]>
Commit | Line | Data |
---|---|---|
8b7d89d0 PP |
1 | /* Support for MMIO probes. |
2 | * Benfit many code from kprobes | |
3 | * (C) 2002 Louis Zhuang <[email protected]>. | |
4 | * 2007 Alexander Eichner | |
5 | * 2008 Pekka Paalanen <[email protected]> | |
6 | */ | |
7 | ||
1bd591a5 JP |
8 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
9 | ||
0fd0e3da | 10 | #include <linux/list.h> |
668a6c36 | 11 | #include <linux/rculist.h> |
8b7d89d0 PP |
12 | #include <linux/spinlock.h> |
13 | #include <linux/hash.h> | |
14 | #include <linux/init.h> | |
15 | #include <linux/module.h> | |
8b7d89d0 | 16 | #include <linux/kernel.h> |
8b7d89d0 PP |
17 | #include <linux/uaccess.h> |
18 | #include <linux/ptrace.h> | |
19 | #include <linux/preempt.h> | |
f5136380 | 20 | #include <linux/percpu.h> |
0fd0e3da | 21 | #include <linux/kdebug.h> |
d61fc448 | 22 | #include <linux/mutex.h> |
970e6fa0 | 23 | #include <linux/io.h> |
5a0e3ad6 | 24 | #include <linux/slab.h> |
8b7d89d0 | 25 | #include <asm/cacheflush.h> |
8b7d89d0 | 26 | #include <asm/tlbflush.h> |
970e6fa0 | 27 | #include <linux/errno.h> |
13829537 | 28 | #include <asm/debugreg.h> |
0fd0e3da | 29 | #include <linux/mmiotrace.h> |
8b7d89d0 | 30 | |
8b7d89d0 PP |
31 | #define KMMIO_PAGE_HASH_BITS 4 |
32 | #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS) | |
33 | ||
0fd0e3da PP |
34 | struct kmmio_fault_page { |
35 | struct list_head list; | |
36 | struct kmmio_fault_page *release_next; | |
37 | unsigned long page; /* location of the fault page */ | |
46e91d00 | 38 | pteval_t old_presence; /* page presence prior to arming */ |
5359b585 | 39 | bool armed; |
0fd0e3da PP |
40 | |
41 | /* | |
42 | * Number of times this page has been registered as a part | |
43 | * of a probe. If zero, page is disarmed and this may be freed. | |
340430c5 PP |
44 | * Used only by writers (RCU) and post_kmmio_handler(). |
45 | * Protected by kmmio_lock, when linked into kmmio_page_table. | |
0fd0e3da PP |
46 | */ |
47 | int count; | |
8b8f79b9 MS |
48 | |
49 | bool scheduled_for_release; | |
0fd0e3da PP |
50 | }; |
51 | ||
52 | struct kmmio_delayed_release { | |
53 | struct rcu_head rcu; | |
54 | struct kmmio_fault_page *release_list; | |
55 | }; | |
56 | ||
8b7d89d0 PP |
57 | struct kmmio_context { |
58 | struct kmmio_fault_page *fpage; | |
59 | struct kmmio_probe *probe; | |
60 | unsigned long saved_flags; | |
0fd0e3da | 61 | unsigned long addr; |
8b7d89d0 PP |
62 | int active; |
63 | }; | |
64 | ||
8b7d89d0 PP |
65 | static DEFINE_SPINLOCK(kmmio_lock); |
66 | ||
13829537 | 67 | /* Protected by kmmio_lock */ |
8b7d89d0 | 68 | unsigned int kmmio_count; |
0fd0e3da PP |
69 | |
70 | /* Read-protected by RCU, write-protected by kmmio_lock. */ | |
8b7d89d0 PP |
71 | static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE]; |
72 | static LIST_HEAD(kmmio_probes); | |
73 | ||
0fd0e3da PP |
74 | static struct list_head *kmmio_page_list(unsigned long page) |
75 | { | |
76 | return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)]; | |
77 | } | |
78 | ||
f5136380 PP |
79 | /* Accessed per-cpu */ |
80 | static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx); | |
8b7d89d0 | 81 | |
8b7d89d0 PP |
82 | /* |
83 | * this is basically a dynamic stabbing problem: | |
84 | * Could use the existing prio tree code or | |
85 | * Possible better implementations: | |
86 | * The Interval Skip List: A Data Structure for Finding All Intervals That | |
87 | * Overlap a Point (might be simple) | |
88 | * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup | |
89 | */ | |
0fd0e3da | 90 | /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */ |
8b7d89d0 PP |
91 | static struct kmmio_probe *get_kmmio_probe(unsigned long addr) |
92 | { | |
93 | struct kmmio_probe *p; | |
0fd0e3da | 94 | list_for_each_entry_rcu(p, &kmmio_probes, list) { |
33015c85 | 95 | if (addr >= p->addr && addr < (p->addr + p->len)) |
8b7d89d0 PP |
96 | return p; |
97 | } | |
98 | return NULL; | |
99 | } | |
100 | ||
0fd0e3da | 101 | /* You must be holding RCU read lock. */ |
8b7d89d0 PP |
102 | static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page) |
103 | { | |
0fd0e3da | 104 | struct list_head *head; |
0492e1bb | 105 | struct kmmio_fault_page *f; |
8b7d89d0 PP |
106 | |
107 | page &= PAGE_MASK; | |
0fd0e3da | 108 | head = kmmio_page_list(page); |
0492e1bb SB |
109 | list_for_each_entry_rcu(f, head, list) { |
110 | if (f->page == page) | |
111 | return f; | |
8b7d89d0 | 112 | } |
8b7d89d0 PP |
113 | return NULL; |
114 | } | |
115 | ||
46e91d00 | 116 | static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old) |
0b700a6a PP |
117 | { |
118 | pmdval_t v = pmd_val(*pmd); | |
46e91d00 SB |
119 | if (clear) { |
120 | *old = v & _PAGE_PRESENT; | |
121 | v &= ~_PAGE_PRESENT; | |
122 | } else /* presume this has been called with clear==true previously */ | |
123 | v |= *old; | |
0b700a6a PP |
124 | set_pmd(pmd, __pmd(v)); |
125 | } | |
126 | ||
46e91d00 | 127 | static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old) |
0b700a6a PP |
128 | { |
129 | pteval_t v = pte_val(*pte); | |
46e91d00 SB |
130 | if (clear) { |
131 | *old = v & _PAGE_PRESENT; | |
132 | v &= ~_PAGE_PRESENT; | |
133 | } else /* presume this has been called with clear==true previously */ | |
134 | v |= *old; | |
0b700a6a PP |
135 | set_pte_atomic(pte, __pte(v)); |
136 | } | |
137 | ||
46e91d00 | 138 | static int clear_page_presence(struct kmmio_fault_page *f, bool clear) |
8b7d89d0 | 139 | { |
790e2a29 | 140 | unsigned int level; |
46e91d00 | 141 | pte_t *pte = lookup_address(f->page, &level); |
8b7d89d0 | 142 | |
75bb8835 | 143 | if (!pte) { |
1bd591a5 | 144 | pr_err("no pte for page 0x%08lx\n", f->page); |
e9d54cae | 145 | return -1; |
75bb8835 PP |
146 | } |
147 | ||
13829537 PP |
148 | switch (level) { |
149 | case PG_LEVEL_2M: | |
46e91d00 | 150 | clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence); |
13829537 | 151 | break; |
13829537 | 152 | case PG_LEVEL_4K: |
46e91d00 | 153 | clear_pte_presence(pte, clear, &f->old_presence); |
13829537 | 154 | break; |
13829537 | 155 | default: |
1bd591a5 | 156 | pr_err("unexpected page level 0x%x.\n", level); |
e9d54cae | 157 | return -1; |
8b7d89d0 PP |
158 | } |
159 | ||
46e91d00 | 160 | __flush_tlb_one(f->page); |
e9d54cae | 161 | return 0; |
13829537 | 162 | } |
75bb8835 | 163 | |
5359b585 PP |
164 | /* |
165 | * Mark the given page as not present. Access to it will trigger a fault. | |
166 | * | |
167 | * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the | |
168 | * protection is ignored here. RCU read lock is assumed held, so the struct | |
169 | * will not disappear unexpectedly. Furthermore, the caller must guarantee, | |
170 | * that double arming the same virtual address (page) cannot occur. | |
171 | * | |
172 | * Double disarming on the other hand is allowed, and may occur when a fault | |
173 | * and mmiotrace shutdown happen simultaneously. | |
174 | */ | |
175 | static int arm_kmmio_fault_page(struct kmmio_fault_page *f) | |
13829537 | 176 | { |
5359b585 | 177 | int ret; |
1bd591a5 | 178 | WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n")); |
5359b585 | 179 | if (f->armed) { |
1bd591a5 JP |
180 | pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n", |
181 | f->page, f->count, !!f->old_presence); | |
5359b585 | 182 | } |
46e91d00 | 183 | ret = clear_page_presence(f, true); |
1bd591a5 JP |
184 | WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"), |
185 | f->page); | |
5359b585 | 186 | f->armed = true; |
e9d54cae | 187 | return ret; |
8b7d89d0 PP |
188 | } |
189 | ||
5359b585 PP |
190 | /** Restore the given page to saved presence state. */ |
191 | static void disarm_kmmio_fault_page(struct kmmio_fault_page *f) | |
8b7d89d0 | 192 | { |
46e91d00 | 193 | int ret = clear_page_presence(f, false); |
5359b585 PP |
194 | WARN_ONCE(ret < 0, |
195 | KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page); | |
196 | f->armed = false; | |
8b7d89d0 PP |
197 | } |
198 | ||
0fd0e3da PP |
199 | /* |
200 | * This is being called from do_page_fault(). | |
201 | * | |
202 | * We may be in an interrupt or a critical section. Also prefecthing may | |
203 | * trigger a page fault. We may be in the middle of process switch. | |
204 | * We cannot take any locks, because we could be executing especially | |
205 | * within a kmmio critical section. | |
206 | * | |
207 | * Local interrupts are disabled, so preemption cannot happen. | |
208 | * Do not enable interrupts, do not sleep, and watch out for other CPUs. | |
209 | */ | |
8b7d89d0 PP |
210 | /* |
211 | * Interrupts are disabled on entry as trap3 is an interrupt gate | |
af901ca1 | 212 | * and they remain disabled throughout this function. |
8b7d89d0 | 213 | */ |
0fd0e3da | 214 | int kmmio_handler(struct pt_regs *regs, unsigned long addr) |
8b7d89d0 | 215 | { |
0fd0e3da PP |
216 | struct kmmio_context *ctx; |
217 | struct kmmio_fault_page *faultpage; | |
13829537 | 218 | int ret = 0; /* default to fault not handled */ |
8b7d89d0 PP |
219 | |
220 | /* | |
221 | * Preemption is now disabled to prevent process switch during | |
222 | * single stepping. We can only handle one active kmmio trace | |
223 | * per cpu, so ensure that we finish it before something else | |
d61fc448 PP |
224 | * gets to run. We also hold the RCU read lock over single |
225 | * stepping to avoid looking up the probe and kmmio_fault_page | |
226 | * again. | |
8b7d89d0 PP |
227 | */ |
228 | preempt_disable(); | |
0fd0e3da | 229 | rcu_read_lock(); |
d61fc448 | 230 | |
0fd0e3da PP |
231 | faultpage = get_kmmio_fault_page(addr); |
232 | if (!faultpage) { | |
233 | /* | |
234 | * Either this page fault is not caused by kmmio, or | |
235 | * another CPU just pulled the kmmio probe from under | |
13829537 | 236 | * our feet. The latter case should not be possible. |
0fd0e3da PP |
237 | */ |
238 | goto no_kmmio; | |
239 | } | |
240 | ||
241 | ctx = &get_cpu_var(kmmio_ctx); | |
8b7d89d0 | 242 | if (ctx->active) { |
13829537 PP |
243 | if (addr == ctx->addr) { |
244 | /* | |
3e39aa15 SB |
245 | * A second fault on the same page means some other |
246 | * condition needs handling by do_page_fault(), the | |
247 | * page really not being present is the most common. | |
13829537 | 248 | */ |
1bd591a5 JP |
249 | pr_debug("secondary hit for 0x%08lx CPU %d.\n", |
250 | addr, smp_processor_id()); | |
3e39aa15 SB |
251 | |
252 | if (!faultpage->old_presence) | |
1bd591a5 JP |
253 | pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n", |
254 | addr, smp_processor_id()); | |
3e39aa15 SB |
255 | } else { |
256 | /* | |
257 | * Prevent overwriting already in-flight context. | |
258 | * This should not happen, let's hope disarming at | |
259 | * least prevents a panic. | |
260 | */ | |
1bd591a5 JP |
261 | pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n", |
262 | smp_processor_id(), addr); | |
263 | pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr); | |
3e39aa15 SB |
264 | disarm_kmmio_fault_page(faultpage); |
265 | } | |
0fd0e3da | 266 | goto no_kmmio_ctx; |
8b7d89d0 PP |
267 | } |
268 | ctx->active++; | |
269 | ||
0fd0e3da | 270 | ctx->fpage = faultpage; |
8b7d89d0 | 271 | ctx->probe = get_kmmio_probe(addr); |
49023168 | 272 | ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); |
0fd0e3da | 273 | ctx->addr = addr; |
8b7d89d0 PP |
274 | |
275 | if (ctx->probe && ctx->probe->pre_handler) | |
276 | ctx->probe->pre_handler(ctx->probe, regs, addr); | |
277 | ||
d61fc448 PP |
278 | /* |
279 | * Enable single-stepping and disable interrupts for the faulting | |
280 | * context. Local interrupts must not get enabled during stepping. | |
281 | */ | |
49023168 IM |
282 | regs->flags |= X86_EFLAGS_TF; |
283 | regs->flags &= ~X86_EFLAGS_IF; | |
8b7d89d0 | 284 | |
0fd0e3da | 285 | /* Now we set present bit in PTE and single step. */ |
5359b585 | 286 | disarm_kmmio_fault_page(ctx->fpage); |
8b7d89d0 | 287 | |
d61fc448 PP |
288 | /* |
289 | * If another cpu accesses the same page while we are stepping, | |
290 | * the access will not be caught. It will simply succeed and the | |
291 | * only downside is we lose the event. If this becomes a problem, | |
292 | * the user should drop to single cpu before tracing. | |
293 | */ | |
294 | ||
f5136380 | 295 | put_cpu_var(kmmio_ctx); |
13829537 | 296 | return 1; /* fault handled */ |
8b7d89d0 | 297 | |
0fd0e3da PP |
298 | no_kmmio_ctx: |
299 | put_cpu_var(kmmio_ctx); | |
8b7d89d0 | 300 | no_kmmio: |
0fd0e3da | 301 | rcu_read_unlock(); |
8b7d89d0 | 302 | preempt_enable_no_resched(); |
13829537 | 303 | return ret; |
8b7d89d0 PP |
304 | } |
305 | ||
306 | /* | |
307 | * Interrupts are disabled on entry as trap1 is an interrupt gate | |
af901ca1 | 308 | * and they remain disabled throughout this function. |
0fd0e3da | 309 | * This must always get called as the pair to kmmio_handler(). |
8b7d89d0 PP |
310 | */ |
311 | static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs) | |
312 | { | |
f5136380 PP |
313 | int ret = 0; |
314 | struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx); | |
8b7d89d0 | 315 | |
13829537 | 316 | if (!ctx->active) { |
0f9a623d SB |
317 | /* |
318 | * debug traps without an active context are due to either | |
319 | * something external causing them (f.e. using a debugger while | |
320 | * mmio tracing enabled), or erroneous behaviour | |
321 | */ | |
1bd591a5 JP |
322 | pr_warning("unexpected debug trap on CPU %d.\n", |
323 | smp_processor_id()); | |
f5136380 | 324 | goto out; |
13829537 | 325 | } |
8b7d89d0 PP |
326 | |
327 | if (ctx->probe && ctx->probe->post_handler) | |
328 | ctx->probe->post_handler(ctx->probe, condition, regs); | |
329 | ||
340430c5 PP |
330 | /* Prevent racing against release_kmmio_fault_page(). */ |
331 | spin_lock(&kmmio_lock); | |
332 | if (ctx->fpage->count) | |
333 | arm_kmmio_fault_page(ctx->fpage); | |
334 | spin_unlock(&kmmio_lock); | |
8b7d89d0 | 335 | |
49023168 | 336 | regs->flags &= ~X86_EFLAGS_TF; |
8b7d89d0 PP |
337 | regs->flags |= ctx->saved_flags; |
338 | ||
339 | /* These were acquired in kmmio_handler(). */ | |
340 | ctx->active--; | |
0fd0e3da | 341 | BUG_ON(ctx->active); |
d61fc448 | 342 | rcu_read_unlock(); |
8b7d89d0 PP |
343 | preempt_enable_no_resched(); |
344 | ||
345 | /* | |
346 | * if somebody else is singlestepping across a probe point, flags | |
347 | * will have TF set, in which case, continue the remaining processing | |
348 | * of do_debug, as if this is not a probe hit. | |
349 | */ | |
49023168 | 350 | if (!(regs->flags & X86_EFLAGS_TF)) |
f5136380 | 351 | ret = 1; |
f5136380 PP |
352 | out: |
353 | put_cpu_var(kmmio_ctx); | |
354 | return ret; | |
8b7d89d0 PP |
355 | } |
356 | ||
0fd0e3da | 357 | /* You must be holding kmmio_lock. */ |
8b7d89d0 PP |
358 | static int add_kmmio_fault_page(unsigned long page) |
359 | { | |
360 | struct kmmio_fault_page *f; | |
361 | ||
362 | page &= PAGE_MASK; | |
363 | f = get_kmmio_fault_page(page); | |
364 | if (f) { | |
0fd0e3da | 365 | if (!f->count) |
5359b585 | 366 | arm_kmmio_fault_page(f); |
8b7d89d0 PP |
367 | f->count++; |
368 | return 0; | |
369 | } | |
370 | ||
5359b585 | 371 | f = kzalloc(sizeof(*f), GFP_ATOMIC); |
8b7d89d0 PP |
372 | if (!f) |
373 | return -1; | |
374 | ||
375 | f->count = 1; | |
376 | f->page = page; | |
8b7d89d0 | 377 | |
5359b585 | 378 | if (arm_kmmio_fault_page(f)) { |
e9d54cae SB |
379 | kfree(f); |
380 | return -1; | |
381 | } | |
382 | ||
383 | list_add_rcu(&f->list, kmmio_page_list(f->page)); | |
8b7d89d0 PP |
384 | |
385 | return 0; | |
386 | } | |
387 | ||
0fd0e3da PP |
388 | /* You must be holding kmmio_lock. */ |
389 | static void release_kmmio_fault_page(unsigned long page, | |
390 | struct kmmio_fault_page **release_list) | |
8b7d89d0 PP |
391 | { |
392 | struct kmmio_fault_page *f; | |
393 | ||
394 | page &= PAGE_MASK; | |
395 | f = get_kmmio_fault_page(page); | |
396 | if (!f) | |
397 | return; | |
398 | ||
399 | f->count--; | |
0fd0e3da | 400 | BUG_ON(f->count < 0); |
8b7d89d0 | 401 | if (!f->count) { |
5359b585 | 402 | disarm_kmmio_fault_page(f); |
8b8f79b9 MS |
403 | if (!f->scheduled_for_release) { |
404 | f->release_next = *release_list; | |
405 | *release_list = f; | |
406 | f->scheduled_for_release = true; | |
407 | } | |
8b7d89d0 PP |
408 | } |
409 | } | |
410 | ||
87e547fe PP |
411 | /* |
412 | * With page-unaligned ioremaps, one or two armed pages may contain | |
413 | * addresses from outside the intended mapping. Events for these addresses | |
414 | * are currently silently dropped. The events may result only from programming | |
415 | * mistakes by accessing addresses before the beginning or past the end of a | |
416 | * mapping. | |
417 | */ | |
8b7d89d0 PP |
418 | int register_kmmio_probe(struct kmmio_probe *p) |
419 | { | |
d61fc448 | 420 | unsigned long flags; |
8b7d89d0 PP |
421 | int ret = 0; |
422 | unsigned long size = 0; | |
87e547fe | 423 | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); |
8b7d89d0 | 424 | |
d61fc448 | 425 | spin_lock_irqsave(&kmmio_lock, flags); |
8b7d89d0 PP |
426 | if (get_kmmio_probe(p->addr)) { |
427 | ret = -EEXIST; | |
428 | goto out; | |
429 | } | |
d61fc448 | 430 | kmmio_count++; |
0fd0e3da | 431 | list_add_rcu(&p->list, &kmmio_probes); |
87e547fe | 432 | while (size < size_lim) { |
8b7d89d0 | 433 | if (add_kmmio_fault_page(p->addr + size)) |
1bd591a5 | 434 | pr_err("Unable to set page fault.\n"); |
8b7d89d0 PP |
435 | size += PAGE_SIZE; |
436 | } | |
8b7d89d0 | 437 | out: |
d61fc448 | 438 | spin_unlock_irqrestore(&kmmio_lock, flags); |
8b7d89d0 PP |
439 | /* |
440 | * XXX: What should I do here? | |
441 | * Here was a call to global_flush_tlb(), but it does not exist | |
0fd0e3da | 442 | * anymore. It seems it's not needed after all. |
8b7d89d0 PP |
443 | */ |
444 | return ret; | |
445 | } | |
0fd0e3da | 446 | EXPORT_SYMBOL(register_kmmio_probe); |
8b7d89d0 | 447 | |
0fd0e3da PP |
448 | static void rcu_free_kmmio_fault_pages(struct rcu_head *head) |
449 | { | |
450 | struct kmmio_delayed_release *dr = container_of( | |
451 | head, | |
452 | struct kmmio_delayed_release, | |
453 | rcu); | |
0492e1bb SB |
454 | struct kmmio_fault_page *f = dr->release_list; |
455 | while (f) { | |
456 | struct kmmio_fault_page *next = f->release_next; | |
457 | BUG_ON(f->count); | |
458 | kfree(f); | |
459 | f = next; | |
0fd0e3da PP |
460 | } |
461 | kfree(dr); | |
462 | } | |
463 | ||
464 | static void remove_kmmio_fault_pages(struct rcu_head *head) | |
465 | { | |
d0fc63f7 SB |
466 | struct kmmio_delayed_release *dr = |
467 | container_of(head, struct kmmio_delayed_release, rcu); | |
0492e1bb | 468 | struct kmmio_fault_page *f = dr->release_list; |
0fd0e3da PP |
469 | struct kmmio_fault_page **prevp = &dr->release_list; |
470 | unsigned long flags; | |
d0fc63f7 | 471 | |
0fd0e3da | 472 | spin_lock_irqsave(&kmmio_lock, flags); |
0492e1bb SB |
473 | while (f) { |
474 | if (!f->count) { | |
475 | list_del_rcu(&f->list); | |
476 | prevp = &f->release_next; | |
d0fc63f7 | 477 | } else { |
0492e1bb | 478 | *prevp = f->release_next; |
8b8f79b9 MS |
479 | f->release_next = NULL; |
480 | f->scheduled_for_release = false; | |
d0fc63f7 | 481 | } |
8b8f79b9 | 482 | f = *prevp; |
0fd0e3da PP |
483 | } |
484 | spin_unlock_irqrestore(&kmmio_lock, flags); | |
d0fc63f7 | 485 | |
0fd0e3da PP |
486 | /* This is the real RCU destroy call. */ |
487 | call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages); | |
488 | } | |
489 | ||
490 | /* | |
491 | * Remove a kmmio probe. You have to synchronize_rcu() before you can be | |
d61fc448 PP |
492 | * sure that the callbacks will not be called anymore. Only after that |
493 | * you may actually release your struct kmmio_probe. | |
0fd0e3da PP |
494 | * |
495 | * Unregistering a kmmio fault page has three steps: | |
496 | * 1. release_kmmio_fault_page() | |
497 | * Disarm the page, wait a grace period to let all faults finish. | |
498 | * 2. remove_kmmio_fault_pages() | |
499 | * Remove the pages from kmmio_page_table. | |
500 | * 3. rcu_free_kmmio_fault_pages() | |
8055039c | 501 | * Actually free the kmmio_fault_page structs as with RCU. |
0fd0e3da | 502 | */ |
8b7d89d0 PP |
503 | void unregister_kmmio_probe(struct kmmio_probe *p) |
504 | { | |
d61fc448 | 505 | unsigned long flags; |
8b7d89d0 | 506 | unsigned long size = 0; |
87e547fe | 507 | const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK); |
0fd0e3da PP |
508 | struct kmmio_fault_page *release_list = NULL; |
509 | struct kmmio_delayed_release *drelease; | |
8b7d89d0 | 510 | |
d61fc448 | 511 | spin_lock_irqsave(&kmmio_lock, flags); |
87e547fe | 512 | while (size < size_lim) { |
0fd0e3da | 513 | release_kmmio_fault_page(p->addr + size, &release_list); |
8b7d89d0 PP |
514 | size += PAGE_SIZE; |
515 | } | |
0fd0e3da | 516 | list_del_rcu(&p->list); |
8b7d89d0 | 517 | kmmio_count--; |
d61fc448 | 518 | spin_unlock_irqrestore(&kmmio_lock, flags); |
8b7d89d0 | 519 | |
8b8f79b9 MS |
520 | if (!release_list) |
521 | return; | |
522 | ||
0fd0e3da PP |
523 | drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC); |
524 | if (!drelease) { | |
1bd591a5 | 525 | pr_crit("leaking kmmio_fault_page objects.\n"); |
0fd0e3da PP |
526 | return; |
527 | } | |
528 | drelease->release_list = release_list; | |
529 | ||
530 | /* | |
531 | * This is not really RCU here. We have just disarmed a set of | |
532 | * pages so that they cannot trigger page faults anymore. However, | |
533 | * we cannot remove the pages from kmmio_page_table, | |
534 | * because a probe hit might be in flight on another CPU. The | |
535 | * pages are collected into a list, and they will be removed from | |
536 | * kmmio_page_table when it is certain that no probe hit related to | |
537 | * these pages can be in flight. RCU grace period sounds like a | |
538 | * good choice. | |
539 | * | |
540 | * If we removed the pages too early, kmmio page fault handler might | |
541 | * not find the respective kmmio_fault_page and determine it's not | |
542 | * a kmmio fault, when it actually is. This would lead to madness. | |
543 | */ | |
544 | call_rcu(&drelease->rcu, remove_kmmio_fault_pages); | |
8b7d89d0 | 545 | } |
0fd0e3da | 546 | EXPORT_SYMBOL(unregister_kmmio_probe); |
8b7d89d0 | 547 | |
0f9a623d SB |
548 | static int |
549 | kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args) | |
8b7d89d0 PP |
550 | { |
551 | struct die_args *arg = args; | |
0bb7a95f | 552 | unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err); |
8b7d89d0 | 553 | |
0bb7a95f LB |
554 | if (val == DIE_DEBUG && (*dr6_p & DR_STEP)) |
555 | if (post_kmmio_handler(*dr6_p, arg->regs) == 1) { | |
62edab90 P |
556 | /* |
557 | * Reset the BS bit in dr6 (pointed by args->err) to | |
558 | * denote completion of processing | |
559 | */ | |
0bb7a95f | 560 | *dr6_p &= ~DR_STEP; |
8b7d89d0 | 561 | return NOTIFY_STOP; |
62edab90 | 562 | } |
8b7d89d0 PP |
563 | |
564 | return NOTIFY_DONE; | |
565 | } | |
13829537 PP |
566 | |
567 | static struct notifier_block nb_die = { | |
568 | .notifier_call = kmmio_die_notifier | |
569 | }; | |
570 | ||
0f9a623d | 571 | int kmmio_init(void) |
13829537 PP |
572 | { |
573 | int i; | |
0f9a623d | 574 | |
13829537 PP |
575 | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) |
576 | INIT_LIST_HEAD(&kmmio_page_table[i]); | |
0f9a623d | 577 | |
13829537 PP |
578 | return register_die_notifier(&nb_die); |
579 | } | |
0f9a623d SB |
580 | |
581 | void kmmio_cleanup(void) | |
582 | { | |
583 | int i; | |
584 | ||
585 | unregister_die_notifier(&nb_die); | |
586 | for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) { | |
587 | WARN_ONCE(!list_empty(&kmmio_page_table[i]), | |
588 | KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n"); | |
589 | } | |
590 | } |