]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Real Time Clock interface for Linux | |
3 | * | |
4 | * Copyright (C) 1996 Paul Gortmaker | |
5 | * | |
6 | * This driver allows use of the real time clock (built into | |
7 | * nearly all computers) from user space. It exports the /dev/rtc | |
8 | * interface supporting various ioctl() and also the | |
9 | * /proc/driver/rtc pseudo-file for status information. | |
10 | * | |
11 | * The ioctls can be used to set the interrupt behaviour and | |
12 | * generation rate from the RTC via IRQ 8. Then the /dev/rtc | |
13 | * interface can be used to make use of these timer interrupts, | |
14 | * be they interval or alarm based. | |
15 | * | |
16 | * The /dev/rtc interface will block on reads until an interrupt | |
17 | * has been received. If a RTC interrupt has already happened, | |
18 | * it will output an unsigned long and then block. The output value | |
19 | * contains the interrupt status in the low byte and the number of | |
20 | * interrupts since the last read in the remaining high bytes. The | |
21 | * /dev/rtc interface can also be used with the select(2) call. | |
22 | * | |
23 | * This program is free software; you can redistribute it and/or | |
24 | * modify it under the terms of the GNU General Public License | |
25 | * as published by the Free Software Foundation; either version | |
26 | * 2 of the License, or (at your option) any later version. | |
27 | * | |
28 | * Based on other minimal char device drivers, like Alan's | |
29 | * watchdog, Ted's random, etc. etc. | |
30 | * | |
31 | * 1.07 Paul Gortmaker. | |
32 | * 1.08 Miquel van Smoorenburg: disallow certain things on the | |
33 | * DEC Alpha as the CMOS clock is also used for other things. | |
34 | * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. | |
35 | * 1.09a Pete Zaitcev: Sun SPARC | |
36 | * 1.09b Jeff Garzik: Modularize, init cleanup | |
37 | * 1.09c Jeff Garzik: SMP cleanup | |
12a0a703 | 38 | * 1.10 Paul Barton-Davis: add support for async I/O |
1da177e4 LT |
39 | * 1.10a Andrea Arcangeli: Alpha updates |
40 | * 1.10b Andrew Morton: SMP lock fix | |
41 | * 1.10c Cesar Barros: SMP locking fixes and cleanup | |
42 | * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit | |
43 | * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness. | |
12a0a703 | 44 | * 1.11 Takashi Iwai: Kernel access functions |
1da177e4 LT |
45 | * rtc_register/rtc_unregister/rtc_control |
46 | * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init | |
47 | * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer | |
48 | * CONFIG_HPET_EMULATE_RTC | |
38e0e8c0 | 49 | * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly. |
b7599587 | 50 | * 1.12ac Alan Cox: Allow read access to the day of week register |
1da177e4 LT |
51 | */ |
52 | ||
b7599587 | 53 | #define RTC_VERSION "1.12ac" |
1da177e4 | 54 | |
1da177e4 LT |
55 | /* |
56 | * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with | |
57 | * interrupts disabled. Due to the index-port/data-port (0x70/0x71) | |
58 | * design of the RTC, we don't want two different things trying to | |
59 | * get to it at once. (e.g. the periodic 11 min sync from time.c vs. | |
60 | * this driver.) | |
61 | */ | |
62 | ||
1da177e4 LT |
63 | #include <linux/interrupt.h> |
64 | #include <linux/module.h> | |
65 | #include <linux/kernel.h> | |
66 | #include <linux/types.h> | |
67 | #include <linux/miscdevice.h> | |
68 | #include <linux/ioport.h> | |
69 | #include <linux/fcntl.h> | |
70 | #include <linux/mc146818rtc.h> | |
71 | #include <linux/init.h> | |
72 | #include <linux/poll.h> | |
73 | #include <linux/proc_fs.h> | |
74 | #include <linux/seq_file.h> | |
75 | #include <linux/spinlock.h> | |
76 | #include <linux/sysctl.h> | |
77 | #include <linux/wait.h> | |
78 | #include <linux/bcd.h> | |
47f176fd | 79 | #include <linux/delay.h> |
1da177e4 LT |
80 | |
81 | #include <asm/current.h> | |
82 | #include <asm/uaccess.h> | |
83 | #include <asm/system.h> | |
84 | ||
55f93afd | 85 | #ifdef CONFIG_X86 |
1da177e4 LT |
86 | #include <asm/hpet.h> |
87 | #endif | |
88 | ||
cdee99d7 | 89 | #ifdef CONFIG_SPARC32 |
1da177e4 LT |
90 | #include <linux/pci.h> |
91 | #include <asm/ebus.h> | |
1da177e4 LT |
92 | |
93 | static unsigned long rtc_port; | |
94 | static int rtc_irq = PCI_IRQ_NONE; | |
95 | #endif | |
96 | ||
97 | #ifdef CONFIG_HPET_RTC_IRQ | |
98 | #undef RTC_IRQ | |
99 | #endif | |
100 | ||
101 | #ifdef RTC_IRQ | |
102 | static int rtc_has_irq = 1; | |
103 | #endif | |
104 | ||
105 | #ifndef CONFIG_HPET_EMULATE_RTC | |
106 | #define is_hpet_enabled() 0 | |
107 | #define hpet_set_alarm_time(hrs, min, sec) 0 | |
108 | #define hpet_set_periodic_freq(arg) 0 | |
109 | #define hpet_mask_rtc_irq_bit(arg) 0 | |
110 | #define hpet_set_rtc_irq_bit(arg) 0 | |
111 | #define hpet_rtc_timer_init() do { } while (0) | |
112 | #define hpet_rtc_dropped_irq() 0 | |
533ffc28 AM |
113 | #ifdef RTC_IRQ |
114 | static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | |
115 | { | |
116 | return 0; | |
117 | } | |
118 | #endif | |
1da177e4 | 119 | #else |
7d12e780 | 120 | extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id); |
1da177e4 LT |
121 | #endif |
122 | ||
123 | /* | |
124 | * We sponge a minor off of the misc major. No need slurping | |
125 | * up another valuable major dev number for this. If you add | |
126 | * an ioctl, make sure you don't conflict with SPARC's RTC | |
127 | * ioctls. | |
128 | */ | |
129 | ||
130 | static struct fasync_struct *rtc_async_queue; | |
131 | ||
132 | static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); | |
133 | ||
134 | #ifdef RTC_IRQ | |
40565f19 JS |
135 | static void rtc_dropped_irq(unsigned long data); |
136 | ||
137 | static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0); | |
1da177e4 LT |
138 | #endif |
139 | ||
140 | static ssize_t rtc_read(struct file *file, char __user *buf, | |
141 | size_t count, loff_t *ppos); | |
142 | ||
143 | static int rtc_ioctl(struct inode *inode, struct file *file, | |
144 | unsigned int cmd, unsigned long arg); | |
145 | ||
146 | #ifdef RTC_IRQ | |
147 | static unsigned int rtc_poll(struct file *file, poll_table *wait); | |
148 | #endif | |
149 | ||
150 | static void get_rtc_alm_time (struct rtc_time *alm_tm); | |
151 | #ifdef RTC_IRQ | |
c3348760 TI |
152 | static void set_rtc_irq_bit_locked(unsigned char bit); |
153 | static void mask_rtc_irq_bit_locked(unsigned char bit); | |
154 | ||
155 | static inline void set_rtc_irq_bit(unsigned char bit) | |
156 | { | |
157 | spin_lock_irq(&rtc_lock); | |
158 | set_rtc_irq_bit_locked(bit); | |
159 | spin_unlock_irq(&rtc_lock); | |
160 | } | |
161 | ||
162 | static void mask_rtc_irq_bit(unsigned char bit) | |
163 | { | |
164 | spin_lock_irq(&rtc_lock); | |
165 | mask_rtc_irq_bit_locked(bit); | |
166 | spin_unlock_irq(&rtc_lock); | |
167 | } | |
1da177e4 LT |
168 | #endif |
169 | ||
9cef779e | 170 | #ifdef CONFIG_PROC_FS |
1da177e4 | 171 | static int rtc_proc_open(struct inode *inode, struct file *file); |
9cef779e | 172 | #endif |
1da177e4 LT |
173 | |
174 | /* | |
175 | * Bits in rtc_status. (6 bits of room for future expansion) | |
176 | */ | |
177 | ||
178 | #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ | |
179 | #define RTC_TIMER_ON 0x02 /* missed irq timer active */ | |
180 | ||
181 | /* | |
182 | * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is | |
183 | * protected by the big kernel lock. However, ioctl can still disable the timer | |
184 | * in rtc_status and then with del_timer after the interrupt has read | |
185 | * rtc_status but before mod_timer is called, which would then reenable the | |
186 | * timer (but you would need to have an awful timing before you'd trip on it) | |
187 | */ | |
188 | static unsigned long rtc_status = 0; /* bitmapped status byte. */ | |
189 | static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ | |
190 | static unsigned long rtc_irq_data = 0; /* our output to the world */ | |
191 | static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ | |
192 | ||
193 | #ifdef RTC_IRQ | |
194 | /* | |
195 | * rtc_task_lock nests inside rtc_lock. | |
196 | */ | |
197 | static DEFINE_SPINLOCK(rtc_task_lock); | |
198 | static rtc_task_t *rtc_callback = NULL; | |
199 | #endif | |
200 | ||
201 | /* | |
202 | * If this driver ever becomes modularised, it will be really nice | |
203 | * to make the epoch retain its value across module reload... | |
204 | */ | |
205 | ||
206 | static unsigned long epoch = 1900; /* year corresponding to 0x00 */ | |
207 | ||
208 | static const unsigned char days_in_mo[] = | |
209 | {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | |
210 | ||
211 | /* | |
212 | * Returns true if a clock update is in progress | |
213 | */ | |
214 | static inline unsigned char rtc_is_updating(void) | |
215 | { | |
0b16f21f | 216 | unsigned long flags; |
1da177e4 LT |
217 | unsigned char uip; |
218 | ||
0b16f21f | 219 | spin_lock_irqsave(&rtc_lock, flags); |
1da177e4 | 220 | uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); |
0b16f21f | 221 | spin_unlock_irqrestore(&rtc_lock, flags); |
1da177e4 LT |
222 | return uip; |
223 | } | |
224 | ||
225 | #ifdef RTC_IRQ | |
226 | /* | |
0f2ed4c6 | 227 | * A very tiny interrupt handler. It runs with IRQF_DISABLED set, |
1da177e4 LT |
228 | * but there is possibility of conflicting with the set_rtc_mmss() |
229 | * call (the rtc irq and the timer irq can easily run at the same | |
230 | * time in two different CPUs). So we need to serialize | |
231 | * accesses to the chip with the rtc_lock spinlock that each | |
232 | * architecture should implement in the timer code. | |
233 | * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) | |
234 | */ | |
235 | ||
7d12e780 | 236 | irqreturn_t rtc_interrupt(int irq, void *dev_id) |
1da177e4 LT |
237 | { |
238 | /* | |
239 | * Can be an alarm interrupt, update complete interrupt, | |
240 | * or a periodic interrupt. We store the status in the | |
241 | * low byte and the number of interrupts received since | |
242 | * the last read in the remainder of rtc_irq_data. | |
243 | */ | |
244 | ||
245 | spin_lock (&rtc_lock); | |
246 | rtc_irq_data += 0x100; | |
247 | rtc_irq_data &= ~0xff; | |
248 | if (is_hpet_enabled()) { | |
249 | /* | |
250 | * In this case it is HPET RTC interrupt handler | |
251 | * calling us, with the interrupt information | |
252 | * passed as arg1, instead of irq. | |
253 | */ | |
254 | rtc_irq_data |= (unsigned long)irq & 0xF0; | |
255 | } else { | |
256 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); | |
257 | } | |
258 | ||
259 | if (rtc_status & RTC_TIMER_ON) | |
260 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | |
261 | ||
262 | spin_unlock (&rtc_lock); | |
263 | ||
264 | /* Now do the rest of the actions */ | |
265 | spin_lock(&rtc_task_lock); | |
266 | if (rtc_callback) | |
267 | rtc_callback->func(rtc_callback->private_data); | |
268 | spin_unlock(&rtc_task_lock); | |
269 | wake_up_interruptible(&rtc_wait); | |
270 | ||
271 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | |
272 | ||
273 | return IRQ_HANDLED; | |
274 | } | |
275 | #endif | |
276 | ||
277 | /* | |
278 | * sysctl-tuning infrastructure. | |
279 | */ | |
280 | static ctl_table rtc_table[] = { | |
281 | { | |
7735362a | 282 | .ctl_name = CTL_UNNUMBERED, |
1da177e4 LT |
283 | .procname = "max-user-freq", |
284 | .data = &rtc_max_user_freq, | |
285 | .maxlen = sizeof(int), | |
286 | .mode = 0644, | |
287 | .proc_handler = &proc_dointvec, | |
288 | }, | |
289 | { .ctl_name = 0 } | |
290 | }; | |
291 | ||
292 | static ctl_table rtc_root[] = { | |
293 | { | |
7735362a | 294 | .ctl_name = CTL_UNNUMBERED, |
1da177e4 | 295 | .procname = "rtc", |
1da177e4 LT |
296 | .mode = 0555, |
297 | .child = rtc_table, | |
298 | }, | |
299 | { .ctl_name = 0 } | |
300 | }; | |
301 | ||
302 | static ctl_table dev_root[] = { | |
303 | { | |
304 | .ctl_name = CTL_DEV, | |
305 | .procname = "dev", | |
1da177e4 LT |
306 | .mode = 0555, |
307 | .child = rtc_root, | |
308 | }, | |
309 | { .ctl_name = 0 } | |
310 | }; | |
311 | ||
312 | static struct ctl_table_header *sysctl_header; | |
313 | ||
314 | static int __init init_sysctl(void) | |
315 | { | |
0b4d4147 | 316 | sysctl_header = register_sysctl_table(dev_root); |
1da177e4 LT |
317 | return 0; |
318 | } | |
319 | ||
320 | static void __exit cleanup_sysctl(void) | |
321 | { | |
322 | unregister_sysctl_table(sysctl_header); | |
323 | } | |
324 | ||
325 | /* | |
326 | * Now all the various file operations that we export. | |
327 | */ | |
328 | ||
329 | static ssize_t rtc_read(struct file *file, char __user *buf, | |
330 | size_t count, loff_t *ppos) | |
331 | { | |
332 | #ifndef RTC_IRQ | |
333 | return -EIO; | |
334 | #else | |
335 | DECLARE_WAITQUEUE(wait, current); | |
336 | unsigned long data; | |
337 | ssize_t retval; | |
338 | ||
339 | if (rtc_has_irq == 0) | |
340 | return -EIO; | |
341 | ||
38e0e8c0 MR |
342 | /* |
343 | * Historically this function used to assume that sizeof(unsigned long) | |
344 | * is the same in userspace and kernelspace. This lead to problems | |
345 | * for configurations with multiple ABIs such a the MIPS o32 and 64 | |
346 | * ABIs supported on the same kernel. So now we support read of both | |
347 | * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the | |
348 | * userspace ABI. | |
349 | */ | |
350 | if (count != sizeof(unsigned int) && count != sizeof(unsigned long)) | |
1da177e4 LT |
351 | return -EINVAL; |
352 | ||
353 | add_wait_queue(&rtc_wait, &wait); | |
354 | ||
355 | do { | |
356 | /* First make it right. Then make it fast. Putting this whole | |
357 | * block within the parentheses of a while would be too | |
358 | * confusing. And no, xchg() is not the answer. */ | |
359 | ||
360 | __set_current_state(TASK_INTERRUPTIBLE); | |
361 | ||
362 | spin_lock_irq (&rtc_lock); | |
363 | data = rtc_irq_data; | |
364 | rtc_irq_data = 0; | |
365 | spin_unlock_irq (&rtc_lock); | |
366 | ||
367 | if (data != 0) | |
368 | break; | |
369 | ||
370 | if (file->f_flags & O_NONBLOCK) { | |
371 | retval = -EAGAIN; | |
372 | goto out; | |
373 | } | |
374 | if (signal_pending(current)) { | |
375 | retval = -ERESTARTSYS; | |
376 | goto out; | |
377 | } | |
378 | schedule(); | |
379 | } while (1); | |
380 | ||
38e0e8c0 MR |
381 | if (count == sizeof(unsigned int)) |
382 | retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); | |
1da177e4 LT |
383 | else |
384 | retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); | |
38e0e8c0 MR |
385 | if (!retval) |
386 | retval = count; | |
1da177e4 | 387 | out: |
cc0a8fbb | 388 | __set_current_state(TASK_RUNNING); |
1da177e4 LT |
389 | remove_wait_queue(&rtc_wait, &wait); |
390 | ||
391 | return retval; | |
392 | #endif | |
393 | } | |
394 | ||
395 | static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) | |
396 | { | |
397 | struct rtc_time wtime; | |
398 | ||
399 | #ifdef RTC_IRQ | |
400 | if (rtc_has_irq == 0) { | |
401 | switch (cmd) { | |
402 | case RTC_AIE_OFF: | |
403 | case RTC_AIE_ON: | |
404 | case RTC_PIE_OFF: | |
405 | case RTC_PIE_ON: | |
406 | case RTC_UIE_OFF: | |
407 | case RTC_UIE_ON: | |
408 | case RTC_IRQP_READ: | |
409 | case RTC_IRQP_SET: | |
410 | return -EINVAL; | |
411 | }; | |
412 | } | |
413 | #endif | |
414 | ||
415 | switch (cmd) { | |
416 | #ifdef RTC_IRQ | |
417 | case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ | |
418 | { | |
419 | mask_rtc_irq_bit(RTC_AIE); | |
420 | return 0; | |
421 | } | |
422 | case RTC_AIE_ON: /* Allow alarm interrupts. */ | |
423 | { | |
424 | set_rtc_irq_bit(RTC_AIE); | |
425 | return 0; | |
426 | } | |
427 | case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ | |
428 | { | |
c3348760 TI |
429 | unsigned long flags; /* can be called from isr via rtc_control() */ |
430 | spin_lock_irqsave (&rtc_lock, flags); | |
431 | mask_rtc_irq_bit_locked(RTC_PIE); | |
1da177e4 | 432 | if (rtc_status & RTC_TIMER_ON) { |
1da177e4 LT |
433 | rtc_status &= ~RTC_TIMER_ON; |
434 | del_timer(&rtc_irq_timer); | |
1da177e4 | 435 | } |
c3348760 | 436 | spin_unlock_irqrestore (&rtc_lock, flags); |
1da177e4 LT |
437 | return 0; |
438 | } | |
439 | case RTC_PIE_ON: /* Allow periodic ints */ | |
440 | { | |
c3348760 | 441 | unsigned long flags; /* can be called from isr via rtc_control() */ |
1da177e4 LT |
442 | /* |
443 | * We don't really want Joe User enabling more | |
444 | * than 64Hz of interrupts on a multi-user machine. | |
445 | */ | |
446 | if (!kernel && (rtc_freq > rtc_max_user_freq) && | |
447 | (!capable(CAP_SYS_RESOURCE))) | |
448 | return -EACCES; | |
449 | ||
c3348760 | 450 | spin_lock_irqsave (&rtc_lock, flags); |
1da177e4 | 451 | if (!(rtc_status & RTC_TIMER_ON)) { |
40565f19 JS |
452 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + |
453 | 2*HZ/100); | |
1da177e4 | 454 | rtc_status |= RTC_TIMER_ON; |
1da177e4 | 455 | } |
c3348760 TI |
456 | set_rtc_irq_bit_locked(RTC_PIE); |
457 | spin_unlock_irqrestore (&rtc_lock, flags); | |
1da177e4 LT |
458 | return 0; |
459 | } | |
460 | case RTC_UIE_OFF: /* Mask ints from RTC updates. */ | |
461 | { | |
462 | mask_rtc_irq_bit(RTC_UIE); | |
463 | return 0; | |
464 | } | |
465 | case RTC_UIE_ON: /* Allow ints for RTC updates. */ | |
466 | { | |
467 | set_rtc_irq_bit(RTC_UIE); | |
468 | return 0; | |
469 | } | |
470 | #endif | |
471 | case RTC_ALM_READ: /* Read the present alarm time */ | |
472 | { | |
473 | /* | |
474 | * This returns a struct rtc_time. Reading >= 0xc0 | |
475 | * means "don't care" or "match all". Only the tm_hour, | |
476 | * tm_min, and tm_sec values are filled in. | |
477 | */ | |
478 | memset(&wtime, 0, sizeof(struct rtc_time)); | |
479 | get_rtc_alm_time(&wtime); | |
480 | break; | |
481 | } | |
482 | case RTC_ALM_SET: /* Store a time into the alarm */ | |
483 | { | |
484 | /* | |
485 | * This expects a struct rtc_time. Writing 0xff means | |
486 | * "don't care" or "match all". Only the tm_hour, | |
487 | * tm_min and tm_sec are used. | |
488 | */ | |
489 | unsigned char hrs, min, sec; | |
490 | struct rtc_time alm_tm; | |
491 | ||
492 | if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg, | |
493 | sizeof(struct rtc_time))) | |
494 | return -EFAULT; | |
495 | ||
496 | hrs = alm_tm.tm_hour; | |
497 | min = alm_tm.tm_min; | |
498 | sec = alm_tm.tm_sec; | |
499 | ||
500 | spin_lock_irq(&rtc_lock); | |
501 | if (hpet_set_alarm_time(hrs, min, sec)) { | |
502 | /* | |
503 | * Fallthru and set alarm time in CMOS too, | |
504 | * so that we will get proper value in RTC_ALM_READ | |
505 | */ | |
506 | } | |
507 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || | |
508 | RTC_ALWAYS_BCD) | |
509 | { | |
510 | if (sec < 60) BIN_TO_BCD(sec); | |
511 | else sec = 0xff; | |
512 | ||
513 | if (min < 60) BIN_TO_BCD(min); | |
514 | else min = 0xff; | |
515 | ||
516 | if (hrs < 24) BIN_TO_BCD(hrs); | |
517 | else hrs = 0xff; | |
518 | } | |
519 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); | |
520 | CMOS_WRITE(min, RTC_MINUTES_ALARM); | |
521 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); | |
522 | spin_unlock_irq(&rtc_lock); | |
523 | ||
524 | return 0; | |
525 | } | |
526 | case RTC_RD_TIME: /* Read the time/date from RTC */ | |
527 | { | |
528 | memset(&wtime, 0, sizeof(struct rtc_time)); | |
529 | rtc_get_rtc_time(&wtime); | |
530 | break; | |
531 | } | |
532 | case RTC_SET_TIME: /* Set the RTC */ | |
533 | { | |
534 | struct rtc_time rtc_tm; | |
535 | unsigned char mon, day, hrs, min, sec, leap_yr; | |
536 | unsigned char save_control, save_freq_select; | |
537 | unsigned int yrs; | |
538 | #ifdef CONFIG_MACH_DECSTATION | |
539 | unsigned int real_yrs; | |
540 | #endif | |
541 | ||
542 | if (!capable(CAP_SYS_TIME)) | |
543 | return -EACCES; | |
544 | ||
545 | if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, | |
546 | sizeof(struct rtc_time))) | |
547 | return -EFAULT; | |
548 | ||
549 | yrs = rtc_tm.tm_year + 1900; | |
550 | mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ | |
551 | day = rtc_tm.tm_mday; | |
552 | hrs = rtc_tm.tm_hour; | |
553 | min = rtc_tm.tm_min; | |
554 | sec = rtc_tm.tm_sec; | |
555 | ||
556 | if (yrs < 1970) | |
557 | return -EINVAL; | |
558 | ||
559 | leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); | |
560 | ||
561 | if ((mon > 12) || (day == 0)) | |
562 | return -EINVAL; | |
563 | ||
564 | if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) | |
565 | return -EINVAL; | |
566 | ||
567 | if ((hrs >= 24) || (min >= 60) || (sec >= 60)) | |
568 | return -EINVAL; | |
569 | ||
570 | if ((yrs -= epoch) > 255) /* They are unsigned */ | |
571 | return -EINVAL; | |
572 | ||
573 | spin_lock_irq(&rtc_lock); | |
574 | #ifdef CONFIG_MACH_DECSTATION | |
575 | real_yrs = yrs; | |
576 | yrs = 72; | |
577 | ||
578 | /* | |
579 | * We want to keep the year set to 73 until March | |
580 | * for non-leap years, so that Feb, 29th is handled | |
581 | * correctly. | |
582 | */ | |
583 | if (!leap_yr && mon < 3) { | |
584 | real_yrs--; | |
585 | yrs = 73; | |
586 | } | |
587 | #endif | |
588 | /* These limits and adjustments are independent of | |
589 | * whether the chip is in binary mode or not. | |
590 | */ | |
591 | if (yrs > 169) { | |
592 | spin_unlock_irq(&rtc_lock); | |
593 | return -EINVAL; | |
594 | } | |
595 | if (yrs >= 100) | |
596 | yrs -= 100; | |
597 | ||
598 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) | |
599 | || RTC_ALWAYS_BCD) { | |
600 | BIN_TO_BCD(sec); | |
601 | BIN_TO_BCD(min); | |
602 | BIN_TO_BCD(hrs); | |
603 | BIN_TO_BCD(day); | |
604 | BIN_TO_BCD(mon); | |
605 | BIN_TO_BCD(yrs); | |
606 | } | |
607 | ||
608 | save_control = CMOS_READ(RTC_CONTROL); | |
609 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | |
610 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | |
611 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | |
612 | ||
613 | #ifdef CONFIG_MACH_DECSTATION | |
614 | CMOS_WRITE(real_yrs, RTC_DEC_YEAR); | |
615 | #endif | |
616 | CMOS_WRITE(yrs, RTC_YEAR); | |
617 | CMOS_WRITE(mon, RTC_MONTH); | |
618 | CMOS_WRITE(day, RTC_DAY_OF_MONTH); | |
619 | CMOS_WRITE(hrs, RTC_HOURS); | |
620 | CMOS_WRITE(min, RTC_MINUTES); | |
621 | CMOS_WRITE(sec, RTC_SECONDS); | |
622 | ||
623 | CMOS_WRITE(save_control, RTC_CONTROL); | |
624 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | |
625 | ||
626 | spin_unlock_irq(&rtc_lock); | |
627 | return 0; | |
628 | } | |
629 | #ifdef RTC_IRQ | |
630 | case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ | |
631 | { | |
632 | return put_user(rtc_freq, (unsigned long __user *)arg); | |
633 | } | |
634 | case RTC_IRQP_SET: /* Set periodic IRQ rate. */ | |
635 | { | |
636 | int tmp = 0; | |
637 | unsigned char val; | |
c3348760 | 638 | unsigned long flags; /* can be called from isr via rtc_control() */ |
1da177e4 LT |
639 | |
640 | /* | |
641 | * The max we can do is 8192Hz. | |
642 | */ | |
643 | if ((arg < 2) || (arg > 8192)) | |
644 | return -EINVAL; | |
645 | /* | |
646 | * We don't really want Joe User generating more | |
647 | * than 64Hz of interrupts on a multi-user machine. | |
648 | */ | |
649 | if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) | |
650 | return -EACCES; | |
651 | ||
652 | while (arg > (1<<tmp)) | |
653 | tmp++; | |
654 | ||
655 | /* | |
656 | * Check that the input was really a power of 2. | |
657 | */ | |
658 | if (arg != (1<<tmp)) | |
659 | return -EINVAL; | |
660 | ||
c3348760 | 661 | spin_lock_irqsave(&rtc_lock, flags); |
1da177e4 | 662 | if (hpet_set_periodic_freq(arg)) { |
c3348760 | 663 | spin_unlock_irqrestore(&rtc_lock, flags); |
1da177e4 LT |
664 | return 0; |
665 | } | |
666 | rtc_freq = arg; | |
667 | ||
668 | val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0; | |
669 | val |= (16 - tmp); | |
670 | CMOS_WRITE(val, RTC_FREQ_SELECT); | |
c3348760 | 671 | spin_unlock_irqrestore(&rtc_lock, flags); |
1da177e4 LT |
672 | return 0; |
673 | } | |
674 | #endif | |
675 | case RTC_EPOCH_READ: /* Read the epoch. */ | |
676 | { | |
677 | return put_user (epoch, (unsigned long __user *)arg); | |
678 | } | |
679 | case RTC_EPOCH_SET: /* Set the epoch. */ | |
680 | { | |
681 | /* | |
682 | * There were no RTC clocks before 1900. | |
683 | */ | |
684 | if (arg < 1900) | |
685 | return -EINVAL; | |
686 | ||
687 | if (!capable(CAP_SYS_TIME)) | |
688 | return -EACCES; | |
689 | ||
690 | epoch = arg; | |
691 | return 0; | |
692 | } | |
693 | default: | |
694 | return -ENOTTY; | |
695 | } | |
696 | return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; | |
697 | } | |
698 | ||
699 | static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, | |
700 | unsigned long arg) | |
701 | { | |
702 | return rtc_do_ioctl(cmd, arg, 0); | |
703 | } | |
704 | ||
705 | /* | |
706 | * We enforce only one user at a time here with the open/close. | |
707 | * Also clear the previous interrupt data on an open, and clean | |
708 | * up things on a close. | |
709 | */ | |
710 | ||
711 | /* We use rtc_lock to protect against concurrent opens. So the BKL is not | |
712 | * needed here. Or anywhere else in this driver. */ | |
713 | static int rtc_open(struct inode *inode, struct file *file) | |
714 | { | |
715 | spin_lock_irq (&rtc_lock); | |
716 | ||
717 | if(rtc_status & RTC_IS_OPEN) | |
718 | goto out_busy; | |
719 | ||
720 | rtc_status |= RTC_IS_OPEN; | |
721 | ||
722 | rtc_irq_data = 0; | |
723 | spin_unlock_irq (&rtc_lock); | |
724 | return 0; | |
725 | ||
726 | out_busy: | |
727 | spin_unlock_irq (&rtc_lock); | |
728 | return -EBUSY; | |
729 | } | |
730 | ||
731 | static int rtc_fasync (int fd, struct file *filp, int on) | |
732 | ||
733 | { | |
734 | return fasync_helper (fd, filp, on, &rtc_async_queue); | |
735 | } | |
736 | ||
737 | static int rtc_release(struct inode *inode, struct file *file) | |
738 | { | |
739 | #ifdef RTC_IRQ | |
740 | unsigned char tmp; | |
741 | ||
742 | if (rtc_has_irq == 0) | |
743 | goto no_irq; | |
744 | ||
745 | /* | |
746 | * Turn off all interrupts once the device is no longer | |
747 | * in use, and clear the data. | |
748 | */ | |
749 | ||
750 | spin_lock_irq(&rtc_lock); | |
751 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | |
752 | tmp = CMOS_READ(RTC_CONTROL); | |
753 | tmp &= ~RTC_PIE; | |
754 | tmp &= ~RTC_AIE; | |
755 | tmp &= ~RTC_UIE; | |
756 | CMOS_WRITE(tmp, RTC_CONTROL); | |
757 | CMOS_READ(RTC_INTR_FLAGS); | |
758 | } | |
759 | if (rtc_status & RTC_TIMER_ON) { | |
760 | rtc_status &= ~RTC_TIMER_ON; | |
761 | del_timer(&rtc_irq_timer); | |
762 | } | |
763 | spin_unlock_irq(&rtc_lock); | |
764 | ||
765 | if (file->f_flags & FASYNC) { | |
766 | rtc_fasync (-1, file, 0); | |
767 | } | |
768 | no_irq: | |
769 | #endif | |
770 | ||
771 | spin_lock_irq (&rtc_lock); | |
772 | rtc_irq_data = 0; | |
773 | rtc_status &= ~RTC_IS_OPEN; | |
774 | spin_unlock_irq (&rtc_lock); | |
775 | return 0; | |
776 | } | |
777 | ||
778 | #ifdef RTC_IRQ | |
779 | /* Called without the kernel lock - fine */ | |
780 | static unsigned int rtc_poll(struct file *file, poll_table *wait) | |
781 | { | |
782 | unsigned long l; | |
783 | ||
784 | if (rtc_has_irq == 0) | |
785 | return 0; | |
786 | ||
787 | poll_wait(file, &rtc_wait, wait); | |
788 | ||
789 | spin_lock_irq (&rtc_lock); | |
790 | l = rtc_irq_data; | |
791 | spin_unlock_irq (&rtc_lock); | |
792 | ||
793 | if (l != 0) | |
794 | return POLLIN | POLLRDNORM; | |
795 | return 0; | |
796 | } | |
797 | #endif | |
798 | ||
799 | /* | |
800 | * exported stuffs | |
801 | */ | |
802 | ||
803 | EXPORT_SYMBOL(rtc_register); | |
804 | EXPORT_SYMBOL(rtc_unregister); | |
805 | EXPORT_SYMBOL(rtc_control); | |
806 | ||
807 | int rtc_register(rtc_task_t *task) | |
808 | { | |
809 | #ifndef RTC_IRQ | |
810 | return -EIO; | |
811 | #else | |
812 | if (task == NULL || task->func == NULL) | |
813 | return -EINVAL; | |
814 | spin_lock_irq(&rtc_lock); | |
815 | if (rtc_status & RTC_IS_OPEN) { | |
816 | spin_unlock_irq(&rtc_lock); | |
817 | return -EBUSY; | |
818 | } | |
819 | spin_lock(&rtc_task_lock); | |
820 | if (rtc_callback) { | |
821 | spin_unlock(&rtc_task_lock); | |
822 | spin_unlock_irq(&rtc_lock); | |
823 | return -EBUSY; | |
824 | } | |
825 | rtc_status |= RTC_IS_OPEN; | |
826 | rtc_callback = task; | |
827 | spin_unlock(&rtc_task_lock); | |
828 | spin_unlock_irq(&rtc_lock); | |
829 | return 0; | |
830 | #endif | |
831 | } | |
832 | ||
833 | int rtc_unregister(rtc_task_t *task) | |
834 | { | |
835 | #ifndef RTC_IRQ | |
836 | return -EIO; | |
837 | #else | |
838 | unsigned char tmp; | |
839 | ||
840 | spin_lock_irq(&rtc_lock); | |
841 | spin_lock(&rtc_task_lock); | |
842 | if (rtc_callback != task) { | |
843 | spin_unlock(&rtc_task_lock); | |
844 | spin_unlock_irq(&rtc_lock); | |
845 | return -ENXIO; | |
846 | } | |
847 | rtc_callback = NULL; | |
848 | ||
849 | /* disable controls */ | |
850 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | |
851 | tmp = CMOS_READ(RTC_CONTROL); | |
852 | tmp &= ~RTC_PIE; | |
853 | tmp &= ~RTC_AIE; | |
854 | tmp &= ~RTC_UIE; | |
855 | CMOS_WRITE(tmp, RTC_CONTROL); | |
856 | CMOS_READ(RTC_INTR_FLAGS); | |
857 | } | |
858 | if (rtc_status & RTC_TIMER_ON) { | |
859 | rtc_status &= ~RTC_TIMER_ON; | |
860 | del_timer(&rtc_irq_timer); | |
861 | } | |
862 | rtc_status &= ~RTC_IS_OPEN; | |
863 | spin_unlock(&rtc_task_lock); | |
864 | spin_unlock_irq(&rtc_lock); | |
865 | return 0; | |
866 | #endif | |
867 | } | |
868 | ||
869 | int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) | |
870 | { | |
871 | #ifndef RTC_IRQ | |
872 | return -EIO; | |
873 | #else | |
c3348760 TI |
874 | unsigned long flags; |
875 | if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET) | |
876 | return -EINVAL; | |
877 | spin_lock_irqsave(&rtc_task_lock, flags); | |
1da177e4 | 878 | if (rtc_callback != task) { |
c3348760 | 879 | spin_unlock_irqrestore(&rtc_task_lock, flags); |
1da177e4 LT |
880 | return -ENXIO; |
881 | } | |
c3348760 | 882 | spin_unlock_irqrestore(&rtc_task_lock, flags); |
1da177e4 LT |
883 | return rtc_do_ioctl(cmd, arg, 1); |
884 | #endif | |
885 | } | |
886 | ||
887 | ||
888 | /* | |
889 | * The various file operations we support. | |
890 | */ | |
891 | ||
62322d25 | 892 | static const struct file_operations rtc_fops = { |
1da177e4 LT |
893 | .owner = THIS_MODULE, |
894 | .llseek = no_llseek, | |
895 | .read = rtc_read, | |
896 | #ifdef RTC_IRQ | |
897 | .poll = rtc_poll, | |
898 | #endif | |
899 | .ioctl = rtc_ioctl, | |
900 | .open = rtc_open, | |
901 | .release = rtc_release, | |
902 | .fasync = rtc_fasync, | |
903 | }; | |
904 | ||
905 | static struct miscdevice rtc_dev = { | |
906 | .minor = RTC_MINOR, | |
907 | .name = "rtc", | |
908 | .fops = &rtc_fops, | |
909 | }; | |
910 | ||
9cef779e | 911 | #ifdef CONFIG_PROC_FS |
62322d25 | 912 | static const struct file_operations rtc_proc_fops = { |
1da177e4 LT |
913 | .owner = THIS_MODULE, |
914 | .open = rtc_proc_open, | |
915 | .read = seq_read, | |
916 | .llseek = seq_lseek, | |
917 | .release = single_release, | |
918 | }; | |
1da177e4 LT |
919 | #endif |
920 | ||
921 | static int __init rtc_init(void) | |
922 | { | |
9cef779e | 923 | #ifdef CONFIG_PROC_FS |
1da177e4 | 924 | struct proc_dir_entry *ent; |
9cef779e | 925 | #endif |
1da177e4 LT |
926 | #if defined(__alpha__) || defined(__mips__) |
927 | unsigned int year, ctrl; | |
1da177e4 LT |
928 | char *guess = NULL; |
929 | #endif | |
cdee99d7 | 930 | #ifdef CONFIG_SPARC32 |
1da177e4 LT |
931 | struct linux_ebus *ebus; |
932 | struct linux_ebus_device *edev; | |
9cef779e | 933 | #else |
38e0e8c0 | 934 | void *r; |
9cef779e JB |
935 | #ifdef RTC_IRQ |
936 | irq_handler_t rtc_int_handler_ptr; | |
937 | #endif | |
38e0e8c0 | 938 | #endif |
1da177e4 | 939 | |
cdee99d7 | 940 | #ifdef CONFIG_SPARC32 |
1da177e4 LT |
941 | for_each_ebus(ebus) { |
942 | for_each_ebusdev(edev, ebus) { | |
690c8fd3 | 943 | if(strcmp(edev->prom_node->name, "rtc") == 0) { |
1da177e4 LT |
944 | rtc_port = edev->resource[0].start; |
945 | rtc_irq = edev->irqs[0]; | |
946 | goto found; | |
947 | } | |
948 | } | |
949 | } | |
f3e92d35 | 950 | rtc_has_irq = 0; |
1da177e4 LT |
951 | printk(KERN_ERR "rtc_init: no PC rtc found\n"); |
952 | return -EIO; | |
953 | ||
954 | found: | |
955 | if (rtc_irq == PCI_IRQ_NONE) { | |
956 | rtc_has_irq = 0; | |
957 | goto no_irq; | |
958 | } | |
959 | ||
960 | /* | |
961 | * XXX Interrupt pin #7 in Espresso is shared between RTC and | |
53d0fc27 | 962 | * PCI Slot 2 INTA# (and some INTx# in Slot 1). |
1da177e4 | 963 | */ |
0f2ed4c6 | 964 | if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) { |
f3e92d35 | 965 | rtc_has_irq = 0; |
1da177e4 LT |
966 | printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); |
967 | return -EIO; | |
968 | } | |
969 | no_irq: | |
970 | #else | |
38e0e8c0 MR |
971 | if (RTC_IOMAPPED) |
972 | r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc"); | |
973 | else | |
974 | r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc"); | |
975 | if (!r) { | |
f3e92d35 JB |
976 | #ifdef RTC_IRQ |
977 | rtc_has_irq = 0; | |
978 | #endif | |
38e0e8c0 MR |
979 | printk(KERN_ERR "rtc: I/O resource %lx is not free.\n", |
980 | (long)(RTC_PORT(0))); | |
1da177e4 LT |
981 | return -EIO; |
982 | } | |
983 | ||
984 | #ifdef RTC_IRQ | |
985 | if (is_hpet_enabled()) { | |
986 | rtc_int_handler_ptr = hpet_rtc_interrupt; | |
987 | } else { | |
988 | rtc_int_handler_ptr = rtc_interrupt; | |
989 | } | |
990 | ||
0f2ed4c6 | 991 | if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) { |
1da177e4 | 992 | /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ |
f3e92d35 | 993 | rtc_has_irq = 0; |
1da177e4 | 994 | printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); |
38e0e8c0 MR |
995 | if (RTC_IOMAPPED) |
996 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | |
997 | else | |
998 | release_mem_region(RTC_PORT(0), RTC_IO_EXTENT); | |
1da177e4 LT |
999 | return -EIO; |
1000 | } | |
1001 | hpet_rtc_timer_init(); | |
1002 | ||
1003 | #endif | |
1004 | ||
cdee99d7 | 1005 | #endif /* CONFIG_SPARC32 vs. others */ |
1da177e4 LT |
1006 | |
1007 | if (misc_register(&rtc_dev)) { | |
1008 | #ifdef RTC_IRQ | |
1009 | free_irq(RTC_IRQ, NULL); | |
f3e92d35 | 1010 | rtc_has_irq = 0; |
1da177e4 LT |
1011 | #endif |
1012 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | |
1013 | return -ENODEV; | |
1014 | } | |
1015 | ||
9cef779e | 1016 | #ifdef CONFIG_PROC_FS |
1da177e4 | 1017 | ent = create_proc_entry("driver/rtc", 0, NULL); |
9cef779e JB |
1018 | if (ent) |
1019 | ent->proc_fops = &rtc_proc_fops; | |
1020 | else | |
1021 | printk(KERN_WARNING "rtc: Failed to register with procfs.\n"); | |
1da177e4 | 1022 | #endif |
1da177e4 LT |
1023 | |
1024 | #if defined(__alpha__) || defined(__mips__) | |
1025 | rtc_freq = HZ; | |
1026 | ||
1027 | /* Each operating system on an Alpha uses its own epoch. | |
1028 | Let's try to guess which one we are using now. */ | |
1029 | ||
1da177e4 | 1030 | if (rtc_is_updating() != 0) |
47f176fd | 1031 | msleep(20); |
1da177e4 LT |
1032 | |
1033 | spin_lock_irq(&rtc_lock); | |
1034 | year = CMOS_READ(RTC_YEAR); | |
1035 | ctrl = CMOS_READ(RTC_CONTROL); | |
1036 | spin_unlock_irq(&rtc_lock); | |
1037 | ||
1038 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | |
1039 | BCD_TO_BIN(year); /* This should never happen... */ | |
1040 | ||
1041 | if (year < 20) { | |
1042 | epoch = 2000; | |
1043 | guess = "SRM (post-2000)"; | |
1044 | } else if (year >= 20 && year < 48) { | |
1045 | epoch = 1980; | |
1046 | guess = "ARC console"; | |
1047 | } else if (year >= 48 && year < 72) { | |
1048 | epoch = 1952; | |
1049 | guess = "Digital UNIX"; | |
1050 | #if defined(__mips__) | |
1051 | } else if (year >= 72 && year < 74) { | |
1052 | epoch = 2000; | |
1053 | guess = "Digital DECstation"; | |
1054 | #else | |
1055 | } else if (year >= 70) { | |
1056 | epoch = 1900; | |
1057 | guess = "Standard PC (1900)"; | |
1058 | #endif | |
1059 | } | |
1060 | if (guess) | |
1061 | printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); | |
1062 | #endif | |
1063 | #ifdef RTC_IRQ | |
1064 | if (rtc_has_irq == 0) | |
1065 | goto no_irq2; | |
1066 | ||
1da177e4 LT |
1067 | spin_lock_irq(&rtc_lock); |
1068 | rtc_freq = 1024; | |
1069 | if (!hpet_set_periodic_freq(rtc_freq)) { | |
1070 | /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ | |
1071 | CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); | |
1072 | } | |
1073 | spin_unlock_irq(&rtc_lock); | |
1074 | no_irq2: | |
1075 | #endif | |
1076 | ||
1077 | (void) init_sysctl(); | |
1078 | ||
1079 | printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n"); | |
1080 | ||
1081 | return 0; | |
1082 | } | |
1083 | ||
1084 | static void __exit rtc_exit (void) | |
1085 | { | |
1086 | cleanup_sysctl(); | |
1087 | remove_proc_entry ("driver/rtc", NULL); | |
1088 | misc_deregister(&rtc_dev); | |
1089 | ||
cdee99d7 | 1090 | #ifdef CONFIG_SPARC32 |
1da177e4 LT |
1091 | if (rtc_has_irq) |
1092 | free_irq (rtc_irq, &rtc_port); | |
1093 | #else | |
38e0e8c0 MR |
1094 | if (RTC_IOMAPPED) |
1095 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | |
1096 | else | |
1097 | release_mem_region(RTC_PORT(0), RTC_IO_EXTENT); | |
1da177e4 LT |
1098 | #ifdef RTC_IRQ |
1099 | if (rtc_has_irq) | |
1100 | free_irq (RTC_IRQ, NULL); | |
1101 | #endif | |
cdee99d7 | 1102 | #endif /* CONFIG_SPARC32 */ |
1da177e4 LT |
1103 | } |
1104 | ||
1105 | module_init(rtc_init); | |
1106 | module_exit(rtc_exit); | |
1107 | ||
1108 | #ifdef RTC_IRQ | |
1109 | /* | |
1110 | * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. | |
1111 | * (usually during an IDE disk interrupt, with IRQ unmasking off) | |
1112 | * Since the interrupt handler doesn't get called, the IRQ status | |
1113 | * byte doesn't get read, and the RTC stops generating interrupts. | |
1114 | * A timer is set, and will call this function if/when that happens. | |
1115 | * To get it out of this stalled state, we just read the status. | |
1116 | * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. | |
1117 | * (You *really* shouldn't be trying to use a non-realtime system | |
1118 | * for something that requires a steady > 1KHz signal anyways.) | |
1119 | */ | |
1120 | ||
1121 | static void rtc_dropped_irq(unsigned long data) | |
1122 | { | |
1123 | unsigned long freq; | |
1124 | ||
1125 | spin_lock_irq (&rtc_lock); | |
1126 | ||
1127 | if (hpet_rtc_dropped_irq()) { | |
1128 | spin_unlock_irq(&rtc_lock); | |
1129 | return; | |
1130 | } | |
1131 | ||
1132 | /* Just in case someone disabled the timer from behind our back... */ | |
1133 | if (rtc_status & RTC_TIMER_ON) | |
1134 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | |
1135 | ||
1136 | rtc_irq_data += ((rtc_freq/HZ)<<8); | |
1137 | rtc_irq_data &= ~0xff; | |
1138 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ | |
1139 | ||
1140 | freq = rtc_freq; | |
1141 | ||
1142 | spin_unlock_irq(&rtc_lock); | |
1143 | ||
b2ff457b BC |
1144 | if (printk_ratelimit()) |
1145 | printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); | |
1da177e4 LT |
1146 | |
1147 | /* Now we have new data */ | |
1148 | wake_up_interruptible(&rtc_wait); | |
1149 | ||
1150 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | |
1151 | } | |
1152 | #endif | |
1153 | ||
9cef779e | 1154 | #ifdef CONFIG_PROC_FS |
1da177e4 LT |
1155 | /* |
1156 | * Info exported via "/proc/driver/rtc". | |
1157 | */ | |
1158 | ||
1159 | static int rtc_proc_show(struct seq_file *seq, void *v) | |
1160 | { | |
1161 | #define YN(bit) ((ctrl & bit) ? "yes" : "no") | |
1162 | #define NY(bit) ((ctrl & bit) ? "no" : "yes") | |
1163 | struct rtc_time tm; | |
1164 | unsigned char batt, ctrl; | |
1165 | unsigned long freq; | |
1166 | ||
1167 | spin_lock_irq(&rtc_lock); | |
1168 | batt = CMOS_READ(RTC_VALID) & RTC_VRT; | |
1169 | ctrl = CMOS_READ(RTC_CONTROL); | |
1170 | freq = rtc_freq; | |
1171 | spin_unlock_irq(&rtc_lock); | |
1172 | ||
1173 | ||
1174 | rtc_get_rtc_time(&tm); | |
1175 | ||
1176 | /* | |
1177 | * There is no way to tell if the luser has the RTC set for local | |
1178 | * time or for Universal Standard Time (GMT). Probably local though. | |
1179 | */ | |
1180 | seq_printf(seq, | |
1181 | "rtc_time\t: %02d:%02d:%02d\n" | |
1182 | "rtc_date\t: %04d-%02d-%02d\n" | |
1183 | "rtc_epoch\t: %04lu\n", | |
1184 | tm.tm_hour, tm.tm_min, tm.tm_sec, | |
1185 | tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); | |
1186 | ||
1187 | get_rtc_alm_time(&tm); | |
1188 | ||
1189 | /* | |
1190 | * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will | |
1191 | * match any value for that particular field. Values that are | |
1192 | * greater than a valid time, but less than 0xc0 shouldn't appear. | |
1193 | */ | |
1194 | seq_puts(seq, "alarm\t\t: "); | |
1195 | if (tm.tm_hour <= 24) | |
1196 | seq_printf(seq, "%02d:", tm.tm_hour); | |
1197 | else | |
1198 | seq_puts(seq, "**:"); | |
1199 | ||
1200 | if (tm.tm_min <= 59) | |
1201 | seq_printf(seq, "%02d:", tm.tm_min); | |
1202 | else | |
1203 | seq_puts(seq, "**:"); | |
1204 | ||
1205 | if (tm.tm_sec <= 59) | |
1206 | seq_printf(seq, "%02d\n", tm.tm_sec); | |
1207 | else | |
1208 | seq_puts(seq, "**\n"); | |
1209 | ||
1210 | seq_printf(seq, | |
1211 | "DST_enable\t: %s\n" | |
1212 | "BCD\t\t: %s\n" | |
1213 | "24hr\t\t: %s\n" | |
1214 | "square_wave\t: %s\n" | |
1215 | "alarm_IRQ\t: %s\n" | |
1216 | "update_IRQ\t: %s\n" | |
1217 | "periodic_IRQ\t: %s\n" | |
1218 | "periodic_freq\t: %ld\n" | |
1219 | "batt_status\t: %s\n", | |
1220 | YN(RTC_DST_EN), | |
1221 | NY(RTC_DM_BINARY), | |
1222 | YN(RTC_24H), | |
1223 | YN(RTC_SQWE), | |
1224 | YN(RTC_AIE), | |
1225 | YN(RTC_UIE), | |
1226 | YN(RTC_PIE), | |
1227 | freq, | |
1228 | batt ? "okay" : "dead"); | |
1229 | ||
1230 | return 0; | |
1231 | #undef YN | |
1232 | #undef NY | |
1233 | } | |
1234 | ||
1235 | static int rtc_proc_open(struct inode *inode, struct file *file) | |
1236 | { | |
1237 | return single_open(file, rtc_proc_show, NULL); | |
1238 | } | |
9cef779e | 1239 | #endif |
1da177e4 LT |
1240 | |
1241 | void rtc_get_rtc_time(struct rtc_time *rtc_tm) | |
1242 | { | |
0f749646 | 1243 | unsigned long uip_watchdog = jiffies, flags; |
1da177e4 LT |
1244 | unsigned char ctrl; |
1245 | #ifdef CONFIG_MACH_DECSTATION | |
1246 | unsigned int real_year; | |
1247 | #endif | |
1248 | ||
1249 | /* | |
1250 | * read RTC once any update in progress is done. The update | |
47f176fd | 1251 | * can take just over 2ms. We wait 20ms. There is no need to |
1da177e4 LT |
1252 | * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. |
1253 | * If you need to know *exactly* when a second has started, enable | |
1254 | * periodic update complete interrupts, (via ioctl) and then | |
1255 | * immediately read /dev/rtc which will block until you get the IRQ. | |
1256 | * Once the read clears, read the RTC time (again via ioctl). Easy. | |
1257 | */ | |
1258 | ||
358333a0 | 1259 | while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) |
403fe5ae | 1260 | cpu_relax(); |
1da177e4 LT |
1261 | |
1262 | /* | |
1263 | * Only the values that we read from the RTC are set. We leave | |
b7599587 AC |
1264 | * tm_wday, tm_yday and tm_isdst untouched. Note that while the |
1265 | * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is | |
1266 | * only updated by the RTC when initially set to a non-zero value. | |
1da177e4 | 1267 | */ |
0f749646 | 1268 | spin_lock_irqsave(&rtc_lock, flags); |
1da177e4 LT |
1269 | rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); |
1270 | rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); | |
1271 | rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); | |
1272 | rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); | |
1273 | rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); | |
1274 | rtc_tm->tm_year = CMOS_READ(RTC_YEAR); | |
b7599587 AC |
1275 | /* Only set from 2.6.16 onwards */ |
1276 | rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK); | |
1277 | ||
1da177e4 LT |
1278 | #ifdef CONFIG_MACH_DECSTATION |
1279 | real_year = CMOS_READ(RTC_DEC_YEAR); | |
1280 | #endif | |
1281 | ctrl = CMOS_READ(RTC_CONTROL); | |
0f749646 | 1282 | spin_unlock_irqrestore(&rtc_lock, flags); |
1da177e4 LT |
1283 | |
1284 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | |
1285 | { | |
1286 | BCD_TO_BIN(rtc_tm->tm_sec); | |
1287 | BCD_TO_BIN(rtc_tm->tm_min); | |
1288 | BCD_TO_BIN(rtc_tm->tm_hour); | |
1289 | BCD_TO_BIN(rtc_tm->tm_mday); | |
1290 | BCD_TO_BIN(rtc_tm->tm_mon); | |
1291 | BCD_TO_BIN(rtc_tm->tm_year); | |
b7599587 | 1292 | BCD_TO_BIN(rtc_tm->tm_wday); |
1da177e4 LT |
1293 | } |
1294 | ||
1295 | #ifdef CONFIG_MACH_DECSTATION | |
1296 | rtc_tm->tm_year += real_year - 72; | |
1297 | #endif | |
1298 | ||
1299 | /* | |
1300 | * Account for differences between how the RTC uses the values | |
1301 | * and how they are defined in a struct rtc_time; | |
1302 | */ | |
1303 | if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) | |
1304 | rtc_tm->tm_year += 100; | |
1305 | ||
1306 | rtc_tm->tm_mon--; | |
1307 | } | |
1308 | ||
1309 | static void get_rtc_alm_time(struct rtc_time *alm_tm) | |
1310 | { | |
1311 | unsigned char ctrl; | |
1312 | ||
1313 | /* | |
1314 | * Only the values that we read from the RTC are set. That | |
1315 | * means only tm_hour, tm_min, and tm_sec. | |
1316 | */ | |
1317 | spin_lock_irq(&rtc_lock); | |
1318 | alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | |
1319 | alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); | |
1320 | alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); | |
1321 | ctrl = CMOS_READ(RTC_CONTROL); | |
1322 | spin_unlock_irq(&rtc_lock); | |
1323 | ||
1324 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | |
1325 | { | |
1326 | BCD_TO_BIN(alm_tm->tm_sec); | |
1327 | BCD_TO_BIN(alm_tm->tm_min); | |
1328 | BCD_TO_BIN(alm_tm->tm_hour); | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | #ifdef RTC_IRQ | |
1333 | /* | |
1334 | * Used to disable/enable interrupts for any one of UIE, AIE, PIE. | |
1335 | * Rumour has it that if you frob the interrupt enable/disable | |
1336 | * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to | |
1337 | * ensure you actually start getting interrupts. Probably for | |
1338 | * compatibility with older/broken chipset RTC implementations. | |
1339 | * We also clear out any old irq data after an ioctl() that | |
1340 | * meddles with the interrupt enable/disable bits. | |
1341 | */ | |
1342 | ||
c3348760 | 1343 | static void mask_rtc_irq_bit_locked(unsigned char bit) |
1da177e4 LT |
1344 | { |
1345 | unsigned char val; | |
1346 | ||
c3348760 | 1347 | if (hpet_mask_rtc_irq_bit(bit)) |
1da177e4 | 1348 | return; |
1da177e4 LT |
1349 | val = CMOS_READ(RTC_CONTROL); |
1350 | val &= ~bit; | |
1351 | CMOS_WRITE(val, RTC_CONTROL); | |
1352 | CMOS_READ(RTC_INTR_FLAGS); | |
1353 | ||
1354 | rtc_irq_data = 0; | |
1da177e4 LT |
1355 | } |
1356 | ||
c3348760 | 1357 | static void set_rtc_irq_bit_locked(unsigned char bit) |
1da177e4 LT |
1358 | { |
1359 | unsigned char val; | |
1360 | ||
c3348760 | 1361 | if (hpet_set_rtc_irq_bit(bit)) |
1da177e4 | 1362 | return; |
1da177e4 LT |
1363 | val = CMOS_READ(RTC_CONTROL); |
1364 | val |= bit; | |
1365 | CMOS_WRITE(val, RTC_CONTROL); | |
1366 | CMOS_READ(RTC_INTR_FLAGS); | |
1367 | ||
1368 | rtc_irq_data = 0; | |
1da177e4 LT |
1369 | } |
1370 | #endif | |
1371 | ||
1372 | MODULE_AUTHOR("Paul Gortmaker"); | |
1373 | MODULE_LICENSE("GPL"); | |
1374 | MODULE_ALIAS_MISCDEV(RTC_MINOR); |