]> Git Repo - linux.git/blame - fs/xfs/xfs_reflink.c
Merge branch 'regulator-5.0' into regulator-linus
[linux.git] / fs / xfs / xfs_reflink.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0+
3993baeb
DW
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
3993baeb 4 * Author: Darrick J. Wong <[email protected]>
3993baeb
DW
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_da_format.h"
15#include "xfs_da_btree.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_inode_item.h"
19#include "xfs_bmap.h"
20#include "xfs_bmap_util.h"
21#include "xfs_error.h"
22#include "xfs_dir2.h"
23#include "xfs_dir2_priv.h"
24#include "xfs_ioctl.h"
25#include "xfs_trace.h"
26#include "xfs_log.h"
27#include "xfs_icache.h"
28#include "xfs_pnfs.h"
174edb0e 29#include "xfs_btree.h"
3993baeb
DW
30#include "xfs_refcount_btree.h"
31#include "xfs_refcount.h"
32#include "xfs_bmap_btree.h"
33#include "xfs_trans_space.h"
34#include "xfs_bit.h"
35#include "xfs_alloc.h"
36#include "xfs_quota_defs.h"
37#include "xfs_quota.h"
3993baeb 38#include "xfs_reflink.h"
2a06705c 39#include "xfs_iomap.h"
43caeb18 40#include "xfs_rmap_btree.h"
6fa164b8
DW
41#include "xfs_sb.h"
42#include "xfs_ag_resv.h"
3993baeb
DW
43
44/*
45 * Copy on Write of Shared Blocks
46 *
47 * XFS must preserve "the usual" file semantics even when two files share
48 * the same physical blocks. This means that a write to one file must not
49 * alter the blocks in a different file; the way that we'll do that is
50 * through the use of a copy-on-write mechanism. At a high level, that
51 * means that when we want to write to a shared block, we allocate a new
52 * block, write the data to the new block, and if that succeeds we map the
53 * new block into the file.
54 *
55 * XFS provides a "delayed allocation" mechanism that defers the allocation
56 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57 * possible. This reduces fragmentation by enabling the filesystem to ask
58 * for bigger chunks less often, which is exactly what we want for CoW.
59 *
60 * The delalloc mechanism begins when the kernel wants to make a block
61 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
62 * create a delalloc mapping, which is a regular in-core extent, but without
63 * a real startblock. (For delalloc mappings, the startblock encodes both
64 * a flag that this is a delalloc mapping, and a worst-case estimate of how
65 * many blocks might be required to put the mapping into the BMBT.) delalloc
66 * mappings are a reservation against the free space in the filesystem;
67 * adjacent mappings can also be combined into fewer larger mappings.
68 *
5eda4300
DW
69 * As an optimization, the CoW extent size hint (cowextsz) creates
70 * outsized aligned delalloc reservations in the hope of landing out of
71 * order nearby CoW writes in a single extent on disk, thereby reducing
72 * fragmentation and improving future performance.
73 *
74 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75 * C: ------DDDDDDD--------- (CoW fork)
76 *
3993baeb 77 * When dirty pages are being written out (typically in writepage), the
5eda4300
DW
78 * delalloc reservations are converted into unwritten mappings by
79 * allocating blocks and replacing the delalloc mapping with real ones.
80 * A delalloc mapping can be replaced by several unwritten ones if the
81 * free space is fragmented.
82 *
83 * D: --RRRRRRSSSRRRRRRRR---
84 * C: ------UUUUUUU---------
3993baeb
DW
85 *
86 * We want to adapt the delalloc mechanism for copy-on-write, since the
87 * write paths are similar. The first two steps (creating the reservation
88 * and allocating the blocks) are exactly the same as delalloc except that
89 * the mappings must be stored in a separate CoW fork because we do not want
90 * to disturb the mapping in the data fork until we're sure that the write
91 * succeeded. IO completion in this case is the process of removing the old
92 * mapping from the data fork and moving the new mapping from the CoW fork to
93 * the data fork. This will be discussed shortly.
94 *
95 * For now, unaligned directio writes will be bounced back to the page cache.
96 * Block-aligned directio writes will use the same mechanism as buffered
97 * writes.
98 *
5eda4300
DW
99 * Just prior to submitting the actual disk write requests, we convert
100 * the extents representing the range of the file actually being written
101 * (as opposed to extra pieces created for the cowextsize hint) to real
102 * extents. This will become important in the next step:
103 *
104 * D: --RRRRRRSSSRRRRRRRR---
105 * C: ------UUrrUUU---------
106 *
3993baeb
DW
107 * CoW remapping must be done after the data block write completes,
108 * because we don't want to destroy the old data fork map until we're sure
109 * the new block has been written. Since the new mappings are kept in a
110 * separate fork, we can simply iterate these mappings to find the ones
111 * that cover the file blocks that we just CoW'd. For each extent, simply
112 * unmap the corresponding range in the data fork, map the new range into
5eda4300
DW
113 * the data fork, and remove the extent from the CoW fork. Because of
114 * the presence of the cowextsize hint, however, we must be careful
115 * only to remap the blocks that we've actually written out -- we must
116 * never remap delalloc reservations nor CoW staging blocks that have
117 * yet to be written. This corresponds exactly to the real extents in
118 * the CoW fork:
119 *
120 * D: --RRRRRRrrSRRRRRRRR---
121 * C: ------UU--UUU---------
3993baeb
DW
122 *
123 * Since the remapping operation can be applied to an arbitrary file
124 * range, we record the need for the remap step as a flag in the ioend
125 * instead of declaring a new IO type. This is required for direct io
126 * because we only have ioend for the whole dio, and we have to be able to
127 * remember the presence of unwritten blocks and CoW blocks with a single
128 * ioend structure. Better yet, the more ground we can cover with one
129 * ioend, the better.
130 */
2a06705c
DW
131
132/*
133 * Given an AG extent, find the lowest-numbered run of shared blocks
134 * within that range and return the range in fbno/flen. If
135 * find_end_of_shared is true, return the longest contiguous extent of
136 * shared blocks. If there are no shared extents, fbno and flen will
137 * be set to NULLAGBLOCK and 0, respectively.
138 */
139int
140xfs_reflink_find_shared(
141 struct xfs_mount *mp,
92ff7285 142 struct xfs_trans *tp,
2a06705c
DW
143 xfs_agnumber_t agno,
144 xfs_agblock_t agbno,
145 xfs_extlen_t aglen,
146 xfs_agblock_t *fbno,
147 xfs_extlen_t *flen,
148 bool find_end_of_shared)
149{
150 struct xfs_buf *agbp;
151 struct xfs_btree_cur *cur;
152 int error;
153
92ff7285 154 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
2a06705c
DW
155 if (error)
156 return error;
10479e2d
DW
157 if (!agbp)
158 return -ENOMEM;
2a06705c 159
ed7ef8e5 160 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
2a06705c
DW
161
162 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 find_end_of_shared);
164
0b04b6b8 165 xfs_btree_del_cursor(cur, error);
2a06705c 166
92ff7285 167 xfs_trans_brelse(tp, agbp);
2a06705c
DW
168 return error;
169}
170
171/*
172 * Trim the mapping to the next block where there's a change in the
173 * shared/unshared status. More specifically, this means that we
174 * find the lowest-numbered extent of shared blocks that coincides with
175 * the given block mapping. If the shared extent overlaps the start of
176 * the mapping, trim the mapping to the end of the shared extent. If
177 * the shared region intersects the mapping, trim the mapping to the
178 * start of the shared extent. If there are no shared regions that
179 * overlap, just return the original extent.
180 */
181int
182xfs_reflink_trim_around_shared(
183 struct xfs_inode *ip,
184 struct xfs_bmbt_irec *irec,
d392bc81 185 bool *shared)
2a06705c
DW
186{
187 xfs_agnumber_t agno;
188 xfs_agblock_t agbno;
189 xfs_extlen_t aglen;
190 xfs_agblock_t fbno;
191 xfs_extlen_t flen;
192 int error = 0;
193
194 /* Holes, unwritten, and delalloc extents cannot be shared */
9c4f29d3 195 if (!xfs_is_reflink_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
2a06705c
DW
196 *shared = false;
197 return 0;
198 }
199
200 trace_xfs_reflink_trim_around_shared(ip, irec);
201
202 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 aglen = irec->br_blockcount;
205
92ff7285 206 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
2a06705c
DW
207 aglen, &fbno, &flen, true);
208 if (error)
209 return error;
210
d392bc81 211 *shared = false;
2a06705c
DW
212 if (fbno == NULLAGBLOCK) {
213 /* No shared blocks at all. */
214 return 0;
215 } else if (fbno == agbno) {
216 /*
217 * The start of this extent is shared. Truncate the
218 * mapping at the end of the shared region so that a
219 * subsequent iteration starts at the start of the
220 * unshared region.
221 */
222 irec->br_blockcount = flen;
223 *shared = true;
2a06705c
DW
224 return 0;
225 } else {
226 /*
227 * There's a shared extent midway through this extent.
228 * Truncate the mapping at the start of the shared
229 * extent so that a subsequent iteration starts at the
230 * start of the shared region.
231 */
232 irec->br_blockcount = fbno - agbno;
2a06705c
DW
233 return 0;
234 }
235}
236
3ba020be
CH
237/*
238 * Trim the passed in imap to the next shared/unshared extent boundary, and
239 * if imap->br_startoff points to a shared extent reserve space for it in the
fc439464 240 * COW fork.
3ba020be
CH
241 *
242 * Note that imap will always contain the block numbers for the existing blocks
243 * in the data fork, as the upper layers need them for read-modify-write
244 * operations.
245 */
246int
247xfs_reflink_reserve_cow(
2a06705c 248 struct xfs_inode *ip,
fc439464 249 struct xfs_bmbt_irec *imap)
2a06705c 250{
2755fc44
CH
251 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
252 struct xfs_bmbt_irec got;
2755fc44 253 int error = 0;
d392bc81 254 bool eof = false;
b2b1712a 255 struct xfs_iext_cursor icur;
fc439464 256 bool shared;
2a06705c 257
3ba020be
CH
258 /*
259 * Search the COW fork extent list first. This serves two purposes:
260 * first this implement the speculative preallocation using cowextisze,
261 * so that we also unshared block adjacent to shared blocks instead
262 * of just the shared blocks themselves. Second the lookup in the
263 * extent list is generally faster than going out to the shared extent
264 * tree.
265 */
2755fc44 266
b2b1712a 267 if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &icur, &got))
2755fc44 268 eof = true;
3ba020be
CH
269 if (!eof && got.br_startoff <= imap->br_startoff) {
270 trace_xfs_reflink_cow_found(ip, imap);
271 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
3ba020be
CH
272 return 0;
273 }
2a06705c
DW
274
275 /* Trim the mapping to the nearest shared extent boundary. */
d392bc81 276 error = xfs_reflink_trim_around_shared(ip, imap, &shared);
2a06705c 277 if (error)
3ba020be 278 return error;
2a06705c
DW
279
280 /* Not shared? Just report the (potentially capped) extent. */
fc439464 281 if (!shared)
3ba020be 282 return 0;
2a06705c
DW
283
284 /*
285 * Fork all the shared blocks from our write offset until the end of
286 * the extent.
287 */
4882c19d 288 error = xfs_qm_dqattach_locked(ip, false);
2a06705c 289 if (error)
3ba020be
CH
290 return error;
291
3ba020be 292 error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
b2b1712a 293 imap->br_blockcount, 0, &got, &icur, eof);
0260d8ff 294 if (error == -ENOSPC || error == -EDQUOT)
3ba020be 295 trace_xfs_reflink_cow_enospc(ip, imap);
0260d8ff 296 if (error)
3ba020be 297 return error;
83104d44 298
59e42931 299 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
2a06705c 300 trace_xfs_reflink_cow_alloc(ip, &got);
3ba020be 301 return 0;
2a06705c 302}
ef473667 303
5eda4300
DW
304/* Convert part of an unwritten CoW extent to a real one. */
305STATIC int
306xfs_reflink_convert_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 xfs_fileoff_t offset_fsb,
8a749386 310 xfs_filblks_t count_fsb)
5eda4300 311{
5eda4300
DW
312 int nimaps = 1;
313
314 if (imap->br_state == XFS_EXT_NORM)
315 return 0;
316
dcf9585a
CH
317 xfs_trim_extent(imap, offset_fsb, count_fsb);
318 trace_xfs_reflink_convert_cow(ip, imap);
319 if (imap->br_blockcount == 0)
5eda4300 320 return 0;
dcf9585a 321 return xfs_bmapi_write(NULL, ip, imap->br_startoff, imap->br_blockcount,
a7beabea 322 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, 0, imap,
3ae2d891 323 &nimaps);
5eda4300
DW
324}
325
326/* Convert all of the unwritten CoW extents in a file's range to real ones. */
327int
328xfs_reflink_convert_cow(
329 struct xfs_inode *ip,
330 xfs_off_t offset,
331 xfs_off_t count)
332{
5eda4300 333 struct xfs_mount *mp = ip->i_mount;
5eda4300
DW
334 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
335 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
b121459c
CH
336 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
337 struct xfs_bmbt_irec imap;
b121459c 338 int nimaps = 1, error = 0;
5eda4300 339
b121459c 340 ASSERT(count != 0);
5eda4300 341
b121459c
CH
342 xfs_ilock(ip, XFS_ILOCK_EXCL);
343 error = xfs_bmapi_write(NULL, ip, offset_fsb, count_fsb,
344 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT |
a7beabea 345 XFS_BMAPI_CONVERT_ONLY, 0, &imap, &nimaps);
5eda4300
DW
346 xfs_iunlock(ip, XFS_ILOCK_EXCL);
347 return error;
348}
349
df307077
DC
350/*
351 * Find the extent that maps the given range in the COW fork. Even if the extent
352 * is not shared we might have a preallocation for it in the COW fork. If so we
353 * use it that rather than trigger a new allocation.
354 */
355static int
356xfs_find_trim_cow_extent(
357 struct xfs_inode *ip,
358 struct xfs_bmbt_irec *imap,
359 bool *shared,
360 bool *found)
361{
362 xfs_fileoff_t offset_fsb = imap->br_startoff;
363 xfs_filblks_t count_fsb = imap->br_blockcount;
364 struct xfs_iext_cursor icur;
365 struct xfs_bmbt_irec got;
df307077
DC
366
367 *found = false;
368
369 /*
370 * If we don't find an overlapping extent, trim the range we need to
371 * allocate to fit the hole we found.
372 */
032dc923
CH
373 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
374 got.br_startoff = offset_fsb + count_fsb;
375 if (got.br_startoff > offset_fsb) {
376 xfs_trim_extent(imap, imap->br_startoff,
377 got.br_startoff - imap->br_startoff);
d392bc81 378 return xfs_reflink_trim_around_shared(ip, imap, shared);
032dc923 379 }
df307077
DC
380
381 *shared = true;
382 if (isnullstartblock(got.br_startblock)) {
383 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
384 return 0;
385 }
386
387 /* real extent found - no need to allocate */
388 xfs_trim_extent(&got, offset_fsb, count_fsb);
389 *imap = got;
390 *found = true;
391 return 0;
392}
393
0613f16c 394/* Allocate all CoW reservations covering a range of blocks in a file. */
3c68d44a
CH
395int
396xfs_reflink_allocate_cow(
0613f16c 397 struct xfs_inode *ip,
3c68d44a
CH
398 struct xfs_bmbt_irec *imap,
399 bool *shared,
400 uint *lockmode)
0613f16c
DW
401{
402 struct xfs_mount *mp = ip->i_mount;
3c68d44a
CH
403 xfs_fileoff_t offset_fsb = imap->br_startoff;
404 xfs_filblks_t count_fsb = imap->br_blockcount;
df307077 405 struct xfs_trans *tp;
3c68d44a 406 int nimaps, error = 0;
df307077 407 bool found;
a14234c7 408 xfs_filblks_t resaligned;
3c68d44a 409 xfs_extlen_t resblks = 0;
0613f16c 410
c7dbe3f2 411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
df307077 412 ASSERT(xfs_is_reflink_inode(ip));
0613f16c 413
df307077
DC
414 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
415 if (error || !*shared)
416 return error;
417 if (found)
418 goto convert;
3c68d44a 419
df307077
DC
420 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
421 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
422 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
a14234c7 423
df307077
DC
424 xfs_iunlock(ip, *lockmode);
425 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
426 *lockmode = XFS_ILOCK_EXCL;
427 xfs_ilock(ip, *lockmode);
3ba020be 428
df307077
DC
429 if (error)
430 return error;
a14234c7 431
df307077
DC
432 error = xfs_qm_dqattach_locked(ip, false);
433 if (error)
434 goto out_trans_cancel;
3c68d44a 435
df307077
DC
436 /*
437 * Check for an overlapping extent again now that we dropped the ilock.
438 */
439 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
440 if (error || !*shared)
441 goto out_trans_cancel;
442 if (found) {
443 xfs_trans_cancel(tp);
444 goto convert;
a14234c7
CH
445 }
446
447 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
448 XFS_QMOPT_RES_REGBLKS);
0613f16c 449 if (error)
df307077 450 goto out_trans_cancel;
0613f16c 451
a14234c7
CH
452 xfs_trans_ijoin(tp, ip, 0);
453
5eda4300 454 /* Allocate the entire reservation as unwritten blocks. */
df307077 455 nimaps = 1;
3c68d44a 456 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
650919f1 457 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
a7beabea 458 resblks, imap, &nimaps);
0613f16c 459 if (error)
df307077 460 goto out_unreserve;
0613f16c 461
86d692bf 462 xfs_inode_set_cowblocks_tag(ip);
0613f16c 463 error = xfs_trans_commit(tp);
a14234c7 464 if (error)
3c68d44a 465 return error;
9f37bd11
DW
466
467 /*
468 * Allocation succeeded but the requested range was not even partially
469 * satisfied? Bail out!
470 */
471 if (nimaps == 0)
472 return -ENOSPC;
3c68d44a 473convert:
8a749386 474 return xfs_reflink_convert_cow_extent(ip, imap, offset_fsb, count_fsb);
df307077
DC
475
476out_unreserve:
a14234c7
CH
477 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
478 XFS_QMOPT_RES_REGBLKS);
df307077
DC
479out_trans_cancel:
480 xfs_trans_cancel(tp);
3c68d44a 481 return error;
0613f16c
DW
482}
483
43caeb18 484/*
3802a345
CH
485 * Cancel CoW reservations for some block range of an inode.
486 *
487 * If cancel_real is true this function cancels all COW fork extents for the
488 * inode; if cancel_real is false, real extents are not cleared.
c5295c6a
DC
489 *
490 * Caller must have already joined the inode to the current transaction. The
491 * inode will be joined to the transaction returned to the caller.
43caeb18
DW
492 */
493int
494xfs_reflink_cancel_cow_blocks(
495 struct xfs_inode *ip,
496 struct xfs_trans **tpp,
497 xfs_fileoff_t offset_fsb,
3802a345
CH
498 xfs_fileoff_t end_fsb,
499 bool cancel_real)
43caeb18 500{
3e0ee78f 501 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
df5ab1b5 502 struct xfs_bmbt_irec got, del;
b2b1712a 503 struct xfs_iext_cursor icur;
df5ab1b5 504 int error = 0;
43caeb18 505
51d62690 506 if (!xfs_inode_has_cow_data(ip))
43caeb18 507 return 0;
41caabd0 508 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
3e0ee78f 509 return 0;
43caeb18 510
41caabd0
CH
511 /* Walk backwards until we're out of the I/O range... */
512 while (got.br_startoff + got.br_blockcount > offset_fsb) {
3e0ee78f
CH
513 del = got;
514 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
41caabd0
CH
515
516 /* Extent delete may have bumped ext forward */
517 if (!del.br_blockcount) {
518 xfs_iext_prev(ifp, &icur);
519 goto next_extent;
520 }
521
3e0ee78f 522 trace_xfs_reflink_cancel_cow(ip, &del);
43caeb18 523
3e0ee78f
CH
524 if (isnullstartblock(del.br_startblock)) {
525 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
b2b1712a 526 &icur, &got, &del);
43caeb18
DW
527 if (error)
528 break;
3802a345 529 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
1e5ae199 530 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
43caeb18 531
174edb0e 532 /* Free the CoW orphan record. */
0f37d178
BF
533 error = xfs_refcount_free_cow_extent(*tpp,
534 del.br_startblock, del.br_blockcount);
174edb0e
DW
535 if (error)
536 break;
537
0f37d178
BF
538 xfs_bmap_add_free(*tpp, del.br_startblock,
539 del.br_blockcount, NULL);
43caeb18 540
43caeb18 541 /* Roll the transaction */
9e28a242 542 error = xfs_defer_finish(tpp);
9b1f4e98 543 if (error)
43caeb18 544 break;
43caeb18
DW
545
546 /* Remove the mapping from the CoW fork. */
b2b1712a 547 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
4b4c1326
DW
548
549 /* Remove the quota reservation */
550 error = xfs_trans_reserve_quota_nblks(NULL, ip,
551 -(long)del.br_blockcount, 0,
552 XFS_QMOPT_RES_REGBLKS);
553 if (error)
554 break;
9d40fba8
DW
555 } else {
556 /* Didn't do anything, push cursor back. */
557 xfs_iext_prev(ifp, &icur);
43caeb18 558 }
41caabd0
CH
559next_extent:
560 if (!xfs_iext_get_extent(ifp, &icur, &got))
c17a8ef4 561 break;
43caeb18
DW
562 }
563
c17a8ef4
BF
564 /* clear tag if cow fork is emptied */
565 if (!ifp->if_bytes)
566 xfs_inode_clear_cowblocks_tag(ip);
43caeb18
DW
567 return error;
568}
569
570/*
3802a345
CH
571 * Cancel CoW reservations for some byte range of an inode.
572 *
573 * If cancel_real is true this function cancels all COW fork extents for the
574 * inode; if cancel_real is false, real extents are not cleared.
43caeb18
DW
575 */
576int
577xfs_reflink_cancel_cow_range(
578 struct xfs_inode *ip,
579 xfs_off_t offset,
3802a345
CH
580 xfs_off_t count,
581 bool cancel_real)
43caeb18
DW
582{
583 struct xfs_trans *tp;
584 xfs_fileoff_t offset_fsb;
585 xfs_fileoff_t end_fsb;
586 int error;
587
588 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
63646fc5 589 ASSERT(xfs_is_reflink_inode(ip));
43caeb18
DW
590
591 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
592 if (count == NULLFILEOFF)
593 end_fsb = NULLFILEOFF;
594 else
595 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
596
597 /* Start a rolling transaction to remove the mappings */
598 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
4df0f7f1 599 0, 0, XFS_TRANS_NOFS, &tp);
43caeb18
DW
600 if (error)
601 goto out;
602
603 xfs_ilock(ip, XFS_ILOCK_EXCL);
604 xfs_trans_ijoin(tp, ip, 0);
605
606 /* Scrape out the old CoW reservations */
3802a345
CH
607 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
608 cancel_real);
43caeb18
DW
609 if (error)
610 goto out_cancel;
611
612 error = xfs_trans_commit(tp);
613
614 xfs_iunlock(ip, XFS_ILOCK_EXCL);
615 return error;
616
617out_cancel:
618 xfs_trans_cancel(tp);
619 xfs_iunlock(ip, XFS_ILOCK_EXCL);
620out:
621 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
622 return error;
623}
624
625/*
d6f215f3
DW
626 * Remap part of the CoW fork into the data fork.
627 *
628 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
629 * into the data fork; this function will remap what it can (at the end of the
630 * range) and update @end_fsb appropriately. Each remap gets its own
631 * transaction because we can end up merging and splitting bmbt blocks for
632 * every remap operation and we'd like to keep the block reservation
633 * requirements as low as possible.
43caeb18 634 */
d6f215f3
DW
635STATIC int
636xfs_reflink_end_cow_extent(
637 struct xfs_inode *ip,
638 xfs_fileoff_t offset_fsb,
639 xfs_fileoff_t *end_fsb)
43caeb18 640{
d6f215f3
DW
641 struct xfs_bmbt_irec got, del;
642 struct xfs_iext_cursor icur;
643 struct xfs_mount *mp = ip->i_mount;
644 struct xfs_trans *tp;
645 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
646 xfs_filblks_t rlen;
647 unsigned int resblks;
648 int error;
43caeb18 649
c1112b6e 650 /* No COW extents? That's easy! */
d6f215f3
DW
651 if (ifp->if_bytes == 0) {
652 *end_fsb = offset_fsb;
c1112b6e 653 return 0;
d6f215f3 654 }
c1112b6e 655
d6f215f3
DW
656 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
657 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
658 XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
659 if (error)
660 return error;
43caeb18 661
fe0be23e 662 /*
d6f215f3
DW
663 * Lock the inode. We have to ijoin without automatic unlock because
664 * the lead transaction is the refcountbt record deletion; the data
665 * fork update follows as a deferred log item.
fe0be23e 666 */
43caeb18
DW
667 xfs_ilock(ip, XFS_ILOCK_EXCL);
668 xfs_trans_ijoin(tp, ip, 0);
669
dc56015f
CH
670 /*
671 * In case of racing, overlapping AIO writes no COW extents might be
672 * left by the time I/O completes for the loser of the race. In that
673 * case we are done.
674 */
d6f215f3
DW
675 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
676 got.br_startoff + got.br_blockcount <= offset_fsb) {
677 *end_fsb = offset_fsb;
dc56015f 678 goto out_cancel;
d6f215f3 679 }
43caeb18 680
d6f215f3
DW
681 /*
682 * Structure copy @got into @del, then trim @del to the range that we
683 * were asked to remap. We preserve @got for the eventual CoW fork
684 * deletion; from now on @del represents the mapping that we're
685 * actually remapping.
686 */
687 del = got;
688 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
c1112b6e 689
d6f215f3 690 ASSERT(del.br_blockcount > 0);
5eda4300 691
d6f215f3
DW
692 /*
693 * Only remap real extents that contain data. With AIO, speculative
694 * preallocations can leak into the range we are called upon, and we
695 * need to skip them.
696 */
697 if (!xfs_bmap_is_real_extent(&got)) {
698 *end_fsb = del.br_startoff;
699 goto out_cancel;
700 }
43caeb18 701
d6f215f3
DW
702 /* Unmap the old blocks in the data fork. */
703 rlen = del.br_blockcount;
704 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
705 if (error)
706 goto out_cancel;
174edb0e 707
d6f215f3
DW
708 /* Trim the extent to whatever got unmapped. */
709 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
710 trace_xfs_reflink_cow_remap(ip, &del);
43caeb18 711
d6f215f3
DW
712 /* Free the CoW orphan record. */
713 error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
714 del.br_blockcount);
715 if (error)
716 goto out_cancel;
43caeb18 717
d6f215f3
DW
718 /* Map the new blocks into the data fork. */
719 error = xfs_bmap_map_extent(tp, ip, &del);
720 if (error)
721 goto out_cancel;
4b4c1326 722
d6f215f3
DW
723 /* Charge this new data fork mapping to the on-disk quota. */
724 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
725 (long)del.br_blockcount);
c1112b6e 726
d6f215f3
DW
727 /* Remove the mapping from the CoW fork. */
728 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
43caeb18
DW
729
730 error = xfs_trans_commit(tp);
731 xfs_iunlock(ip, XFS_ILOCK_EXCL);
732 if (error)
d6f215f3
DW
733 return error;
734
735 /* Update the caller about how much progress we made. */
736 *end_fsb = del.br_startoff;
43caeb18
DW
737 return 0;
738
e12199f8 739out_cancel:
43caeb18
DW
740 xfs_trans_cancel(tp);
741 xfs_iunlock(ip, XFS_ILOCK_EXCL);
d6f215f3
DW
742 return error;
743}
744
745/*
746 * Remap parts of a file's data fork after a successful CoW.
747 */
748int
749xfs_reflink_end_cow(
750 struct xfs_inode *ip,
751 xfs_off_t offset,
752 xfs_off_t count)
753{
754 xfs_fileoff_t offset_fsb;
755 xfs_fileoff_t end_fsb;
756 int error = 0;
757
758 trace_xfs_reflink_end_cow(ip, offset, count);
759
760 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
761 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
762
763 /*
764 * Walk backwards until we're out of the I/O range. The loop function
765 * repeatedly cycles the ILOCK to allocate one transaction per remapped
766 * extent.
767 *
768 * If we're being called by writeback then the the pages will still
769 * have PageWriteback set, which prevents races with reflink remapping
770 * and truncate. Reflink remapping prevents races with writeback by
771 * taking the iolock and mmaplock before flushing the pages and
772 * remapping, which means there won't be any further writeback or page
773 * cache dirtying until the reflink completes.
774 *
775 * We should never have two threads issuing writeback for the same file
776 * region. There are also have post-eof checks in the writeback
777 * preparation code so that we don't bother writing out pages that are
778 * about to be truncated.
779 *
780 * If we're being called as part of directio write completion, the dio
781 * count is still elevated, which reflink and truncate will wait for.
782 * Reflink remapping takes the iolock and mmaplock and waits for
783 * pending dio to finish, which should prevent any directio until the
784 * remap completes. Multiple concurrent directio writes to the same
785 * region are handled by end_cow processing only occurring for the
786 * threads which succeed; the outcome of multiple overlapping direct
787 * writes is not well defined anyway.
788 *
789 * It's possible that a buffered write and a direct write could collide
790 * here (the buffered write stumbles in after the dio flushes and
791 * invalidates the page cache and immediately queues writeback), but we
792 * have never supported this 100%. If either disk write succeeds the
793 * blocks will be remapped.
794 */
795 while (end_fsb > offset_fsb && !error)
796 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
797
798 if (error)
799 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
43caeb18
DW
800 return error;
801}
174edb0e
DW
802
803/*
804 * Free leftover CoW reservations that didn't get cleaned out.
805 */
806int
807xfs_reflink_recover_cow(
808 struct xfs_mount *mp)
809{
810 xfs_agnumber_t agno;
811 int error = 0;
812
813 if (!xfs_sb_version_hasreflink(&mp->m_sb))
814 return 0;
815
816 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
817 error = xfs_refcount_recover_cow_leftovers(mp, agno);
818 if (error)
819 break;
820 }
821
822 return error;
823}
862bb360
DW
824
825/*
826 * Reflinking (Block) Ranges of Two Files Together
827 *
828 * First, ensure that the reflink flag is set on both inodes. The flag is an
829 * optimization to avoid unnecessary refcount btree lookups in the write path.
830 *
831 * Now we can iteratively remap the range of extents (and holes) in src to the
832 * corresponding ranges in dest. Let drange and srange denote the ranges of
833 * logical blocks in dest and src touched by the reflink operation.
834 *
835 * While the length of drange is greater than zero,
836 * - Read src's bmbt at the start of srange ("imap")
837 * - If imap doesn't exist, make imap appear to start at the end of srange
838 * with zero length.
839 * - If imap starts before srange, advance imap to start at srange.
840 * - If imap goes beyond srange, truncate imap to end at the end of srange.
841 * - Punch (imap start - srange start + imap len) blocks from dest at
842 * offset (drange start).
843 * - If imap points to a real range of pblks,
844 * > Increase the refcount of the imap's pblks
845 * > Map imap's pblks into dest at the offset
846 * (drange start + imap start - srange start)
847 * - Advance drange and srange by (imap start - srange start + imap len)
848 *
849 * Finally, if the reflink made dest longer, update both the in-core and
850 * on-disk file sizes.
851 *
852 * ASCII Art Demonstration:
853 *
854 * Let's say we want to reflink this source file:
855 *
856 * ----SSSSSSS-SSSSS----SSSSSS (src file)
857 * <-------------------->
858 *
859 * into this destination file:
860 *
861 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
862 * <-------------------->
863 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
864 * Observe that the range has different logical offsets in either file.
865 *
866 * Consider that the first extent in the source file doesn't line up with our
867 * reflink range. Unmapping and remapping are separate operations, so we can
868 * unmap more blocks from the destination file than we remap.
869 *
870 * ----SSSSSSS-SSSSS----SSSSSS
871 * <------->
872 * --DDDDD---------DDDDD--DDD
873 * <------->
874 *
875 * Now remap the source extent into the destination file:
876 *
877 * ----SSSSSSS-SSSSS----SSSSSS
878 * <------->
879 * --DDDDD--SSSSSSSDDDDD--DDD
880 * <------->
881 *
882 * Do likewise with the second hole and extent in our range. Holes in the
883 * unmap range don't affect our operation.
884 *
885 * ----SSSSSSS-SSSSS----SSSSSS
886 * <---->
887 * --DDDDD--SSSSSSS-SSSSS-DDD
888 * <---->
889 *
890 * Finally, unmap and remap part of the third extent. This will increase the
891 * size of the destination file.
892 *
893 * ----SSSSSSS-SSSSS----SSSSSS
894 * <----->
895 * --DDDDD--SSSSSSS-SSSSS----SSS
896 * <----->
897 *
898 * Once we update the destination file's i_size, we're done.
899 */
900
901/*
902 * Ensure the reflink bit is set in both inodes.
903 */
904STATIC int
905xfs_reflink_set_inode_flag(
906 struct xfs_inode *src,
907 struct xfs_inode *dest)
908{
909 struct xfs_mount *mp = src->i_mount;
910 int error;
911 struct xfs_trans *tp;
912
913 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
914 return 0;
915
916 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
917 if (error)
918 goto out_error;
919
920 /* Lock both files against IO */
921 if (src->i_ino == dest->i_ino)
922 xfs_ilock(src, XFS_ILOCK_EXCL);
923 else
7c2d238a 924 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
862bb360
DW
925
926 if (!xfs_is_reflink_inode(src)) {
927 trace_xfs_reflink_set_inode_flag(src);
928 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
929 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
930 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
931 xfs_ifork_init_cow(src);
932 } else
933 xfs_iunlock(src, XFS_ILOCK_EXCL);
934
935 if (src->i_ino == dest->i_ino)
936 goto commit_flags;
937
938 if (!xfs_is_reflink_inode(dest)) {
939 trace_xfs_reflink_set_inode_flag(dest);
940 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
941 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
942 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
943 xfs_ifork_init_cow(dest);
944 } else
945 xfs_iunlock(dest, XFS_ILOCK_EXCL);
946
947commit_flags:
948 error = xfs_trans_commit(tp);
949 if (error)
950 goto out_error;
951 return error;
952
953out_error:
954 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
955 return error;
956}
957
958/*
f7ca3522 959 * Update destination inode size & cowextsize hint, if necessary.
862bb360 960 */
3fc9f5e4 961int
862bb360
DW
962xfs_reflink_update_dest(
963 struct xfs_inode *dest,
f7ca3522 964 xfs_off_t newlen,
c5ecb423 965 xfs_extlen_t cowextsize,
a91ae49b 966 unsigned int remap_flags)
862bb360
DW
967{
968 struct xfs_mount *mp = dest->i_mount;
969 struct xfs_trans *tp;
970 int error;
971
bf4a1fcf 972 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
862bb360
DW
973 return 0;
974
975 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
976 if (error)
977 goto out_error;
978
979 xfs_ilock(dest, XFS_ILOCK_EXCL);
980 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
981
f7ca3522
DW
982 if (newlen > i_size_read(VFS_I(dest))) {
983 trace_xfs_reflink_update_inode_size(dest, newlen);
984 i_size_write(VFS_I(dest), newlen);
985 dest->i_d.di_size = newlen;
986 }
987
988 if (cowextsize) {
989 dest->i_d.di_cowextsize = cowextsize;
990 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
991 }
992
862bb360
DW
993 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
994
995 error = xfs_trans_commit(tp);
996 if (error)
997 goto out_error;
998 return error;
999
1000out_error:
1001 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1002 return error;
1003}
1004
6fa164b8
DW
1005/*
1006 * Do we have enough reserve in this AG to handle a reflink? The refcount
1007 * btree already reserved all the space it needs, but the rmap btree can grow
1008 * infinitely, so we won't allow more reflinks when the AG is down to the
1009 * btree reserves.
1010 */
1011static int
1012xfs_reflink_ag_has_free_space(
1013 struct xfs_mount *mp,
1014 xfs_agnumber_t agno)
1015{
1016 struct xfs_perag *pag;
1017 int error = 0;
1018
1019 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
1020 return 0;
1021
1022 pag = xfs_perag_get(mp, agno);
21592863 1023 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
6fa164b8
DW
1024 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1025 error = -ENOSPC;
1026 xfs_perag_put(pag);
1027 return error;
1028}
1029
862bb360
DW
1030/*
1031 * Unmap a range of blocks from a file, then map other blocks into the hole.
1032 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1033 * The extent irec is mapped into dest at irec->br_startoff.
1034 */
1035STATIC int
1036xfs_reflink_remap_extent(
1037 struct xfs_inode *ip,
1038 struct xfs_bmbt_irec *irec,
1039 xfs_fileoff_t destoff,
1040 xfs_off_t new_isize)
1041{
1042 struct xfs_mount *mp = ip->i_mount;
9c4f29d3 1043 bool real_extent = xfs_bmap_is_real_extent(irec);
862bb360 1044 struct xfs_trans *tp;
862bb360 1045 unsigned int resblks;
862bb360 1046 struct xfs_bmbt_irec uirec;
862bb360
DW
1047 xfs_filblks_t rlen;
1048 xfs_filblks_t unmap_len;
1049 xfs_off_t newlen;
1050 int error;
1051
1052 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1053 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1054
6fa164b8
DW
1055 /* No reflinking if we're low on space */
1056 if (real_extent) {
1057 error = xfs_reflink_ag_has_free_space(mp,
1058 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1059 if (error)
1060 goto out;
1061 }
1062
862bb360
DW
1063 /* Start a rolling transaction to switch the mappings */
1064 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1065 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1066 if (error)
1067 goto out;
1068
1069 xfs_ilock(ip, XFS_ILOCK_EXCL);
1070 xfs_trans_ijoin(tp, ip, 0);
1071
1072 /* If we're not just clearing space, then do we have enough quota? */
1073 if (real_extent) {
1074 error = xfs_trans_reserve_quota_nblks(tp, ip,
1075 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1076 if (error)
1077 goto out_cancel;
1078 }
1079
1080 trace_xfs_reflink_remap(ip, irec->br_startoff,
1081 irec->br_blockcount, irec->br_startblock);
1082
1083 /* Unmap the old blocks in the data fork. */
1084 rlen = unmap_len;
1085 while (rlen) {
9d9e6233 1086 ASSERT(tp->t_firstblock == NULLFSBLOCK);
2af52842 1087 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
862bb360 1088 if (error)
c8eac49e 1089 goto out_cancel;
862bb360
DW
1090
1091 /*
1092 * Trim the extent to whatever got unmapped.
1093 * Remember, bunmapi works backwards.
1094 */
1095 uirec.br_startblock = irec->br_startblock + rlen;
1096 uirec.br_startoff = irec->br_startoff + rlen;
1097 uirec.br_blockcount = unmap_len - rlen;
1098 unmap_len = rlen;
1099
1100 /* If this isn't a real mapping, we're done. */
1101 if (!real_extent || uirec.br_blockcount == 0)
1102 goto next_extent;
1103
1104 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1105 uirec.br_blockcount, uirec.br_startblock);
1106
1107 /* Update the refcount tree */
0f37d178 1108 error = xfs_refcount_increase_extent(tp, &uirec);
862bb360 1109 if (error)
c8eac49e 1110 goto out_cancel;
862bb360
DW
1111
1112 /* Map the new blocks into the data fork. */
0f37d178 1113 error = xfs_bmap_map_extent(tp, ip, &uirec);
862bb360 1114 if (error)
c8eac49e 1115 goto out_cancel;
862bb360
DW
1116
1117 /* Update quota accounting. */
1118 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1119 uirec.br_blockcount);
1120
1121 /* Update dest isize if needed. */
1122 newlen = XFS_FSB_TO_B(mp,
1123 uirec.br_startoff + uirec.br_blockcount);
1124 newlen = min_t(xfs_off_t, newlen, new_isize);
1125 if (newlen > i_size_read(VFS_I(ip))) {
1126 trace_xfs_reflink_update_inode_size(ip, newlen);
1127 i_size_write(VFS_I(ip), newlen);
1128 ip->i_d.di_size = newlen;
1129 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1130 }
1131
1132next_extent:
1133 /* Process all the deferred stuff. */
9e28a242 1134 error = xfs_defer_finish(&tp);
862bb360 1135 if (error)
c8eac49e 1136 goto out_cancel;
862bb360
DW
1137 }
1138
1139 error = xfs_trans_commit(tp);
1140 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1141 if (error)
1142 goto out;
1143 return 0;
1144
862bb360
DW
1145out_cancel:
1146 xfs_trans_cancel(tp);
1147 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1148out:
1149 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1150 return error;
1151}
1152
1153/*
1154 * Iteratively remap one file's extents (and holes) to another's.
1155 */
3fc9f5e4 1156int
862bb360
DW
1157xfs_reflink_remap_blocks(
1158 struct xfs_inode *src,
9f04aaff 1159 loff_t pos_in,
862bb360 1160 struct xfs_inode *dest,
9f04aaff 1161 loff_t pos_out,
3f68c1f5
DW
1162 loff_t remap_len,
1163 loff_t *remapped)
862bb360
DW
1164{
1165 struct xfs_bmbt_irec imap;
9f04aaff
DW
1166 xfs_fileoff_t srcoff;
1167 xfs_fileoff_t destoff;
1168 xfs_filblks_t len;
1169 xfs_filblks_t range_len;
3f68c1f5 1170 xfs_filblks_t remapped_len = 0;
9f04aaff 1171 xfs_off_t new_isize = pos_out + remap_len;
862bb360
DW
1172 int nimaps;
1173 int error = 0;
9f04aaff
DW
1174
1175 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1176 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1177 len = XFS_B_TO_FSB(src->i_mount, remap_len);
862bb360
DW
1178
1179 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1180 while (len) {
01c2e13d
DW
1181 uint lock_mode;
1182
862bb360
DW
1183 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1184 dest, destoff);
01c2e13d 1185
862bb360
DW
1186 /* Read extent from the source file */
1187 nimaps = 1;
01c2e13d 1188 lock_mode = xfs_ilock_data_map_shared(src);
862bb360 1189 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
01c2e13d 1190 xfs_iunlock(src, lock_mode);
862bb360 1191 if (error)
9f04aaff 1192 break;
862bb360
DW
1193 ASSERT(nimaps == 1);
1194
1195 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1196 &imap);
1197
1198 /* Translate imap into the destination file. */
1199 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1200 imap.br_startoff += destoff - srcoff;
1201
1202 /* Clear dest from destoff to the end of imap and map it in. */
1203 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1204 new_isize);
1205 if (error)
9f04aaff 1206 break;
862bb360
DW
1207
1208 if (fatal_signal_pending(current)) {
1209 error = -EINTR;
9f04aaff 1210 break;
862bb360
DW
1211 }
1212
1213 /* Advance drange/srange */
1214 srcoff += range_len;
1215 destoff += range_len;
1216 len -= range_len;
3f68c1f5 1217 remapped_len += range_len;
862bb360
DW
1218 }
1219
9f04aaff
DW
1220 if (error)
1221 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
3f68c1f5
DW
1222 *remapped = min_t(loff_t, remap_len,
1223 XFS_FSB_TO_B(src->i_mount, remapped_len));
862bb360
DW
1224 return error;
1225}
1226
1364b1d4
DW
1227/*
1228 * Grab the exclusive iolock for a data copy from src to dest, making
1229 * sure to abide vfs locking order (lowest pointer value goes first) and
1230 * breaking the pnfs layout leases on dest before proceeding. The loop
1231 * is needed because we cannot call the blocking break_layout() with the
1232 * src iolock held, and therefore have to back out both locks.
1233 */
1234static int
1235xfs_iolock_two_inodes_and_break_layout(
1236 struct inode *src,
1237 struct inode *dest)
1238{
1239 int error;
1240
1241retry:
1242 if (src < dest) {
01c2e13d 1243 inode_lock_shared(src);
1364b1d4
DW
1244 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1245 } else {
1246 /* src >= dest */
1247 inode_lock(dest);
1248 }
1249
1250 error = break_layout(dest, false);
1251 if (error == -EWOULDBLOCK) {
1252 inode_unlock(dest);
1253 if (src < dest)
01c2e13d 1254 inode_unlock_shared(src);
1364b1d4
DW
1255 error = break_layout(dest, true);
1256 if (error)
1257 return error;
1258 goto retry;
1259 }
1260 if (error) {
1261 inode_unlock(dest);
1262 if (src < dest)
01c2e13d 1263 inode_unlock_shared(src);
1364b1d4
DW
1264 return error;
1265 }
1266 if (src > dest)
01c2e13d 1267 inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1364b1d4
DW
1268 return 0;
1269}
1270
0d41e1d2 1271/* Unlock both inodes after they've been prepped for a range clone. */
3fc9f5e4 1272void
0d41e1d2
DW
1273xfs_reflink_remap_unlock(
1274 struct file *file_in,
1275 struct file *file_out)
1276{
1277 struct inode *inode_in = file_inode(file_in);
1278 struct xfs_inode *src = XFS_I(inode_in);
1279 struct inode *inode_out = file_inode(file_out);
1280 struct xfs_inode *dest = XFS_I(inode_out);
1281 bool same_inode = (inode_in == inode_out);
1282
1283 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1284 if (!same_inode)
1285 xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1286 inode_unlock(inode_out);
1287 if (!same_inode)
1288 inode_unlock_shared(inode_in);
1289}
1290
410fdc72
DW
1291/*
1292 * If we're reflinking to a point past the destination file's EOF, we must
1293 * zero any speculative post-EOF preallocations that sit between the old EOF
1294 * and the destination file offset.
1295 */
1296static int
1297xfs_reflink_zero_posteof(
1298 struct xfs_inode *ip,
1299 loff_t pos)
1300{
1301 loff_t isize = i_size_read(VFS_I(ip));
1302
1303 if (pos <= isize)
1304 return 0;
1305
1306 trace_xfs_zero_eof(ip, isize, pos - isize);
1307 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1308 &xfs_iomap_ops);
1309}
1310
862bb360 1311/*
0d41e1d2 1312 * Prepare two files for range cloning. Upon a successful return both inodes
b3998900
DC
1313 * will have the iolock and mmaplock held, the page cache of the out file will
1314 * be truncated, and any leases on the out file will have been broken. This
1315 * function borrows heavily from xfs_file_aio_write_checks.
dceeb47b
DC
1316 *
1317 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1318 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1319 * EOF block in the source dedupe range because it's not a complete block match,
b3998900 1320 * hence can introduce a corruption into the file that has it's block replaced.
dceeb47b 1321 *
b3998900
DC
1322 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1323 * "block aligned" for the purposes of cloning entire files. However, if the
1324 * source file range includes the EOF block and it lands within the existing EOF
1325 * of the destination file, then we can expose stale data from beyond the source
1326 * file EOF in the destination file.
1327 *
1328 * XFS doesn't support partial block sharing, so in both cases we have check
1329 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1330 * down to the previous whole block and ignore the partial EOF block. While this
1331 * means we can't dedupe the last block of a file, this is an acceptible
1332 * tradeoff for simplicity on implementation.
1333 *
1334 * For cloning, we want to share the partial EOF block if it is also the new EOF
1335 * block of the destination file. If the partial EOF block lies inside the
1336 * existing destination EOF, then we have to abort the clone to avoid exposing
1337 * stale data in the destination file. Hence we reject these clone attempts with
1338 * -EINVAL in this case.
862bb360 1339 */
3fc9f5e4 1340int
0d41e1d2 1341xfs_reflink_remap_prep(
5faaf4fa
CH
1342 struct file *file_in,
1343 loff_t pos_in,
1344 struct file *file_out,
1345 loff_t pos_out,
42ec3d4c 1346 loff_t *len,
a91ae49b 1347 unsigned int remap_flags)
862bb360 1348{
5faaf4fa
CH
1349 struct inode *inode_in = file_inode(file_in);
1350 struct xfs_inode *src = XFS_I(inode_in);
1351 struct inode *inode_out = file_inode(file_out);
1352 struct xfs_inode *dest = XFS_I(inode_out);
5faaf4fa 1353 bool same_inode = (inode_in == inode_out);
5faaf4fa 1354 ssize_t ret;
862bb360 1355
5faaf4fa 1356 /* Lock both files against IO */
1364b1d4
DW
1357 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1358 if (ret)
1359 return ret;
65523218 1360 if (same_inode)
5faaf4fa 1361 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
65523218 1362 else
01c2e13d 1363 xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
7c2d238a 1364 XFS_MMAPLOCK_EXCL);
5faaf4fa 1365
876bec6f 1366 /* Check file eligibility and prepare for block sharing. */
5faaf4fa 1367 ret = -EINVAL;
862bb360
DW
1368 /* Don't reflink realtime inodes */
1369 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
5faaf4fa
CH
1370 goto out_unlock;
1371
1372 /* Don't share DAX file data for now. */
1373 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1374 goto out_unlock;
1375
a83ab01a 1376 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
a91ae49b 1377 len, remap_flags);
8c5c836b 1378 if (ret < 0 || *len == 0)
5faaf4fa
CH
1379 goto out_unlock;
1380
09ac8623 1381 /* Attach dquots to dest inode before changing block map */
c14cfcca 1382 ret = xfs_qm_dqattach(dest);
09ac8623
DW
1383 if (ret)
1384 goto out_unlock;
1385
5c989a0e 1386 /*
410fdc72
DW
1387 * Zero existing post-eof speculative preallocations in the destination
1388 * file.
5c989a0e 1389 */
410fdc72
DW
1390 ret = xfs_reflink_zero_posteof(dest, pos_out);
1391 if (ret)
1392 goto out_unlock;
5c989a0e 1393
876bec6f 1394 /* Set flags and remap blocks. */
5faaf4fa
CH
1395 ret = xfs_reflink_set_inode_flag(src, dest);
1396 if (ret)
1397 goto out_unlock;
862bb360 1398
2c307174
DC
1399 /*
1400 * If pos_out > EOF, we may have dirtied blocks between EOF and
1401 * pos_out. In that case, we need to extend the flush and unmap to cover
1402 * from EOF to the end of the copy length.
1403 */
1404 if (pos_out > XFS_ISIZE(dest)) {
1405 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1406 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1407 } else {
1408 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1409 }
1410 if (ret)
1411 goto out_unlock;
7debbf01 1412
0d41e1d2
DW
1413 return 1;
1414out_unlock:
1415 xfs_reflink_remap_unlock(file_in, file_out);
1416 return ret;
1417}
1418
98cc2db5
DW
1419/*
1420 * The user wants to preemptively CoW all shared blocks in this file,
1421 * which enables us to turn off the reflink flag. Iterate all
1422 * extents which are not prealloc/delalloc to see which ranges are
1423 * mentioned in the refcount tree, then read those blocks into the
1424 * pagecache, dirty them, fsync them back out, and then we can update
1425 * the inode flag. What happens if we run out of memory? :)
1426 */
1427STATIC int
1428xfs_reflink_dirty_extents(
1429 struct xfs_inode *ip,
1430 xfs_fileoff_t fbno,
1431 xfs_filblks_t end,
1432 xfs_off_t isize)
1433{
1434 struct xfs_mount *mp = ip->i_mount;
1435 xfs_agnumber_t agno;
1436 xfs_agblock_t agbno;
1437 xfs_extlen_t aglen;
1438 xfs_agblock_t rbno;
1439 xfs_extlen_t rlen;
1440 xfs_off_t fpos;
1441 xfs_off_t flen;
1442 struct xfs_bmbt_irec map[2];
1443 int nmaps;
9780643c 1444 int error = 0;
98cc2db5
DW
1445
1446 while (end - fbno > 0) {
1447 nmaps = 1;
1448 /*
1449 * Look for extents in the file. Skip holes, delalloc, or
1450 * unwritten extents; they can't be reflinked.
1451 */
1452 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1453 if (error)
1454 goto out;
1455 if (nmaps == 0)
1456 break;
9c4f29d3 1457 if (!xfs_bmap_is_real_extent(&map[0]))
98cc2db5
DW
1458 goto next;
1459
1460 map[1] = map[0];
1461 while (map[1].br_blockcount) {
1462 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1463 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1464 aglen = map[1].br_blockcount;
1465
92ff7285
DW
1466 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1467 aglen, &rbno, &rlen, true);
98cc2db5
DW
1468 if (error)
1469 goto out;
1470 if (rbno == NULLAGBLOCK)
1471 break;
1472
1473 /* Dirty the pages */
1474 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1475 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1476 (rbno - agbno));
1477 flen = XFS_FSB_TO_B(mp, rlen);
1478 if (fpos + flen > isize)
1479 flen = isize - fpos;
1480 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1481 &xfs_iomap_ops);
1482 xfs_ilock(ip, XFS_ILOCK_EXCL);
1483 if (error)
1484 goto out;
1485
1486 map[1].br_blockcount -= (rbno - agbno + rlen);
1487 map[1].br_startoff += (rbno - agbno + rlen);
1488 map[1].br_startblock += (rbno - agbno + rlen);
1489 }
1490
1491next:
1492 fbno = map[0].br_startoff + map[0].br_blockcount;
1493 }
1494out:
1495 return error;
1496}
1497
ea7cdd7b 1498/* Does this inode need the reflink flag? */
98cc2db5 1499int
ea7cdd7b
DW
1500xfs_reflink_inode_has_shared_extents(
1501 struct xfs_trans *tp,
1502 struct xfs_inode *ip,
1503 bool *has_shared)
98cc2db5 1504{
ea7cdd7b
DW
1505 struct xfs_bmbt_irec got;
1506 struct xfs_mount *mp = ip->i_mount;
1507 struct xfs_ifork *ifp;
1508 xfs_agnumber_t agno;
1509 xfs_agblock_t agbno;
1510 xfs_extlen_t aglen;
1511 xfs_agblock_t rbno;
1512 xfs_extlen_t rlen;
b2b1712a 1513 struct xfs_iext_cursor icur;
ea7cdd7b
DW
1514 bool found;
1515 int error;
98cc2db5 1516
ea7cdd7b
DW
1517 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1518 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1519 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
98cc2db5
DW
1520 if (error)
1521 return error;
ea7cdd7b 1522 }
98cc2db5 1523
ea7cdd7b 1524 *has_shared = false;
b2b1712a 1525 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
ea7cdd7b
DW
1526 while (found) {
1527 if (isnullstartblock(got.br_startblock) ||
1528 got.br_state != XFS_EXT_NORM)
1529 goto next;
1530 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1531 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1532 aglen = got.br_blockcount;
98cc2db5 1533
ea7cdd7b 1534 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
024adf48
DW
1535 &rbno, &rlen, false);
1536 if (error)
1537 return error;
1538 /* Is there still a shared block here? */
ea7cdd7b
DW
1539 if (rbno != NULLAGBLOCK) {
1540 *has_shared = true;
024adf48 1541 return 0;
ea7cdd7b 1542 }
98cc2db5 1543next:
b2b1712a 1544 found = xfs_iext_next_extent(ifp, &icur, &got);
98cc2db5
DW
1545 }
1546
ea7cdd7b
DW
1547 return 0;
1548}
1549
844e5e74
DC
1550/*
1551 * Clear the inode reflink flag if there are no shared extents.
1552 *
1553 * The caller is responsible for joining the inode to the transaction passed in.
1554 * The inode will be joined to the transaction that is returned to the caller.
1555 */
ea7cdd7b
DW
1556int
1557xfs_reflink_clear_inode_flag(
1558 struct xfs_inode *ip,
1559 struct xfs_trans **tpp)
1560{
1561 bool needs_flag;
1562 int error = 0;
1563
1564 ASSERT(xfs_is_reflink_inode(ip));
1565
1566 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1567 if (error || needs_flag)
1568 return error;
1569
98cc2db5
DW
1570 /*
1571 * We didn't find any shared blocks so turn off the reflink flag.
1572 * First, get rid of any leftover CoW mappings.
1573 */
3802a345 1574 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
98cc2db5
DW
1575 if (error)
1576 return error;
1577
1578 /* Clear the inode flag. */
1579 trace_xfs_reflink_unset_inode_flag(ip);
1580 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
83104d44 1581 xfs_inode_clear_cowblocks_tag(ip);
98cc2db5
DW
1582 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1583
1584 return error;
1585}
1586
1587/*
1588 * Clear the inode reflink flag if there are no shared extents and the size
1589 * hasn't changed.
1590 */
1591STATIC int
1592xfs_reflink_try_clear_inode_flag(
97a1b87e 1593 struct xfs_inode *ip)
98cc2db5
DW
1594{
1595 struct xfs_mount *mp = ip->i_mount;
1596 struct xfs_trans *tp;
1597 int error = 0;
1598
1599 /* Start a rolling transaction to remove the mappings */
1600 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1601 if (error)
1602 return error;
1603
1604 xfs_ilock(ip, XFS_ILOCK_EXCL);
1605 xfs_trans_ijoin(tp, ip, 0);
1606
98cc2db5
DW
1607 error = xfs_reflink_clear_inode_flag(ip, &tp);
1608 if (error)
1609 goto cancel;
1610
1611 error = xfs_trans_commit(tp);
1612 if (error)
1613 goto out;
1614
1615 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1616 return 0;
1617cancel:
1618 xfs_trans_cancel(tp);
1619out:
1620 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1621 return error;
1622}
1623
1624/*
1625 * Pre-COW all shared blocks within a given byte range of a file and turn off
1626 * the reflink flag if we unshare all of the file's blocks.
1627 */
1628int
1629xfs_reflink_unshare(
1630 struct xfs_inode *ip,
1631 xfs_off_t offset,
1632 xfs_off_t len)
1633{
1634 struct xfs_mount *mp = ip->i_mount;
1635 xfs_fileoff_t fbno;
1636 xfs_filblks_t end;
1637 xfs_off_t isize;
1638 int error;
1639
1640 if (!xfs_is_reflink_inode(ip))
1641 return 0;
1642
1643 trace_xfs_reflink_unshare(ip, offset, len);
1644
1645 inode_dio_wait(VFS_I(ip));
1646
1647 /* Try to CoW the selected ranges */
1648 xfs_ilock(ip, XFS_ILOCK_EXCL);
97a1b87e 1649 fbno = XFS_B_TO_FSBT(mp, offset);
98cc2db5
DW
1650 isize = i_size_read(VFS_I(ip));
1651 end = XFS_B_TO_FSB(mp, offset + len);
1652 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1653 if (error)
1654 goto out_unlock;
1655 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1656
1657 /* Wait for the IO to finish */
1658 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1659 if (error)
1660 goto out;
1661
97a1b87e
DW
1662 /* Turn off the reflink flag if possible. */
1663 error = xfs_reflink_try_clear_inode_flag(ip);
1664 if (error)
1665 goto out;
98cc2db5
DW
1666
1667 return 0;
1668
1669out_unlock:
1670 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1671out:
1672 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1673 return error;
1674}
This page took 0.469152 seconds and 4 git commands to generate.