]>
Commit | Line | Data |
---|---|---|
86db1e29 JA |
1 | /* |
2 | * Functions related to setting various queue properties from drivers | |
3 | */ | |
4 | #include <linux/kernel.h> | |
5 | #include <linux/module.h> | |
6 | #include <linux/init.h> | |
7 | #include <linux/bio.h> | |
8 | #include <linux/blkdev.h> | |
9 | #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ | |
70dd5bf3 | 10 | #include <linux/gcd.h> |
86db1e29 JA |
11 | |
12 | #include "blk.h" | |
13 | ||
6728cb0e | 14 | unsigned long blk_max_low_pfn; |
86db1e29 | 15 | EXPORT_SYMBOL(blk_max_low_pfn); |
6728cb0e JA |
16 | |
17 | unsigned long blk_max_pfn; | |
86db1e29 JA |
18 | |
19 | /** | |
20 | * blk_queue_prep_rq - set a prepare_request function for queue | |
21 | * @q: queue | |
22 | * @pfn: prepare_request function | |
23 | * | |
24 | * It's possible for a queue to register a prepare_request callback which | |
25 | * is invoked before the request is handed to the request_fn. The goal of | |
26 | * the function is to prepare a request for I/O, it can be used to build a | |
27 | * cdb from the request data for instance. | |
28 | * | |
29 | */ | |
30 | void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) | |
31 | { | |
32 | q->prep_rq_fn = pfn; | |
33 | } | |
86db1e29 JA |
34 | EXPORT_SYMBOL(blk_queue_prep_rq); |
35 | ||
fb2dce86 DW |
36 | /** |
37 | * blk_queue_set_discard - set a discard_sectors function for queue | |
38 | * @q: queue | |
39 | * @dfn: prepare_discard function | |
40 | * | |
41 | * It's possible for a queue to register a discard callback which is used | |
42 | * to transform a discard request into the appropriate type for the | |
43 | * hardware. If none is registered, then discard requests are failed | |
44 | * with %EOPNOTSUPP. | |
45 | * | |
46 | */ | |
47 | void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn) | |
48 | { | |
49 | q->prepare_discard_fn = dfn; | |
50 | } | |
51 | EXPORT_SYMBOL(blk_queue_set_discard); | |
52 | ||
86db1e29 JA |
53 | /** |
54 | * blk_queue_merge_bvec - set a merge_bvec function for queue | |
55 | * @q: queue | |
56 | * @mbfn: merge_bvec_fn | |
57 | * | |
58 | * Usually queues have static limitations on the max sectors or segments that | |
59 | * we can put in a request. Stacking drivers may have some settings that | |
60 | * are dynamic, and thus we have to query the queue whether it is ok to | |
61 | * add a new bio_vec to a bio at a given offset or not. If the block device | |
62 | * has such limitations, it needs to register a merge_bvec_fn to control | |
63 | * the size of bio's sent to it. Note that a block device *must* allow a | |
64 | * single page to be added to an empty bio. The block device driver may want | |
65 | * to use the bio_split() function to deal with these bio's. By default | |
66 | * no merge_bvec_fn is defined for a queue, and only the fixed limits are | |
67 | * honored. | |
68 | */ | |
69 | void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) | |
70 | { | |
71 | q->merge_bvec_fn = mbfn; | |
72 | } | |
86db1e29 JA |
73 | EXPORT_SYMBOL(blk_queue_merge_bvec); |
74 | ||
75 | void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) | |
76 | { | |
77 | q->softirq_done_fn = fn; | |
78 | } | |
86db1e29 JA |
79 | EXPORT_SYMBOL(blk_queue_softirq_done); |
80 | ||
242f9dcb JA |
81 | void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout) |
82 | { | |
83 | q->rq_timeout = timeout; | |
84 | } | |
85 | EXPORT_SYMBOL_GPL(blk_queue_rq_timeout); | |
86 | ||
87 | void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn) | |
88 | { | |
89 | q->rq_timed_out_fn = fn; | |
90 | } | |
91 | EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out); | |
92 | ||
ef9e3fac KU |
93 | void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn) |
94 | { | |
95 | q->lld_busy_fn = fn; | |
96 | } | |
97 | EXPORT_SYMBOL_GPL(blk_queue_lld_busy); | |
98 | ||
e475bba2 MP |
99 | /** |
100 | * blk_set_default_limits - reset limits to default values | |
f740f5ca | 101 | * @lim: the queue_limits structure to reset |
e475bba2 MP |
102 | * |
103 | * Description: | |
104 | * Returns a queue_limit struct to its default state. Can be used by | |
105 | * stacking drivers like DM that stage table swaps and reuse an | |
106 | * existing device queue. | |
107 | */ | |
108 | void blk_set_default_limits(struct queue_limits *lim) | |
109 | { | |
110 | lim->max_phys_segments = MAX_PHYS_SEGMENTS; | |
111 | lim->max_hw_segments = MAX_HW_SEGMENTS; | |
112 | lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; | |
113 | lim->max_segment_size = MAX_SEGMENT_SIZE; | |
114 | lim->max_sectors = lim->max_hw_sectors = SAFE_MAX_SECTORS; | |
115 | lim->logical_block_size = lim->physical_block_size = lim->io_min = 512; | |
3a02c8e8 | 116 | lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT); |
e475bba2 MP |
117 | lim->alignment_offset = 0; |
118 | lim->io_opt = 0; | |
119 | lim->misaligned = 0; | |
120 | lim->no_cluster = 0; | |
121 | } | |
122 | EXPORT_SYMBOL(blk_set_default_limits); | |
123 | ||
86db1e29 JA |
124 | /** |
125 | * blk_queue_make_request - define an alternate make_request function for a device | |
126 | * @q: the request queue for the device to be affected | |
127 | * @mfn: the alternate make_request function | |
128 | * | |
129 | * Description: | |
130 | * The normal way for &struct bios to be passed to a device | |
131 | * driver is for them to be collected into requests on a request | |
132 | * queue, and then to allow the device driver to select requests | |
133 | * off that queue when it is ready. This works well for many block | |
134 | * devices. However some block devices (typically virtual devices | |
135 | * such as md or lvm) do not benefit from the processing on the | |
136 | * request queue, and are served best by having the requests passed | |
137 | * directly to them. This can be achieved by providing a function | |
138 | * to blk_queue_make_request(). | |
139 | * | |
140 | * Caveat: | |
141 | * The driver that does this *must* be able to deal appropriately | |
142 | * with buffers in "highmemory". This can be accomplished by either calling | |
143 | * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling | |
144 | * blk_queue_bounce() to create a buffer in normal memory. | |
145 | **/ | |
6728cb0e | 146 | void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) |
86db1e29 JA |
147 | { |
148 | /* | |
149 | * set defaults | |
150 | */ | |
151 | q->nr_requests = BLKDEV_MAX_RQ; | |
0e435ac2 | 152 | |
86db1e29 | 153 | q->make_request_fn = mfn; |
86db1e29 JA |
154 | blk_queue_dma_alignment(q, 511); |
155 | blk_queue_congestion_threshold(q); | |
156 | q->nr_batching = BLK_BATCH_REQ; | |
157 | ||
158 | q->unplug_thresh = 4; /* hmm */ | |
159 | q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ | |
160 | if (q->unplug_delay == 0) | |
161 | q->unplug_delay = 1; | |
162 | ||
86db1e29 JA |
163 | q->unplug_timer.function = blk_unplug_timeout; |
164 | q->unplug_timer.data = (unsigned long)q; | |
165 | ||
e475bba2 MP |
166 | blk_set_default_limits(&q->limits); |
167 | ||
a4e7d464 JA |
168 | /* |
169 | * If the caller didn't supply a lock, fall back to our embedded | |
170 | * per-queue locks | |
171 | */ | |
172 | if (!q->queue_lock) | |
173 | q->queue_lock = &q->__queue_lock; | |
174 | ||
86db1e29 JA |
175 | /* |
176 | * by default assume old behaviour and bounce for any highmem page | |
177 | */ | |
178 | blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); | |
179 | } | |
86db1e29 JA |
180 | EXPORT_SYMBOL(blk_queue_make_request); |
181 | ||
182 | /** | |
183 | * blk_queue_bounce_limit - set bounce buffer limit for queue | |
cd0aca2d TH |
184 | * @q: the request queue for the device |
185 | * @dma_mask: the maximum address the device can handle | |
86db1e29 JA |
186 | * |
187 | * Description: | |
188 | * Different hardware can have different requirements as to what pages | |
189 | * it can do I/O directly to. A low level driver can call | |
190 | * blk_queue_bounce_limit to have lower memory pages allocated as bounce | |
cd0aca2d | 191 | * buffers for doing I/O to pages residing above @dma_mask. |
86db1e29 | 192 | **/ |
cd0aca2d | 193 | void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask) |
86db1e29 | 194 | { |
cd0aca2d | 195 | unsigned long b_pfn = dma_mask >> PAGE_SHIFT; |
86db1e29 JA |
196 | int dma = 0; |
197 | ||
198 | q->bounce_gfp = GFP_NOIO; | |
199 | #if BITS_PER_LONG == 64 | |
cd0aca2d TH |
200 | /* |
201 | * Assume anything <= 4GB can be handled by IOMMU. Actually | |
202 | * some IOMMUs can handle everything, but I don't know of a | |
203 | * way to test this here. | |
204 | */ | |
205 | if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) | |
86db1e29 | 206 | dma = 1; |
025146e1 | 207 | q->limits.bounce_pfn = max_low_pfn; |
86db1e29 | 208 | #else |
6728cb0e | 209 | if (b_pfn < blk_max_low_pfn) |
86db1e29 | 210 | dma = 1; |
025146e1 | 211 | q->limits.bounce_pfn = b_pfn; |
86db1e29 JA |
212 | #endif |
213 | if (dma) { | |
214 | init_emergency_isa_pool(); | |
215 | q->bounce_gfp = GFP_NOIO | GFP_DMA; | |
025146e1 | 216 | q->limits.bounce_pfn = b_pfn; |
86db1e29 JA |
217 | } |
218 | } | |
86db1e29 JA |
219 | EXPORT_SYMBOL(blk_queue_bounce_limit); |
220 | ||
221 | /** | |
222 | * blk_queue_max_sectors - set max sectors for a request for this queue | |
223 | * @q: the request queue for the device | |
224 | * @max_sectors: max sectors in the usual 512b unit | |
225 | * | |
226 | * Description: | |
227 | * Enables a low level driver to set an upper limit on the size of | |
228 | * received requests. | |
229 | **/ | |
230 | void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) | |
231 | { | |
232 | if ((max_sectors << 9) < PAGE_CACHE_SIZE) { | |
233 | max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); | |
24c03d47 HH |
234 | printk(KERN_INFO "%s: set to minimum %d\n", |
235 | __func__, max_sectors); | |
86db1e29 JA |
236 | } |
237 | ||
238 | if (BLK_DEF_MAX_SECTORS > max_sectors) | |
025146e1 | 239 | q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors; |
86db1e29 | 240 | else { |
025146e1 MP |
241 | q->limits.max_sectors = BLK_DEF_MAX_SECTORS; |
242 | q->limits.max_hw_sectors = max_sectors; | |
86db1e29 JA |
243 | } |
244 | } | |
86db1e29 JA |
245 | EXPORT_SYMBOL(blk_queue_max_sectors); |
246 | ||
ae03bf63 MP |
247 | void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors) |
248 | { | |
249 | if (BLK_DEF_MAX_SECTORS > max_sectors) | |
025146e1 | 250 | q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS; |
ae03bf63 | 251 | else |
025146e1 | 252 | q->limits.max_hw_sectors = max_sectors; |
ae03bf63 MP |
253 | } |
254 | EXPORT_SYMBOL(blk_queue_max_hw_sectors); | |
255 | ||
86db1e29 JA |
256 | /** |
257 | * blk_queue_max_phys_segments - set max phys segments for a request for this queue | |
258 | * @q: the request queue for the device | |
259 | * @max_segments: max number of segments | |
260 | * | |
261 | * Description: | |
262 | * Enables a low level driver to set an upper limit on the number of | |
263 | * physical data segments in a request. This would be the largest sized | |
264 | * scatter list the driver could handle. | |
265 | **/ | |
266 | void blk_queue_max_phys_segments(struct request_queue *q, | |
267 | unsigned short max_segments) | |
268 | { | |
269 | if (!max_segments) { | |
270 | max_segments = 1; | |
24c03d47 HH |
271 | printk(KERN_INFO "%s: set to minimum %d\n", |
272 | __func__, max_segments); | |
86db1e29 JA |
273 | } |
274 | ||
025146e1 | 275 | q->limits.max_phys_segments = max_segments; |
86db1e29 | 276 | } |
86db1e29 JA |
277 | EXPORT_SYMBOL(blk_queue_max_phys_segments); |
278 | ||
279 | /** | |
280 | * blk_queue_max_hw_segments - set max hw segments for a request for this queue | |
281 | * @q: the request queue for the device | |
282 | * @max_segments: max number of segments | |
283 | * | |
284 | * Description: | |
285 | * Enables a low level driver to set an upper limit on the number of | |
286 | * hw data segments in a request. This would be the largest number of | |
710027a4 | 287 | * address/length pairs the host adapter can actually give at once |
86db1e29 JA |
288 | * to the device. |
289 | **/ | |
290 | void blk_queue_max_hw_segments(struct request_queue *q, | |
291 | unsigned short max_segments) | |
292 | { | |
293 | if (!max_segments) { | |
294 | max_segments = 1; | |
24c03d47 HH |
295 | printk(KERN_INFO "%s: set to minimum %d\n", |
296 | __func__, max_segments); | |
86db1e29 JA |
297 | } |
298 | ||
025146e1 | 299 | q->limits.max_hw_segments = max_segments; |
86db1e29 | 300 | } |
86db1e29 JA |
301 | EXPORT_SYMBOL(blk_queue_max_hw_segments); |
302 | ||
303 | /** | |
304 | * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg | |
305 | * @q: the request queue for the device | |
306 | * @max_size: max size of segment in bytes | |
307 | * | |
308 | * Description: | |
309 | * Enables a low level driver to set an upper limit on the size of a | |
310 | * coalesced segment | |
311 | **/ | |
312 | void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) | |
313 | { | |
314 | if (max_size < PAGE_CACHE_SIZE) { | |
315 | max_size = PAGE_CACHE_SIZE; | |
24c03d47 HH |
316 | printk(KERN_INFO "%s: set to minimum %d\n", |
317 | __func__, max_size); | |
86db1e29 JA |
318 | } |
319 | ||
025146e1 | 320 | q->limits.max_segment_size = max_size; |
86db1e29 | 321 | } |
86db1e29 JA |
322 | EXPORT_SYMBOL(blk_queue_max_segment_size); |
323 | ||
324 | /** | |
e1defc4f | 325 | * blk_queue_logical_block_size - set logical block size for the queue |
86db1e29 | 326 | * @q: the request queue for the device |
e1defc4f | 327 | * @size: the logical block size, in bytes |
86db1e29 JA |
328 | * |
329 | * Description: | |
e1defc4f MP |
330 | * This should be set to the lowest possible block size that the |
331 | * storage device can address. The default of 512 covers most | |
332 | * hardware. | |
86db1e29 | 333 | **/ |
e1defc4f | 334 | void blk_queue_logical_block_size(struct request_queue *q, unsigned short size) |
86db1e29 | 335 | { |
025146e1 | 336 | q->limits.logical_block_size = size; |
c72758f3 MP |
337 | |
338 | if (q->limits.physical_block_size < size) | |
339 | q->limits.physical_block_size = size; | |
340 | ||
341 | if (q->limits.io_min < q->limits.physical_block_size) | |
342 | q->limits.io_min = q->limits.physical_block_size; | |
86db1e29 | 343 | } |
e1defc4f | 344 | EXPORT_SYMBOL(blk_queue_logical_block_size); |
86db1e29 | 345 | |
c72758f3 MP |
346 | /** |
347 | * blk_queue_physical_block_size - set physical block size for the queue | |
348 | * @q: the request queue for the device | |
349 | * @size: the physical block size, in bytes | |
350 | * | |
351 | * Description: | |
352 | * This should be set to the lowest possible sector size that the | |
353 | * hardware can operate on without reverting to read-modify-write | |
354 | * operations. | |
355 | */ | |
356 | void blk_queue_physical_block_size(struct request_queue *q, unsigned short size) | |
357 | { | |
358 | q->limits.physical_block_size = size; | |
359 | ||
360 | if (q->limits.physical_block_size < q->limits.logical_block_size) | |
361 | q->limits.physical_block_size = q->limits.logical_block_size; | |
362 | ||
363 | if (q->limits.io_min < q->limits.physical_block_size) | |
364 | q->limits.io_min = q->limits.physical_block_size; | |
365 | } | |
366 | EXPORT_SYMBOL(blk_queue_physical_block_size); | |
367 | ||
368 | /** | |
369 | * blk_queue_alignment_offset - set physical block alignment offset | |
370 | * @q: the request queue for the device | |
8ebf9756 | 371 | * @offset: alignment offset in bytes |
c72758f3 MP |
372 | * |
373 | * Description: | |
374 | * Some devices are naturally misaligned to compensate for things like | |
375 | * the legacy DOS partition table 63-sector offset. Low-level drivers | |
376 | * should call this function for devices whose first sector is not | |
377 | * naturally aligned. | |
378 | */ | |
379 | void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset) | |
380 | { | |
381 | q->limits.alignment_offset = | |
382 | offset & (q->limits.physical_block_size - 1); | |
383 | q->limits.misaligned = 0; | |
384 | } | |
385 | EXPORT_SYMBOL(blk_queue_alignment_offset); | |
386 | ||
7c958e32 MP |
387 | /** |
388 | * blk_limits_io_min - set minimum request size for a device | |
389 | * @limits: the queue limits | |
390 | * @min: smallest I/O size in bytes | |
391 | * | |
392 | * Description: | |
393 | * Some devices have an internal block size bigger than the reported | |
394 | * hardware sector size. This function can be used to signal the | |
395 | * smallest I/O the device can perform without incurring a performance | |
396 | * penalty. | |
397 | */ | |
398 | void blk_limits_io_min(struct queue_limits *limits, unsigned int min) | |
399 | { | |
400 | limits->io_min = min; | |
401 | ||
402 | if (limits->io_min < limits->logical_block_size) | |
403 | limits->io_min = limits->logical_block_size; | |
404 | ||
405 | if (limits->io_min < limits->physical_block_size) | |
406 | limits->io_min = limits->physical_block_size; | |
407 | } | |
408 | EXPORT_SYMBOL(blk_limits_io_min); | |
409 | ||
c72758f3 MP |
410 | /** |
411 | * blk_queue_io_min - set minimum request size for the queue | |
412 | * @q: the request queue for the device | |
8ebf9756 | 413 | * @min: smallest I/O size in bytes |
c72758f3 MP |
414 | * |
415 | * Description: | |
7e5f5fb0 MP |
416 | * Storage devices may report a granularity or preferred minimum I/O |
417 | * size which is the smallest request the device can perform without | |
418 | * incurring a performance penalty. For disk drives this is often the | |
419 | * physical block size. For RAID arrays it is often the stripe chunk | |
420 | * size. A properly aligned multiple of minimum_io_size is the | |
421 | * preferred request size for workloads where a high number of I/O | |
422 | * operations is desired. | |
c72758f3 MP |
423 | */ |
424 | void blk_queue_io_min(struct request_queue *q, unsigned int min) | |
425 | { | |
7c958e32 | 426 | blk_limits_io_min(&q->limits, min); |
c72758f3 MP |
427 | } |
428 | EXPORT_SYMBOL(blk_queue_io_min); | |
429 | ||
430 | /** | |
431 | * blk_queue_io_opt - set optimal request size for the queue | |
432 | * @q: the request queue for the device | |
8ebf9756 | 433 | * @opt: optimal request size in bytes |
c72758f3 MP |
434 | * |
435 | * Description: | |
7e5f5fb0 MP |
436 | * Storage devices may report an optimal I/O size, which is the |
437 | * device's preferred unit for sustained I/O. This is rarely reported | |
438 | * for disk drives. For RAID arrays it is usually the stripe width or | |
439 | * the internal track size. A properly aligned multiple of | |
440 | * optimal_io_size is the preferred request size for workloads where | |
441 | * sustained throughput is desired. | |
c72758f3 MP |
442 | */ |
443 | void blk_queue_io_opt(struct request_queue *q, unsigned int opt) | |
444 | { | |
445 | q->limits.io_opt = opt; | |
446 | } | |
447 | EXPORT_SYMBOL(blk_queue_io_opt); | |
448 | ||
86db1e29 JA |
449 | /* |
450 | * Returns the minimum that is _not_ zero, unless both are zero. | |
451 | */ | |
452 | #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) | |
453 | ||
454 | /** | |
455 | * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers | |
456 | * @t: the stacking driver (top) | |
457 | * @b: the underlying device (bottom) | |
458 | **/ | |
459 | void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) | |
460 | { | |
fef24667 | 461 | blk_stack_limits(&t->limits, &b->limits, 0); |
025146e1 | 462 | |
e7e72bf6 NB |
463 | if (!t->queue_lock) |
464 | WARN_ON_ONCE(1); | |
465 | else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { | |
466 | unsigned long flags; | |
467 | spin_lock_irqsave(t->queue_lock, flags); | |
75ad23bc | 468 | queue_flag_clear(QUEUE_FLAG_CLUSTER, t); |
e7e72bf6 NB |
469 | spin_unlock_irqrestore(t->queue_lock, flags); |
470 | } | |
86db1e29 | 471 | } |
86db1e29 JA |
472 | EXPORT_SYMBOL(blk_queue_stack_limits); |
473 | ||
c72758f3 MP |
474 | /** |
475 | * blk_stack_limits - adjust queue_limits for stacked devices | |
476 | * @t: the stacking driver limits (top) | |
77634f33 | 477 | * @b: the underlying queue limits (bottom) |
c72758f3 MP |
478 | * @offset: offset to beginning of data within component device |
479 | * | |
480 | * Description: | |
481 | * Merges two queue_limit structs. Returns 0 if alignment didn't | |
482 | * change. Returns -1 if adding the bottom device caused | |
483 | * misalignment. | |
484 | */ | |
485 | int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, | |
486 | sector_t offset) | |
487 | { | |
488 | t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); | |
489 | t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); | |
77634f33 | 490 | t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn); |
c72758f3 MP |
491 | |
492 | t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask, | |
493 | b->seg_boundary_mask); | |
494 | ||
495 | t->max_phys_segments = min_not_zero(t->max_phys_segments, | |
496 | b->max_phys_segments); | |
497 | ||
498 | t->max_hw_segments = min_not_zero(t->max_hw_segments, | |
499 | b->max_hw_segments); | |
500 | ||
501 | t->max_segment_size = min_not_zero(t->max_segment_size, | |
502 | b->max_segment_size); | |
503 | ||
504 | t->logical_block_size = max(t->logical_block_size, | |
505 | b->logical_block_size); | |
506 | ||
507 | t->physical_block_size = max(t->physical_block_size, | |
508 | b->physical_block_size); | |
509 | ||
510 | t->io_min = max(t->io_min, b->io_min); | |
511 | t->no_cluster |= b->no_cluster; | |
512 | ||
513 | /* Bottom device offset aligned? */ | |
514 | if (offset && | |
515 | (offset & (b->physical_block_size - 1)) != b->alignment_offset) { | |
516 | t->misaligned = 1; | |
517 | return -1; | |
518 | } | |
519 | ||
520 | /* If top has no alignment offset, inherit from bottom */ | |
521 | if (!t->alignment_offset) | |
522 | t->alignment_offset = | |
523 | b->alignment_offset & (b->physical_block_size - 1); | |
524 | ||
525 | /* Top device aligned on logical block boundary? */ | |
526 | if (t->alignment_offset & (t->logical_block_size - 1)) { | |
527 | t->misaligned = 1; | |
528 | return -1; | |
529 | } | |
530 | ||
70dd5bf3 MP |
531 | /* Find lcm() of optimal I/O size */ |
532 | if (t->io_opt && b->io_opt) | |
533 | t->io_opt = (t->io_opt * b->io_opt) / gcd(t->io_opt, b->io_opt); | |
534 | else if (b->io_opt) | |
535 | t->io_opt = b->io_opt; | |
536 | ||
537 | /* Verify that optimal I/O size is a multiple of io_min */ | |
538 | if (t->io_min && t->io_opt % t->io_min) | |
539 | return -1; | |
540 | ||
c72758f3 MP |
541 | return 0; |
542 | } | |
5d85d324 | 543 | EXPORT_SYMBOL(blk_stack_limits); |
c72758f3 MP |
544 | |
545 | /** | |
546 | * disk_stack_limits - adjust queue limits for stacked drivers | |
77634f33 | 547 | * @disk: MD/DM gendisk (top) |
c72758f3 MP |
548 | * @bdev: the underlying block device (bottom) |
549 | * @offset: offset to beginning of data within component device | |
550 | * | |
551 | * Description: | |
552 | * Merges the limits for two queues. Returns 0 if alignment | |
553 | * didn't change. Returns -1 if adding the bottom device caused | |
554 | * misalignment. | |
555 | */ | |
556 | void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, | |
557 | sector_t offset) | |
558 | { | |
559 | struct request_queue *t = disk->queue; | |
560 | struct request_queue *b = bdev_get_queue(bdev); | |
561 | ||
562 | offset += get_start_sect(bdev) << 9; | |
563 | ||
564 | if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) { | |
565 | char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE]; | |
566 | ||
567 | disk_name(disk, 0, top); | |
568 | bdevname(bdev, bottom); | |
569 | ||
570 | printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n", | |
571 | top, bottom); | |
572 | } | |
573 | ||
574 | if (!t->queue_lock) | |
575 | WARN_ON_ONCE(1); | |
576 | else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) { | |
577 | unsigned long flags; | |
578 | ||
579 | spin_lock_irqsave(t->queue_lock, flags); | |
580 | if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) | |
581 | queue_flag_clear(QUEUE_FLAG_CLUSTER, t); | |
582 | spin_unlock_irqrestore(t->queue_lock, flags); | |
583 | } | |
584 | } | |
585 | EXPORT_SYMBOL(disk_stack_limits); | |
586 | ||
e3790c7d TH |
587 | /** |
588 | * blk_queue_dma_pad - set pad mask | |
589 | * @q: the request queue for the device | |
590 | * @mask: pad mask | |
591 | * | |
27f8221a | 592 | * Set dma pad mask. |
e3790c7d | 593 | * |
27f8221a FT |
594 | * Appending pad buffer to a request modifies the last entry of a |
595 | * scatter list such that it includes the pad buffer. | |
e3790c7d TH |
596 | **/ |
597 | void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) | |
598 | { | |
599 | q->dma_pad_mask = mask; | |
600 | } | |
601 | EXPORT_SYMBOL(blk_queue_dma_pad); | |
602 | ||
27f8221a FT |
603 | /** |
604 | * blk_queue_update_dma_pad - update pad mask | |
605 | * @q: the request queue for the device | |
606 | * @mask: pad mask | |
607 | * | |
608 | * Update dma pad mask. | |
609 | * | |
610 | * Appending pad buffer to a request modifies the last entry of a | |
611 | * scatter list such that it includes the pad buffer. | |
612 | **/ | |
613 | void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask) | |
614 | { | |
615 | if (mask > q->dma_pad_mask) | |
616 | q->dma_pad_mask = mask; | |
617 | } | |
618 | EXPORT_SYMBOL(blk_queue_update_dma_pad); | |
619 | ||
86db1e29 JA |
620 | /** |
621 | * blk_queue_dma_drain - Set up a drain buffer for excess dma. | |
86db1e29 | 622 | * @q: the request queue for the device |
2fb98e84 | 623 | * @dma_drain_needed: fn which returns non-zero if drain is necessary |
86db1e29 JA |
624 | * @buf: physically contiguous buffer |
625 | * @size: size of the buffer in bytes | |
626 | * | |
627 | * Some devices have excess DMA problems and can't simply discard (or | |
628 | * zero fill) the unwanted piece of the transfer. They have to have a | |
629 | * real area of memory to transfer it into. The use case for this is | |
630 | * ATAPI devices in DMA mode. If the packet command causes a transfer | |
631 | * bigger than the transfer size some HBAs will lock up if there | |
632 | * aren't DMA elements to contain the excess transfer. What this API | |
633 | * does is adjust the queue so that the buf is always appended | |
634 | * silently to the scatterlist. | |
635 | * | |
636 | * Note: This routine adjusts max_hw_segments to make room for | |
637 | * appending the drain buffer. If you call | |
638 | * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after | |
639 | * calling this routine, you must set the limit to one fewer than your | |
640 | * device can support otherwise there won't be room for the drain | |
641 | * buffer. | |
642 | */ | |
448da4d2 | 643 | int blk_queue_dma_drain(struct request_queue *q, |
2fb98e84 TH |
644 | dma_drain_needed_fn *dma_drain_needed, |
645 | void *buf, unsigned int size) | |
86db1e29 | 646 | { |
ae03bf63 | 647 | if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2) |
86db1e29 JA |
648 | return -EINVAL; |
649 | /* make room for appending the drain */ | |
ae03bf63 MP |
650 | blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1); |
651 | blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1); | |
2fb98e84 | 652 | q->dma_drain_needed = dma_drain_needed; |
86db1e29 JA |
653 | q->dma_drain_buffer = buf; |
654 | q->dma_drain_size = size; | |
655 | ||
656 | return 0; | |
657 | } | |
86db1e29 JA |
658 | EXPORT_SYMBOL_GPL(blk_queue_dma_drain); |
659 | ||
660 | /** | |
661 | * blk_queue_segment_boundary - set boundary rules for segment merging | |
662 | * @q: the request queue for the device | |
663 | * @mask: the memory boundary mask | |
664 | **/ | |
665 | void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) | |
666 | { | |
667 | if (mask < PAGE_CACHE_SIZE - 1) { | |
668 | mask = PAGE_CACHE_SIZE - 1; | |
24c03d47 HH |
669 | printk(KERN_INFO "%s: set to minimum %lx\n", |
670 | __func__, mask); | |
86db1e29 JA |
671 | } |
672 | ||
025146e1 | 673 | q->limits.seg_boundary_mask = mask; |
86db1e29 | 674 | } |
86db1e29 JA |
675 | EXPORT_SYMBOL(blk_queue_segment_boundary); |
676 | ||
677 | /** | |
678 | * blk_queue_dma_alignment - set dma length and memory alignment | |
679 | * @q: the request queue for the device | |
680 | * @mask: alignment mask | |
681 | * | |
682 | * description: | |
710027a4 | 683 | * set required memory and length alignment for direct dma transactions. |
8feb4d20 | 684 | * this is used when building direct io requests for the queue. |
86db1e29 JA |
685 | * |
686 | **/ | |
687 | void blk_queue_dma_alignment(struct request_queue *q, int mask) | |
688 | { | |
689 | q->dma_alignment = mask; | |
690 | } | |
86db1e29 JA |
691 | EXPORT_SYMBOL(blk_queue_dma_alignment); |
692 | ||
693 | /** | |
694 | * blk_queue_update_dma_alignment - update dma length and memory alignment | |
695 | * @q: the request queue for the device | |
696 | * @mask: alignment mask | |
697 | * | |
698 | * description: | |
710027a4 | 699 | * update required memory and length alignment for direct dma transactions. |
86db1e29 JA |
700 | * If the requested alignment is larger than the current alignment, then |
701 | * the current queue alignment is updated to the new value, otherwise it | |
702 | * is left alone. The design of this is to allow multiple objects | |
703 | * (driver, device, transport etc) to set their respective | |
704 | * alignments without having them interfere. | |
705 | * | |
706 | **/ | |
707 | void blk_queue_update_dma_alignment(struct request_queue *q, int mask) | |
708 | { | |
709 | BUG_ON(mask > PAGE_SIZE); | |
710 | ||
711 | if (mask > q->dma_alignment) | |
712 | q->dma_alignment = mask; | |
713 | } | |
86db1e29 JA |
714 | EXPORT_SYMBOL(blk_queue_update_dma_alignment); |
715 | ||
aeb3d3a8 | 716 | static int __init blk_settings_init(void) |
86db1e29 JA |
717 | { |
718 | blk_max_low_pfn = max_low_pfn - 1; | |
719 | blk_max_pfn = max_pfn - 1; | |
720 | return 0; | |
721 | } | |
722 | subsys_initcall(blk_settings_init); |