyclic && page->index > end) {
3992 done = 1;
3993 unlock_page(page);
3994 continue;
3995 }
3996
d2c3f4f6 3997 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3998 if (PageWriteback(page))
3999 flush_fn(data);
d1310b2e 4000 wait_on_page_writeback(page);
d2c3f4f6 4001 }
d1310b2e
CM
4002
4003 if (PageWriteback(page) ||
4004 !clear_page_dirty_for_io(page)) {
4005 unlock_page(page);
4006 continue;
4007 }
4008
4009 ret = (*writepage)(page, wbc, data);
4010
4011 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4012 unlock_page(page);
4013 ret = 0;
4014 }
a9132667
LB
4015 if (ret < 0) {
4016 /*
4017 * done_index is set past this page,
4018 * so media errors will not choke
4019 * background writeout for the entire
4020 * file. This has consequences for
4021 * range_cyclic semantics (ie. it may
4022 * not be suitable for data integrity
4023 * writeout).
4024 */
4025 done_index = page->index + 1;
4026 done = 1;
4027 break;
4028 }
f85d7d6c
CM
4029
4030 /*
4031 * the filesystem may choose to bump up nr_to_write.
4032 * We have to make sure to honor the new nr_to_write
4033 * at any time
4034 */
4035 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4036 }
4037 pagevec_release(&pvec);
4038 cond_resched();
4039 }
894b36e3 4040 if (!scanned && !done) {
d1310b2e
CM
4041 /*
4042 * We hit the last page and there is more work to be done: wrap
4043 * back to the start of the file
4044 */
4045 scanned = 1;
4046 index = 0;
4047 goto retry;
4048 }
a9132667
LB
4049
4050 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4051 mapping->writeback_index = done_index;
4052
7fd1a3f7 4053 btrfs_add_delayed_iput(inode);
894b36e3 4054 return ret;
d1310b2e 4055}
d1310b2e 4056
ffbd517d 4057static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4058{
d2c3f4f6 4059 if (epd->bio) {
355808c2
JM
4060 int ret;
4061
1f7ad75b 4062 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4063 epd->sync_io ? REQ_SYNC : 0);
355808c2 4064
1f7ad75b 4065 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4066 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4067 epd->bio = NULL;
4068 }
4069}
4070
ffbd517d
CM
4071static noinline void flush_write_bio(void *data)
4072{
4073 struct extent_page_data *epd = data;
4074 flush_epd_write_bio(epd);
4075}
4076
d1310b2e
CM
4077int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4078 get_extent_t *get_extent,
4079 struct writeback_control *wbc)
4080{
4081 int ret;
d1310b2e
CM
4082 struct extent_page_data epd = {
4083 .bio = NULL,
4084 .tree = tree,
4085 .get_extent = get_extent,
771ed689 4086 .extent_locked = 0,
ffbd517d 4087 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4088 .bio_flags = 0,
d1310b2e 4089 };
d1310b2e 4090
d1310b2e
CM
4091 ret = __extent_writepage(page, wbc, &epd);
4092
ffbd517d 4093 flush_epd_write_bio(&epd);
d1310b2e
CM
4094 return ret;
4095}
d1310b2e 4096
771ed689
CM
4097int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4098 u64 start, u64 end, get_extent_t *get_extent,
4099 int mode)
4100{
4101 int ret = 0;
4102 struct address_space *mapping = inode->i_mapping;
4103 struct page *page;
09cbfeaf
KS
4104 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105 PAGE_SHIFT;
771ed689
CM
4106
4107 struct extent_page_data epd = {
4108 .bio = NULL,
4109 .tree = tree,
4110 .get_extent = get_extent,
4111 .extent_locked = 1,
ffbd517d 4112 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4113 .bio_flags = 0,
771ed689
CM
4114 };
4115 struct writeback_control wbc_writepages = {
771ed689 4116 .sync_mode = mode,
771ed689
CM
4117 .nr_to_write = nr_pages * 2,
4118 .range_start = start,
4119 .range_end = end + 1,
4120 };
4121
d397712b 4122 while (start <= end) {
09cbfeaf 4123 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4124 if (clear_page_dirty_for_io(page))
4125 ret = __extent_writepage(page, &wbc_writepages, &epd);
4126 else {
4127 if (tree->ops && tree->ops->writepage_end_io_hook)
4128 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4129 start + PAGE_SIZE - 1,
771ed689
CM
4130 NULL, 1);
4131 unlock_page(page);
4132 }
09cbfeaf
KS
4133 put_page(page);
4134 start += PAGE_SIZE;
771ed689
CM
4135 }
4136
ffbd517d 4137 flush_epd_write_bio(&epd);
771ed689
CM
4138 return ret;
4139}
d1310b2e
CM
4140
4141int extent_writepages(struct extent_io_tree *tree,
4142 struct address_space *mapping,
4143 get_extent_t *get_extent,
4144 struct writeback_control *wbc)
4145{
4146 int ret = 0;
4147 struct extent_page_data epd = {
4148 .bio = NULL,
4149 .tree = tree,
4150 .get_extent = get_extent,
771ed689 4151 .extent_locked = 0,
ffbd517d 4152 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4153 .bio_flags = 0,
d1310b2e
CM
4154 };
4155
4242b64a 4156 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4157 flush_write_bio);
ffbd517d 4158 flush_epd_write_bio(&epd);
d1310b2e
CM
4159 return ret;
4160}
d1310b2e
CM
4161
4162int extent_readpages(struct extent_io_tree *tree,
4163 struct address_space *mapping,
4164 struct list_head *pages, unsigned nr_pages,
4165 get_extent_t get_extent)
4166{
4167 struct bio *bio = NULL;
4168 unsigned page_idx;
c8b97818 4169 unsigned long bio_flags = 0;
67c9684f
LB
4170 struct page *pagepool[16];
4171 struct page *page;
125bac01 4172 struct extent_map *em_cached = NULL;
67c9684f 4173 int nr = 0;
808f80b4 4174 u64 prev_em_start = (u64)-1;
d1310b2e 4175
d1310b2e 4176 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4177 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4178
4179 prefetchw(&page->flags);
4180 list_del(&page->lru);
67c9684f 4181 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4182 page->index,
4183 readahead_gfp_mask(mapping))) {
09cbfeaf 4184 put_page(page);
67c9684f 4185 continue;
d1310b2e 4186 }
67c9684f
LB
4187
4188 pagepool[nr++] = page;
4189 if (nr < ARRAY_SIZE(pagepool))
4190 continue;
125bac01 4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4192 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4193 nr = 0;
d1310b2e 4194 }
9974090b 4195 if (nr)
125bac01 4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4197 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4198
125bac01
MX
4199 if (em_cached)
4200 free_extent_map(em_cached);
4201
d1310b2e
CM
4202 BUG_ON(!list_empty(pages));
4203 if (bio)
1f7ad75b 4204 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4205 return 0;
4206}
d1310b2e
CM
4207
4208/*
4209 * basic invalidatepage code, this waits on any locked or writeback
4210 * ranges corresponding to the page, and then deletes any extent state
4211 * records from the tree
4212 */
4213int extent_invalidatepage(struct extent_io_tree *tree,
4214 struct page *page, unsigned long offset)
4215{
2ac55d41 4216 struct extent_state *cached_state = NULL;
4eee4fa4 4217 u64 start = page_offset(page);
09cbfeaf 4218 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220
fda2832f 4221 start += ALIGN(offset, blocksize);
d1310b2e
CM
4222 if (start > end)
4223 return 0;
4224
ff13db41 4225 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4226 wait_on_page_writeback(page);
d1310b2e 4227 clear_extent_bit(tree, start, end,
32c00aff
JB
4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229 EXTENT_DO_ACCOUNTING,
2ac55d41 4230 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4231 return 0;
4232}
d1310b2e 4233
7b13b7b1
CM
4234/*
4235 * a helper for releasepage, this tests for areas of the page that
4236 * are locked or under IO and drops the related state bits if it is safe
4237 * to drop the page.
4238 */
48a3b636
ES
4239static int try_release_extent_state(struct extent_map_tree *map,
4240 struct extent_io_tree *tree,
4241 struct page *page, gfp_t mask)
7b13b7b1 4242{
4eee4fa4 4243 u64 start = page_offset(page);
09cbfeaf 4244 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4245 int ret = 1;
4246
211f90e6 4247 if (test_range_bit(tree, start, end,
8b62b72b 4248 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4249 ret = 0;
4250 else {
11ef160f
CM
4251 /*
4252 * at this point we can safely clear everything except the
4253 * locked bit and the nodatasum bit
4254 */
e3f24cc5 4255 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4256 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4257 0, 0, NULL, mask);
e3f24cc5
CM
4258
4259 /* if clear_extent_bit failed for enomem reasons,
4260 * we can't allow the release to continue.
4261 */
4262 if (ret < 0)
4263 ret = 0;
4264 else
4265 ret = 1;
7b13b7b1
CM
4266 }
4267 return ret;
4268}
7b13b7b1 4269
d1310b2e
CM
4270/*
4271 * a helper for releasepage. As long as there are no locked extents
4272 * in the range corresponding to the page, both state records and extent
4273 * map records are removed
4274 */
4275int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4276 struct extent_io_tree *tree, struct page *page,
4277 gfp_t mask)
d1310b2e
CM
4278{
4279 struct extent_map *em;
4eee4fa4 4280 u64 start = page_offset(page);
09cbfeaf 4281 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4282
d0164adc 4283 if (gfpflags_allow_blocking(mask) &&
ee22184b 4284 page->mapping->host->i_size > SZ_16M) {
39b5637f 4285 u64 len;
70dec807 4286 while (start <= end) {
39b5637f 4287 len = end - start + 1;
890871be 4288 write_lock(&map->lock);
39b5637f 4289 em = lookup_extent_mapping(map, start, len);
285190d9 4290 if (!em) {
890871be 4291 write_unlock(&map->lock);
70dec807
CM
4292 break;
4293 }
7f3c74fb
CM
4294 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4295 em->start != start) {
890871be 4296 write_unlock(&map->lock);
70dec807
CM
4297 free_extent_map(em);
4298 break;
4299 }
4300 if (!test_range_bit(tree, em->start,
4301 extent_map_end(em) - 1,
8b62b72b 4302 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4303 0, NULL)) {
70dec807
CM
4304 remove_extent_mapping(map, em);
4305 /* once for the rb tree */
4306 free_extent_map(em);
4307 }
4308 start = extent_map_end(em);
890871be 4309 write_unlock(&map->lock);
70dec807
CM
4310
4311 /* once for us */
d1310b2e
CM
4312 free_extent_map(em);
4313 }
d1310b2e 4314 }
7b13b7b1 4315 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4316}
d1310b2e 4317
ec29ed5b
CM
4318/*
4319 * helper function for fiemap, which doesn't want to see any holes.
4320 * This maps until we find something past 'last'
4321 */
4322static struct extent_map *get_extent_skip_holes(struct inode *inode,
4323 u64 offset,
4324 u64 last,
4325 get_extent_t *get_extent)
4326{
da17066c 4327 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4328 struct extent_map *em;
4329 u64 len;
4330
4331 if (offset >= last)
4332 return NULL;
4333
67871254 4334 while (1) {
ec29ed5b
CM
4335 len = last - offset;
4336 if (len == 0)
4337 break;
fda2832f 4338 len = ALIGN(len, sectorsize);
fc4f21b1 4339 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4340 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4341 return em;
4342
4343 /* if this isn't a hole return it */
4344 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4345 em->block_start != EXTENT_MAP_HOLE) {
4346 return em;
4347 }
4348
4349 /* this is a hole, advance to the next extent */
4350 offset = extent_map_end(em);
4351 free_extent_map(em);
4352 if (offset >= last)
4353 break;
4354 }
4355 return NULL;
4356}
4357
4751832d
QW
4358/*
4359 * To cache previous fiemap extent
4360 *
4361 * Will be used for merging fiemap extent
4362 */
4363struct fiemap_cache {
4364 u64 offset;
4365 u64 phys;
4366 u64 len;
4367 u32 flags;
4368 bool cached;
4369};
4370
4371/*
4372 * Helper to submit fiemap extent.
4373 *
4374 * Will try to merge current fiemap extent specified by @offset, @phys,
4375 * @len and @flags with cached one.
4376 * And only when we fails to merge, cached one will be submitted as
4377 * fiemap extent.
4378 *
4379 * Return value is the same as fiemap_fill_next_extent().
4380 */
4381static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4382 struct fiemap_cache *cache,
4383 u64 offset, u64 phys, u64 len, u32 flags)
4384{
4385 int ret = 0;
4386
4387 if (!cache->cached)
4388 goto assign;
4389
4390 /*
4391 * Sanity check, extent_fiemap() should have ensured that new
4392 * fiemap extent won't overlap with cahced one.
4393 * Not recoverable.
4394 *
4395 * NOTE: Physical address can overlap, due to compression
4396 */
4397 if (cache->offset + cache->len > offset) {
4398 WARN_ON(1);
4399 return -EINVAL;
4400 }
4401
4402 /*
4403 * Only merges fiemap extents if
4404 * 1) Their logical addresses are continuous
4405 *
4406 * 2) Their physical addresses are continuous
4407 * So truly compressed (physical size smaller than logical size)
4408 * extents won't get merged with each other
4409 *
4410 * 3) Share same flags except FIEMAP_EXTENT_LAST
4411 * So regular extent won't get merged with prealloc extent
4412 */
4413 if (cache->offset + cache->len == offset &&
4414 cache->phys + cache->len == phys &&
4415 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4416 (flags & ~FIEMAP_EXTENT_LAST)) {
4417 cache->len += len;
4418 cache->flags |= flags;
4419 goto try_submit_last;
4420 }
4421
4422 /* Not mergeable, need to submit cached one */
4423 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4424 cache->len, cache->flags);
4425 cache->cached = false;
4426 if (ret)
4427 return ret;
4428assign:
4429 cache->cached = true;
4430 cache->offset = offset;
4431 cache->phys = phys;
4432 cache->len = len;
4433 cache->flags = flags;
4434try_submit_last:
4435 if (cache->flags & FIEMAP_EXTENT_LAST) {
4436 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4437 cache->phys, cache->len, cache->flags);
4438 cache->cached = false;
4439 }
4440 return ret;
4441}
4442
4443/*
4444 * Sanity check for fiemap cache
4445 *
4446 * All fiemap cache should be submitted by emit_fiemap_extent()
4447 * Iteration should be terminated either by last fiemap extent or
4448 * fieinfo->fi_extents_max.
4449 * So no cached fiemap should exist.
4450 */
4451static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4452 struct fiemap_extent_info *fieinfo,
4453 struct fiemap_cache *cache)
4454{
4455 int ret;
4456
4457 if (!cache->cached)
4458 return 0;
4459
4460 /* Small and recoverbale problem, only to info developer */
4461#ifdef CONFIG_BTRFS_DEBUG
4462 WARN_ON(1);
4463#endif
4464 btrfs_warn(fs_info,
4465 "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4466 cache->offset, cache->phys, cache->len, cache->flags);
4467 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4468 cache->len, cache->flags);
4469 cache->cached = false;
4470 if (ret > 0)
4471 ret = 0;
4472 return ret;
4473}
4474
1506fcc8
YS
4475int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4476 __u64 start, __u64 len, get_extent_t *get_extent)
4477{
975f84fe 4478 int ret = 0;
1506fcc8
YS
4479 u64 off = start;
4480 u64 max = start + len;
4481 u32 flags = 0;
975f84fe
JB
4482 u32 found_type;
4483 u64 last;
ec29ed5b 4484 u64 last_for_get_extent = 0;
1506fcc8 4485 u64 disko = 0;
ec29ed5b 4486 u64 isize = i_size_read(inode);
975f84fe 4487 struct btrfs_key found_key;
1506fcc8 4488 struct extent_map *em = NULL;
2ac55d41 4489 struct extent_state *cached_state = NULL;
975f84fe 4490 struct btrfs_path *path;
dc046b10 4491 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4492 struct fiemap_cache cache = { 0 };
1506fcc8 4493 int end = 0;
ec29ed5b
CM
4494 u64 em_start = 0;
4495 u64 em_len = 0;
4496 u64 em_end = 0;
1506fcc8
YS
4497
4498 if (len == 0)
4499 return -EINVAL;
4500
975f84fe
JB
4501 path = btrfs_alloc_path();
4502 if (!path)
4503 return -ENOMEM;
4504 path->leave_spinning = 1;
4505
da17066c
JM
4506 start = round_down(start, btrfs_inode_sectorsize(inode));
4507 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4508
ec29ed5b
CM
4509 /*
4510 * lookup the last file extent. We're not using i_size here
4511 * because there might be preallocation past i_size
4512 */
f85b7379
DS
4513 ret = btrfs_lookup_file_extent(NULL, root, path,
4514 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4515 if (ret < 0) {
4516 btrfs_free_path(path);
4517 return ret;
2d324f59
LB
4518 } else {
4519 WARN_ON(!ret);
4520 if (ret == 1)
4521 ret = 0;
975f84fe 4522 }
2d324f59 4523
975f84fe 4524 path->slots[0]--;
975f84fe 4525 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4526 found_type = found_key.type;
975f84fe 4527
ec29ed5b 4528 /* No extents, but there might be delalloc bits */
4a0cc7ca 4529 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4530 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4531 /* have to trust i_size as the end */
4532 last = (u64)-1;
4533 last_for_get_extent = isize;
4534 } else {
4535 /*
4536 * remember the start of the last extent. There are a
4537 * bunch of different factors that go into the length of the
4538 * extent, so its much less complex to remember where it started
4539 */
4540 last = found_key.offset;
4541 last_for_get_extent = last + 1;
975f84fe 4542 }
fe09e16c 4543 btrfs_release_path(path);
975f84fe 4544
ec29ed5b
CM
4545 /*
4546 * we might have some extents allocated but more delalloc past those
4547 * extents. so, we trust isize unless the start of the last extent is
4548 * beyond isize
4549 */
4550 if (last < isize) {
4551 last = (u64)-1;
4552 last_for_get_extent = isize;
4553 }
4554
ff13db41 4555 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4556 &cached_state);
ec29ed5b 4557
4d479cf0 4558 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4559 get_extent);
1506fcc8
YS
4560 if (!em)
4561 goto out;
4562 if (IS_ERR(em)) {
4563 ret = PTR_ERR(em);
4564 goto out;
4565 }
975f84fe 4566
1506fcc8 4567 while (!end) {
b76bb701 4568 u64 offset_in_extent = 0;
ea8efc74
CM
4569
4570 /* break if the extent we found is outside the range */
4571 if (em->start >= max || extent_map_end(em) < off)
4572 break;
4573
4574 /*
4575 * get_extent may return an extent that starts before our
4576 * requested range. We have to make sure the ranges
4577 * we return to fiemap always move forward and don't
4578 * overlap, so adjust the offsets here
4579 */
4580 em_start = max(em->start, off);
1506fcc8 4581
ea8efc74
CM
4582 /*
4583 * record the offset from the start of the extent
b76bb701
JB
4584 * for adjusting the disk offset below. Only do this if the
4585 * extent isn't compressed since our in ram offset may be past
4586 * what we have actually allocated on disk.
ea8efc74 4587 */
b76bb701
JB
4588 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4589 offset_in_extent = em_start - em->start;
ec29ed5b 4590 em_end = extent_map_end(em);
ea8efc74 4591 em_len = em_end - em_start;
1506fcc8
YS
4592 disko = 0;
4593 flags = 0;
4594
ea8efc74
CM
4595 /*
4596 * bump off for our next call to get_extent
4597 */
4598 off = extent_map_end(em);
4599 if (off >= max)
4600 end = 1;
4601
93dbfad7 4602 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4603 end = 1;
4604 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4605 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4606 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4607 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4608 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4609 flags |= (FIEMAP_EXTENT_DELALLOC |
4610 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4611 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4612 struct btrfs_trans_handle *trans;
4613
dc046b10
JB
4614 u64 bytenr = em->block_start -
4615 (em->start - em->orig_start);
fe09e16c 4616
ea8efc74 4617 disko = em->block_start + offset_in_extent;
fe09e16c 4618
afce772e
LF
4619 /*
4620 * We need a trans handle to get delayed refs
4621 */
4622 trans = btrfs_join_transaction(root);
4623 /*
4624 * It's OK if we can't start a trans we can still check
4625 * from commit_root
4626 */
4627 if (IS_ERR(trans))
4628 trans = NULL;
4629
fe09e16c
LB
4630 /*
4631 * As btrfs supports shared space, this information
4632 * can be exported to userspace tools via
dc046b10
JB
4633 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4634 * then we're just getting a count and we can skip the
4635 * lookup stuff.
fe09e16c 4636 */
afce772e 4637 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4638 root->objectid,
4639 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4640 if (trans)
3a45bb20 4641 btrfs_end_transaction(trans);
dc046b10 4642 if (ret < 0)
fe09e16c 4643 goto out_free;
dc046b10 4644 if (ret)
fe09e16c 4645 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4646 ret = 0;
1506fcc8
YS
4647 }
4648 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4649 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4650 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4651 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4652
1506fcc8
YS
4653 free_extent_map(em);
4654 em = NULL;
ec29ed5b
CM
4655 if ((em_start >= last) || em_len == (u64)-1 ||
4656 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4657 flags |= FIEMAP_EXTENT_LAST;
4658 end = 1;
4659 }
4660
ec29ed5b
CM
4661 /* now scan forward to see if this is really the last extent. */
4662 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4663 get_extent);
4664 if (IS_ERR(em)) {
4665 ret = PTR_ERR(em);
4666 goto out;
4667 }
4668 if (!em) {
975f84fe
JB
4669 flags |= FIEMAP_EXTENT_LAST;
4670 end = 1;
4671 }
4751832d
QW
4672 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4673 em_len, flags);
26e726af
CS
4674 if (ret) {
4675 if (ret == 1)
4676 ret = 0;
ec29ed5b 4677 goto out_free;
26e726af 4678 }
1506fcc8
YS
4679 }
4680out_free:
4751832d
QW
4681 if (!ret)
4682 ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4683 free_extent_map(em);
4684out:
fe09e16c 4685 btrfs_free_path(path);
a52f4cd2 4686 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4687 &cached_state, GFP_NOFS);
1506fcc8
YS
4688 return ret;
4689}
4690
727011e0
CM
4691static void __free_extent_buffer(struct extent_buffer *eb)
4692{
6d49ba1b 4693 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4694 kmem_cache_free(extent_buffer_cache, eb);
4695}
4696
a26e8c9f 4697int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4698{
4699 return (atomic_read(&eb->io_pages) ||
4700 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4701 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4702}
4703
4704/*
4705 * Helper for releasing extent buffer page.
4706 */
a50924e3 4707static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4708{
4709 unsigned long index;
db7f3436
JB
4710 struct page *page;
4711 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4712
4713 BUG_ON(extent_buffer_under_io(eb));
4714
a50924e3
DS
4715 index = num_extent_pages(eb->start, eb->len);
4716 if (index == 0)
db7f3436
JB
4717 return;
4718
4719 do {
4720 index--;
fb85fc9a 4721 page = eb->pages[index];
5d2361db
FL
4722 if (!page)
4723 continue;
4724 if (mapped)
db7f3436 4725 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4726 /*
4727 * We do this since we'll remove the pages after we've
4728 * removed the eb from the radix tree, so we could race
4729 * and have this page now attached to the new eb. So
4730 * only clear page_private if it's still connected to
4731 * this eb.
4732 */
4733 if (PagePrivate(page) &&
4734 page->private == (unsigned long)eb) {
4735 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4736 BUG_ON(PageDirty(page));
4737 BUG_ON(PageWriteback(page));
db7f3436 4738 /*
5d2361db
FL
4739 * We need to make sure we haven't be attached
4740 * to a new eb.
db7f3436 4741 */
5d2361db
FL
4742 ClearPagePrivate(page);
4743 set_page_private(page, 0);
4744 /* One for the page private */
09cbfeaf 4745 put_page(page);
db7f3436 4746 }
5d2361db
FL
4747
4748 if (mapped)
4749 spin_unlock(&page->mapping->private_lock);
4750
01327610 4751 /* One for when we allocated the page */
09cbfeaf 4752 put_page(page);
a50924e3 4753 } while (index != 0);
db7f3436
JB
4754}
4755
4756/*
4757 * Helper for releasing the extent buffer.
4758 */
4759static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4760{
a50924e3 4761 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4762 __free_extent_buffer(eb);
4763}
4764
f28491e0
JB
4765static struct extent_buffer *
4766__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4767 unsigned long len)
d1310b2e
CM
4768{
4769 struct extent_buffer *eb = NULL;
4770
d1b5c567 4771 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4772 eb->start = start;
4773 eb->len = len;
f28491e0 4774 eb->fs_info = fs_info;
815a51c7 4775 eb->bflags = 0;
bd681513
CM
4776 rwlock_init(&eb->lock);
4777 atomic_set(&eb->write_locks, 0);
4778 atomic_set(&eb->read_locks, 0);
4779 atomic_set(&eb->blocking_readers, 0);
4780 atomic_set(&eb->blocking_writers, 0);
4781 atomic_set(&eb->spinning_readers, 0);
4782 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4783 eb->lock_nested = 0;
bd681513
CM
4784 init_waitqueue_head(&eb->write_lock_wq);
4785 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4786
6d49ba1b
ES
4787 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4788
3083ee2e 4789 spin_lock_init(&eb->refs_lock);
d1310b2e 4790 atomic_set(&eb->refs, 1);
0b32f4bb 4791 atomic_set(&eb->io_pages, 0);
727011e0 4792
b8dae313
DS
4793 /*
4794 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4795 */
4796 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4797 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4798 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4799
4800 return eb;
4801}
4802
815a51c7
JS
4803struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4804{
4805 unsigned long i;
4806 struct page *p;
4807 struct extent_buffer *new;
4808 unsigned long num_pages = num_extent_pages(src->start, src->len);
4809
3f556f78 4810 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4811 if (new == NULL)
4812 return NULL;
4813
4814 for (i = 0; i < num_pages; i++) {
9ec72677 4815 p = alloc_page(GFP_NOFS);
db7f3436
JB
4816 if (!p) {
4817 btrfs_release_extent_buffer(new);
4818 return NULL;
4819 }
815a51c7
JS
4820 attach_extent_buffer_page(new, p);
4821 WARN_ON(PageDirty(p));
4822 SetPageUptodate(p);
4823 new->pages[i] = p;
fba1acf9 4824 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4825 }
4826
815a51c7
JS
4827 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4828 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4829
4830 return new;
4831}
4832
0f331229
OS
4833struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4834 u64 start, unsigned long len)
815a51c7
JS
4835{
4836 struct extent_buffer *eb;
3f556f78 4837 unsigned long num_pages;
815a51c7
JS
4838 unsigned long i;
4839
0f331229 4840 num_pages = num_extent_pages(start, len);
3f556f78
DS
4841
4842 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4843 if (!eb)
4844 return NULL;
4845
4846 for (i = 0; i < num_pages; i++) {
9ec72677 4847 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4848 if (!eb->pages[i])
4849 goto err;
4850 }
4851 set_extent_buffer_uptodate(eb);
4852 btrfs_set_header_nritems(eb, 0);
4853 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4854
4855 return eb;
4856err:
84167d19
SB
4857 for (; i > 0; i--)
4858 __free_page(eb->pages[i - 1]);
815a51c7
JS
4859 __free_extent_buffer(eb);
4860 return NULL;
4861}
4862
0f331229 4863struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4864 u64 start)
0f331229 4865{
da17066c 4866 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4867}
4868
0b32f4bb
JB
4869static void check_buffer_tree_ref(struct extent_buffer *eb)
4870{
242e18c7 4871 int refs;
0b32f4bb
JB
4872 /* the ref bit is tricky. We have to make sure it is set
4873 * if we have the buffer dirty. Otherwise the
4874 * code to free a buffer can end up dropping a dirty
4875 * page
4876 *
4877 * Once the ref bit is set, it won't go away while the
4878 * buffer is dirty or in writeback, and it also won't
4879 * go away while we have the reference count on the
4880 * eb bumped.
4881 *
4882 * We can't just set the ref bit without bumping the
4883 * ref on the eb because free_extent_buffer might
4884 * see the ref bit and try to clear it. If this happens
4885 * free_extent_buffer might end up dropping our original
4886 * ref by mistake and freeing the page before we are able
4887 * to add one more ref.
4888 *
4889 * So bump the ref count first, then set the bit. If someone
4890 * beat us to it, drop the ref we added.
4891 */
242e18c7
CM
4892 refs = atomic_read(&eb->refs);
4893 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4894 return;
4895
594831c4
JB
4896 spin_lock(&eb->refs_lock);
4897 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4898 atomic_inc(&eb->refs);
594831c4 4899 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4900}
4901
2457aec6
MG
4902static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4903 struct page *accessed)
5df4235e
JB
4904{
4905 unsigned long num_pages, i;
4906
0b32f4bb
JB
4907 check_buffer_tree_ref(eb);
4908
5df4235e
JB
4909 num_pages = num_extent_pages(eb->start, eb->len);
4910 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4911 struct page *p = eb->pages[i];
4912
2457aec6
MG
4913 if (p != accessed)
4914 mark_page_accessed(p);
5df4235e
JB
4915 }
4916}
4917
f28491e0
JB
4918struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4919 u64 start)
452c75c3
CS
4920{
4921 struct extent_buffer *eb;
4922
4923 rcu_read_lock();
f28491e0 4924 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4925 start >> PAGE_SHIFT);
452c75c3
CS
4926 if (eb && atomic_inc_not_zero(&eb->refs)) {
4927 rcu_read_unlock();
062c19e9
FM
4928 /*
4929 * Lock our eb's refs_lock to avoid races with
4930 * free_extent_buffer. When we get our eb it might be flagged
4931 * with EXTENT_BUFFER_STALE and another task running
4932 * free_extent_buffer might have seen that flag set,
4933 * eb->refs == 2, that the buffer isn't under IO (dirty and
4934 * writeback flags not set) and it's still in the tree (flag
4935 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4936 * of decrementing the extent buffer's reference count twice.
4937 * So here we could race and increment the eb's reference count,
4938 * clear its stale flag, mark it as dirty and drop our reference
4939 * before the other task finishes executing free_extent_buffer,
4940 * which would later result in an attempt to free an extent
4941 * buffer that is dirty.
4942 */
4943 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4944 spin_lock(&eb->refs_lock);
4945 spin_unlock(&eb->refs_lock);
4946 }
2457aec6 4947 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4948 return eb;
4949 }
4950 rcu_read_unlock();
4951
4952 return NULL;
4953}
4954
faa2dbf0
JB
4955#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4956struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4957 u64 start)
faa2dbf0
JB
4958{
4959 struct extent_buffer *eb, *exists = NULL;
4960 int ret;
4961
4962 eb = find_extent_buffer(fs_info, start);
4963 if (eb)
4964 return eb;
da17066c 4965 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4966 if (!eb)
4967 return NULL;
4968 eb->fs_info = fs_info;
4969again:
e1860a77 4970 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4971 if (ret)
4972 goto free_eb;
4973 spin_lock(&fs_info->buffer_lock);
4974 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4975 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4976 spin_unlock(&fs_info->buffer_lock);
4977 radix_tree_preload_end();
4978 if (ret == -EEXIST) {
4979 exists = find_extent_buffer(fs_info, start);
4980 if (exists)
4981 goto free_eb;
4982 else
4983 goto again;
4984 }
4985 check_buffer_tree_ref(eb);
4986 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4987
4988 /*
4989 * We will free dummy extent buffer's if they come into
4990 * free_extent_buffer with a ref count of 2, but if we are using this we
4991 * want the buffers to stay in memory until we're done with them, so
4992 * bump the ref count again.
4993 */
4994 atomic_inc(&eb->refs);
4995 return eb;
4996free_eb:
4997 btrfs_release_extent_buffer(eb);
4998 return exists;
4999}
5000#endif
5001
f28491e0 5002struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5003 u64 start)
d1310b2e 5004{
da17066c 5005 unsigned long len = fs_info->nodesize;
d1310b2e
CM
5006 unsigned long num_pages = num_extent_pages(start, len);
5007 unsigned long i;
09cbfeaf 5008 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5009 struct extent_buffer *eb;
6af118ce 5010 struct extent_buffer *exists = NULL;
d1310b2e 5011 struct page *p;
f28491e0 5012 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5013 int uptodate = 1;
19fe0a8b 5014 int ret;
d1310b2e 5015
da17066c 5016 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5017 btrfs_err(fs_info, "bad tree block start %llu", start);
5018 return ERR_PTR(-EINVAL);
5019 }
5020
f28491e0 5021 eb = find_extent_buffer(fs_info, start);
452c75c3 5022 if (eb)
6af118ce 5023 return eb;
6af118ce 5024
23d79d81 5025 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5026 if (!eb)
c871b0f2 5027 return ERR_PTR(-ENOMEM);
d1310b2e 5028
727011e0 5029 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5030 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5031 if (!p) {
5032 exists = ERR_PTR(-ENOMEM);
6af118ce 5033 goto free_eb;
c871b0f2 5034 }
4f2de97a
JB
5035
5036 spin_lock(&mapping->private_lock);
5037 if (PagePrivate(p)) {
5038 /*
5039 * We could have already allocated an eb for this page
5040 * and attached one so lets see if we can get a ref on
5041 * the existing eb, and if we can we know it's good and
5042 * we can just return that one, else we know we can just
5043 * overwrite page->private.
5044 */
5045 exists = (struct extent_buffer *)p->private;
5046 if (atomic_inc_not_zero(&exists->refs)) {
5047 spin_unlock(&mapping->private_lock);
5048 unlock_page(p);
09cbfeaf 5049 put_page(p);
2457aec6 5050 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5051 goto free_eb;
5052 }
5ca64f45 5053 exists = NULL;
4f2de97a 5054
0b32f4bb 5055 /*
4f2de97a
JB
5056 * Do this so attach doesn't complain and we need to
5057 * drop the ref the old guy had.
5058 */
5059 ClearPagePrivate(p);
0b32f4bb 5060 WARN_ON(PageDirty(p));
09cbfeaf 5061 put_page(p);
d1310b2e 5062 }
4f2de97a
JB
5063 attach_extent_buffer_page(eb, p);
5064 spin_unlock(&mapping->private_lock);
0b32f4bb 5065 WARN_ON(PageDirty(p));
727011e0 5066 eb->pages[i] = p;
d1310b2e
CM
5067 if (!PageUptodate(p))
5068 uptodate = 0;
eb14ab8e
CM
5069
5070 /*
5071 * see below about how we avoid a nasty race with release page
5072 * and why we unlock later
5073 */
d1310b2e
CM
5074 }
5075 if (uptodate)
b4ce94de 5076 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5077again:
e1860a77 5078 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5079 if (ret) {
5080 exists = ERR_PTR(ret);
19fe0a8b 5081 goto free_eb;
c871b0f2 5082 }
19fe0a8b 5083
f28491e0
JB
5084 spin_lock(&fs_info->buffer_lock);
5085 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5086 start >> PAGE_SHIFT, eb);
f28491e0 5087 spin_unlock(&fs_info->buffer_lock);
452c75c3 5088 radix_tree_preload_end();
19fe0a8b 5089 if (ret == -EEXIST) {
f28491e0 5090 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5091 if (exists)
5092 goto free_eb;
5093 else
115391d2 5094 goto again;
6af118ce 5095 }
6af118ce 5096 /* add one reference for the tree */
0b32f4bb 5097 check_buffer_tree_ref(eb);
34b41ace 5098 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5099
5100 /*
5101 * there is a race where release page may have
5102 * tried to find this extent buffer in the radix
5103 * but failed. It will tell the VM it is safe to
5104 * reclaim the, and it will clear the page private bit.
5105 * We must make sure to set the page private bit properly
5106 * after the extent buffer is in the radix tree so
5107 * it doesn't get lost
5108 */
727011e0
CM
5109 SetPageChecked(eb->pages[0]);
5110 for (i = 1; i < num_pages; i++) {
fb85fc9a 5111 p = eb->pages[i];
727011e0
CM
5112 ClearPageChecked(p);
5113 unlock_page(p);
5114 }
5115 unlock_page(eb->pages[0]);
d1310b2e
CM
5116 return eb;
5117
6af118ce 5118free_eb:
5ca64f45 5119 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5120 for (i = 0; i < num_pages; i++) {
5121 if (eb->pages[i])
5122 unlock_page(eb->pages[i]);
5123 }
eb14ab8e 5124
897ca6e9 5125 btrfs_release_extent_buffer(eb);
6af118ce 5126 return exists;
d1310b2e 5127}
d1310b2e 5128
3083ee2e
JB
5129static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5130{
5131 struct extent_buffer *eb =
5132 container_of(head, struct extent_buffer, rcu_head);
5133
5134 __free_extent_buffer(eb);
5135}
5136
3083ee2e 5137/* Expects to have eb->eb_lock already held */
f7a52a40 5138static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5139{
5140 WARN_ON(atomic_read(&eb->refs) == 0);
5141 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5142 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5143 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5144
815a51c7 5145 spin_unlock(&eb->refs_lock);
3083ee2e 5146
f28491e0
JB
5147 spin_lock(&fs_info->buffer_lock);
5148 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5149 eb->start >> PAGE_SHIFT);
f28491e0 5150 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5151 } else {
5152 spin_unlock(&eb->refs_lock);
815a51c7 5153 }
3083ee2e
JB
5154
5155 /* Should be safe to release our pages at this point */
a50924e3 5156 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5157#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5158 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5159 __free_extent_buffer(eb);
5160 return 1;
5161 }
5162#endif
3083ee2e 5163 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5164 return 1;
3083ee2e
JB
5165 }
5166 spin_unlock(&eb->refs_lock);
e64860aa
JB
5167
5168 return 0;
3083ee2e
JB
5169}
5170
d1310b2e
CM
5171void free_extent_buffer(struct extent_buffer *eb)
5172{
242e18c7
CM
5173 int refs;
5174 int old;
d1310b2e
CM
5175 if (!eb)
5176 return;
5177
242e18c7
CM
5178 while (1) {
5179 refs = atomic_read(&eb->refs);
5180 if (refs <= 3)
5181 break;
5182 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5183 if (old == refs)
5184 return;
5185 }
5186
3083ee2e 5187 spin_lock(&eb->refs_lock);
815a51c7
JS
5188 if (atomic_read(&eb->refs) == 2 &&
5189 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5190 atomic_dec(&eb->refs);
5191
3083ee2e
JB
5192 if (atomic_read(&eb->refs) == 2 &&
5193 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5194 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5195 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5196 atomic_dec(&eb->refs);
5197
5198 /*
5199 * I know this is terrible, but it's temporary until we stop tracking
5200 * the uptodate bits and such for the extent buffers.
5201 */
f7a52a40 5202 release_extent_buffer(eb);
3083ee2e
JB
5203}
5204
5205void free_extent_buffer_stale(struct extent_buffer *eb)
5206{
5207 if (!eb)
d1310b2e
CM
5208 return;
5209
3083ee2e
JB
5210 spin_lock(&eb->refs_lock);
5211 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5212
0b32f4bb 5213 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5214 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5215 atomic_dec(&eb->refs);
f7a52a40 5216 release_extent_buffer(eb);
d1310b2e 5217}
d1310b2e 5218
1d4284bd 5219void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5220{
d1310b2e
CM
5221 unsigned long i;
5222 unsigned long num_pages;
5223 struct page *page;
5224
d1310b2e
CM
5225 num_pages = num_extent_pages(eb->start, eb->len);
5226
5227 for (i = 0; i < num_pages; i++) {
fb85fc9a 5228 page = eb->pages[i];
b9473439 5229 if (!PageDirty(page))
d2c3f4f6
CM
5230 continue;
5231
a61e6f29 5232 lock_page(page);
eb14ab8e
CM
5233 WARN_ON(!PagePrivate(page));
5234
d1310b2e 5235 clear_page_dirty_for_io(page);
0ee0fda0 5236 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5237 if (!PageDirty(page)) {
5238 radix_tree_tag_clear(&page->mapping->page_tree,
5239 page_index(page),
5240 PAGECACHE_TAG_DIRTY);
5241 }
0ee0fda0 5242 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5243 ClearPageError(page);
a61e6f29 5244 unlock_page(page);
d1310b2e 5245 }
0b32f4bb 5246 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5247}
d1310b2e 5248
0b32f4bb 5249int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5250{
5251 unsigned long i;
5252 unsigned long num_pages;
b9473439 5253 int was_dirty = 0;
d1310b2e 5254
0b32f4bb
JB
5255 check_buffer_tree_ref(eb);
5256
b9473439 5257 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5258
d1310b2e 5259 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5260 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5261 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5262
b9473439 5263 for (i = 0; i < num_pages; i++)
fb85fc9a 5264 set_page_dirty(eb->pages[i]);
b9473439 5265 return was_dirty;
d1310b2e 5266}
d1310b2e 5267
69ba3927 5268void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5269{
5270 unsigned long i;
5271 struct page *page;
5272 unsigned long num_pages;
5273
b4ce94de 5274 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5275 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5276 for (i = 0; i < num_pages; i++) {
fb85fc9a 5277 page = eb->pages[i];
33958dc6
CM
5278 if (page)
5279 ClearPageUptodate(page);
1259ab75 5280 }
1259ab75
CM
5281}
5282
09c25a8c 5283void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5284{
5285 unsigned long i;
5286 struct page *page;
5287 unsigned long num_pages;
5288
0b32f4bb 5289 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5290 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5291 for (i = 0; i < num_pages; i++) {
fb85fc9a 5292 page = eb->pages[i];
d1310b2e
CM
5293 SetPageUptodate(page);
5294 }
d1310b2e 5295}
d1310b2e 5296
0b32f4bb 5297int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5298{
0b32f4bb 5299 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5300}
d1310b2e
CM
5301
5302int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5303 struct extent_buffer *eb, int wait,
f188591e 5304 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5305{
5306 unsigned long i;
d1310b2e
CM
5307 struct page *page;
5308 int err;
5309 int ret = 0;
ce9adaa5
CM
5310 int locked_pages = 0;
5311 int all_uptodate = 1;
d1310b2e 5312 unsigned long num_pages;
727011e0 5313 unsigned long num_reads = 0;
a86c12c7 5314 struct bio *bio = NULL;
c8b97818 5315 unsigned long bio_flags = 0;
a86c12c7 5316
b4ce94de 5317 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5318 return 0;
5319
d1310b2e 5320 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5321 for (i = 0; i < num_pages; i++) {
fb85fc9a 5322 page = eb->pages[i];
bb82ab88 5323 if (wait == WAIT_NONE) {
2db04966 5324 if (!trylock_page(page))
ce9adaa5 5325 goto unlock_exit;
d1310b2e
CM
5326 } else {
5327 lock_page(page);
5328 }
ce9adaa5 5329 locked_pages++;
2571e739
LB
5330 }
5331 /*
5332 * We need to firstly lock all pages to make sure that
5333 * the uptodate bit of our pages won't be affected by
5334 * clear_extent_buffer_uptodate().
5335 */
8436ea91 5336 for (i = 0; i < num_pages; i++) {
2571e739 5337 page = eb->pages[i];
727011e0
CM
5338 if (!PageUptodate(page)) {
5339 num_reads++;
ce9adaa5 5340 all_uptodate = 0;
727011e0 5341 }
ce9adaa5 5342 }
2571e739 5343
ce9adaa5 5344 if (all_uptodate) {
8436ea91 5345 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5346 goto unlock_exit;
5347 }
5348
656f30db 5349 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5350 eb->read_mirror = 0;
0b32f4bb 5351 atomic_set(&eb->io_pages, num_reads);
8436ea91 5352 for (i = 0; i < num_pages; i++) {
fb85fc9a 5353 page = eb->pages[i];
baf863b9 5354
ce9adaa5 5355 if (!PageUptodate(page)) {
baf863b9
LB
5356 if (ret) {
5357 atomic_dec(&eb->io_pages);
5358 unlock_page(page);
5359 continue;
5360 }
5361
f188591e 5362 ClearPageError(page);
a86c12c7 5363 err = __extent_read_full_page(tree, page,
f188591e 5364 get_extent, &bio,
d4c7ca86 5365 mirror_num, &bio_flags,
1f7ad75b 5366 REQ_META);
baf863b9 5367 if (err) {
d1310b2e 5368 ret = err;
baf863b9
LB
5369 /*
5370 * We use &bio in above __extent_read_full_page,
5371 * so we ensure that if it returns error, the
5372 * current page fails to add itself to bio and
5373 * it's been unlocked.
5374 *
5375 * We must dec io_pages by ourselves.
5376 */
5377 atomic_dec(&eb->io_pages);
5378 }
d1310b2e
CM
5379 } else {
5380 unlock_page(page);
5381 }
5382 }
5383
355808c2 5384 if (bio) {
1f7ad75b 5385 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5386 if (err)
5387 return err;
355808c2 5388 }
a86c12c7 5389
bb82ab88 5390 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5391 return ret;
d397712b 5392
8436ea91 5393 for (i = 0; i < num_pages; i++) {
fb85fc9a 5394 page = eb->pages[i];
d1310b2e 5395 wait_on_page_locked(page);
d397712b 5396 if (!PageUptodate(page))
d1310b2e 5397 ret = -EIO;
d1310b2e 5398 }
d397712b 5399
d1310b2e 5400 return ret;
ce9adaa5
CM
5401
5402unlock_exit:
d397712b 5403 while (locked_pages > 0) {
ce9adaa5 5404 locked_pages--;
8436ea91
JB
5405 page = eb->pages[locked_pages];
5406 unlock_page(page);
ce9adaa5
CM
5407 }
5408 return ret;
d1310b2e 5409}
d1310b2e
CM
5410
5411void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5412 unsigned long start,
5413 unsigned long len)
5414{
5415 size_t cur;
5416 size_t offset;
5417 struct page *page;
5418 char *kaddr;
5419 char *dst = (char *)dstv;
09cbfeaf
KS
5420 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5421 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5422
5423 WARN_ON(start > eb->len);
5424 WARN_ON(start + len > eb->start + eb->len);
5425
09cbfeaf 5426 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5427
d397712b 5428 while (len > 0) {
fb85fc9a 5429 page = eb->pages[i];
d1310b2e 5430
09cbfeaf 5431 cur = min(len, (PAGE_SIZE - offset));
a6591715 5432 kaddr = page_address(page);
d1310b2e 5433 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5434
5435 dst += cur;
5436 len -= cur;
5437 offset = 0;
5438 i++;
5439 }
5440}
d1310b2e 5441
550ac1d8
GH
5442int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5443 unsigned long start,
5444 unsigned long len)
5445{
5446 size_t cur;
5447 size_t offset;
5448 struct page *page;
5449 char *kaddr;
5450 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5451 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5452 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5453 int ret = 0;
5454
5455 WARN_ON(start > eb->len);
5456 WARN_ON(start + len > eb->start + eb->len);
5457
09cbfeaf 5458 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5459
5460 while (len > 0) {
fb85fc9a 5461 page = eb->pages[i];
550ac1d8 5462
09cbfeaf 5463 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5464 kaddr = page_address(page);
5465 if (copy_to_user(dst, kaddr + offset, cur)) {
5466 ret = -EFAULT;
5467 break;
5468 }
5469
5470 dst += cur;
5471 len -= cur;
5472 offset = 0;
5473 i++;
5474 }
5475
5476 return ret;
5477}
5478
415b35a5
LB
5479/*
5480 * return 0 if the item is found within a page.
5481 * return 1 if the item spans two pages.
5482 * return -EINVAL otherwise.
5483 */
d1310b2e 5484int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5485 unsigned long min_len, char **map,
d1310b2e 5486 unsigned long *map_start,
a6591715 5487 unsigned long *map_len)
d1310b2e 5488{
09cbfeaf 5489 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5490 char *kaddr;
5491 struct page *p;
09cbfeaf
KS
5492 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5493 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5494 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5495 PAGE_SHIFT;
d1310b2e
CM
5496
5497 if (i != end_i)
415b35a5 5498 return 1;
d1310b2e
CM
5499
5500 if (i == 0) {
5501 offset = start_offset;
5502 *map_start = 0;
5503 } else {
5504 offset = 0;
09cbfeaf 5505 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5506 }
d397712b 5507
d1310b2e 5508 if (start + min_len > eb->len) {
5d163e0e 5509 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5510 eb->start, eb->len, start, min_len);
85026533 5511 return -EINVAL;
d1310b2e
CM
5512 }
5513
fb85fc9a 5514 p = eb->pages[i];
a6591715 5515 kaddr = page_address(p);
d1310b2e 5516 *map = kaddr + offset;
09cbfeaf 5517 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5518 return 0;
5519}
d1310b2e 5520
d1310b2e
CM
5521int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5522 unsigned long start,
5523 unsigned long len)
5524{
5525 size_t cur;
5526 size_t offset;
5527 struct page *page;
5528 char *kaddr;
5529 char *ptr = (char *)ptrv;
09cbfeaf
KS
5530 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5531 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5532 int ret = 0;
5533
5534 WARN_ON(start > eb->len);
5535 WARN_ON(start + len > eb->start + eb->len);
5536
09cbfeaf 5537 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5538
d397712b 5539 while (len > 0) {
fb85fc9a 5540 page = eb->pages[i];
d1310b2e 5541
09cbfeaf 5542 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5543
a6591715 5544 kaddr = page_address(page);
d1310b2e 5545 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5546 if (ret)
5547 break;
5548
5549 ptr += cur;
5550 len -= cur;
5551 offset = 0;
5552 i++;
5553 }
5554 return ret;
5555}
d1310b2e 5556
f157bf76
DS
5557void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5558 const void *srcv)
5559{
5560 char *kaddr;
5561
5562 WARN_ON(!PageUptodate(eb->pages[0]));
5563 kaddr = page_address(eb->pages[0]);
5564 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5565 BTRFS_FSID_SIZE);
5566}
5567
5568void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5569{
5570 char *kaddr;
5571
5572 WARN_ON(!PageUptodate(eb->pages[0]));
5573 kaddr = page_address(eb->pages[0]);
5574 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5575 BTRFS_FSID_SIZE);
5576}
5577
d1310b2e
CM
5578void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5579 unsigned long start, unsigned long len)
5580{
5581 size_t cur;
5582 size_t offset;
5583 struct page *page;
5584 char *kaddr;
5585 char *src = (char *)srcv;
09cbfeaf
KS
5586 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5587 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5588
5589 WARN_ON(start > eb->len);
5590 WARN_ON(start + len > eb->start + eb->len);
5591
09cbfeaf 5592 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5593
d397712b 5594 while (len > 0) {
fb85fc9a 5595 page = eb->pages[i];
d1310b2e
CM
5596 WARN_ON(!PageUptodate(page));
5597
09cbfeaf 5598 cur = min(len, PAGE_SIZE - offset);
a6591715 5599 kaddr = page_address(page);
d1310b2e 5600 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5601
5602 src += cur;
5603 len -= cur;
5604 offset = 0;
5605 i++;
5606 }
5607}
d1310b2e 5608
b159fa28
DS
5609void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5610 unsigned long len)
d1310b2e
CM
5611{
5612 size_t cur;
5613 size_t offset;
5614 struct page *page;
5615 char *kaddr;
09cbfeaf
KS
5616 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5617 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5618
5619 WARN_ON(start > eb->len);
5620 WARN_ON(start + len > eb->start + eb->len);
5621
09cbfeaf 5622 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5623
d397712b 5624 while (len > 0) {
fb85fc9a 5625 page = eb->pages[i];
d1310b2e
CM
5626 WARN_ON(!PageUptodate(page));
5627
09cbfeaf 5628 cur = min(len, PAGE_SIZE - offset);
a6591715 5629 kaddr = page_address(page);
b159fa28 5630 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5631
5632 len -= cur;
5633 offset = 0;
5634 i++;
5635 }
5636}
d1310b2e 5637
58e8012c
DS
5638void copy_extent_buffer_full(struct extent_buffer *dst,
5639 struct extent_buffer *src)
5640{
5641 int i;
5642 unsigned num_pages;
5643
5644 ASSERT(dst->len == src->len);
5645
5646 num_pages = num_extent_pages(dst->start, dst->len);
5647 for (i = 0; i < num_pages; i++)
5648 copy_page(page_address(dst->pages[i]),
5649 page_address(src->pages[i]));
5650}
5651
d1310b2e
CM
5652void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5653 unsigned long dst_offset, unsigned long src_offset,
5654 unsigned long len)
5655{
5656 u64 dst_len = dst->len;
5657 size_t cur;
5658 size_t offset;
5659 struct page *page;
5660 char *kaddr;
09cbfeaf
KS
5661 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5662 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5663
5664 WARN_ON(src->len != dst_len);
5665
5666 offset = (start_offset + dst_offset) &
09cbfeaf 5667 (PAGE_SIZE - 1);
d1310b2e 5668
d397712b 5669 while (len > 0) {
fb85fc9a 5670 page = dst->pages[i];
d1310b2e
CM
5671 WARN_ON(!PageUptodate(page));
5672
09cbfeaf 5673 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5674
a6591715 5675 kaddr = page_address(page);
d1310b2e 5676 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5677
5678 src_offset += cur;
5679 len -= cur;
5680 offset = 0;
5681 i++;
5682 }
5683}
d1310b2e 5684
2fe1d551
OS
5685void le_bitmap_set(u8 *map, unsigned int start, int len)
5686{
5687 u8 *p = map + BIT_BYTE(start);
5688 const unsigned int size = start + len;
5689 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5690 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5691
5692 while (len - bits_to_set >= 0) {
5693 *p |= mask_to_set;
5694 len -= bits_to_set;
5695 bits_to_set = BITS_PER_BYTE;
9c894696 5696 mask_to_set = ~0;
2fe1d551
OS
5697 p++;
5698 }
5699 if (len) {
5700 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5701 *p |= mask_to_set;
5702 }
5703}
5704
5705void le_bitmap_clear(u8 *map, unsigned int start, int len)
5706{
5707 u8 *p = map + BIT_BYTE(start);
5708 const unsigned int size = start + len;
5709 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5710 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5711
5712 while (len - bits_to_clear >= 0) {
5713 *p &= ~mask_to_clear;
5714 len -= bits_to_clear;
5715 bits_to_clear = BITS_PER_BYTE;
9c894696 5716 mask_to_clear = ~0;
2fe1d551
OS
5717 p++;
5718 }
5719 if (len) {
5720 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5721 *p &= ~mask_to_clear;
5722 }
5723}
3e1e8bb7
OS
5724
5725/*
5726 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5727 * given bit number
5728 * @eb: the extent buffer
5729 * @start: offset of the bitmap item in the extent buffer
5730 * @nr: bit number
5731 * @page_index: return index of the page in the extent buffer that contains the
5732 * given bit number
5733 * @page_offset: return offset into the page given by page_index
5734 *
5735 * This helper hides the ugliness of finding the byte in an extent buffer which
5736 * contains a given bit.
5737 */
5738static inline void eb_bitmap_offset(struct extent_buffer *eb,
5739 unsigned long start, unsigned long nr,
5740 unsigned long *page_index,
5741 size_t *page_offset)
5742{
09cbfeaf 5743 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5744 size_t byte_offset = BIT_BYTE(nr);
5745 size_t offset;
5746
5747 /*
5748 * The byte we want is the offset of the extent buffer + the offset of
5749 * the bitmap item in the extent buffer + the offset of the byte in the
5750 * bitmap item.
5751 */
5752 offset = start_offset + start + byte_offset;
5753
09cbfeaf
KS
5754 *page_index = offset >> PAGE_SHIFT;
5755 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5756}
5757
5758/**
5759 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5760 * @eb: the extent buffer
5761 * @start: offset of the bitmap item in the extent buffer
5762 * @nr: bit number to test
5763 */
5764int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5765 unsigned long nr)
5766{
2fe1d551 5767 u8 *kaddr;
3e1e8bb7
OS
5768 struct page *page;
5769 unsigned long i;
5770 size_t offset;
5771
5772 eb_bitmap_offset(eb, start, nr, &i, &offset);
5773 page = eb->pages[i];
5774 WARN_ON(!PageUptodate(page));
5775 kaddr = page_address(page);
5776 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5777}
5778
5779/**
5780 * extent_buffer_bitmap_set - set an area of a bitmap
5781 * @eb: the extent buffer
5782 * @start: offset of the bitmap item in the extent buffer
5783 * @pos: bit number of the first bit
5784 * @len: number of bits to set
5785 */
5786void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5787 unsigned long pos, unsigned long len)
5788{
2fe1d551 5789 u8 *kaddr;
3e1e8bb7
OS
5790 struct page *page;
5791 unsigned long i;
5792 size_t offset;
5793 const unsigned int size = pos + len;
5794 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5795 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5796
5797 eb_bitmap_offset(eb, start, pos, &i, &offset);
5798 page = eb->pages[i];
5799 WARN_ON(!PageUptodate(page));
5800 kaddr = page_address(page);
5801
5802 while (len >= bits_to_set) {
5803 kaddr[offset] |= mask_to_set;
5804 len -= bits_to_set;
5805 bits_to_set = BITS_PER_BYTE;
9c894696 5806 mask_to_set = ~0;
09cbfeaf 5807 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5808 offset = 0;
5809 page = eb->pages[++i];
5810 WARN_ON(!PageUptodate(page));
5811 kaddr = page_address(page);
5812 }
5813 }
5814 if (len) {
5815 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5816 kaddr[offset] |= mask_to_set;
5817 }
5818}
5819
5820
5821/**
5822 * extent_buffer_bitmap_clear - clear an area of a bitmap
5823 * @eb: the extent buffer
5824 * @start: offset of the bitmap item in the extent buffer
5825 * @pos: bit number of the first bit
5826 * @len: number of bits to clear
5827 */
5828void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5829 unsigned long pos, unsigned long len)
5830{
2fe1d551 5831 u8 *kaddr;
3e1e8bb7
OS
5832 struct page *page;
5833 unsigned long i;
5834 size_t offset;
5835 const unsigned int size = pos + len;
5836 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5837 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5838
5839 eb_bitmap_offset(eb, start, pos, &i, &offset);
5840 page = eb->pages[i];
5841 WARN_ON(!PageUptodate(page));
5842 kaddr = page_address(page);
5843
5844 while (len >= bits_to_clear) {
5845 kaddr[offset] &= ~mask_to_clear;
5846 len -= bits_to_clear;
5847 bits_to_clear = BITS_PER_BYTE;
9c894696 5848 mask_to_clear = ~0;
09cbfeaf 5849 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5850 offset = 0;
5851 page = eb->pages[++i];
5852 WARN_ON(!PageUptodate(page));
5853 kaddr = page_address(page);
5854 }
5855 }
5856 if (len) {
5857 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5858 kaddr[offset] &= ~mask_to_clear;
5859 }
5860}
5861
3387206f
ST
5862static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5863{
5864 unsigned long distance = (src > dst) ? src - dst : dst - src;
5865 return distance < len;
5866}
5867
d1310b2e
CM
5868static void copy_pages(struct page *dst_page, struct page *src_page,
5869 unsigned long dst_off, unsigned long src_off,
5870 unsigned long len)
5871{
a6591715 5872 char *dst_kaddr = page_address(dst_page);
d1310b2e 5873 char *src_kaddr;
727011e0 5874 int must_memmove = 0;
d1310b2e 5875
3387206f 5876 if (dst_page != src_page) {
a6591715 5877 src_kaddr = page_address(src_page);
3387206f 5878 } else {
d1310b2e 5879 src_kaddr = dst_kaddr;
727011e0
CM
5880 if (areas_overlap(src_off, dst_off, len))
5881 must_memmove = 1;
3387206f 5882 }
d1310b2e 5883
727011e0
CM
5884 if (must_memmove)
5885 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5886 else
5887 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5888}
5889
5890void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5891 unsigned long src_offset, unsigned long len)
5892{
0b246afa 5893 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5894 size_t cur;
5895 size_t dst_off_in_page;
5896 size_t src_off_in_page;
09cbfeaf 5897 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5898 unsigned long dst_i;
5899 unsigned long src_i;
5900
5901 if (src_offset + len > dst->len) {
0b246afa 5902 btrfs_err(fs_info,
5d163e0e
JM
5903 "memmove bogus src_offset %lu move len %lu dst len %lu",
5904 src_offset, len, dst->len);
d1310b2e
CM
5905 BUG_ON(1);
5906 }
5907 if (dst_offset + len > dst->len) {
0b246afa 5908 btrfs_err(fs_info,
5d163e0e
JM
5909 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5910 dst_offset, len, dst->len);
d1310b2e
CM
5911 BUG_ON(1);
5912 }
5913
d397712b 5914 while (len > 0) {
d1310b2e 5915 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5916 (PAGE_SIZE - 1);
d1310b2e 5917 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5918 (PAGE_SIZE - 1);
d1310b2e 5919
09cbfeaf
KS
5920 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5921 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5922
09cbfeaf 5923 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5924 src_off_in_page));
5925 cur = min_t(unsigned long, cur,
09cbfeaf 5926 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5927
fb85fc9a 5928 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5929 dst_off_in_page, src_off_in_page, cur);
5930
5931 src_offset += cur;
5932 dst_offset += cur;
5933 len -= cur;
5934 }
5935}
d1310b2e
CM
5936
5937void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5938 unsigned long src_offset, unsigned long len)
5939{
0b246afa 5940 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5941 size_t cur;
5942 size_t dst_off_in_page;
5943 size_t src_off_in_page;
5944 unsigned long dst_end = dst_offset + len - 1;
5945 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5946 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5947 unsigned long dst_i;
5948 unsigned long src_i;
5949
5950 if (src_offset + len > dst->len) {
0b246afa 5951 btrfs_err(fs_info,
5d163e0e
JM
5952 "memmove bogus src_offset %lu move len %lu len %lu",
5953 src_offset, len, dst->len);
d1310b2e
CM
5954 BUG_ON(1);
5955 }
5956 if (dst_offset + len > dst->len) {
0b246afa 5957 btrfs_err(fs_info,
5d163e0e
JM
5958 "memmove bogus dst_offset %lu move len %lu len %lu",
5959 dst_offset, len, dst->len);
d1310b2e
CM
5960 BUG_ON(1);
5961 }
727011e0 5962 if (dst_offset < src_offset) {
d1310b2e
CM
5963 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5964 return;
5965 }
d397712b 5966 while (len > 0) {
09cbfeaf
KS
5967 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5968 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5969
5970 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5971 (PAGE_SIZE - 1);
d1310b2e 5972 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5973 (PAGE_SIZE - 1);
d1310b2e
CM
5974
5975 cur = min_t(unsigned long, len, src_off_in_page + 1);
5976 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5977 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5978 dst_off_in_page - cur + 1,
5979 src_off_in_page - cur + 1, cur);
5980
5981 dst_end -= cur;
5982 src_end -= cur;
5983 len -= cur;
5984 }
5985}
6af118ce 5986
f7a52a40 5987int try_release_extent_buffer(struct page *page)
19fe0a8b 5988{
6af118ce 5989 struct extent_buffer *eb;
6af118ce 5990
3083ee2e 5991 /*
01327610 5992 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5993 * now.
5994 */
5995 spin_lock(&page->mapping->private_lock);
5996 if (!PagePrivate(page)) {
5997 spin_unlock(&page->mapping->private_lock);
4f2de97a 5998 return 1;
45f49bce 5999 }
6af118ce 6000
3083ee2e
JB
6001 eb = (struct extent_buffer *)page->private;
6002 BUG_ON(!eb);
19fe0a8b
MX
6003
6004 /*
3083ee2e
JB
6005 * This is a little awful but should be ok, we need to make sure that
6006 * the eb doesn't disappear out from under us while we're looking at
6007 * this page.
19fe0a8b 6008 */
3083ee2e 6009 spin_lock(&eb->refs_lock);
0b32f4bb 6010 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6011 spin_unlock(&eb->refs_lock);
6012 spin_unlock(&page->mapping->private_lock);
6013 return 0;
b9473439 6014 }
3083ee2e 6015 spin_unlock(&page->mapping->private_lock);
897ca6e9 6016
19fe0a8b 6017 /*
3083ee2e
JB
6018 * If tree ref isn't set then we know the ref on this eb is a real ref,
6019 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6020 */
3083ee2e
JB
6021 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6022 spin_unlock(&eb->refs_lock);
6023 return 0;
b9473439 6024 }
19fe0a8b 6025
f7a52a40 6026 return release_extent_buffer(eb);
6af118ce 6027}
This page took 1.729637 seconds and 4 git commands to generate.