]> Git Repo - linux.git/blame - arch/x86/kernel/amd_iommu_init.c
x86/amd-iommu: Workaround for erratum 63
[linux.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <[email protected]>
4 * Leo Duran <[email protected]>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6
JR
27#include <asm/pci-direct.h>
28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
f6e2e6b6
JR
32
33/*
34 * definitions for the ACPI scanning code
35 */
f6e2e6b6 36#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
37
38#define ACPI_IVHD_TYPE 0x10
39#define ACPI_IVMD_TYPE_ALL 0x20
40#define ACPI_IVMD_TYPE 0x21
41#define ACPI_IVMD_TYPE_RANGE 0x22
42
43#define IVHD_DEV_ALL 0x01
44#define IVHD_DEV_SELECT 0x02
45#define IVHD_DEV_SELECT_RANGE_START 0x03
46#define IVHD_DEV_RANGE_END 0x04
47#define IVHD_DEV_ALIAS 0x42
48#define IVHD_DEV_ALIAS_RANGE 0x43
49#define IVHD_DEV_EXT_SELECT 0x46
50#define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
6da7342f
JR
52#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53#define IVHD_FLAG_PASSPW_EN_MASK 0x02
54#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
56
57#define IVMD_FLAG_EXCL_RANGE 0x08
58#define IVMD_FLAG_UNITY_MAP 0x01
59
60#define ACPI_DEVFLAG_INITPASS 0x01
61#define ACPI_DEVFLAG_EXTINT 0x02
62#define ACPI_DEVFLAG_NMI 0x04
63#define ACPI_DEVFLAG_SYSMGT1 0x10
64#define ACPI_DEVFLAG_SYSMGT2 0x20
65#define ACPI_DEVFLAG_LINT0 0x40
66#define ACPI_DEVFLAG_LINT1 0x80
67#define ACPI_DEVFLAG_ATSDIS 0x10000000
68
b65233a9
JR
69/*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76/*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
f6e2e6b6
JR
80struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90} __attribute__((packed));
91
b65233a9
JR
92/*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
f6e2e6b6
JR
96struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101} __attribute__((packed));
102
b65233a9
JR
103/*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
f6e2e6b6
JR
107struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116} __attribute__((packed));
117
fefda117
JR
118bool amd_iommu_dump;
119
c1cbebee
JR
120static int __initdata amd_iommu_detected;
121
b65233a9
JR
122u16 amd_iommu_last_bdf; /* largest PCI device id we have
123 to handle */
2e22847f 124LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 125 we find in ACPI */
2e8b5696
JR
126#ifdef CONFIG_IOMMU_STRESS
127bool amd_iommu_isolate = false;
128#else
c226f853
JR
129bool amd_iommu_isolate = true; /* if true, device isolation is
130 enabled */
2e8b5696
JR
131#endif
132
afa9fdc2 133bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 134
2e22847f 135LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 136 system */
928abd25 137
b65233a9
JR
138/*
139 * Pointer to the device table which is shared by all AMD IOMMUs
140 * it is indexed by the PCI device id or the HT unit id and contains
141 * information about the domain the device belongs to as well as the
142 * page table root pointer.
143 */
928abd25 144struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
145
146/*
147 * The alias table is a driver specific data structure which contains the
148 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
149 * More than one device can share the same requestor id.
150 */
928abd25 151u16 *amd_iommu_alias_table;
b65233a9
JR
152
153/*
154 * The rlookup table is used to find the IOMMU which is responsible
155 * for a specific device. It is also indexed by the PCI device id.
156 */
928abd25 157struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
158
159/*
160 * The pd table (protection domain table) is used to find the protection domain
161 * data structure a device belongs to. Indexed with the PCI device id too.
162 */
928abd25 163struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
164
165/*
166 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
167 * to know which ones are already in use.
168 */
928abd25
JR
169unsigned long *amd_iommu_pd_alloc_bitmap;
170
b65233a9
JR
171static u32 dev_table_size; /* size of the device table */
172static u32 alias_table_size; /* size of the alias table */
173static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 174
208ec8c9
JR
175static inline void update_last_devid(u16 devid)
176{
177 if (devid > amd_iommu_last_bdf)
178 amd_iommu_last_bdf = devid;
179}
180
c571484e
JR
181static inline unsigned long tbl_size(int entry_size)
182{
183 unsigned shift = PAGE_SHIFT +
421f909c 184 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
185
186 return 1UL << shift;
187}
188
b65233a9
JR
189/****************************************************************************
190 *
191 * AMD IOMMU MMIO register space handling functions
192 *
193 * These functions are used to program the IOMMU device registers in
194 * MMIO space required for that driver.
195 *
196 ****************************************************************************/
3e8064ba 197
b65233a9
JR
198/*
199 * This function set the exclusion range in the IOMMU. DMA accesses to the
200 * exclusion range are passed through untranslated
201 */
05f92db9 202static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
203{
204 u64 start = iommu->exclusion_start & PAGE_MASK;
205 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
206 u64 entry;
207
208 if (!iommu->exclusion_start)
209 return;
210
211 entry = start | MMIO_EXCL_ENABLE_MASK;
212 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
213 &entry, sizeof(entry));
214
215 entry = limit;
216 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
217 &entry, sizeof(entry));
218}
219
b65233a9 220/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
221static void __init iommu_set_device_table(struct amd_iommu *iommu)
222{
f609891f 223 u64 entry;
b2026aa2
JR
224
225 BUG_ON(iommu->mmio_base == NULL);
226
227 entry = virt_to_phys(amd_iommu_dev_table);
228 entry |= (dev_table_size >> 12) - 1;
229 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
230 &entry, sizeof(entry));
231}
232
b65233a9 233/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 234static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
235{
236 u32 ctrl;
237
238 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl |= (1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241}
242
243static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
244{
245 u32 ctrl;
246
199d0d50 247 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
248 ctrl &= ~(1 << bit);
249 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
250}
251
b65233a9 252/* Function to enable the hardware */
05f92db9 253static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 254{
a4e267c8
JR
255 printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
256 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
257
258 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
259}
260
92ac4320 261static void iommu_disable(struct amd_iommu *iommu)
126c52be 262{
a8c485bb
CW
263 /* Disable command buffer */
264 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
265
266 /* Disable event logging and event interrupts */
267 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
268 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
269
270 /* Disable IOMMU hardware itself */
92ac4320 271 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
272}
273
b65233a9
JR
274/*
275 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
276 * the system has one.
277 */
6c56747b
JR
278static u8 * __init iommu_map_mmio_space(u64 address)
279{
280 u8 *ret;
281
282 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
283 return NULL;
284
285 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
286 if (ret != NULL)
287 return ret;
288
289 release_mem_region(address, MMIO_REGION_LENGTH);
290
291 return NULL;
292}
293
294static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
295{
296 if (iommu->mmio_base)
297 iounmap(iommu->mmio_base);
298 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
299}
300
b65233a9
JR
301/****************************************************************************
302 *
303 * The functions below belong to the first pass of AMD IOMMU ACPI table
304 * parsing. In this pass we try to find out the highest device id this
305 * code has to handle. Upon this information the size of the shared data
306 * structures is determined later.
307 *
308 ****************************************************************************/
309
b514e555
JR
310/*
311 * This function calculates the length of a given IVHD entry
312 */
313static inline int ivhd_entry_length(u8 *ivhd)
314{
315 return 0x04 << (*ivhd >> 6);
316}
317
b65233a9
JR
318/*
319 * This function reads the last device id the IOMMU has to handle from the PCI
320 * capability header for this IOMMU
321 */
3e8064ba
JR
322static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
323{
324 u32 cap;
325
326 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 327 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
328
329 return 0;
330}
331
b65233a9
JR
332/*
333 * After reading the highest device id from the IOMMU PCI capability header
334 * this function looks if there is a higher device id defined in the ACPI table
335 */
3e8064ba
JR
336static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
337{
338 u8 *p = (void *)h, *end = (void *)h;
339 struct ivhd_entry *dev;
340
341 p += sizeof(*h);
342 end += h->length;
343
344 find_last_devid_on_pci(PCI_BUS(h->devid),
345 PCI_SLOT(h->devid),
346 PCI_FUNC(h->devid),
347 h->cap_ptr);
348
349 while (p < end) {
350 dev = (struct ivhd_entry *)p;
351 switch (dev->type) {
352 case IVHD_DEV_SELECT:
353 case IVHD_DEV_RANGE_END:
354 case IVHD_DEV_ALIAS:
355 case IVHD_DEV_EXT_SELECT:
b65233a9 356 /* all the above subfield types refer to device ids */
208ec8c9 357 update_last_devid(dev->devid);
3e8064ba
JR
358 break;
359 default:
360 break;
361 }
b514e555 362 p += ivhd_entry_length(p);
3e8064ba
JR
363 }
364
365 WARN_ON(p != end);
366
367 return 0;
368}
369
b65233a9
JR
370/*
371 * Iterate over all IVHD entries in the ACPI table and find the highest device
372 * id which we need to handle. This is the first of three functions which parse
373 * the ACPI table. So we check the checksum here.
374 */
3e8064ba
JR
375static int __init find_last_devid_acpi(struct acpi_table_header *table)
376{
377 int i;
378 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
379 struct ivhd_header *h;
380
381 /*
382 * Validate checksum here so we don't need to do it when
383 * we actually parse the table
384 */
385 for (i = 0; i < table->length; ++i)
386 checksum += p[i];
387 if (checksum != 0)
388 /* ACPI table corrupt */
389 return -ENODEV;
390
391 p += IVRS_HEADER_LENGTH;
392
393 end += table->length;
394 while (p < end) {
395 h = (struct ivhd_header *)p;
396 switch (h->type) {
397 case ACPI_IVHD_TYPE:
398 find_last_devid_from_ivhd(h);
399 break;
400 default:
401 break;
402 }
403 p += h->length;
404 }
405 WARN_ON(p != end);
406
407 return 0;
408}
409
b65233a9
JR
410/****************************************************************************
411 *
412 * The following functions belong the the code path which parses the ACPI table
413 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
414 * data structures, initialize the device/alias/rlookup table and also
415 * basically initialize the hardware.
416 *
417 ****************************************************************************/
418
419/*
420 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
421 * write commands to that buffer later and the IOMMU will execute them
422 * asynchronously
423 */
b36ca91e
JR
424static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
425{
d0312b21 426 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 427 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
428
429 if (cmd_buf == NULL)
430 return NULL;
431
432 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
433
58492e12
JR
434 return cmd_buf;
435}
436
437/*
438 * This function writes the command buffer address to the hardware and
439 * enables it.
440 */
441static void iommu_enable_command_buffer(struct amd_iommu *iommu)
442{
443 u64 entry;
444
445 BUG_ON(iommu->cmd_buf == NULL);
446
447 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 448 entry |= MMIO_CMD_SIZE_512;
58492e12 449
b36ca91e 450 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 451 &entry, sizeof(entry));
b36ca91e 452
cf558d25
JR
453 /* set head and tail to zero manually */
454 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
455 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
456
b36ca91e 457 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
b36ca91e
JR
458}
459
460static void __init free_command_buffer(struct amd_iommu *iommu)
461{
23c1713f
JR
462 free_pages((unsigned long)iommu->cmd_buf,
463 get_order(iommu->cmd_buf_size));
b36ca91e
JR
464}
465
335503e5
JR
466/* allocates the memory where the IOMMU will log its events to */
467static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
468{
335503e5
JR
469 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
470 get_order(EVT_BUFFER_SIZE));
471
472 if (iommu->evt_buf == NULL)
473 return NULL;
474
1bc6f838
JR
475 iommu->evt_buf_size = EVT_BUFFER_SIZE;
476
58492e12
JR
477 return iommu->evt_buf;
478}
479
480static void iommu_enable_event_buffer(struct amd_iommu *iommu)
481{
482 u64 entry;
483
484 BUG_ON(iommu->evt_buf == NULL);
485
335503e5 486 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 487
335503e5
JR
488 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
489 &entry, sizeof(entry));
490
09067207
JR
491 /* set head and tail to zero manually */
492 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
493 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
494
58492e12 495 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
496}
497
498static void __init free_event_buffer(struct amd_iommu *iommu)
499{
500 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
501}
502
b65233a9 503/* sets a specific bit in the device table entry. */
3566b778
JR
504static void set_dev_entry_bit(u16 devid, u8 bit)
505{
506 int i = (bit >> 5) & 0x07;
507 int _bit = bit & 0x1f;
508
509 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
510}
511
c5cca146
JR
512static int get_dev_entry_bit(u16 devid, u8 bit)
513{
514 int i = (bit >> 5) & 0x07;
515 int _bit = bit & 0x1f;
516
517 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
518}
519
520
521void amd_iommu_apply_erratum_63(u16 devid)
522{
523 int sysmgt;
524
525 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
526 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
527
528 if (sysmgt == 0x01)
529 set_dev_entry_bit(devid, DEV_ENTRY_IW);
530}
531
5ff4789d
JR
532/* Writes the specific IOMMU for a device into the rlookup table */
533static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
534{
535 amd_iommu_rlookup_table[devid] = iommu;
536}
537
b65233a9
JR
538/*
539 * This function takes the device specific flags read from the ACPI
540 * table and sets up the device table entry with that information
541 */
5ff4789d
JR
542static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
543 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
544{
545 if (flags & ACPI_DEVFLAG_INITPASS)
546 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
547 if (flags & ACPI_DEVFLAG_EXTINT)
548 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
549 if (flags & ACPI_DEVFLAG_NMI)
550 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
551 if (flags & ACPI_DEVFLAG_SYSMGT1)
552 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
553 if (flags & ACPI_DEVFLAG_SYSMGT2)
554 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
555 if (flags & ACPI_DEVFLAG_LINT0)
556 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
557 if (flags & ACPI_DEVFLAG_LINT1)
558 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 559
c5cca146
JR
560 amd_iommu_apply_erratum_63(devid);
561
5ff4789d 562 set_iommu_for_device(iommu, devid);
3566b778
JR
563}
564
b65233a9
JR
565/*
566 * Reads the device exclusion range from ACPI and initialize IOMMU with
567 * it
568 */
3566b778
JR
569static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
570{
571 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
572
573 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
574 return;
575
576 if (iommu) {
b65233a9
JR
577 /*
578 * We only can configure exclusion ranges per IOMMU, not
579 * per device. But we can enable the exclusion range per
580 * device. This is done here
581 */
3566b778
JR
582 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
583 iommu->exclusion_start = m->range_start;
584 iommu->exclusion_length = m->range_length;
585 }
586}
587
b65233a9
JR
588/*
589 * This function reads some important data from the IOMMU PCI space and
590 * initializes the driver data structure with it. It reads the hardware
591 * capabilities and the first/last device entries
592 */
5d0c8e49
JR
593static void __init init_iommu_from_pci(struct amd_iommu *iommu)
594{
5d0c8e49 595 int cap_ptr = iommu->cap_ptr;
a80dc3e0 596 u32 range, misc;
5d0c8e49 597
3eaf28a1
JR
598 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
599 &iommu->cap);
600 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
601 &range);
a80dc3e0
JR
602 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
603 &misc);
5d0c8e49 604
d591b0a3
JR
605 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
606 MMIO_GET_FD(range));
607 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
608 MMIO_GET_LD(range));
a80dc3e0 609 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
610}
611
b65233a9
JR
612/*
613 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
614 * initializes the hardware and our data structures with it.
615 */
5d0c8e49
JR
616static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
617 struct ivhd_header *h)
618{
619 u8 *p = (u8 *)h;
620 u8 *end = p, flags = 0;
621 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
622 u32 ext_flags = 0;
58a3bee5 623 bool alias = false;
5d0c8e49
JR
624 struct ivhd_entry *e;
625
626 /*
627 * First set the recommended feature enable bits from ACPI
628 * into the IOMMU control registers
629 */
6da7342f 630 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
631 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
632 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
633
6da7342f 634 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
635 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
636 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
637
6da7342f 638 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
639 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
640 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
641
6da7342f 642 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
643 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
644 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
645
646 /*
647 * make IOMMU memory accesses cache coherent
648 */
649 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
650
651 /*
652 * Done. Now parse the device entries
653 */
654 p += sizeof(struct ivhd_header);
655 end += h->length;
656
42a698f4 657
5d0c8e49
JR
658 while (p < end) {
659 e = (struct ivhd_entry *)p;
660 switch (e->type) {
661 case IVHD_DEV_ALL:
42a698f4
JR
662
663 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
664 " last device %02x:%02x.%x flags: %02x\n",
665 PCI_BUS(iommu->first_device),
666 PCI_SLOT(iommu->first_device),
667 PCI_FUNC(iommu->first_device),
668 PCI_BUS(iommu->last_device),
669 PCI_SLOT(iommu->last_device),
670 PCI_FUNC(iommu->last_device),
671 e->flags);
672
5d0c8e49
JR
673 for (dev_i = iommu->first_device;
674 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
675 set_dev_entry_from_acpi(iommu, dev_i,
676 e->flags, 0);
5d0c8e49
JR
677 break;
678 case IVHD_DEV_SELECT:
42a698f4
JR
679
680 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
681 "flags: %02x\n",
682 PCI_BUS(e->devid),
683 PCI_SLOT(e->devid),
684 PCI_FUNC(e->devid),
685 e->flags);
686
5d0c8e49 687 devid = e->devid;
5ff4789d 688 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
689 break;
690 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
691
692 DUMP_printk(" DEV_SELECT_RANGE_START\t "
693 "devid: %02x:%02x.%x flags: %02x\n",
694 PCI_BUS(e->devid),
695 PCI_SLOT(e->devid),
696 PCI_FUNC(e->devid),
697 e->flags);
698
5d0c8e49
JR
699 devid_start = e->devid;
700 flags = e->flags;
701 ext_flags = 0;
58a3bee5 702 alias = false;
5d0c8e49
JR
703 break;
704 case IVHD_DEV_ALIAS:
42a698f4
JR
705
706 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
707 "flags: %02x devid_to: %02x:%02x.%x\n",
708 PCI_BUS(e->devid),
709 PCI_SLOT(e->devid),
710 PCI_FUNC(e->devid),
711 e->flags,
712 PCI_BUS(e->ext >> 8),
713 PCI_SLOT(e->ext >> 8),
714 PCI_FUNC(e->ext >> 8));
715
5d0c8e49
JR
716 devid = e->devid;
717 devid_to = e->ext >> 8;
7a6a3a08 718 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 719 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
720 amd_iommu_alias_table[devid] = devid_to;
721 break;
722 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
723
724 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
725 "devid: %02x:%02x.%x flags: %02x "
726 "devid_to: %02x:%02x.%x\n",
727 PCI_BUS(e->devid),
728 PCI_SLOT(e->devid),
729 PCI_FUNC(e->devid),
730 e->flags,
731 PCI_BUS(e->ext >> 8),
732 PCI_SLOT(e->ext >> 8),
733 PCI_FUNC(e->ext >> 8));
734
5d0c8e49
JR
735 devid_start = e->devid;
736 flags = e->flags;
737 devid_to = e->ext >> 8;
738 ext_flags = 0;
58a3bee5 739 alias = true;
5d0c8e49
JR
740 break;
741 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
742
743 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
744 "flags: %02x ext: %08x\n",
745 PCI_BUS(e->devid),
746 PCI_SLOT(e->devid),
747 PCI_FUNC(e->devid),
748 e->flags, e->ext);
749
5d0c8e49 750 devid = e->devid;
5ff4789d
JR
751 set_dev_entry_from_acpi(iommu, devid, e->flags,
752 e->ext);
5d0c8e49
JR
753 break;
754 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
755
756 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
757 "%02x:%02x.%x flags: %02x ext: %08x\n",
758 PCI_BUS(e->devid),
759 PCI_SLOT(e->devid),
760 PCI_FUNC(e->devid),
761 e->flags, e->ext);
762
5d0c8e49
JR
763 devid_start = e->devid;
764 flags = e->flags;
765 ext_flags = e->ext;
58a3bee5 766 alias = false;
5d0c8e49
JR
767 break;
768 case IVHD_DEV_RANGE_END:
42a698f4
JR
769
770 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
771 PCI_BUS(e->devid),
772 PCI_SLOT(e->devid),
773 PCI_FUNC(e->devid));
774
5d0c8e49
JR
775 devid = e->devid;
776 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 777 if (alias) {
5d0c8e49 778 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
779 set_dev_entry_from_acpi(iommu,
780 devid_to, flags, ext_flags);
781 }
782 set_dev_entry_from_acpi(iommu, dev_i,
783 flags, ext_flags);
5d0c8e49
JR
784 }
785 break;
786 default:
787 break;
788 }
789
b514e555 790 p += ivhd_entry_length(p);
5d0c8e49
JR
791 }
792}
793
b65233a9 794/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
795static int __init init_iommu_devices(struct amd_iommu *iommu)
796{
797 u16 i;
798
799 for (i = iommu->first_device; i <= iommu->last_device; ++i)
800 set_iommu_for_device(iommu, i);
801
802 return 0;
803}
804
e47d402d
JR
805static void __init free_iommu_one(struct amd_iommu *iommu)
806{
807 free_command_buffer(iommu);
335503e5 808 free_event_buffer(iommu);
e47d402d
JR
809 iommu_unmap_mmio_space(iommu);
810}
811
812static void __init free_iommu_all(void)
813{
814 struct amd_iommu *iommu, *next;
815
3bd22172 816 for_each_iommu_safe(iommu, next) {
e47d402d
JR
817 list_del(&iommu->list);
818 free_iommu_one(iommu);
819 kfree(iommu);
820 }
821}
822
b65233a9
JR
823/*
824 * This function clues the initialization function for one IOMMU
825 * together and also allocates the command buffer and programs the
826 * hardware. It does NOT enable the IOMMU. This is done afterwards.
827 */
e47d402d
JR
828static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
829{
830 spin_lock_init(&iommu->lock);
831 list_add_tail(&iommu->list, &amd_iommu_list);
832
833 /*
834 * Copy data from ACPI table entry to the iommu struct
835 */
3eaf28a1
JR
836 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
837 if (!iommu->dev)
838 return 1;
839
e47d402d 840 iommu->cap_ptr = h->cap_ptr;
ee893c24 841 iommu->pci_seg = h->pci_seg;
e47d402d
JR
842 iommu->mmio_phys = h->mmio_phys;
843 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
844 if (!iommu->mmio_base)
845 return -ENOMEM;
846
e47d402d
JR
847 iommu->cmd_buf = alloc_command_buffer(iommu);
848 if (!iommu->cmd_buf)
849 return -ENOMEM;
850
335503e5
JR
851 iommu->evt_buf = alloc_event_buffer(iommu);
852 if (!iommu->evt_buf)
853 return -ENOMEM;
854
a80dc3e0
JR
855 iommu->int_enabled = false;
856
e47d402d
JR
857 init_iommu_from_pci(iommu);
858 init_iommu_from_acpi(iommu, h);
859 init_iommu_devices(iommu);
860
8a66712b 861 return pci_enable_device(iommu->dev);
e47d402d
JR
862}
863
b65233a9
JR
864/*
865 * Iterates over all IOMMU entries in the ACPI table, allocates the
866 * IOMMU structure and initializes it with init_iommu_one()
867 */
e47d402d
JR
868static int __init init_iommu_all(struct acpi_table_header *table)
869{
870 u8 *p = (u8 *)table, *end = (u8 *)table;
871 struct ivhd_header *h;
872 struct amd_iommu *iommu;
873 int ret;
874
e47d402d
JR
875 end += table->length;
876 p += IVRS_HEADER_LENGTH;
877
878 while (p < end) {
879 h = (struct ivhd_header *)p;
880 switch (*p) {
881 case ACPI_IVHD_TYPE:
9c72041f
JR
882
883 DUMP_printk("IOMMU: device: %02x:%02x.%01x cap: %04x "
884 "seg: %d flags: %01x info %04x\n",
885 PCI_BUS(h->devid), PCI_SLOT(h->devid),
886 PCI_FUNC(h->devid), h->cap_ptr,
887 h->pci_seg, h->flags, h->info);
888 DUMP_printk(" mmio-addr: %016llx\n",
889 h->mmio_phys);
890
e47d402d
JR
891 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
892 if (iommu == NULL)
893 return -ENOMEM;
894 ret = init_iommu_one(iommu, h);
895 if (ret)
896 return ret;
897 break;
898 default:
899 break;
900 }
901 p += h->length;
902
903 }
904 WARN_ON(p != end);
905
906 return 0;
907}
908
a80dc3e0
JR
909/****************************************************************************
910 *
911 * The following functions initialize the MSI interrupts for all IOMMUs
912 * in the system. Its a bit challenging because there could be multiple
913 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
914 * pci_dev.
915 *
916 ****************************************************************************/
917
a80dc3e0
JR
918static int __init iommu_setup_msi(struct amd_iommu *iommu)
919{
920 int r;
a80dc3e0
JR
921
922 if (pci_enable_msi(iommu->dev))
923 return 1;
924
925 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
926 IRQF_SAMPLE_RANDOM,
927 "AMD IOMMU",
928 NULL);
929
930 if (r) {
931 pci_disable_msi(iommu->dev);
932 return 1;
933 }
934
fab6afa3 935 iommu->int_enabled = true;
58492e12
JR
936 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
937
a80dc3e0
JR
938 return 0;
939}
940
05f92db9 941static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
942{
943 if (iommu->int_enabled)
944 return 0;
945
d91cecdd 946 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
947 return iommu_setup_msi(iommu);
948
949 return 1;
950}
951
b65233a9
JR
952/****************************************************************************
953 *
954 * The next functions belong to the third pass of parsing the ACPI
955 * table. In this last pass the memory mapping requirements are
956 * gathered (like exclusion and unity mapping reanges).
957 *
958 ****************************************************************************/
959
be2a022c
JR
960static void __init free_unity_maps(void)
961{
962 struct unity_map_entry *entry, *next;
963
964 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
965 list_del(&entry->list);
966 kfree(entry);
967 }
968}
969
b65233a9 970/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
971static int __init init_exclusion_range(struct ivmd_header *m)
972{
973 int i;
974
975 switch (m->type) {
976 case ACPI_IVMD_TYPE:
977 set_device_exclusion_range(m->devid, m);
978 break;
979 case ACPI_IVMD_TYPE_ALL:
3a61ec38 980 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
981 set_device_exclusion_range(i, m);
982 break;
983 case ACPI_IVMD_TYPE_RANGE:
984 for (i = m->devid; i <= m->aux; ++i)
985 set_device_exclusion_range(i, m);
986 break;
987 default:
988 break;
989 }
990
991 return 0;
992}
993
b65233a9 994/* called for unity map ACPI definition */
be2a022c
JR
995static int __init init_unity_map_range(struct ivmd_header *m)
996{
997 struct unity_map_entry *e = 0;
02acc43a 998 char *s;
be2a022c
JR
999
1000 e = kzalloc(sizeof(*e), GFP_KERNEL);
1001 if (e == NULL)
1002 return -ENOMEM;
1003
1004 switch (m->type) {
1005 default:
0bc252f4
JR
1006 kfree(e);
1007 return 0;
be2a022c 1008 case ACPI_IVMD_TYPE:
02acc43a 1009 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1010 e->devid_start = e->devid_end = m->devid;
1011 break;
1012 case ACPI_IVMD_TYPE_ALL:
02acc43a 1013 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1014 e->devid_start = 0;
1015 e->devid_end = amd_iommu_last_bdf;
1016 break;
1017 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1018 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1019 e->devid_start = m->devid;
1020 e->devid_end = m->aux;
1021 break;
1022 }
1023 e->address_start = PAGE_ALIGN(m->range_start);
1024 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1025 e->prot = m->flags >> 1;
1026
02acc43a
JR
1027 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1028 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1029 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1030 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1031 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1032 e->address_start, e->address_end, m->flags);
1033
be2a022c
JR
1034 list_add_tail(&e->list, &amd_iommu_unity_map);
1035
1036 return 0;
1037}
1038
b65233a9 1039/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1040static int __init init_memory_definitions(struct acpi_table_header *table)
1041{
1042 u8 *p = (u8 *)table, *end = (u8 *)table;
1043 struct ivmd_header *m;
1044
be2a022c
JR
1045 end += table->length;
1046 p += IVRS_HEADER_LENGTH;
1047
1048 while (p < end) {
1049 m = (struct ivmd_header *)p;
1050 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1051 init_exclusion_range(m);
1052 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1053 init_unity_map_range(m);
1054
1055 p += m->length;
1056 }
1057
1058 return 0;
1059}
1060
9f5f5fb3
JR
1061/*
1062 * Init the device table to not allow DMA access for devices and
1063 * suppress all page faults
1064 */
1065static void init_device_table(void)
1066{
1067 u16 devid;
1068
1069 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1070 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1071 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1072 }
1073}
1074
b65233a9
JR
1075/*
1076 * This function finally enables all IOMMUs found in the system after
1077 * they have been initialized
1078 */
05f92db9 1079static void enable_iommus(void)
8736197b
JR
1080{
1081 struct amd_iommu *iommu;
1082
3bd22172 1083 for_each_iommu(iommu) {
a8c485bb 1084 iommu_disable(iommu);
58492e12
JR
1085 iommu_set_device_table(iommu);
1086 iommu_enable_command_buffer(iommu);
1087 iommu_enable_event_buffer(iommu);
8736197b 1088 iommu_set_exclusion_range(iommu);
a80dc3e0 1089 iommu_init_msi(iommu);
8736197b
JR
1090 iommu_enable(iommu);
1091 }
1092}
1093
92ac4320
JR
1094static void disable_iommus(void)
1095{
1096 struct amd_iommu *iommu;
1097
1098 for_each_iommu(iommu)
1099 iommu_disable(iommu);
1100}
1101
7441e9cb
JR
1102/*
1103 * Suspend/Resume support
1104 * disable suspend until real resume implemented
1105 */
1106
1107static int amd_iommu_resume(struct sys_device *dev)
1108{
736501ee
JR
1109 /* re-load the hardware */
1110 enable_iommus();
1111
1112 /*
1113 * we have to flush after the IOMMUs are enabled because a
1114 * disabled IOMMU will never execute the commands we send
1115 */
736501ee 1116 amd_iommu_flush_all_devices();
6a047d8b 1117 amd_iommu_flush_all_domains();
736501ee 1118
7441e9cb
JR
1119 return 0;
1120}
1121
1122static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1123{
736501ee
JR
1124 /* disable IOMMUs to go out of the way for BIOS */
1125 disable_iommus();
1126
1127 return 0;
7441e9cb
JR
1128}
1129
1130static struct sysdev_class amd_iommu_sysdev_class = {
1131 .name = "amd_iommu",
1132 .suspend = amd_iommu_suspend,
1133 .resume = amd_iommu_resume,
1134};
1135
1136static struct sys_device device_amd_iommu = {
1137 .id = 0,
1138 .cls = &amd_iommu_sysdev_class,
1139};
1140
b65233a9
JR
1141/*
1142 * This is the core init function for AMD IOMMU hardware in the system.
1143 * This function is called from the generic x86 DMA layer initialization
1144 * code.
1145 *
1146 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1147 * three times:
1148 *
1149 * 1 pass) Find the highest PCI device id the driver has to handle.
1150 * Upon this information the size of the data structures is
1151 * determined that needs to be allocated.
1152 *
1153 * 2 pass) Initialize the data structures just allocated with the
1154 * information in the ACPI table about available AMD IOMMUs
1155 * in the system. It also maps the PCI devices in the
1156 * system to specific IOMMUs
1157 *
1158 * 3 pass) After the basic data structures are allocated and
1159 * initialized we update them with information about memory
1160 * remapping requirements parsed out of the ACPI table in
1161 * this last pass.
1162 *
1163 * After that the hardware is initialized and ready to go. In the last
1164 * step we do some Linux specific things like registering the driver in
1165 * the dma_ops interface and initializing the suspend/resume support
1166 * functions. Finally it prints some information about AMD IOMMUs and
1167 * the driver state and enables the hardware.
1168 */
fe74c9cf
JR
1169int __init amd_iommu_init(void)
1170{
1171 int i, ret = 0;
1172
1173
8b14518f 1174 if (no_iommu) {
fe74c9cf
JR
1175 printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
1176 return 0;
1177 }
1178
c1cbebee
JR
1179 if (!amd_iommu_detected)
1180 return -ENODEV;
1181
fe74c9cf
JR
1182 /*
1183 * First parse ACPI tables to find the largest Bus/Dev/Func
1184 * we need to handle. Upon this information the shared data
1185 * structures for the IOMMUs in the system will be allocated
1186 */
1187 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1188 return -ENODEV;
1189
c571484e
JR
1190 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1191 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1192 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1193
1194 ret = -ENOMEM;
1195
1196 /* Device table - directly used by all IOMMUs */
5dc8bff0 1197 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1198 get_order(dev_table_size));
1199 if (amd_iommu_dev_table == NULL)
1200 goto out;
1201
1202 /*
1203 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1204 * IOMMU see for that device
1205 */
1206 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1207 get_order(alias_table_size));
1208 if (amd_iommu_alias_table == NULL)
1209 goto free;
1210
1211 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1212 amd_iommu_rlookup_table = (void *)__get_free_pages(
1213 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1214 get_order(rlookup_table_size));
1215 if (amd_iommu_rlookup_table == NULL)
1216 goto free;
1217
1218 /*
1219 * Protection Domain table - maps devices to protection domains
1220 * This table has the same size as the rlookup_table
1221 */
5dc8bff0 1222 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1223 get_order(rlookup_table_size));
1224 if (amd_iommu_pd_table == NULL)
1225 goto free;
1226
5dc8bff0
JR
1227 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1228 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1229 get_order(MAX_DOMAIN_ID/8));
1230 if (amd_iommu_pd_alloc_bitmap == NULL)
1231 goto free;
1232
9f5f5fb3
JR
1233 /* init the device table */
1234 init_device_table();
1235
fe74c9cf 1236 /*
5dc8bff0 1237 * let all alias entries point to itself
fe74c9cf 1238 */
3a61ec38 1239 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1240 amd_iommu_alias_table[i] = i;
1241
fe74c9cf
JR
1242 /*
1243 * never allocate domain 0 because its used as the non-allocated and
1244 * error value placeholder
1245 */
1246 amd_iommu_pd_alloc_bitmap[0] = 1;
1247
1248 /*
1249 * now the data structures are allocated and basically initialized
1250 * start the real acpi table scan
1251 */
1252 ret = -ENODEV;
1253 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1254 goto free;
1255
1256 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1257 goto free;
1258
129d6aba 1259 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1260 if (ret)
1261 goto free;
1262
129d6aba 1263 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1264 if (ret)
1265 goto free;
1266
129d6aba 1267 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1268 if (ret)
1269 goto free;
1270
8736197b
JR
1271 enable_iommus();
1272
fe74c9cf
JR
1273 printk(KERN_INFO "AMD IOMMU: device isolation ");
1274 if (amd_iommu_isolate)
1275 printk("enabled\n");
1276 else
1277 printk("disabled\n");
1278
afa9fdc2 1279 if (amd_iommu_unmap_flush)
1c655773
JR
1280 printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
1281 else
1282 printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");
1283
fe74c9cf
JR
1284out:
1285 return ret;
1286
1287free:
d58befd3
JR
1288 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1289 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1290
9a836de0
JR
1291 free_pages((unsigned long)amd_iommu_pd_table,
1292 get_order(rlookup_table_size));
fe74c9cf 1293
9a836de0
JR
1294 free_pages((unsigned long)amd_iommu_rlookup_table,
1295 get_order(rlookup_table_size));
fe74c9cf 1296
9a836de0
JR
1297 free_pages((unsigned long)amd_iommu_alias_table,
1298 get_order(alias_table_size));
fe74c9cf 1299
9a836de0
JR
1300 free_pages((unsigned long)amd_iommu_dev_table,
1301 get_order(dev_table_size));
fe74c9cf
JR
1302
1303 free_iommu_all();
1304
1305 free_unity_maps();
1306
1307 goto out;
1308}
1309
09759042
JR
1310void amd_iommu_shutdown(void)
1311{
1312 disable_iommus();
1313}
1314
b65233a9
JR
1315/****************************************************************************
1316 *
1317 * Early detect code. This code runs at IOMMU detection time in the DMA
1318 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1319 * IOMMUs
1320 *
1321 ****************************************************************************/
ae7877de
JR
1322static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1323{
1324 return 0;
1325}
1326
1327void __init amd_iommu_detect(void)
1328{
299a140d 1329 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1330 return;
1331
ae7877de
JR
1332 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1333 iommu_detected = 1;
c1cbebee 1334 amd_iommu_detected = 1;
92af4e29 1335#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1336 gart_iommu_aperture_disabled = 1;
1337 gart_iommu_aperture = 0;
92af4e29 1338#endif
ae7877de
JR
1339 }
1340}
1341
b65233a9
JR
1342/****************************************************************************
1343 *
1344 * Parsing functions for the AMD IOMMU specific kernel command line
1345 * options.
1346 *
1347 ****************************************************************************/
1348
fefda117
JR
1349static int __init parse_amd_iommu_dump(char *str)
1350{
1351 amd_iommu_dump = true;
1352
1353 return 1;
1354}
1355
918ad6c5
JR
1356static int __init parse_amd_iommu_options(char *str)
1357{
1358 for (; *str; ++str) {
1c655773 1359 if (strncmp(str, "isolate", 7) == 0)
c226f853 1360 amd_iommu_isolate = true;
e5e1f606 1361 if (strncmp(str, "share", 5) == 0)
c226f853 1362 amd_iommu_isolate = false;
695b5676 1363 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1364 amd_iommu_unmap_flush = true;
918ad6c5
JR
1365 }
1366
1367 return 1;
1368}
1369
fefda117 1370__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1371__setup("amd_iommu=", parse_amd_iommu_options);
This page took 0.51261 seconds and 4 git commands to generate.