]>
Commit | Line | Data |
---|---|---|
9db33d22 MW |
1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* | |
3 | * sl28cpld PWM driver | |
4 | * | |
5 | * Copyright (c) 2020 Michael Walle <[email protected]> | |
6 | * | |
7 | * There is no public datasheet available for this PWM core. But it is easy | |
8 | * enough to be briefly explained. It consists of one 8-bit counter. The PWM | |
9 | * supports four distinct frequencies by selecting when to reset the counter. | |
10 | * With the prescaler setting you can select which bit of the counter is used | |
11 | * to reset it. This implies that the higher the frequency the less remaining | |
12 | * bits are available for the actual counter. | |
13 | * | |
14 | * Let cnt[7:0] be the counter, clocked at 32kHz: | |
15 | * +-----------+--------+--------------+-----------+---------------+ | |
16 | * | prescaler | reset | counter bits | frequency | period length | | |
17 | * +-----------+--------+--------------+-----------+---------------+ | |
18 | * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | | |
19 | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | | |
20 | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | | |
21 | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | | |
22 | * +-----------+--------+--------------+-----------+---------------+ | |
23 | * | |
24 | * Limitations: | |
25 | * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. | |
26 | * - The hardware cannot atomically set the prescaler and the counter value, | |
27 | * which might lead to glitches and inconsistent states if a write fails. | |
28 | * - The counter is not reset if you switch the prescaler which leads | |
29 | * to glitches, too. | |
30 | * - The duty cycle will switch immediately and not after a complete cycle. | |
31 | * - Depending on the actual implementation, disabling the PWM might have | |
32 | * side effects. For example, if the output pin is shared with a GPIO pin | |
33 | * it will automatically switch back to GPIO mode. | |
34 | */ | |
35 | ||
36 | #include <linux/bitfield.h> | |
37 | #include <linux/kernel.h> | |
38 | #include <linux/mod_devicetable.h> | |
39 | #include <linux/module.h> | |
40 | #include <linux/platform_device.h> | |
0a41b0c5 | 41 | #include <linux/property.h> |
9db33d22 MW |
42 | #include <linux/pwm.h> |
43 | #include <linux/regmap.h> | |
44 | ||
45 | /* | |
46 | * PWM timer block registers. | |
47 | */ | |
48 | #define SL28CPLD_PWM_CTRL 0x00 | |
49 | #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) | |
50 | #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) | |
51 | #define SL28CPLD_PWM_CYCLE 0x01 | |
52 | #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) | |
53 | ||
54 | #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ | |
55 | #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) | |
56 | #define SL28CPLD_PWM_PERIOD(prescaler) \ | |
57 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) | |
58 | ||
59 | /* | |
60 | * We calculate the duty cycle like this: | |
61 | * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle | |
62 | * | |
63 | * With | |
64 | * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC | |
65 | * max_duty_cycle = 1 << (7 - prescaler) | |
66 | * this then simplifies to: | |
67 | * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC | |
68 | * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg | |
69 | * | |
70 | * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing | |
71 | * precision by doing the divison first. | |
72 | */ | |
73 | #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ | |
74 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) | |
75 | #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ | |
76 | (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) | |
77 | ||
78 | #define sl28cpld_pwm_read(priv, reg, val) \ | |
79 | regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) | |
80 | #define sl28cpld_pwm_write(priv, reg, val) \ | |
81 | regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) | |
82 | ||
83 | struct sl28cpld_pwm { | |
bc83fe5c | 84 | struct pwm_chip chip; |
9db33d22 MW |
85 | struct regmap *regmap; |
86 | u32 offset; | |
87 | }; | |
bc83fe5c UKK |
88 | |
89 | static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) | |
90 | { | |
91 | return container_of(chip, struct sl28cpld_pwm, chip); | |
92 | } | |
9db33d22 | 93 | |
6c452cff UKK |
94 | static int sl28cpld_pwm_get_state(struct pwm_chip *chip, |
95 | struct pwm_device *pwm, | |
96 | struct pwm_state *state) | |
9db33d22 | 97 | { |
062c9cdf | 98 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
9db33d22 MW |
99 | unsigned int reg; |
100 | int prescaler; | |
101 | ||
102 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); | |
103 | ||
104 | state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; | |
105 | ||
106 | prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); | |
107 | state->period = SL28CPLD_PWM_PERIOD(prescaler); | |
108 | ||
109 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); | |
110 | state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); | |
111 | state->polarity = PWM_POLARITY_NORMAL; | |
112 | ||
113 | /* | |
114 | * Sanitize values for the PWM core. Depending on the prescaler it | |
115 | * might happen that we calculate a duty_cycle greater than the actual | |
116 | * period. This might happen if someone (e.g. the bootloader) sets an | |
117 | * invalid combination of values. The behavior of the hardware is | |
118 | * undefined in this case. But we need to report sane values back to | |
119 | * the PWM core. | |
120 | */ | |
121 | state->duty_cycle = min(state->duty_cycle, state->period); | |
6c452cff UKK |
122 | |
123 | return 0; | |
9db33d22 MW |
124 | } |
125 | ||
126 | static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, | |
127 | const struct pwm_state *state) | |
128 | { | |
062c9cdf | 129 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
9db33d22 MW |
130 | unsigned int cycle, prescaler; |
131 | bool write_duty_cycle_first; | |
132 | int ret; | |
133 | u8 ctrl; | |
134 | ||
135 | /* Polarity inversion is not supported */ | |
136 | if (state->polarity != PWM_POLARITY_NORMAL) | |
137 | return -EINVAL; | |
138 | ||
139 | /* | |
140 | * Calculate the prescaler. Pick the biggest period that isn't | |
141 | * bigger than the requested period. | |
142 | */ | |
143 | prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); | |
144 | prescaler = order_base_2(prescaler); | |
145 | ||
146 | if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) | |
147 | return -ERANGE; | |
148 | ||
149 | ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); | |
150 | if (state->enabled) | |
151 | ctrl |= SL28CPLD_PWM_CTRL_ENABLE; | |
152 | ||
153 | cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); | |
154 | cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); | |
155 | ||
156 | /* | |
157 | * Work around the hardware limitation. See also above. Trap 100% duty | |
158 | * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't | |
159 | * care about the frequency because its "all-one" in either case. | |
160 | * | |
161 | * We don't need to check the actual prescaler setting, because only | |
162 | * if the prescaler is 0 we can have this particular value. | |
163 | */ | |
164 | if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { | |
165 | ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; | |
166 | ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); | |
167 | cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); | |
168 | } | |
169 | ||
170 | /* | |
171 | * To avoid glitches when we switch the prescaler, we have to make sure | |
172 | * we have a valid duty cycle for the new mode. | |
173 | * | |
174 | * Take the current prescaler (or the current period length) into | |
175 | * account to decide whether we have to write the duty cycle or the new | |
176 | * prescaler first. If the period length is decreasing we have to | |
177 | * write the duty cycle first. | |
178 | */ | |
179 | write_duty_cycle_first = pwm->state.period > state->period; | |
180 | ||
181 | if (write_duty_cycle_first) { | |
182 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); | |
183 | if (ret) | |
184 | return ret; | |
185 | } | |
186 | ||
187 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); | |
188 | if (ret) | |
189 | return ret; | |
190 | ||
191 | if (!write_duty_cycle_first) { | |
192 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); | |
193 | if (ret) | |
194 | return ret; | |
195 | } | |
196 | ||
197 | return 0; | |
198 | } | |
199 | ||
200 | static const struct pwm_ops sl28cpld_pwm_ops = { | |
201 | .apply = sl28cpld_pwm_apply, | |
202 | .get_state = sl28cpld_pwm_get_state, | |
9db33d22 MW |
203 | }; |
204 | ||
205 | static int sl28cpld_pwm_probe(struct platform_device *pdev) | |
206 | { | |
207 | struct sl28cpld_pwm *priv; | |
208 | struct pwm_chip *chip; | |
209 | int ret; | |
210 | ||
211 | if (!pdev->dev.parent) { | |
212 | dev_err(&pdev->dev, "no parent device\n"); | |
213 | return -ENODEV; | |
214 | } | |
215 | ||
216 | priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); | |
217 | if (!priv) | |
218 | return -ENOMEM; | |
219 | ||
220 | priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); | |
221 | if (!priv->regmap) { | |
222 | dev_err(&pdev->dev, "could not get parent regmap\n"); | |
223 | return -ENODEV; | |
224 | } | |
225 | ||
226 | ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); | |
227 | if (ret) { | |
228 | dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", | |
229 | ERR_PTR(ret)); | |
230 | return -EINVAL; | |
231 | } | |
232 | ||
233 | /* Initialize the pwm_chip structure */ | |
bc83fe5c | 234 | chip = &priv->chip; |
9db33d22 MW |
235 | chip->dev = &pdev->dev; |
236 | chip->ops = &sl28cpld_pwm_ops; | |
9db33d22 MW |
237 | chip->npwm = 1; |
238 | ||
bc83fe5c | 239 | ret = devm_pwmchip_add(&pdev->dev, chip); |
9db33d22 MW |
240 | if (ret) { |
241 | dev_err(&pdev->dev, "failed to add PWM chip (%pe)", | |
242 | ERR_PTR(ret)); | |
243 | return ret; | |
244 | } | |
245 | ||
9db33d22 MW |
246 | return 0; |
247 | } | |
248 | ||
9db33d22 MW |
249 | static const struct of_device_id sl28cpld_pwm_of_match[] = { |
250 | { .compatible = "kontron,sl28cpld-pwm" }, | |
251 | {} | |
252 | }; | |
253 | MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); | |
254 | ||
255 | static struct platform_driver sl28cpld_pwm_driver = { | |
256 | .probe = sl28cpld_pwm_probe, | |
9db33d22 MW |
257 | .driver = { |
258 | .name = "sl28cpld-pwm", | |
259 | .of_match_table = sl28cpld_pwm_of_match, | |
260 | }, | |
261 | }; | |
262 | module_platform_driver(sl28cpld_pwm_driver); | |
263 | ||
264 | MODULE_DESCRIPTION("sl28cpld PWM Driver"); | |
265 | MODULE_AUTHOR("Michael Walle <[email protected]>"); | |
266 | MODULE_LICENSE("GPL"); |