]> Git Repo - linux.git/blame - mm/huge_memory.c
thp: implement splitting pmd for huge zero page
[linux.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
71e3aac0
AA
21#include <asm/tlb.h>
22#include <asm/pgalloc.h>
23#include "internal.h"
24
ba76149f
AA
25/*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
71e3aac0 32unsigned long transparent_hugepage_flags __read_mostly =
13ece886 33#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
35#endif
36#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38#endif
d39d33c3 39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42/* default scan 8*512 pte (or vmas) every 30 second */
43static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44static unsigned int khugepaged_pages_collapsed;
45static unsigned int khugepaged_full_scans;
46static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47/* during fragmentation poll the hugepage allocator once every minute */
48static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49static struct task_struct *khugepaged_thread __read_mostly;
4a6c1297 50static unsigned long huge_zero_pfn __read_mostly;
ba76149f
AA
51static DEFINE_MUTEX(khugepaged_mutex);
52static DEFINE_SPINLOCK(khugepaged_mm_lock);
53static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54/*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61static int khugepaged(void *none);
62static int mm_slots_hash_init(void);
63static int khugepaged_slab_init(void);
64static void khugepaged_slab_free(void);
65
66#define MM_SLOTS_HASH_HEADS 1024
67static struct hlist_head *mm_slots_hash __read_mostly;
68static struct kmem_cache *mm_slot_cache __read_mostly;
69
70/**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80};
81
82/**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
2f1da642
HS
94};
95static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97};
98
f000565a
AA
99
100static int set_recommended_min_free_kbytes(void)
101{
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
17c230af 107 if (!khugepaged_enabled())
f000565a
AA
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
ba76149f
AA
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
ba76149f
AA
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
911891af
XG
150
151 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 152 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
153
154 set_recommended_min_free_kbytes();
911891af 155 } else if (khugepaged_thread) {
911891af
XG
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
637e3a27 159
ba76149f
AA
160 return err;
161}
71e3aac0 162
4a6c1297
KS
163static int __init init_huge_zero_page(void)
164{
165 struct page *hpage;
166
167 hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
168 HPAGE_PMD_ORDER);
169 if (!hpage)
170 return -ENOMEM;
171
172 huge_zero_pfn = page_to_pfn(hpage);
173 return 0;
174}
175
176static inline bool is_huge_zero_pfn(unsigned long pfn)
177{
178 return pfn == huge_zero_pfn;
179}
180
181static inline bool is_huge_zero_pmd(pmd_t pmd)
182{
183 return is_huge_zero_pfn(pmd_pfn(pmd));
184}
185
71e3aac0 186#ifdef CONFIG_SYSFS
ba76149f 187
71e3aac0
AA
188static ssize_t double_flag_show(struct kobject *kobj,
189 struct kobj_attribute *attr, char *buf,
190 enum transparent_hugepage_flag enabled,
191 enum transparent_hugepage_flag req_madv)
192{
193 if (test_bit(enabled, &transparent_hugepage_flags)) {
194 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
195 return sprintf(buf, "[always] madvise never\n");
196 } else if (test_bit(req_madv, &transparent_hugepage_flags))
197 return sprintf(buf, "always [madvise] never\n");
198 else
199 return sprintf(buf, "always madvise [never]\n");
200}
201static ssize_t double_flag_store(struct kobject *kobj,
202 struct kobj_attribute *attr,
203 const char *buf, size_t count,
204 enum transparent_hugepage_flag enabled,
205 enum transparent_hugepage_flag req_madv)
206{
207 if (!memcmp("always", buf,
208 min(sizeof("always")-1, count))) {
209 set_bit(enabled, &transparent_hugepage_flags);
210 clear_bit(req_madv, &transparent_hugepage_flags);
211 } else if (!memcmp("madvise", buf,
212 min(sizeof("madvise")-1, count))) {
213 clear_bit(enabled, &transparent_hugepage_flags);
214 set_bit(req_madv, &transparent_hugepage_flags);
215 } else if (!memcmp("never", buf,
216 min(sizeof("never")-1, count))) {
217 clear_bit(enabled, &transparent_hugepage_flags);
218 clear_bit(req_madv, &transparent_hugepage_flags);
219 } else
220 return -EINVAL;
221
222 return count;
223}
224
225static ssize_t enabled_show(struct kobject *kobj,
226 struct kobj_attribute *attr, char *buf)
227{
228 return double_flag_show(kobj, attr, buf,
229 TRANSPARENT_HUGEPAGE_FLAG,
230 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
231}
232static ssize_t enabled_store(struct kobject *kobj,
233 struct kobj_attribute *attr,
234 const char *buf, size_t count)
235{
ba76149f
AA
236 ssize_t ret;
237
238 ret = double_flag_store(kobj, attr, buf, count,
239 TRANSPARENT_HUGEPAGE_FLAG,
240 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
241
242 if (ret > 0) {
911891af
XG
243 int err;
244
245 mutex_lock(&khugepaged_mutex);
246 err = start_khugepaged();
247 mutex_unlock(&khugepaged_mutex);
248
ba76149f
AA
249 if (err)
250 ret = err;
251 }
252
253 return ret;
71e3aac0
AA
254}
255static struct kobj_attribute enabled_attr =
256 __ATTR(enabled, 0644, enabled_show, enabled_store);
257
258static ssize_t single_flag_show(struct kobject *kobj,
259 struct kobj_attribute *attr, char *buf,
260 enum transparent_hugepage_flag flag)
261{
e27e6151
BH
262 return sprintf(buf, "%d\n",
263 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 264}
e27e6151 265
71e3aac0
AA
266static ssize_t single_flag_store(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 const char *buf, size_t count,
269 enum transparent_hugepage_flag flag)
270{
e27e6151
BH
271 unsigned long value;
272 int ret;
273
274 ret = kstrtoul(buf, 10, &value);
275 if (ret < 0)
276 return ret;
277 if (value > 1)
278 return -EINVAL;
279
280 if (value)
71e3aac0 281 set_bit(flag, &transparent_hugepage_flags);
e27e6151 282 else
71e3aac0 283 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
284
285 return count;
286}
287
288/*
289 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
290 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
291 * memory just to allocate one more hugepage.
292 */
293static ssize_t defrag_show(struct kobject *kobj,
294 struct kobj_attribute *attr, char *buf)
295{
296 return double_flag_show(kobj, attr, buf,
297 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
298 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
299}
300static ssize_t defrag_store(struct kobject *kobj,
301 struct kobj_attribute *attr,
302 const char *buf, size_t count)
303{
304 return double_flag_store(kobj, attr, buf, count,
305 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
306 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
307}
308static struct kobj_attribute defrag_attr =
309 __ATTR(defrag, 0644, defrag_show, defrag_store);
310
311#ifdef CONFIG_DEBUG_VM
312static ssize_t debug_cow_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314{
315 return single_flag_show(kobj, attr, buf,
316 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
317}
318static ssize_t debug_cow_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321{
322 return single_flag_store(kobj, attr, buf, count,
323 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
324}
325static struct kobj_attribute debug_cow_attr =
326 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
327#endif /* CONFIG_DEBUG_VM */
328
329static struct attribute *hugepage_attr[] = {
330 &enabled_attr.attr,
331 &defrag_attr.attr,
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
338static struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
342static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
343 struct kobj_attribute *attr,
344 char *buf)
345{
346 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
347}
348
349static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352{
353 unsigned long msecs;
354 int err;
355
356 err = strict_strtoul(buf, 10, &msecs);
357 if (err || msecs > UINT_MAX)
358 return -EINVAL;
359
360 khugepaged_scan_sleep_millisecs = msecs;
361 wake_up_interruptible(&khugepaged_wait);
362
363 return count;
364}
365static struct kobj_attribute scan_sleep_millisecs_attr =
366 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
367 scan_sleep_millisecs_store);
368
369static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
370 struct kobj_attribute *attr,
371 char *buf)
372{
373 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
374}
375
376static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
377 struct kobj_attribute *attr,
378 const char *buf, size_t count)
379{
380 unsigned long msecs;
381 int err;
382
383 err = strict_strtoul(buf, 10, &msecs);
384 if (err || msecs > UINT_MAX)
385 return -EINVAL;
386
387 khugepaged_alloc_sleep_millisecs = msecs;
388 wake_up_interruptible(&khugepaged_wait);
389
390 return count;
391}
392static struct kobj_attribute alloc_sleep_millisecs_attr =
393 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
394 alloc_sleep_millisecs_store);
395
396static ssize_t pages_to_scan_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399{
400 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
401}
402static ssize_t pages_to_scan_store(struct kobject *kobj,
403 struct kobj_attribute *attr,
404 const char *buf, size_t count)
405{
406 int err;
407 unsigned long pages;
408
409 err = strict_strtoul(buf, 10, &pages);
410 if (err || !pages || pages > UINT_MAX)
411 return -EINVAL;
412
413 khugepaged_pages_to_scan = pages;
414
415 return count;
416}
417static struct kobj_attribute pages_to_scan_attr =
418 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
419 pages_to_scan_store);
420
421static ssize_t pages_collapsed_show(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 char *buf)
424{
425 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
426}
427static struct kobj_attribute pages_collapsed_attr =
428 __ATTR_RO(pages_collapsed);
429
430static ssize_t full_scans_show(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 char *buf)
433{
434 return sprintf(buf, "%u\n", khugepaged_full_scans);
435}
436static struct kobj_attribute full_scans_attr =
437 __ATTR_RO(full_scans);
438
439static ssize_t khugepaged_defrag_show(struct kobject *kobj,
440 struct kobj_attribute *attr, char *buf)
441{
442 return single_flag_show(kobj, attr, buf,
443 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
444}
445static ssize_t khugepaged_defrag_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 return single_flag_store(kobj, attr, buf, count,
450 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
451}
452static struct kobj_attribute khugepaged_defrag_attr =
453 __ATTR(defrag, 0644, khugepaged_defrag_show,
454 khugepaged_defrag_store);
455
456/*
457 * max_ptes_none controls if khugepaged should collapse hugepages over
458 * any unmapped ptes in turn potentially increasing the memory
459 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
460 * reduce the available free memory in the system as it
461 * runs. Increasing max_ptes_none will instead potentially reduce the
462 * free memory in the system during the khugepaged scan.
463 */
464static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
465 struct kobj_attribute *attr,
466 char *buf)
467{
468 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
469}
470static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 const char *buf, size_t count)
473{
474 int err;
475 unsigned long max_ptes_none;
476
477 err = strict_strtoul(buf, 10, &max_ptes_none);
478 if (err || max_ptes_none > HPAGE_PMD_NR-1)
479 return -EINVAL;
480
481 khugepaged_max_ptes_none = max_ptes_none;
482
483 return count;
484}
485static struct kobj_attribute khugepaged_max_ptes_none_attr =
486 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
487 khugepaged_max_ptes_none_store);
488
489static struct attribute *khugepaged_attr[] = {
490 &khugepaged_defrag_attr.attr,
491 &khugepaged_max_ptes_none_attr.attr,
492 &pages_to_scan_attr.attr,
493 &pages_collapsed_attr.attr,
494 &full_scans_attr.attr,
495 &scan_sleep_millisecs_attr.attr,
496 &alloc_sleep_millisecs_attr.attr,
497 NULL,
498};
499
500static struct attribute_group khugepaged_attr_group = {
501 .attrs = khugepaged_attr,
502 .name = "khugepaged",
71e3aac0 503};
71e3aac0 504
569e5590 505static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 506{
71e3aac0
AA
507 int err;
508
569e5590
SL
509 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
510 if (unlikely(!*hugepage_kobj)) {
ba76149f 511 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 512 return -ENOMEM;
ba76149f
AA
513 }
514
569e5590 515 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
516 if (err) {
517 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 518 goto delete_obj;
ba76149f
AA
519 }
520
569e5590 521 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
522 if (err) {
523 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 524 goto remove_hp_group;
ba76149f 525 }
569e5590
SL
526
527 return 0;
528
529remove_hp_group:
530 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
531delete_obj:
532 kobject_put(*hugepage_kobj);
533 return err;
534}
535
536static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
537{
538 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
539 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
540 kobject_put(hugepage_kobj);
541}
542#else
543static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
544{
545 return 0;
546}
547
548static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
549{
550}
551#endif /* CONFIG_SYSFS */
552
553static int __init hugepage_init(void)
554{
555 int err;
556 struct kobject *hugepage_kobj;
557
558 if (!has_transparent_hugepage()) {
559 transparent_hugepage_flags = 0;
560 return -EINVAL;
561 }
562
563 err = hugepage_init_sysfs(&hugepage_kobj);
564 if (err)
565 return err;
ba76149f 566
4a6c1297
KS
567 err = init_huge_zero_page();
568 if (err)
569 goto out;
570
ba76149f
AA
571 err = khugepaged_slab_init();
572 if (err)
573 goto out;
574
575 err = mm_slots_hash_init();
576 if (err) {
577 khugepaged_slab_free();
578 goto out;
579 }
580
97562cd2
RR
581 /*
582 * By default disable transparent hugepages on smaller systems,
583 * where the extra memory used could hurt more than TLB overhead
584 * is likely to save. The admin can still enable it through /sys.
585 */
586 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
587 transparent_hugepage_flags = 0;
588
ba76149f
AA
589 start_khugepaged();
590
569e5590 591 return 0;
ba76149f 592out:
4a6c1297
KS
593 if (huge_zero_pfn)
594 __free_page(pfn_to_page(huge_zero_pfn));
569e5590 595 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 596 return err;
71e3aac0
AA
597}
598module_init(hugepage_init)
599
600static int __init setup_transparent_hugepage(char *str)
601{
602 int ret = 0;
603 if (!str)
604 goto out;
605 if (!strcmp(str, "always")) {
606 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
607 &transparent_hugepage_flags);
608 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
609 &transparent_hugepage_flags);
610 ret = 1;
611 } else if (!strcmp(str, "madvise")) {
612 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
613 &transparent_hugepage_flags);
614 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
615 &transparent_hugepage_flags);
616 ret = 1;
617 } else if (!strcmp(str, "never")) {
618 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
619 &transparent_hugepage_flags);
620 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
621 &transparent_hugepage_flags);
622 ret = 1;
623 }
624out:
625 if (!ret)
626 printk(KERN_WARNING
627 "transparent_hugepage= cannot parse, ignored\n");
628 return ret;
629}
630__setup("transparent_hugepage=", setup_transparent_hugepage);
631
71e3aac0
AA
632static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
633{
634 if (likely(vma->vm_flags & VM_WRITE))
635 pmd = pmd_mkwrite(pmd);
636 return pmd;
637}
638
b3092b3b
BL
639static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
640{
641 pmd_t entry;
642 entry = mk_pmd(page, vma->vm_page_prot);
643 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644 entry = pmd_mkhuge(entry);
645 return entry;
646}
647
71e3aac0
AA
648static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
649 struct vm_area_struct *vma,
650 unsigned long haddr, pmd_t *pmd,
651 struct page *page)
652{
71e3aac0
AA
653 pgtable_t pgtable;
654
655 VM_BUG_ON(!PageCompound(page));
656 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 657 if (unlikely(!pgtable))
71e3aac0 658 return VM_FAULT_OOM;
71e3aac0
AA
659
660 clear_huge_page(page, haddr, HPAGE_PMD_NR);
661 __SetPageUptodate(page);
662
663 spin_lock(&mm->page_table_lock);
664 if (unlikely(!pmd_none(*pmd))) {
665 spin_unlock(&mm->page_table_lock);
b9bbfbe3 666 mem_cgroup_uncharge_page(page);
71e3aac0
AA
667 put_page(page);
668 pte_free(mm, pgtable);
669 } else {
670 pmd_t entry;
b3092b3b 671 entry = mk_huge_pmd(page, vma);
71e3aac0
AA
672 /*
673 * The spinlocking to take the lru_lock inside
674 * page_add_new_anon_rmap() acts as a full memory
675 * barrier to be sure clear_huge_page writes become
676 * visible after the set_pmd_at() write.
677 */
678 page_add_new_anon_rmap(page, vma, haddr);
679 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 680 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 681 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 682 mm->nr_ptes++;
71e3aac0
AA
683 spin_unlock(&mm->page_table_lock);
684 }
685
aa2e878e 686 return 0;
71e3aac0
AA
687}
688
cc5d462f 689static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 690{
cc5d462f 691 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
692}
693
694static inline struct page *alloc_hugepage_vma(int defrag,
695 struct vm_area_struct *vma,
cc5d462f
AK
696 unsigned long haddr, int nd,
697 gfp_t extra_gfp)
0bbbc0b3 698{
cc5d462f 699 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 700 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
701}
702
703#ifndef CONFIG_NUMA
71e3aac0
AA
704static inline struct page *alloc_hugepage(int defrag)
705{
cc5d462f 706 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
707 HPAGE_PMD_ORDER);
708}
0bbbc0b3 709#endif
71e3aac0 710
fc9fe822
KS
711static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
712 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
713{
714 pmd_t entry;
715 entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
716 entry = pmd_wrprotect(entry);
717 entry = pmd_mkhuge(entry);
718 set_pmd_at(mm, haddr, pmd, entry);
719 pgtable_trans_huge_deposit(mm, pgtable);
720 mm->nr_ptes++;
721}
722
71e3aac0
AA
723int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
724 unsigned long address, pmd_t *pmd,
725 unsigned int flags)
726{
727 struct page *page;
728 unsigned long haddr = address & HPAGE_PMD_MASK;
729 pte_t *pte;
730
731 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
732 if (unlikely(anon_vma_prepare(vma)))
733 return VM_FAULT_OOM;
ba76149f
AA
734 if (unlikely(khugepaged_enter(vma)))
735 return VM_FAULT_OOM;
0bbbc0b3 736 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 737 vma, haddr, numa_node_id(), 0);
81ab4201
AK
738 if (unlikely(!page)) {
739 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 740 goto out;
81ab4201
AK
741 }
742 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
743 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
744 put_page(page);
745 goto out;
746 }
edad9d2c
DR
747 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
748 page))) {
749 mem_cgroup_uncharge_page(page);
750 put_page(page);
751 goto out;
752 }
71e3aac0 753
edad9d2c 754 return 0;
71e3aac0
AA
755 }
756out:
757 /*
758 * Use __pte_alloc instead of pte_alloc_map, because we can't
759 * run pte_offset_map on the pmd, if an huge pmd could
760 * materialize from under us from a different thread.
761 */
762 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
763 return VM_FAULT_OOM;
764 /* if an huge pmd materialized from under us just retry later */
765 if (unlikely(pmd_trans_huge(*pmd)))
766 return 0;
767 /*
768 * A regular pmd is established and it can't morph into a huge pmd
769 * from under us anymore at this point because we hold the mmap_sem
770 * read mode and khugepaged takes it in write mode. So now it's
771 * safe to run pte_offset_map().
772 */
773 pte = pte_offset_map(pmd, address);
774 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
775}
776
777int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
778 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
779 struct vm_area_struct *vma)
780{
781 struct page *src_page;
782 pmd_t pmd;
783 pgtable_t pgtable;
784 int ret;
785
786 ret = -ENOMEM;
787 pgtable = pte_alloc_one(dst_mm, addr);
788 if (unlikely(!pgtable))
789 goto out;
790
791 spin_lock(&dst_mm->page_table_lock);
792 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
793
794 ret = -EAGAIN;
795 pmd = *src_pmd;
796 if (unlikely(!pmd_trans_huge(pmd))) {
797 pte_free(dst_mm, pgtable);
798 goto out_unlock;
799 }
fc9fe822
KS
800 /*
801 * mm->page_table_lock is enough to be sure that huge zero pmd is not
802 * under splitting since we don't split the page itself, only pmd to
803 * a page table.
804 */
805 if (is_huge_zero_pmd(pmd)) {
806 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
807 ret = 0;
808 goto out_unlock;
809 }
71e3aac0
AA
810 if (unlikely(pmd_trans_splitting(pmd))) {
811 /* split huge page running from under us */
812 spin_unlock(&src_mm->page_table_lock);
813 spin_unlock(&dst_mm->page_table_lock);
814 pte_free(dst_mm, pgtable);
815
816 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
817 goto out;
818 }
819 src_page = pmd_page(pmd);
820 VM_BUG_ON(!PageHead(src_page));
821 get_page(src_page);
822 page_dup_rmap(src_page);
823 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
824
825 pmdp_set_wrprotect(src_mm, addr, src_pmd);
826 pmd = pmd_mkold(pmd_wrprotect(pmd));
827 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 828 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 829 dst_mm->nr_ptes++;
71e3aac0
AA
830
831 ret = 0;
832out_unlock:
833 spin_unlock(&src_mm->page_table_lock);
834 spin_unlock(&dst_mm->page_table_lock);
835out:
836 return ret;
837}
838
a1dd450b
WD
839void huge_pmd_set_accessed(struct mm_struct *mm,
840 struct vm_area_struct *vma,
841 unsigned long address,
842 pmd_t *pmd, pmd_t orig_pmd,
843 int dirty)
844{
845 pmd_t entry;
846 unsigned long haddr;
847
848 spin_lock(&mm->page_table_lock);
849 if (unlikely(!pmd_same(*pmd, orig_pmd)))
850 goto unlock;
851
852 entry = pmd_mkyoung(orig_pmd);
853 haddr = address & HPAGE_PMD_MASK;
854 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
855 update_mmu_cache_pmd(vma, address, pmd);
856
857unlock:
858 spin_unlock(&mm->page_table_lock);
859}
860
93b4796d
KS
861static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
862 struct vm_area_struct *vma, unsigned long address,
863 pmd_t *pmd, unsigned long haddr)
864{
865 pgtable_t pgtable;
866 pmd_t _pmd;
867 struct page *page;
868 int i, ret = 0;
869 unsigned long mmun_start; /* For mmu_notifiers */
870 unsigned long mmun_end; /* For mmu_notifiers */
871
872 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
873 if (!page) {
874 ret |= VM_FAULT_OOM;
875 goto out;
876 }
877
878 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
879 put_page(page);
880 ret |= VM_FAULT_OOM;
881 goto out;
882 }
883
884 clear_user_highpage(page, address);
885 __SetPageUptodate(page);
886
887 mmun_start = haddr;
888 mmun_end = haddr + HPAGE_PMD_SIZE;
889 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
890
891 spin_lock(&mm->page_table_lock);
892 pmdp_clear_flush(vma, haddr, pmd);
893 /* leave pmd empty until pte is filled */
894
895 pgtable = pgtable_trans_huge_withdraw(mm);
896 pmd_populate(mm, &_pmd, pgtable);
897
898 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
899 pte_t *pte, entry;
900 if (haddr == (address & PAGE_MASK)) {
901 entry = mk_pte(page, vma->vm_page_prot);
902 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
903 page_add_new_anon_rmap(page, vma, haddr);
904 } else {
905 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
906 entry = pte_mkspecial(entry);
907 }
908 pte = pte_offset_map(&_pmd, haddr);
909 VM_BUG_ON(!pte_none(*pte));
910 set_pte_at(mm, haddr, pte, entry);
911 pte_unmap(pte);
912 }
913 smp_wmb(); /* make pte visible before pmd */
914 pmd_populate(mm, pmd, pgtable);
915 spin_unlock(&mm->page_table_lock);
916 inc_mm_counter(mm, MM_ANONPAGES);
917
918 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
919
920 ret |= VM_FAULT_WRITE;
921out:
922 return ret;
923}
924
71e3aac0
AA
925static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
926 struct vm_area_struct *vma,
927 unsigned long address,
928 pmd_t *pmd, pmd_t orig_pmd,
929 struct page *page,
930 unsigned long haddr)
931{
932 pgtable_t pgtable;
933 pmd_t _pmd;
934 int ret = 0, i;
935 struct page **pages;
2ec74c3e
SG
936 unsigned long mmun_start; /* For mmu_notifiers */
937 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
938
939 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
940 GFP_KERNEL);
941 if (unlikely(!pages)) {
942 ret |= VM_FAULT_OOM;
943 goto out;
944 }
945
946 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
947 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
948 __GFP_OTHER_NODE,
19ee151e 949 vma, address, page_to_nid(page));
b9bbfbe3
AA
950 if (unlikely(!pages[i] ||
951 mem_cgroup_newpage_charge(pages[i], mm,
952 GFP_KERNEL))) {
953 if (pages[i])
71e3aac0 954 put_page(pages[i]);
b9bbfbe3
AA
955 mem_cgroup_uncharge_start();
956 while (--i >= 0) {
957 mem_cgroup_uncharge_page(pages[i]);
958 put_page(pages[i]);
959 }
960 mem_cgroup_uncharge_end();
71e3aac0
AA
961 kfree(pages);
962 ret |= VM_FAULT_OOM;
963 goto out;
964 }
965 }
966
967 for (i = 0; i < HPAGE_PMD_NR; i++) {
968 copy_user_highpage(pages[i], page + i,
0089e485 969 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
970 __SetPageUptodate(pages[i]);
971 cond_resched();
972 }
973
2ec74c3e
SG
974 mmun_start = haddr;
975 mmun_end = haddr + HPAGE_PMD_SIZE;
976 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
977
71e3aac0
AA
978 spin_lock(&mm->page_table_lock);
979 if (unlikely(!pmd_same(*pmd, orig_pmd)))
980 goto out_free_pages;
981 VM_BUG_ON(!PageHead(page));
982
2ec74c3e 983 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
984 /* leave pmd empty until pte is filled */
985
e3ebcf64 986 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
987 pmd_populate(mm, &_pmd, pgtable);
988
989 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
990 pte_t *pte, entry;
991 entry = mk_pte(pages[i], vma->vm_page_prot);
992 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
993 page_add_new_anon_rmap(pages[i], vma, haddr);
994 pte = pte_offset_map(&_pmd, haddr);
995 VM_BUG_ON(!pte_none(*pte));
996 set_pte_at(mm, haddr, pte, entry);
997 pte_unmap(pte);
998 }
999 kfree(pages);
1000
71e3aac0
AA
1001 smp_wmb(); /* make pte visible before pmd */
1002 pmd_populate(mm, pmd, pgtable);
1003 page_remove_rmap(page);
1004 spin_unlock(&mm->page_table_lock);
1005
2ec74c3e
SG
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007
71e3aac0
AA
1008 ret |= VM_FAULT_WRITE;
1009 put_page(page);
1010
1011out:
1012 return ret;
1013
1014out_free_pages:
1015 spin_unlock(&mm->page_table_lock);
2ec74c3e 1016 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1017 mem_cgroup_uncharge_start();
1018 for (i = 0; i < HPAGE_PMD_NR; i++) {
1019 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1020 put_page(pages[i]);
b9bbfbe3
AA
1021 }
1022 mem_cgroup_uncharge_end();
71e3aac0
AA
1023 kfree(pages);
1024 goto out;
1025}
1026
1027int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1028 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1029{
1030 int ret = 0;
93b4796d 1031 struct page *page = NULL, *new_page;
71e3aac0 1032 unsigned long haddr;
2ec74c3e
SG
1033 unsigned long mmun_start; /* For mmu_notifiers */
1034 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1035
1036 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1037 haddr = address & HPAGE_PMD_MASK;
1038 if (is_huge_zero_pmd(orig_pmd))
1039 goto alloc;
71e3aac0
AA
1040 spin_lock(&mm->page_table_lock);
1041 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1042 goto out_unlock;
1043
1044 page = pmd_page(orig_pmd);
1045 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1046 if (page_mapcount(page) == 1) {
1047 pmd_t entry;
1048 entry = pmd_mkyoung(orig_pmd);
1049 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1050 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1051 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1052 ret |= VM_FAULT_WRITE;
1053 goto out_unlock;
1054 }
1055 get_page(page);
1056 spin_unlock(&mm->page_table_lock);
93b4796d 1057alloc:
71e3aac0
AA
1058 if (transparent_hugepage_enabled(vma) &&
1059 !transparent_hugepage_debug_cow())
0bbbc0b3 1060 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1061 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1062 else
1063 new_page = NULL;
1064
1065 if (unlikely(!new_page)) {
81ab4201 1066 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1067 if (is_huge_zero_pmd(orig_pmd)) {
1068 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1069 address, pmd, haddr);
1070 } else {
1071 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1072 pmd, orig_pmd, page, haddr);
1073 if (ret & VM_FAULT_OOM)
1074 split_huge_page(page);
1075 put_page(page);
1076 }
71e3aac0
AA
1077 goto out;
1078 }
81ab4201 1079 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1080
b9bbfbe3
AA
1081 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1082 put_page(new_page);
93b4796d
KS
1083 if (page) {
1084 split_huge_page(page);
1085 put_page(page);
1086 }
b9bbfbe3
AA
1087 ret |= VM_FAULT_OOM;
1088 goto out;
1089 }
1090
93b4796d
KS
1091 if (is_huge_zero_pmd(orig_pmd))
1092 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1093 else
1094 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1095 __SetPageUptodate(new_page);
1096
2ec74c3e
SG
1097 mmun_start = haddr;
1098 mmun_end = haddr + HPAGE_PMD_SIZE;
1099 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1100
71e3aac0 1101 spin_lock(&mm->page_table_lock);
93b4796d
KS
1102 if (page)
1103 put_page(page);
b9bbfbe3 1104 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1105 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1106 mem_cgroup_uncharge_page(new_page);
71e3aac0 1107 put_page(new_page);
2ec74c3e 1108 goto out_mn;
b9bbfbe3 1109 } else {
71e3aac0 1110 pmd_t entry;
b3092b3b 1111 entry = mk_huge_pmd(new_page, vma);
2ec74c3e 1112 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1113 page_add_new_anon_rmap(new_page, vma, haddr);
1114 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1115 update_mmu_cache_pmd(vma, address, pmd);
93b4796d
KS
1116 if (is_huge_zero_pmd(orig_pmd))
1117 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 else {
1119 VM_BUG_ON(!PageHead(page));
1120 page_remove_rmap(page);
1121 put_page(page);
1122 }
71e3aac0
AA
1123 ret |= VM_FAULT_WRITE;
1124 }
71e3aac0 1125 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1126out_mn:
1127 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1128out:
1129 return ret;
2ec74c3e
SG
1130out_unlock:
1131 spin_unlock(&mm->page_table_lock);
1132 return ret;
71e3aac0
AA
1133}
1134
b676b293 1135struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1136 unsigned long addr,
1137 pmd_t *pmd,
1138 unsigned int flags)
1139{
b676b293 1140 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1141 struct page *page = NULL;
1142
1143 assert_spin_locked(&mm->page_table_lock);
1144
1145 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1146 goto out;
1147
1148 page = pmd_page(*pmd);
1149 VM_BUG_ON(!PageHead(page));
1150 if (flags & FOLL_TOUCH) {
1151 pmd_t _pmd;
1152 /*
1153 * We should set the dirty bit only for FOLL_WRITE but
1154 * for now the dirty bit in the pmd is meaningless.
1155 * And if the dirty bit will become meaningful and
1156 * we'll only set it with FOLL_WRITE, an atomic
1157 * set_bit will be required on the pmd to set the
1158 * young bit, instead of the current set_pmd_at.
1159 */
1160 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1161 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1162 }
b676b293
DR
1163 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1164 if (page->mapping && trylock_page(page)) {
1165 lru_add_drain();
1166 if (page->mapping)
1167 mlock_vma_page(page);
1168 unlock_page(page);
1169 }
1170 }
71e3aac0
AA
1171 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1172 VM_BUG_ON(!PageCompound(page));
1173 if (flags & FOLL_GET)
70b50f94 1174 get_page_foll(page);
71e3aac0
AA
1175
1176out:
1177 return page;
1178}
1179
1180int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1181 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1182{
1183 int ret = 0;
1184
025c5b24
NH
1185 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1186 struct page *page;
1187 pgtable_t pgtable;
f5c8ad47 1188 pmd_t orig_pmd;
e3ebcf64 1189 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47 1190 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1191 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
479f0abb
KS
1192 if (is_huge_zero_pmd(orig_pmd)) {
1193 tlb->mm->nr_ptes--;
1194 spin_unlock(&tlb->mm->page_table_lock);
1195 } else {
1196 page = pmd_page(orig_pmd);
1197 page_remove_rmap(page);
1198 VM_BUG_ON(page_mapcount(page) < 0);
1199 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1200 VM_BUG_ON(!PageHead(page));
1201 tlb->mm->nr_ptes--;
1202 spin_unlock(&tlb->mm->page_table_lock);
1203 tlb_remove_page(tlb, page);
1204 }
025c5b24
NH
1205 pte_free(tlb->mm, pgtable);
1206 ret = 1;
1207 }
71e3aac0
AA
1208 return ret;
1209}
1210
0ca1634d
JW
1211int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1212 unsigned long addr, unsigned long end,
1213 unsigned char *vec)
1214{
1215 int ret = 0;
1216
025c5b24
NH
1217 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1218 /*
1219 * All logical pages in the range are present
1220 * if backed by a huge page.
1221 */
0ca1634d 1222 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1223 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1224 ret = 1;
1225 }
0ca1634d
JW
1226
1227 return ret;
1228}
1229
37a1c49a
AA
1230int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1231 unsigned long old_addr,
1232 unsigned long new_addr, unsigned long old_end,
1233 pmd_t *old_pmd, pmd_t *new_pmd)
1234{
1235 int ret = 0;
1236 pmd_t pmd;
1237
1238 struct mm_struct *mm = vma->vm_mm;
1239
1240 if ((old_addr & ~HPAGE_PMD_MASK) ||
1241 (new_addr & ~HPAGE_PMD_MASK) ||
1242 old_end - old_addr < HPAGE_PMD_SIZE ||
1243 (new_vma->vm_flags & VM_NOHUGEPAGE))
1244 goto out;
1245
1246 /*
1247 * The destination pmd shouldn't be established, free_pgtables()
1248 * should have release it.
1249 */
1250 if (WARN_ON(!pmd_none(*new_pmd))) {
1251 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1252 goto out;
1253 }
1254
025c5b24
NH
1255 ret = __pmd_trans_huge_lock(old_pmd, vma);
1256 if (ret == 1) {
1257 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1258 VM_BUG_ON(!pmd_none(*new_pmd));
1259 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1260 spin_unlock(&mm->page_table_lock);
1261 }
1262out:
1263 return ret;
1264}
1265
cd7548ab
JW
1266int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1267 unsigned long addr, pgprot_t newprot)
1268{
1269 struct mm_struct *mm = vma->vm_mm;
1270 int ret = 0;
1271
025c5b24
NH
1272 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1273 pmd_t entry;
1274 entry = pmdp_get_and_clear(mm, addr, pmd);
1275 entry = pmd_modify(entry, newprot);
cad7f613 1276 BUG_ON(pmd_write(entry));
025c5b24
NH
1277 set_pmd_at(mm, addr, pmd, entry);
1278 spin_unlock(&vma->vm_mm->page_table_lock);
1279 ret = 1;
1280 }
1281
1282 return ret;
1283}
1284
1285/*
1286 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1287 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1288 *
1289 * Note that if it returns 1, this routine returns without unlocking page
1290 * table locks. So callers must unlock them.
1291 */
1292int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1293{
1294 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1295 if (likely(pmd_trans_huge(*pmd))) {
1296 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1297 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1298 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1299 return -1;
cd7548ab 1300 } else {
025c5b24
NH
1301 /* Thp mapped by 'pmd' is stable, so we can
1302 * handle it as it is. */
1303 return 1;
cd7548ab 1304 }
025c5b24
NH
1305 }
1306 spin_unlock(&vma->vm_mm->page_table_lock);
1307 return 0;
cd7548ab
JW
1308}
1309
71e3aac0
AA
1310pmd_t *page_check_address_pmd(struct page *page,
1311 struct mm_struct *mm,
1312 unsigned long address,
1313 enum page_check_address_pmd_flag flag)
1314{
71e3aac0
AA
1315 pmd_t *pmd, *ret = NULL;
1316
1317 if (address & ~HPAGE_PMD_MASK)
1318 goto out;
1319
6219049a
BL
1320 pmd = mm_find_pmd(mm, address);
1321 if (!pmd)
71e3aac0 1322 goto out;
71e3aac0
AA
1323 if (pmd_none(*pmd))
1324 goto out;
1325 if (pmd_page(*pmd) != page)
1326 goto out;
94fcc585
AA
1327 /*
1328 * split_vma() may create temporary aliased mappings. There is
1329 * no risk as long as all huge pmd are found and have their
1330 * splitting bit set before __split_huge_page_refcount
1331 * runs. Finding the same huge pmd more than once during the
1332 * same rmap walk is not a problem.
1333 */
1334 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1335 pmd_trans_splitting(*pmd))
1336 goto out;
71e3aac0
AA
1337 if (pmd_trans_huge(*pmd)) {
1338 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1339 !pmd_trans_splitting(*pmd));
1340 ret = pmd;
1341 }
1342out:
1343 return ret;
1344}
1345
1346static int __split_huge_page_splitting(struct page *page,
1347 struct vm_area_struct *vma,
1348 unsigned long address)
1349{
1350 struct mm_struct *mm = vma->vm_mm;
1351 pmd_t *pmd;
1352 int ret = 0;
2ec74c3e
SG
1353 /* For mmu_notifiers */
1354 const unsigned long mmun_start = address;
1355 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1356
2ec74c3e 1357 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1358 spin_lock(&mm->page_table_lock);
1359 pmd = page_check_address_pmd(page, mm, address,
1360 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1361 if (pmd) {
1362 /*
1363 * We can't temporarily set the pmd to null in order
1364 * to split it, the pmd must remain marked huge at all
1365 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1366 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1367 * serialize against split_huge_page*.
1368 */
2ec74c3e 1369 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1370 ret = 1;
1371 }
1372 spin_unlock(&mm->page_table_lock);
2ec74c3e 1373 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1374
1375 return ret;
1376}
1377
1378static void __split_huge_page_refcount(struct page *page)
1379{
1380 int i;
71e3aac0 1381 struct zone *zone = page_zone(page);
fa9add64 1382 struct lruvec *lruvec;
70b50f94 1383 int tail_count = 0;
71e3aac0
AA
1384
1385 /* prevent PageLRU to go away from under us, and freeze lru stats */
1386 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1387 lruvec = mem_cgroup_page_lruvec(page, zone);
1388
71e3aac0 1389 compound_lock(page);
e94c8a9c
KH
1390 /* complete memcg works before add pages to LRU */
1391 mem_cgroup_split_huge_fixup(page);
71e3aac0 1392
45676885 1393 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1394 struct page *page_tail = page + i;
1395
70b50f94
AA
1396 /* tail_page->_mapcount cannot change */
1397 BUG_ON(page_mapcount(page_tail) < 0);
1398 tail_count += page_mapcount(page_tail);
1399 /* check for overflow */
1400 BUG_ON(tail_count < 0);
1401 BUG_ON(atomic_read(&page_tail->_count) != 0);
1402 /*
1403 * tail_page->_count is zero and not changing from
1404 * under us. But get_page_unless_zero() may be running
1405 * from under us on the tail_page. If we used
1406 * atomic_set() below instead of atomic_add(), we
1407 * would then run atomic_set() concurrently with
1408 * get_page_unless_zero(), and atomic_set() is
1409 * implemented in C not using locked ops. spin_unlock
1410 * on x86 sometime uses locked ops because of PPro
1411 * errata 66, 92, so unless somebody can guarantee
1412 * atomic_set() here would be safe on all archs (and
1413 * not only on x86), it's safer to use atomic_add().
1414 */
1415 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1416 &page_tail->_count);
71e3aac0
AA
1417
1418 /* after clearing PageTail the gup refcount can be released */
1419 smp_mb();
1420
a6d30ddd
JD
1421 /*
1422 * retain hwpoison flag of the poisoned tail page:
1423 * fix for the unsuitable process killed on Guest Machine(KVM)
1424 * by the memory-failure.
1425 */
1426 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1427 page_tail->flags |= (page->flags &
1428 ((1L << PG_referenced) |
1429 (1L << PG_swapbacked) |
1430 (1L << PG_mlocked) |
1431 (1L << PG_uptodate)));
1432 page_tail->flags |= (1L << PG_dirty);
1433
70b50f94 1434 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1435 smp_wmb();
1436
1437 /*
1438 * __split_huge_page_splitting() already set the
1439 * splitting bit in all pmd that could map this
1440 * hugepage, that will ensure no CPU can alter the
1441 * mapcount on the head page. The mapcount is only
1442 * accounted in the head page and it has to be
1443 * transferred to all tail pages in the below code. So
1444 * for this code to be safe, the split the mapcount
1445 * can't change. But that doesn't mean userland can't
1446 * keep changing and reading the page contents while
1447 * we transfer the mapcount, so the pmd splitting
1448 * status is achieved setting a reserved bit in the
1449 * pmd, not by clearing the present bit.
1450 */
71e3aac0
AA
1451 page_tail->_mapcount = page->_mapcount;
1452
1453 BUG_ON(page_tail->mapping);
1454 page_tail->mapping = page->mapping;
1455
45676885 1456 page_tail->index = page->index + i;
71e3aac0
AA
1457
1458 BUG_ON(!PageAnon(page_tail));
1459 BUG_ON(!PageUptodate(page_tail));
1460 BUG_ON(!PageDirty(page_tail));
1461 BUG_ON(!PageSwapBacked(page_tail));
1462
fa9add64 1463 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1464 }
70b50f94
AA
1465 atomic_sub(tail_count, &page->_count);
1466 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1467
fa9add64 1468 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1469 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1470
71e3aac0
AA
1471 ClearPageCompound(page);
1472 compound_unlock(page);
1473 spin_unlock_irq(&zone->lru_lock);
1474
1475 for (i = 1; i < HPAGE_PMD_NR; i++) {
1476 struct page *page_tail = page + i;
1477 BUG_ON(page_count(page_tail) <= 0);
1478 /*
1479 * Tail pages may be freed if there wasn't any mapping
1480 * like if add_to_swap() is running on a lru page that
1481 * had its mapping zapped. And freeing these pages
1482 * requires taking the lru_lock so we do the put_page
1483 * of the tail pages after the split is complete.
1484 */
1485 put_page(page_tail);
1486 }
1487
1488 /*
1489 * Only the head page (now become a regular page) is required
1490 * to be pinned by the caller.
1491 */
1492 BUG_ON(page_count(page) <= 0);
1493}
1494
1495static int __split_huge_page_map(struct page *page,
1496 struct vm_area_struct *vma,
1497 unsigned long address)
1498{
1499 struct mm_struct *mm = vma->vm_mm;
1500 pmd_t *pmd, _pmd;
1501 int ret = 0, i;
1502 pgtable_t pgtable;
1503 unsigned long haddr;
1504
1505 spin_lock(&mm->page_table_lock);
1506 pmd = page_check_address_pmd(page, mm, address,
1507 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1508 if (pmd) {
e3ebcf64 1509 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1510 pmd_populate(mm, &_pmd, pgtable);
1511
e3ebcf64
GS
1512 haddr = address;
1513 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1514 pte_t *pte, entry;
1515 BUG_ON(PageCompound(page+i));
1516 entry = mk_pte(page + i, vma->vm_page_prot);
1517 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1518 if (!pmd_write(*pmd))
1519 entry = pte_wrprotect(entry);
1520 else
1521 BUG_ON(page_mapcount(page) != 1);
1522 if (!pmd_young(*pmd))
1523 entry = pte_mkold(entry);
1524 pte = pte_offset_map(&_pmd, haddr);
1525 BUG_ON(!pte_none(*pte));
1526 set_pte_at(mm, haddr, pte, entry);
1527 pte_unmap(pte);
1528 }
1529
71e3aac0
AA
1530 smp_wmb(); /* make pte visible before pmd */
1531 /*
1532 * Up to this point the pmd is present and huge and
1533 * userland has the whole access to the hugepage
1534 * during the split (which happens in place). If we
1535 * overwrite the pmd with the not-huge version
1536 * pointing to the pte here (which of course we could
1537 * if all CPUs were bug free), userland could trigger
1538 * a small page size TLB miss on the small sized TLB
1539 * while the hugepage TLB entry is still established
1540 * in the huge TLB. Some CPU doesn't like that. See
1541 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1542 * Erratum 383 on page 93. Intel should be safe but is
1543 * also warns that it's only safe if the permission
1544 * and cache attributes of the two entries loaded in
1545 * the two TLB is identical (which should be the case
1546 * here). But it is generally safer to never allow
1547 * small and huge TLB entries for the same virtual
1548 * address to be loaded simultaneously. So instead of
1549 * doing "pmd_populate(); flush_tlb_range();" we first
1550 * mark the current pmd notpresent (atomically because
1551 * here the pmd_trans_huge and pmd_trans_splitting
1552 * must remain set at all times on the pmd until the
1553 * split is complete for this pmd), then we flush the
1554 * SMP TLB and finally we write the non-huge version
1555 * of the pmd entry with pmd_populate.
1556 */
46dcde73 1557 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1558 pmd_populate(mm, pmd, pgtable);
1559 ret = 1;
1560 }
1561 spin_unlock(&mm->page_table_lock);
1562
1563 return ret;
1564}
1565
2b575eb6 1566/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1567static void __split_huge_page(struct page *page,
1568 struct anon_vma *anon_vma)
1569{
1570 int mapcount, mapcount2;
bf181b9f 1571 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1572 struct anon_vma_chain *avc;
1573
1574 BUG_ON(!PageHead(page));
1575 BUG_ON(PageTail(page));
1576
1577 mapcount = 0;
bf181b9f 1578 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1579 struct vm_area_struct *vma = avc->vma;
1580 unsigned long addr = vma_address(page, vma);
1581 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1582 mapcount += __split_huge_page_splitting(page, vma, addr);
1583 }
05759d38
AA
1584 /*
1585 * It is critical that new vmas are added to the tail of the
1586 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1587 * and establishes a child pmd before
1588 * __split_huge_page_splitting() freezes the parent pmd (so if
1589 * we fail to prevent copy_huge_pmd() from running until the
1590 * whole __split_huge_page() is complete), we will still see
1591 * the newly established pmd of the child later during the
1592 * walk, to be able to set it as pmd_trans_splitting too.
1593 */
1594 if (mapcount != page_mapcount(page))
1595 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1596 mapcount, page_mapcount(page));
71e3aac0
AA
1597 BUG_ON(mapcount != page_mapcount(page));
1598
1599 __split_huge_page_refcount(page);
1600
1601 mapcount2 = 0;
bf181b9f 1602 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1603 struct vm_area_struct *vma = avc->vma;
1604 unsigned long addr = vma_address(page, vma);
1605 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1606 mapcount2 += __split_huge_page_map(page, vma, addr);
1607 }
05759d38
AA
1608 if (mapcount != mapcount2)
1609 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1610 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1611 BUG_ON(mapcount != mapcount2);
1612}
1613
1614int split_huge_page(struct page *page)
1615{
1616 struct anon_vma *anon_vma;
1617 int ret = 1;
1618
c5a647d0 1619 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
71e3aac0
AA
1620 BUG_ON(!PageAnon(page));
1621 anon_vma = page_lock_anon_vma(page);
1622 if (!anon_vma)
1623 goto out;
1624 ret = 0;
1625 if (!PageCompound(page))
1626 goto out_unlock;
1627
1628 BUG_ON(!PageSwapBacked(page));
1629 __split_huge_page(page, anon_vma);
81ab4201 1630 count_vm_event(THP_SPLIT);
71e3aac0
AA
1631
1632 BUG_ON(PageCompound(page));
1633out_unlock:
1634 page_unlock_anon_vma(anon_vma);
1635out:
1636 return ret;
1637}
1638
4b6e1e37 1639#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1640
60ab3244
AA
1641int hugepage_madvise(struct vm_area_struct *vma,
1642 unsigned long *vm_flags, int advice)
0af4e98b 1643{
8e72033f
GS
1644 struct mm_struct *mm = vma->vm_mm;
1645
a664b2d8
AA
1646 switch (advice) {
1647 case MADV_HUGEPAGE:
1648 /*
1649 * Be somewhat over-protective like KSM for now!
1650 */
78f11a25 1651 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1652 return -EINVAL;
8e72033f
GS
1653 if (mm->def_flags & VM_NOHUGEPAGE)
1654 return -EINVAL;
a664b2d8
AA
1655 *vm_flags &= ~VM_NOHUGEPAGE;
1656 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1657 /*
1658 * If the vma become good for khugepaged to scan,
1659 * register it here without waiting a page fault that
1660 * may not happen any time soon.
1661 */
1662 if (unlikely(khugepaged_enter_vma_merge(vma)))
1663 return -ENOMEM;
a664b2d8
AA
1664 break;
1665 case MADV_NOHUGEPAGE:
1666 /*
1667 * Be somewhat over-protective like KSM for now!
1668 */
78f11a25 1669 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1670 return -EINVAL;
1671 *vm_flags &= ~VM_HUGEPAGE;
1672 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1673 /*
1674 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1675 * this vma even if we leave the mm registered in khugepaged if
1676 * it got registered before VM_NOHUGEPAGE was set.
1677 */
a664b2d8
AA
1678 break;
1679 }
0af4e98b
AA
1680
1681 return 0;
1682}
1683
ba76149f
AA
1684static int __init khugepaged_slab_init(void)
1685{
1686 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1687 sizeof(struct mm_slot),
1688 __alignof__(struct mm_slot), 0, NULL);
1689 if (!mm_slot_cache)
1690 return -ENOMEM;
1691
1692 return 0;
1693}
1694
1695static void __init khugepaged_slab_free(void)
1696{
1697 kmem_cache_destroy(mm_slot_cache);
1698 mm_slot_cache = NULL;
1699}
1700
1701static inline struct mm_slot *alloc_mm_slot(void)
1702{
1703 if (!mm_slot_cache) /* initialization failed */
1704 return NULL;
1705 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1706}
1707
1708static inline void free_mm_slot(struct mm_slot *mm_slot)
1709{
1710 kmem_cache_free(mm_slot_cache, mm_slot);
1711}
1712
1713static int __init mm_slots_hash_init(void)
1714{
1715 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1716 GFP_KERNEL);
1717 if (!mm_slots_hash)
1718 return -ENOMEM;
1719 return 0;
1720}
1721
1722#if 0
1723static void __init mm_slots_hash_free(void)
1724{
1725 kfree(mm_slots_hash);
1726 mm_slots_hash = NULL;
1727}
1728#endif
1729
1730static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1731{
1732 struct mm_slot *mm_slot;
1733 struct hlist_head *bucket;
1734 struct hlist_node *node;
1735
1736 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1737 % MM_SLOTS_HASH_HEADS];
1738 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1739 if (mm == mm_slot->mm)
1740 return mm_slot;
1741 }
1742 return NULL;
1743}
1744
1745static void insert_to_mm_slots_hash(struct mm_struct *mm,
1746 struct mm_slot *mm_slot)
1747{
1748 struct hlist_head *bucket;
1749
1750 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1751 % MM_SLOTS_HASH_HEADS];
1752 mm_slot->mm = mm;
1753 hlist_add_head(&mm_slot->hash, bucket);
1754}
1755
1756static inline int khugepaged_test_exit(struct mm_struct *mm)
1757{
1758 return atomic_read(&mm->mm_users) == 0;
1759}
1760
1761int __khugepaged_enter(struct mm_struct *mm)
1762{
1763 struct mm_slot *mm_slot;
1764 int wakeup;
1765
1766 mm_slot = alloc_mm_slot();
1767 if (!mm_slot)
1768 return -ENOMEM;
1769
1770 /* __khugepaged_exit() must not run from under us */
1771 VM_BUG_ON(khugepaged_test_exit(mm));
1772 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1773 free_mm_slot(mm_slot);
1774 return 0;
1775 }
1776
1777 spin_lock(&khugepaged_mm_lock);
1778 insert_to_mm_slots_hash(mm, mm_slot);
1779 /*
1780 * Insert just behind the scanning cursor, to let the area settle
1781 * down a little.
1782 */
1783 wakeup = list_empty(&khugepaged_scan.mm_head);
1784 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1785 spin_unlock(&khugepaged_mm_lock);
1786
1787 atomic_inc(&mm->mm_count);
1788 if (wakeup)
1789 wake_up_interruptible(&khugepaged_wait);
1790
1791 return 0;
1792}
1793
1794int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1795{
1796 unsigned long hstart, hend;
1797 if (!vma->anon_vma)
1798 /*
1799 * Not yet faulted in so we will register later in the
1800 * page fault if needed.
1801 */
1802 return 0;
78f11a25 1803 if (vma->vm_ops)
ba76149f
AA
1804 /* khugepaged not yet working on file or special mappings */
1805 return 0;
b3b9c293 1806 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1807 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1808 hend = vma->vm_end & HPAGE_PMD_MASK;
1809 if (hstart < hend)
1810 return khugepaged_enter(vma);
1811 return 0;
1812}
1813
1814void __khugepaged_exit(struct mm_struct *mm)
1815{
1816 struct mm_slot *mm_slot;
1817 int free = 0;
1818
1819 spin_lock(&khugepaged_mm_lock);
1820 mm_slot = get_mm_slot(mm);
1821 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1822 hlist_del(&mm_slot->hash);
1823 list_del(&mm_slot->mm_node);
1824 free = 1;
1825 }
d788e80a 1826 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1827
1828 if (free) {
ba76149f
AA
1829 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1830 free_mm_slot(mm_slot);
1831 mmdrop(mm);
1832 } else if (mm_slot) {
ba76149f
AA
1833 /*
1834 * This is required to serialize against
1835 * khugepaged_test_exit() (which is guaranteed to run
1836 * under mmap sem read mode). Stop here (after we
1837 * return all pagetables will be destroyed) until
1838 * khugepaged has finished working on the pagetables
1839 * under the mmap_sem.
1840 */
1841 down_write(&mm->mmap_sem);
1842 up_write(&mm->mmap_sem);
d788e80a 1843 }
ba76149f
AA
1844}
1845
1846static void release_pte_page(struct page *page)
1847{
1848 /* 0 stands for page_is_file_cache(page) == false */
1849 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1850 unlock_page(page);
1851 putback_lru_page(page);
1852}
1853
1854static void release_pte_pages(pte_t *pte, pte_t *_pte)
1855{
1856 while (--_pte >= pte) {
1857 pte_t pteval = *_pte;
1858 if (!pte_none(pteval))
1859 release_pte_page(pte_page(pteval));
1860 }
1861}
1862
ba76149f
AA
1863static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1864 unsigned long address,
1865 pte_t *pte)
1866{
1867 struct page *page;
1868 pte_t *_pte;
344aa35c 1869 int referenced = 0, none = 0;
ba76149f
AA
1870 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1871 _pte++, address += PAGE_SIZE) {
1872 pte_t pteval = *_pte;
1873 if (pte_none(pteval)) {
1874 if (++none <= khugepaged_max_ptes_none)
1875 continue;
344aa35c 1876 else
ba76149f 1877 goto out;
ba76149f 1878 }
344aa35c 1879 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 1880 goto out;
ba76149f 1881 page = vm_normal_page(vma, address, pteval);
344aa35c 1882 if (unlikely(!page))
ba76149f 1883 goto out;
344aa35c 1884
ba76149f
AA
1885 VM_BUG_ON(PageCompound(page));
1886 BUG_ON(!PageAnon(page));
1887 VM_BUG_ON(!PageSwapBacked(page));
1888
1889 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 1890 if (page_count(page) != 1)
ba76149f 1891 goto out;
ba76149f
AA
1892 /*
1893 * We can do it before isolate_lru_page because the
1894 * page can't be freed from under us. NOTE: PG_lock
1895 * is needed to serialize against split_huge_page
1896 * when invoked from the VM.
1897 */
344aa35c 1898 if (!trylock_page(page))
ba76149f 1899 goto out;
ba76149f
AA
1900 /*
1901 * Isolate the page to avoid collapsing an hugepage
1902 * currently in use by the VM.
1903 */
1904 if (isolate_lru_page(page)) {
1905 unlock_page(page);
ba76149f
AA
1906 goto out;
1907 }
1908 /* 0 stands for page_is_file_cache(page) == false */
1909 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1910 VM_BUG_ON(!PageLocked(page));
1911 VM_BUG_ON(PageLRU(page));
1912
1913 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1914 if (pte_young(pteval) || PageReferenced(page) ||
1915 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1916 referenced = 1;
1917 }
344aa35c
BL
1918 if (likely(referenced))
1919 return 1;
ba76149f 1920out:
344aa35c
BL
1921 release_pte_pages(pte, _pte);
1922 return 0;
ba76149f
AA
1923}
1924
1925static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1926 struct vm_area_struct *vma,
1927 unsigned long address,
1928 spinlock_t *ptl)
1929{
1930 pte_t *_pte;
1931 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1932 pte_t pteval = *_pte;
1933 struct page *src_page;
1934
1935 if (pte_none(pteval)) {
1936 clear_user_highpage(page, address);
1937 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1938 } else {
1939 src_page = pte_page(pteval);
1940 copy_user_highpage(page, src_page, address, vma);
1941 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1942 release_pte_page(src_page);
1943 /*
1944 * ptl mostly unnecessary, but preempt has to
1945 * be disabled to update the per-cpu stats
1946 * inside page_remove_rmap().
1947 */
1948 spin_lock(ptl);
1949 /*
1950 * paravirt calls inside pte_clear here are
1951 * superfluous.
1952 */
1953 pte_clear(vma->vm_mm, address, _pte);
1954 page_remove_rmap(src_page);
1955 spin_unlock(ptl);
1956 free_page_and_swap_cache(src_page);
1957 }
1958
1959 address += PAGE_SIZE;
1960 page++;
1961 }
1962}
1963
26234f36 1964static void khugepaged_alloc_sleep(void)
ba76149f 1965{
26234f36
XG
1966 wait_event_freezable_timeout(khugepaged_wait, false,
1967 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1968}
ba76149f 1969
26234f36
XG
1970#ifdef CONFIG_NUMA
1971static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1972{
1973 if (IS_ERR(*hpage)) {
1974 if (!*wait)
1975 return false;
1976
1977 *wait = false;
e3b4126c 1978 *hpage = NULL;
26234f36
XG
1979 khugepaged_alloc_sleep();
1980 } else if (*hpage) {
1981 put_page(*hpage);
1982 *hpage = NULL;
1983 }
1984
1985 return true;
1986}
1987
1988static struct page
1989*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1990 struct vm_area_struct *vma, unsigned long address,
1991 int node)
1992{
0bbbc0b3 1993 VM_BUG_ON(*hpage);
ce83d217
AA
1994 /*
1995 * Allocate the page while the vma is still valid and under
1996 * the mmap_sem read mode so there is no memory allocation
1997 * later when we take the mmap_sem in write mode. This is more
1998 * friendly behavior (OTOH it may actually hide bugs) to
1999 * filesystems in userland with daemons allocating memory in
2000 * the userland I/O paths. Allocating memory with the
2001 * mmap_sem in read mode is good idea also to allow greater
2002 * scalability.
2003 */
26234f36 2004 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2005 node, __GFP_OTHER_NODE);
692e0b35
AA
2006
2007 /*
2008 * After allocating the hugepage, release the mmap_sem read lock in
2009 * preparation for taking it in write mode.
2010 */
2011 up_read(&mm->mmap_sem);
26234f36 2012 if (unlikely(!*hpage)) {
81ab4201 2013 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2014 *hpage = ERR_PTR(-ENOMEM);
26234f36 2015 return NULL;
ce83d217 2016 }
26234f36 2017
65b3c07b 2018 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2019 return *hpage;
2020}
2021#else
2022static struct page *khugepaged_alloc_hugepage(bool *wait)
2023{
2024 struct page *hpage;
2025
2026 do {
2027 hpage = alloc_hugepage(khugepaged_defrag());
2028 if (!hpage) {
2029 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2030 if (!*wait)
2031 return NULL;
2032
2033 *wait = false;
2034 khugepaged_alloc_sleep();
2035 } else
2036 count_vm_event(THP_COLLAPSE_ALLOC);
2037 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2038
2039 return hpage;
2040}
2041
2042static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2043{
2044 if (!*hpage)
2045 *hpage = khugepaged_alloc_hugepage(wait);
2046
2047 if (unlikely(!*hpage))
2048 return false;
2049
2050 return true;
2051}
2052
2053static struct page
2054*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2055 struct vm_area_struct *vma, unsigned long address,
2056 int node)
2057{
2058 up_read(&mm->mmap_sem);
2059 VM_BUG_ON(!*hpage);
2060 return *hpage;
2061}
692e0b35
AA
2062#endif
2063
fa475e51
BL
2064static bool hugepage_vma_check(struct vm_area_struct *vma)
2065{
2066 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2067 (vma->vm_flags & VM_NOHUGEPAGE))
2068 return false;
2069
2070 if (!vma->anon_vma || vma->vm_ops)
2071 return false;
2072 if (is_vma_temporary_stack(vma))
2073 return false;
2074 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2075 return true;
2076}
2077
26234f36
XG
2078static void collapse_huge_page(struct mm_struct *mm,
2079 unsigned long address,
2080 struct page **hpage,
2081 struct vm_area_struct *vma,
2082 int node)
2083{
26234f36
XG
2084 pmd_t *pmd, _pmd;
2085 pte_t *pte;
2086 pgtable_t pgtable;
2087 struct page *new_page;
2088 spinlock_t *ptl;
2089 int isolated;
2090 unsigned long hstart, hend;
2ec74c3e
SG
2091 unsigned long mmun_start; /* For mmu_notifiers */
2092 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2093
2094 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2095
2096 /* release the mmap_sem read lock. */
2097 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2098 if (!new_page)
2099 return;
2100
420256ef 2101 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2102 return;
ba76149f
AA
2103
2104 /*
2105 * Prevent all access to pagetables with the exception of
2106 * gup_fast later hanlded by the ptep_clear_flush and the VM
2107 * handled by the anon_vma lock + PG_lock.
2108 */
2109 down_write(&mm->mmap_sem);
2110 if (unlikely(khugepaged_test_exit(mm)))
2111 goto out;
2112
2113 vma = find_vma(mm, address);
2114 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2115 hend = vma->vm_end & HPAGE_PMD_MASK;
2116 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2117 goto out;
fa475e51 2118 if (!hugepage_vma_check(vma))
a7d6e4ec 2119 goto out;
6219049a
BL
2120 pmd = mm_find_pmd(mm, address);
2121 if (!pmd)
ba76149f 2122 goto out;
6219049a 2123 if (pmd_trans_huge(*pmd))
ba76149f
AA
2124 goto out;
2125
ba76149f
AA
2126 anon_vma_lock(vma->anon_vma);
2127
2128 pte = pte_offset_map(pmd, address);
2129 ptl = pte_lockptr(mm, pmd);
2130
2ec74c3e
SG
2131 mmun_start = address;
2132 mmun_end = address + HPAGE_PMD_SIZE;
2133 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2134 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2135 /*
2136 * After this gup_fast can't run anymore. This also removes
2137 * any huge TLB entry from the CPU so we won't allow
2138 * huge and small TLB entries for the same virtual address
2139 * to avoid the risk of CPU bugs in that area.
2140 */
2ec74c3e 2141 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2142 spin_unlock(&mm->page_table_lock);
2ec74c3e 2143 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2144
2145 spin_lock(ptl);
2146 isolated = __collapse_huge_page_isolate(vma, address, pte);
2147 spin_unlock(ptl);
ba76149f
AA
2148
2149 if (unlikely(!isolated)) {
453c7192 2150 pte_unmap(pte);
ba76149f
AA
2151 spin_lock(&mm->page_table_lock);
2152 BUG_ON(!pmd_none(*pmd));
2153 set_pmd_at(mm, address, pmd, _pmd);
2154 spin_unlock(&mm->page_table_lock);
2155 anon_vma_unlock(vma->anon_vma);
ce83d217 2156 goto out;
ba76149f
AA
2157 }
2158
2159 /*
2160 * All pages are isolated and locked so anon_vma rmap
2161 * can't run anymore.
2162 */
2163 anon_vma_unlock(vma->anon_vma);
2164
2165 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2166 pte_unmap(pte);
ba76149f
AA
2167 __SetPageUptodate(new_page);
2168 pgtable = pmd_pgtable(_pmd);
ba76149f 2169
b3092b3b 2170 _pmd = mk_huge_pmd(new_page, vma);
ba76149f
AA
2171
2172 /*
2173 * spin_lock() below is not the equivalent of smp_wmb(), so
2174 * this is needed to avoid the copy_huge_page writes to become
2175 * visible after the set_pmd_at() write.
2176 */
2177 smp_wmb();
2178
2179 spin_lock(&mm->page_table_lock);
2180 BUG_ON(!pmd_none(*pmd));
2181 page_add_new_anon_rmap(new_page, vma, address);
2182 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2183 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2184 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2185 spin_unlock(&mm->page_table_lock);
2186
2187 *hpage = NULL;
420256ef 2188
ba76149f 2189 khugepaged_pages_collapsed++;
ce83d217 2190out_up_write:
ba76149f 2191 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2192 return;
2193
ce83d217 2194out:
678ff896 2195 mem_cgroup_uncharge_page(new_page);
ce83d217 2196 goto out_up_write;
ba76149f
AA
2197}
2198
2199static int khugepaged_scan_pmd(struct mm_struct *mm,
2200 struct vm_area_struct *vma,
2201 unsigned long address,
2202 struct page **hpage)
2203{
ba76149f
AA
2204 pmd_t *pmd;
2205 pte_t *pte, *_pte;
2206 int ret = 0, referenced = 0, none = 0;
2207 struct page *page;
2208 unsigned long _address;
2209 spinlock_t *ptl;
5c4b4be3 2210 int node = -1;
ba76149f
AA
2211
2212 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2213
6219049a
BL
2214 pmd = mm_find_pmd(mm, address);
2215 if (!pmd)
ba76149f 2216 goto out;
6219049a 2217 if (pmd_trans_huge(*pmd))
ba76149f
AA
2218 goto out;
2219
2220 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2221 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2222 _pte++, _address += PAGE_SIZE) {
2223 pte_t pteval = *_pte;
2224 if (pte_none(pteval)) {
2225 if (++none <= khugepaged_max_ptes_none)
2226 continue;
2227 else
2228 goto out_unmap;
2229 }
2230 if (!pte_present(pteval) || !pte_write(pteval))
2231 goto out_unmap;
2232 page = vm_normal_page(vma, _address, pteval);
2233 if (unlikely(!page))
2234 goto out_unmap;
5c4b4be3
AK
2235 /*
2236 * Chose the node of the first page. This could
2237 * be more sophisticated and look at more pages,
2238 * but isn't for now.
2239 */
2240 if (node == -1)
2241 node = page_to_nid(page);
ba76149f
AA
2242 VM_BUG_ON(PageCompound(page));
2243 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2244 goto out_unmap;
2245 /* cannot use mapcount: can't collapse if there's a gup pin */
2246 if (page_count(page) != 1)
2247 goto out_unmap;
8ee53820
AA
2248 if (pte_young(pteval) || PageReferenced(page) ||
2249 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2250 referenced = 1;
2251 }
2252 if (referenced)
2253 ret = 1;
2254out_unmap:
2255 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2256 if (ret)
2257 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2258 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2259out:
2260 return ret;
2261}
2262
2263static void collect_mm_slot(struct mm_slot *mm_slot)
2264{
2265 struct mm_struct *mm = mm_slot->mm;
2266
b9980cdc 2267 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2268
2269 if (khugepaged_test_exit(mm)) {
2270 /* free mm_slot */
2271 hlist_del(&mm_slot->hash);
2272 list_del(&mm_slot->mm_node);
2273
2274 /*
2275 * Not strictly needed because the mm exited already.
2276 *
2277 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2278 */
2279
2280 /* khugepaged_mm_lock actually not necessary for the below */
2281 free_mm_slot(mm_slot);
2282 mmdrop(mm);
2283 }
2284}
2285
2286static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2287 struct page **hpage)
2f1da642
HS
2288 __releases(&khugepaged_mm_lock)
2289 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2290{
2291 struct mm_slot *mm_slot;
2292 struct mm_struct *mm;
2293 struct vm_area_struct *vma;
2294 int progress = 0;
2295
2296 VM_BUG_ON(!pages);
b9980cdc 2297 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2298
2299 if (khugepaged_scan.mm_slot)
2300 mm_slot = khugepaged_scan.mm_slot;
2301 else {
2302 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2303 struct mm_slot, mm_node);
2304 khugepaged_scan.address = 0;
2305 khugepaged_scan.mm_slot = mm_slot;
2306 }
2307 spin_unlock(&khugepaged_mm_lock);
2308
2309 mm = mm_slot->mm;
2310 down_read(&mm->mmap_sem);
2311 if (unlikely(khugepaged_test_exit(mm)))
2312 vma = NULL;
2313 else
2314 vma = find_vma(mm, khugepaged_scan.address);
2315
2316 progress++;
2317 for (; vma; vma = vma->vm_next) {
2318 unsigned long hstart, hend;
2319
2320 cond_resched();
2321 if (unlikely(khugepaged_test_exit(mm))) {
2322 progress++;
2323 break;
2324 }
fa475e51
BL
2325 if (!hugepage_vma_check(vma)) {
2326skip:
ba76149f
AA
2327 progress++;
2328 continue;
2329 }
ba76149f
AA
2330 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2331 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2332 if (hstart >= hend)
2333 goto skip;
2334 if (khugepaged_scan.address > hend)
2335 goto skip;
ba76149f
AA
2336 if (khugepaged_scan.address < hstart)
2337 khugepaged_scan.address = hstart;
a7d6e4ec 2338 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2339
2340 while (khugepaged_scan.address < hend) {
2341 int ret;
2342 cond_resched();
2343 if (unlikely(khugepaged_test_exit(mm)))
2344 goto breakouterloop;
2345
2346 VM_BUG_ON(khugepaged_scan.address < hstart ||
2347 khugepaged_scan.address + HPAGE_PMD_SIZE >
2348 hend);
2349 ret = khugepaged_scan_pmd(mm, vma,
2350 khugepaged_scan.address,
2351 hpage);
2352 /* move to next address */
2353 khugepaged_scan.address += HPAGE_PMD_SIZE;
2354 progress += HPAGE_PMD_NR;
2355 if (ret)
2356 /* we released mmap_sem so break loop */
2357 goto breakouterloop_mmap_sem;
2358 if (progress >= pages)
2359 goto breakouterloop;
2360 }
2361 }
2362breakouterloop:
2363 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2364breakouterloop_mmap_sem:
2365
2366 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2367 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2368 /*
2369 * Release the current mm_slot if this mm is about to die, or
2370 * if we scanned all vmas of this mm.
2371 */
2372 if (khugepaged_test_exit(mm) || !vma) {
2373 /*
2374 * Make sure that if mm_users is reaching zero while
2375 * khugepaged runs here, khugepaged_exit will find
2376 * mm_slot not pointing to the exiting mm.
2377 */
2378 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2379 khugepaged_scan.mm_slot = list_entry(
2380 mm_slot->mm_node.next,
2381 struct mm_slot, mm_node);
2382 khugepaged_scan.address = 0;
2383 } else {
2384 khugepaged_scan.mm_slot = NULL;
2385 khugepaged_full_scans++;
2386 }
2387
2388 collect_mm_slot(mm_slot);
2389 }
2390
2391 return progress;
2392}
2393
2394static int khugepaged_has_work(void)
2395{
2396 return !list_empty(&khugepaged_scan.mm_head) &&
2397 khugepaged_enabled();
2398}
2399
2400static int khugepaged_wait_event(void)
2401{
2402 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2403 kthread_should_stop();
ba76149f
AA
2404}
2405
d516904b 2406static void khugepaged_do_scan(void)
ba76149f 2407{
d516904b 2408 struct page *hpage = NULL;
ba76149f
AA
2409 unsigned int progress = 0, pass_through_head = 0;
2410 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2411 bool wait = true;
ba76149f
AA
2412
2413 barrier(); /* write khugepaged_pages_to_scan to local stack */
2414
2415 while (progress < pages) {
26234f36 2416 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2417 break;
26234f36 2418
420256ef 2419 cond_resched();
ba76149f 2420
878aee7d
AA
2421 if (unlikely(kthread_should_stop() || freezing(current)))
2422 break;
2423
ba76149f
AA
2424 spin_lock(&khugepaged_mm_lock);
2425 if (!khugepaged_scan.mm_slot)
2426 pass_through_head++;
2427 if (khugepaged_has_work() &&
2428 pass_through_head < 2)
2429 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2430 &hpage);
ba76149f
AA
2431 else
2432 progress = pages;
2433 spin_unlock(&khugepaged_mm_lock);
2434 }
ba76149f 2435
d516904b
XG
2436 if (!IS_ERR_OR_NULL(hpage))
2437 put_page(hpage);
0bbbc0b3
AA
2438}
2439
2017c0bf
XG
2440static void khugepaged_wait_work(void)
2441{
2442 try_to_freeze();
2443
2444 if (khugepaged_has_work()) {
2445 if (!khugepaged_scan_sleep_millisecs)
2446 return;
2447
2448 wait_event_freezable_timeout(khugepaged_wait,
2449 kthread_should_stop(),
2450 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2451 return;
2452 }
2453
2454 if (khugepaged_enabled())
2455 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2456}
2457
ba76149f
AA
2458static int khugepaged(void *none)
2459{
2460 struct mm_slot *mm_slot;
2461
878aee7d 2462 set_freezable();
ba76149f
AA
2463 set_user_nice(current, 19);
2464
b7231789
XG
2465 while (!kthread_should_stop()) {
2466 khugepaged_do_scan();
2467 khugepaged_wait_work();
2468 }
ba76149f
AA
2469
2470 spin_lock(&khugepaged_mm_lock);
2471 mm_slot = khugepaged_scan.mm_slot;
2472 khugepaged_scan.mm_slot = NULL;
2473 if (mm_slot)
2474 collect_mm_slot(mm_slot);
2475 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2476 return 0;
2477}
2478
c5a647d0
KS
2479static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2480 unsigned long haddr, pmd_t *pmd)
2481{
2482 struct mm_struct *mm = vma->vm_mm;
2483 pgtable_t pgtable;
2484 pmd_t _pmd;
2485 int i;
2486
2487 pmdp_clear_flush(vma, haddr, pmd);
2488 /* leave pmd empty until pte is filled */
2489
2490 pgtable = pgtable_trans_huge_withdraw(mm);
2491 pmd_populate(mm, &_pmd, pgtable);
2492
2493 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2494 pte_t *pte, entry;
2495 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2496 entry = pte_mkspecial(entry);
2497 pte = pte_offset_map(&_pmd, haddr);
2498 VM_BUG_ON(!pte_none(*pte));
2499 set_pte_at(mm, haddr, pte, entry);
2500 pte_unmap(pte);
2501 }
2502 smp_wmb(); /* make pte visible before pmd */
2503 pmd_populate(mm, pmd, pgtable);
2504}
2505
e180377f
KS
2506void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2507 pmd_t *pmd)
71e3aac0
AA
2508{
2509 struct page *page;
e180377f 2510 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2511 unsigned long haddr = address & HPAGE_PMD_MASK;
2512 unsigned long mmun_start; /* For mmu_notifiers */
2513 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2514
2515 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2516
c5a647d0
KS
2517 mmun_start = haddr;
2518 mmun_end = haddr + HPAGE_PMD_SIZE;
2519 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2520 spin_lock(&mm->page_table_lock);
2521 if (unlikely(!pmd_trans_huge(*pmd))) {
2522 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2523 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2524 return;
2525 }
2526 if (is_huge_zero_pmd(*pmd)) {
2527 __split_huge_zero_page_pmd(vma, haddr, pmd);
2528 spin_unlock(&mm->page_table_lock);
2529 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2530 return;
2531 }
2532 page = pmd_page(*pmd);
2533 VM_BUG_ON(!page_count(page));
2534 get_page(page);
2535 spin_unlock(&mm->page_table_lock);
c5a647d0 2536 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2537
2538 split_huge_page(page);
2539
2540 put_page(page);
2541 BUG_ON(pmd_trans_huge(*pmd));
2542}
94fcc585 2543
e180377f
KS
2544void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2545 pmd_t *pmd)
2546{
2547 struct vm_area_struct *vma;
2548
2549 vma = find_vma(mm, address);
2550 BUG_ON(vma == NULL);
2551 split_huge_page_pmd(vma, address, pmd);
2552}
2553
94fcc585
AA
2554static void split_huge_page_address(struct mm_struct *mm,
2555 unsigned long address)
2556{
94fcc585
AA
2557 pmd_t *pmd;
2558
2559 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2560
6219049a
BL
2561 pmd = mm_find_pmd(mm, address);
2562 if (!pmd)
94fcc585
AA
2563 return;
2564 /*
2565 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2566 * materialize from under us.
2567 */
e180377f 2568 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2569}
2570
2571void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2572 unsigned long start,
2573 unsigned long end,
2574 long adjust_next)
2575{
2576 /*
2577 * If the new start address isn't hpage aligned and it could
2578 * previously contain an hugepage: check if we need to split
2579 * an huge pmd.
2580 */
2581 if (start & ~HPAGE_PMD_MASK &&
2582 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2583 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2584 split_huge_page_address(vma->vm_mm, start);
2585
2586 /*
2587 * If the new end address isn't hpage aligned and it could
2588 * previously contain an hugepage: check if we need to split
2589 * an huge pmd.
2590 */
2591 if (end & ~HPAGE_PMD_MASK &&
2592 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2593 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2594 split_huge_page_address(vma->vm_mm, end);
2595
2596 /*
2597 * If we're also updating the vma->vm_next->vm_start, if the new
2598 * vm_next->vm_start isn't page aligned and it could previously
2599 * contain an hugepage: check if we need to split an huge pmd.
2600 */
2601 if (adjust_next > 0) {
2602 struct vm_area_struct *next = vma->vm_next;
2603 unsigned long nstart = next->vm_start;
2604 nstart += adjust_next << PAGE_SHIFT;
2605 if (nstart & ~HPAGE_PMD_MASK &&
2606 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2607 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2608 split_huge_page_address(next->vm_mm, nstart);
2609 }
2610}
This page took 0.568953 seconds and 4 git commands to generate.