]>
Commit | Line | Data |
---|---|---|
bc7f75fa AK |
1 | /******************************************************************************* |
2 | ||
3 | Intel PRO/1000 Linux driver | |
451152d9 | 4 | Copyright(c) 1999 - 2010 Intel Corporation. |
bc7f75fa AK |
5 | |
6 | This program is free software; you can redistribute it and/or modify it | |
7 | under the terms and conditions of the GNU General Public License, | |
8 | version 2, as published by the Free Software Foundation. | |
9 | ||
10 | This program is distributed in the hope it will be useful, but WITHOUT | |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | more details. | |
14 | ||
15 | You should have received a copy of the GNU General Public License along with | |
16 | this program; if not, write to the Free Software Foundation, Inc., | |
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | |
18 | ||
19 | The full GNU General Public License is included in this distribution in | |
20 | the file called "COPYING". | |
21 | ||
22 | Contact Information: | |
23 | Linux NICS <[email protected]> | |
24 | e1000-devel Mailing List <[email protected]> | |
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
26 | ||
27 | *******************************************************************************/ | |
28 | ||
8544b9f7 BA |
29 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
30 | ||
bc7f75fa AK |
31 | #include <linux/module.h> |
32 | #include <linux/types.h> | |
33 | #include <linux/init.h> | |
34 | #include <linux/pci.h> | |
35 | #include <linux/vmalloc.h> | |
36 | #include <linux/pagemap.h> | |
37 | #include <linux/delay.h> | |
38 | #include <linux/netdevice.h> | |
39 | #include <linux/tcp.h> | |
40 | #include <linux/ipv6.h> | |
5a0e3ad6 | 41 | #include <linux/slab.h> |
bc7f75fa AK |
42 | #include <net/checksum.h> |
43 | #include <net/ip6_checksum.h> | |
44 | #include <linux/mii.h> | |
45 | #include <linux/ethtool.h> | |
46 | #include <linux/if_vlan.h> | |
47 | #include <linux/cpu.h> | |
48 | #include <linux/smp.h> | |
97ac8cae | 49 | #include <linux/pm_qos_params.h> |
23606cf5 | 50 | #include <linux/pm_runtime.h> |
111b9dc5 | 51 | #include <linux/aer.h> |
bc7f75fa AK |
52 | |
53 | #include "e1000.h" | |
54 | ||
c14c643b BA |
55 | #define DRV_EXTRAVERSION "-k2" |
56 | ||
57 | #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION | |
bc7f75fa AK |
58 | char e1000e_driver_name[] = "e1000e"; |
59 | const char e1000e_driver_version[] = DRV_VERSION; | |
60 | ||
61 | static const struct e1000_info *e1000_info_tbl[] = { | |
62 | [board_82571] = &e1000_82571_info, | |
63 | [board_82572] = &e1000_82572_info, | |
64 | [board_82573] = &e1000_82573_info, | |
4662e82b | 65 | [board_82574] = &e1000_82574_info, |
8c81c9c3 | 66 | [board_82583] = &e1000_82583_info, |
bc7f75fa AK |
67 | [board_80003es2lan] = &e1000_es2_info, |
68 | [board_ich8lan] = &e1000_ich8_info, | |
69 | [board_ich9lan] = &e1000_ich9_info, | |
f4187b56 | 70 | [board_ich10lan] = &e1000_ich10_info, |
a4f58f54 | 71 | [board_pchlan] = &e1000_pch_info, |
d3738bb8 | 72 | [board_pch2lan] = &e1000_pch2_info, |
bc7f75fa AK |
73 | }; |
74 | ||
84f4ee90 TI |
75 | struct e1000_reg_info { |
76 | u32 ofs; | |
77 | char *name; | |
78 | }; | |
79 | ||
80 | #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ | |
81 | #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ | |
82 | #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ | |
83 | #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ | |
84 | #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ | |
85 | ||
86 | #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ | |
87 | #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ | |
88 | #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ | |
89 | #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ | |
90 | #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ | |
91 | ||
92 | static const struct e1000_reg_info e1000_reg_info_tbl[] = { | |
93 | ||
94 | /* General Registers */ | |
95 | {E1000_CTRL, "CTRL"}, | |
96 | {E1000_STATUS, "STATUS"}, | |
97 | {E1000_CTRL_EXT, "CTRL_EXT"}, | |
98 | ||
99 | /* Interrupt Registers */ | |
100 | {E1000_ICR, "ICR"}, | |
101 | ||
102 | /* RX Registers */ | |
103 | {E1000_RCTL, "RCTL"}, | |
104 | {E1000_RDLEN, "RDLEN"}, | |
105 | {E1000_RDH, "RDH"}, | |
106 | {E1000_RDT, "RDT"}, | |
107 | {E1000_RDTR, "RDTR"}, | |
108 | {E1000_RXDCTL(0), "RXDCTL"}, | |
109 | {E1000_ERT, "ERT"}, | |
110 | {E1000_RDBAL, "RDBAL"}, | |
111 | {E1000_RDBAH, "RDBAH"}, | |
112 | {E1000_RDFH, "RDFH"}, | |
113 | {E1000_RDFT, "RDFT"}, | |
114 | {E1000_RDFHS, "RDFHS"}, | |
115 | {E1000_RDFTS, "RDFTS"}, | |
116 | {E1000_RDFPC, "RDFPC"}, | |
117 | ||
118 | /* TX Registers */ | |
119 | {E1000_TCTL, "TCTL"}, | |
120 | {E1000_TDBAL, "TDBAL"}, | |
121 | {E1000_TDBAH, "TDBAH"}, | |
122 | {E1000_TDLEN, "TDLEN"}, | |
123 | {E1000_TDH, "TDH"}, | |
124 | {E1000_TDT, "TDT"}, | |
125 | {E1000_TIDV, "TIDV"}, | |
126 | {E1000_TXDCTL(0), "TXDCTL"}, | |
127 | {E1000_TADV, "TADV"}, | |
128 | {E1000_TARC(0), "TARC"}, | |
129 | {E1000_TDFH, "TDFH"}, | |
130 | {E1000_TDFT, "TDFT"}, | |
131 | {E1000_TDFHS, "TDFHS"}, | |
132 | {E1000_TDFTS, "TDFTS"}, | |
133 | {E1000_TDFPC, "TDFPC"}, | |
134 | ||
135 | /* List Terminator */ | |
136 | {} | |
137 | }; | |
138 | ||
139 | /* | |
140 | * e1000_regdump - register printout routine | |
141 | */ | |
142 | static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) | |
143 | { | |
144 | int n = 0; | |
145 | char rname[16]; | |
146 | u32 regs[8]; | |
147 | ||
148 | switch (reginfo->ofs) { | |
149 | case E1000_RXDCTL(0): | |
150 | for (n = 0; n < 2; n++) | |
151 | regs[n] = __er32(hw, E1000_RXDCTL(n)); | |
152 | break; | |
153 | case E1000_TXDCTL(0): | |
154 | for (n = 0; n < 2; n++) | |
155 | regs[n] = __er32(hw, E1000_TXDCTL(n)); | |
156 | break; | |
157 | case E1000_TARC(0): | |
158 | for (n = 0; n < 2; n++) | |
159 | regs[n] = __er32(hw, E1000_TARC(n)); | |
160 | break; | |
161 | default: | |
162 | printk(KERN_INFO "%-15s %08x\n", | |
163 | reginfo->name, __er32(hw, reginfo->ofs)); | |
164 | return; | |
165 | } | |
166 | ||
167 | snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); | |
168 | printk(KERN_INFO "%-15s ", rname); | |
169 | for (n = 0; n < 2; n++) | |
170 | printk(KERN_CONT "%08x ", regs[n]); | |
171 | printk(KERN_CONT "\n"); | |
172 | } | |
173 | ||
174 | ||
175 | /* | |
176 | * e1000e_dump - Print registers, tx-ring and rx-ring | |
177 | */ | |
178 | static void e1000e_dump(struct e1000_adapter *adapter) | |
179 | { | |
180 | struct net_device *netdev = adapter->netdev; | |
181 | struct e1000_hw *hw = &adapter->hw; | |
182 | struct e1000_reg_info *reginfo; | |
183 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
184 | struct e1000_tx_desc *tx_desc; | |
185 | struct my_u0 { u64 a; u64 b; } *u0; | |
186 | struct e1000_buffer *buffer_info; | |
187 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
188 | union e1000_rx_desc_packet_split *rx_desc_ps; | |
189 | struct e1000_rx_desc *rx_desc; | |
190 | struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1; | |
191 | u32 staterr; | |
192 | int i = 0; | |
193 | ||
194 | if (!netif_msg_hw(adapter)) | |
195 | return; | |
196 | ||
197 | /* Print netdevice Info */ | |
198 | if (netdev) { | |
199 | dev_info(&adapter->pdev->dev, "Net device Info\n"); | |
200 | printk(KERN_INFO "Device Name state " | |
201 | "trans_start last_rx\n"); | |
202 | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | |
203 | netdev->name, | |
204 | netdev->state, | |
205 | netdev->trans_start, | |
206 | netdev->last_rx); | |
207 | } | |
208 | ||
209 | /* Print Registers */ | |
210 | dev_info(&adapter->pdev->dev, "Register Dump\n"); | |
211 | printk(KERN_INFO " Register Name Value\n"); | |
212 | for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; | |
213 | reginfo->name; reginfo++) { | |
214 | e1000_regdump(hw, reginfo); | |
215 | } | |
216 | ||
217 | /* Print TX Ring Summary */ | |
218 | if (!netdev || !netif_running(netdev)) | |
219 | goto exit; | |
220 | ||
221 | dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); | |
222 | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]" | |
223 | " leng ntw timestamp\n"); | |
224 | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | |
225 | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | |
226 | 0, tx_ring->next_to_use, tx_ring->next_to_clean, | |
8eb64e6b | 227 | (unsigned long long)buffer_info->dma, |
84f4ee90 TI |
228 | buffer_info->length, |
229 | buffer_info->next_to_watch, | |
8eb64e6b | 230 | (unsigned long long)buffer_info->time_stamp); |
84f4ee90 TI |
231 | |
232 | /* Print TX Rings */ | |
233 | if (!netif_msg_tx_done(adapter)) | |
234 | goto rx_ring_summary; | |
235 | ||
236 | dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); | |
237 | ||
238 | /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) | |
239 | * | |
240 | * Legacy Transmit Descriptor | |
241 | * +--------------------------------------------------------------+ | |
242 | * 0 | Buffer Address [63:0] (Reserved on Write Back) | | |
243 | * +--------------------------------------------------------------+ | |
244 | * 8 | Special | CSS | Status | CMD | CSO | Length | | |
245 | * +--------------------------------------------------------------+ | |
246 | * 63 48 47 36 35 32 31 24 23 16 15 0 | |
247 | * | |
248 | * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload | |
249 | * 63 48 47 40 39 32 31 16 15 8 7 0 | |
250 | * +----------------------------------------------------------------+ | |
251 | * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | | |
252 | * +----------------------------------------------------------------+ | |
253 | * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | | |
254 | * +----------------------------------------------------------------+ | |
255 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 | |
256 | * | |
257 | * Extended Data Descriptor (DTYP=0x1) | |
258 | * +----------------------------------------------------------------+ | |
259 | * 0 | Buffer Address [63:0] | | |
260 | * +----------------------------------------------------------------+ | |
261 | * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | | |
262 | * +----------------------------------------------------------------+ | |
263 | * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 | |
264 | */ | |
265 | printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]" | |
266 | " [bi->dma ] leng ntw timestamp bi->skb " | |
267 | "<-- Legacy format\n"); | |
268 | printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]" | |
269 | " [bi->dma ] leng ntw timestamp bi->skb " | |
270 | "<-- Ext Context format\n"); | |
271 | printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]" | |
272 | " [bi->dma ] leng ntw timestamp bi->skb " | |
273 | "<-- Ext Data format\n"); | |
274 | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | |
275 | tx_desc = E1000_TX_DESC(*tx_ring, i); | |
276 | buffer_info = &tx_ring->buffer_info[i]; | |
277 | u0 = (struct my_u0 *)tx_desc; | |
278 | printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX " | |
279 | "%04X %3X %016llX %p", | |
280 | (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' : | |
281 | ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i, | |
8eb64e6b BA |
282 | (unsigned long long)le64_to_cpu(u0->a), |
283 | (unsigned long long)le64_to_cpu(u0->b), | |
284 | (unsigned long long)buffer_info->dma, | |
285 | buffer_info->length, buffer_info->next_to_watch, | |
286 | (unsigned long long)buffer_info->time_stamp, | |
84f4ee90 TI |
287 | buffer_info->skb); |
288 | if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) | |
289 | printk(KERN_CONT " NTC/U\n"); | |
290 | else if (i == tx_ring->next_to_use) | |
291 | printk(KERN_CONT " NTU\n"); | |
292 | else if (i == tx_ring->next_to_clean) | |
293 | printk(KERN_CONT " NTC\n"); | |
294 | else | |
295 | printk(KERN_CONT "\n"); | |
296 | ||
297 | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | |
298 | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, | |
299 | 16, 1, phys_to_virt(buffer_info->dma), | |
300 | buffer_info->length, true); | |
301 | } | |
302 | ||
303 | /* Print RX Rings Summary */ | |
304 | rx_ring_summary: | |
305 | dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); | |
306 | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | |
307 | printk(KERN_INFO " %5d %5X %5X\n", 0, | |
308 | rx_ring->next_to_use, rx_ring->next_to_clean); | |
309 | ||
310 | /* Print RX Rings */ | |
311 | if (!netif_msg_rx_status(adapter)) | |
312 | goto exit; | |
313 | ||
314 | dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); | |
315 | switch (adapter->rx_ps_pages) { | |
316 | case 1: | |
317 | case 2: | |
318 | case 3: | |
319 | /* [Extended] Packet Split Receive Descriptor Format | |
320 | * | |
321 | * +-----------------------------------------------------+ | |
322 | * 0 | Buffer Address 0 [63:0] | | |
323 | * +-----------------------------------------------------+ | |
324 | * 8 | Buffer Address 1 [63:0] | | |
325 | * +-----------------------------------------------------+ | |
326 | * 16 | Buffer Address 2 [63:0] | | |
327 | * +-----------------------------------------------------+ | |
328 | * 24 | Buffer Address 3 [63:0] | | |
329 | * +-----------------------------------------------------+ | |
330 | */ | |
331 | printk(KERN_INFO "R [desc] [buffer 0 63:0 ] " | |
332 | "[buffer 1 63:0 ] " | |
333 | "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] " | |
334 | "[bi->skb] <-- Ext Pkt Split format\n"); | |
335 | /* [Extended] Receive Descriptor (Write-Back) Format | |
336 | * | |
337 | * 63 48 47 32 31 13 12 8 7 4 3 0 | |
338 | * +------------------------------------------------------+ | |
339 | * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | | |
340 | * | Checksum | Ident | | Queue | | Type | | |
341 | * +------------------------------------------------------+ | |
342 | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | |
343 | * +------------------------------------------------------+ | |
344 | * 63 48 47 32 31 20 19 0 | |
345 | */ | |
346 | printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] " | |
347 | "[vl l0 ee es] " | |
348 | "[ l3 l2 l1 hs] [reserved ] ---------------- " | |
349 | "[bi->skb] <-- Ext Rx Write-Back format\n"); | |
350 | for (i = 0; i < rx_ring->count; i++) { | |
351 | buffer_info = &rx_ring->buffer_info[i]; | |
352 | rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); | |
353 | u1 = (struct my_u1 *)rx_desc_ps; | |
354 | staterr = | |
355 | le32_to_cpu(rx_desc_ps->wb.middle.status_error); | |
356 | if (staterr & E1000_RXD_STAT_DD) { | |
357 | /* Descriptor Done */ | |
358 | printk(KERN_INFO "RWB[0x%03X] %016llX " | |
359 | "%016llX %016llX %016llX " | |
360 | "---------------- %p", i, | |
8eb64e6b BA |
361 | (unsigned long long)le64_to_cpu(u1->a), |
362 | (unsigned long long)le64_to_cpu(u1->b), | |
363 | (unsigned long long)le64_to_cpu(u1->c), | |
364 | (unsigned long long)le64_to_cpu(u1->d), | |
84f4ee90 TI |
365 | buffer_info->skb); |
366 | } else { | |
367 | printk(KERN_INFO "R [0x%03X] %016llX " | |
368 | "%016llX %016llX %016llX %016llX %p", i, | |
8eb64e6b BA |
369 | (unsigned long long)le64_to_cpu(u1->a), |
370 | (unsigned long long)le64_to_cpu(u1->b), | |
371 | (unsigned long long)le64_to_cpu(u1->c), | |
372 | (unsigned long long)le64_to_cpu(u1->d), | |
373 | (unsigned long long)buffer_info->dma, | |
84f4ee90 TI |
374 | buffer_info->skb); |
375 | ||
376 | if (netif_msg_pktdata(adapter)) | |
377 | print_hex_dump(KERN_INFO, "", | |
378 | DUMP_PREFIX_ADDRESS, 16, 1, | |
379 | phys_to_virt(buffer_info->dma), | |
380 | adapter->rx_ps_bsize0, true); | |
381 | } | |
382 | ||
383 | if (i == rx_ring->next_to_use) | |
384 | printk(KERN_CONT " NTU\n"); | |
385 | else if (i == rx_ring->next_to_clean) | |
386 | printk(KERN_CONT " NTC\n"); | |
387 | else | |
388 | printk(KERN_CONT "\n"); | |
389 | } | |
390 | break; | |
391 | default: | |
392 | case 0: | |
393 | /* Legacy Receive Descriptor Format | |
394 | * | |
395 | * +-----------------------------------------------------+ | |
396 | * | Buffer Address [63:0] | | |
397 | * +-----------------------------------------------------+ | |
398 | * | VLAN Tag | Errors | Status 0 | Packet csum | Length | | |
399 | * +-----------------------------------------------------+ | |
400 | * 63 48 47 40 39 32 31 16 15 0 | |
401 | */ | |
402 | printk(KERN_INFO "Rl[desc] [address 63:0 ] " | |
403 | "[vl er S cks ln] [bi->dma ] [bi->skb] " | |
404 | "<-- Legacy format\n"); | |
405 | for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { | |
406 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
407 | buffer_info = &rx_ring->buffer_info[i]; | |
408 | u0 = (struct my_u0 *)rx_desc; | |
409 | printk(KERN_INFO "Rl[0x%03X] %016llX %016llX " | |
8eb64e6b BA |
410 | "%016llX %p", i, |
411 | (unsigned long long)le64_to_cpu(u0->a), | |
412 | (unsigned long long)le64_to_cpu(u0->b), | |
413 | (unsigned long long)buffer_info->dma, | |
414 | buffer_info->skb); | |
84f4ee90 TI |
415 | if (i == rx_ring->next_to_use) |
416 | printk(KERN_CONT " NTU\n"); | |
417 | else if (i == rx_ring->next_to_clean) | |
418 | printk(KERN_CONT " NTC\n"); | |
419 | else | |
420 | printk(KERN_CONT "\n"); | |
421 | ||
422 | if (netif_msg_pktdata(adapter)) | |
423 | print_hex_dump(KERN_INFO, "", | |
424 | DUMP_PREFIX_ADDRESS, | |
425 | 16, 1, phys_to_virt(buffer_info->dma), | |
426 | adapter->rx_buffer_len, true); | |
427 | } | |
428 | } | |
429 | ||
430 | exit: | |
431 | return; | |
432 | } | |
433 | ||
bc7f75fa AK |
434 | /** |
435 | * e1000_desc_unused - calculate if we have unused descriptors | |
436 | **/ | |
437 | static int e1000_desc_unused(struct e1000_ring *ring) | |
438 | { | |
439 | if (ring->next_to_clean > ring->next_to_use) | |
440 | return ring->next_to_clean - ring->next_to_use - 1; | |
441 | ||
442 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | |
443 | } | |
444 | ||
445 | /** | |
ad68076e | 446 | * e1000_receive_skb - helper function to handle Rx indications |
bc7f75fa AK |
447 | * @adapter: board private structure |
448 | * @status: descriptor status field as written by hardware | |
449 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | |
450 | * @skb: pointer to sk_buff to be indicated to stack | |
451 | **/ | |
452 | static void e1000_receive_skb(struct e1000_adapter *adapter, | |
453 | struct net_device *netdev, | |
454 | struct sk_buff *skb, | |
a39fe742 | 455 | u8 status, __le16 vlan) |
bc7f75fa AK |
456 | { |
457 | skb->protocol = eth_type_trans(skb, netdev); | |
458 | ||
459 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | |
c405b828 HX |
460 | vlan_gro_receive(&adapter->napi, adapter->vlgrp, |
461 | le16_to_cpu(vlan), skb); | |
bc7f75fa | 462 | else |
89c88b16 | 463 | napi_gro_receive(&adapter->napi, skb); |
bc7f75fa AK |
464 | } |
465 | ||
466 | /** | |
467 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | |
468 | * @adapter: board private structure | |
469 | * @status_err: receive descriptor status and error fields | |
470 | * @csum: receive descriptor csum field | |
471 | * @sk_buff: socket buffer with received data | |
472 | **/ | |
473 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | |
474 | u32 csum, struct sk_buff *skb) | |
475 | { | |
476 | u16 status = (u16)status_err; | |
477 | u8 errors = (u8)(status_err >> 24); | |
478 | skb->ip_summed = CHECKSUM_NONE; | |
479 | ||
480 | /* Ignore Checksum bit is set */ | |
481 | if (status & E1000_RXD_STAT_IXSM) | |
482 | return; | |
483 | /* TCP/UDP checksum error bit is set */ | |
484 | if (errors & E1000_RXD_ERR_TCPE) { | |
485 | /* let the stack verify checksum errors */ | |
486 | adapter->hw_csum_err++; | |
487 | return; | |
488 | } | |
489 | ||
490 | /* TCP/UDP Checksum has not been calculated */ | |
491 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | |
492 | return; | |
493 | ||
494 | /* It must be a TCP or UDP packet with a valid checksum */ | |
495 | if (status & E1000_RXD_STAT_TCPCS) { | |
496 | /* TCP checksum is good */ | |
497 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
498 | } else { | |
ad68076e BA |
499 | /* |
500 | * IP fragment with UDP payload | |
501 | * Hardware complements the payload checksum, so we undo it | |
bc7f75fa AK |
502 | * and then put the value in host order for further stack use. |
503 | */ | |
a39fe742 AV |
504 | __sum16 sum = (__force __sum16)htons(csum); |
505 | skb->csum = csum_unfold(~sum); | |
bc7f75fa AK |
506 | skb->ip_summed = CHECKSUM_COMPLETE; |
507 | } | |
508 | adapter->hw_csum_good++; | |
509 | } | |
510 | ||
511 | /** | |
512 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | |
513 | * @adapter: address of board private structure | |
514 | **/ | |
515 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | |
516 | int cleaned_count) | |
517 | { | |
518 | struct net_device *netdev = adapter->netdev; | |
519 | struct pci_dev *pdev = adapter->pdev; | |
520 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
521 | struct e1000_rx_desc *rx_desc; | |
522 | struct e1000_buffer *buffer_info; | |
523 | struct sk_buff *skb; | |
524 | unsigned int i; | |
89d71a66 | 525 | unsigned int bufsz = adapter->rx_buffer_len; |
bc7f75fa AK |
526 | |
527 | i = rx_ring->next_to_use; | |
528 | buffer_info = &rx_ring->buffer_info[i]; | |
529 | ||
530 | while (cleaned_count--) { | |
531 | skb = buffer_info->skb; | |
532 | if (skb) { | |
533 | skb_trim(skb, 0); | |
534 | goto map_skb; | |
535 | } | |
536 | ||
89d71a66 | 537 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
bc7f75fa AK |
538 | if (!skb) { |
539 | /* Better luck next round */ | |
540 | adapter->alloc_rx_buff_failed++; | |
541 | break; | |
542 | } | |
543 | ||
bc7f75fa AK |
544 | buffer_info->skb = skb; |
545 | map_skb: | |
0be3f55f | 546 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
bc7f75fa | 547 | adapter->rx_buffer_len, |
0be3f55f NN |
548 | DMA_FROM_DEVICE); |
549 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | |
bc7f75fa AK |
550 | dev_err(&pdev->dev, "RX DMA map failed\n"); |
551 | adapter->rx_dma_failed++; | |
552 | break; | |
553 | } | |
554 | ||
555 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
556 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
557 | ||
50849d79 TH |
558 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
559 | /* | |
560 | * Force memory writes to complete before letting h/w | |
561 | * know there are new descriptors to fetch. (Only | |
562 | * applicable for weak-ordered memory model archs, | |
563 | * such as IA-64). | |
564 | */ | |
565 | wmb(); | |
566 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | |
567 | } | |
bc7f75fa AK |
568 | i++; |
569 | if (i == rx_ring->count) | |
570 | i = 0; | |
571 | buffer_info = &rx_ring->buffer_info[i]; | |
572 | } | |
573 | ||
50849d79 | 574 | rx_ring->next_to_use = i; |
bc7f75fa AK |
575 | } |
576 | ||
577 | /** | |
578 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | |
579 | * @adapter: address of board private structure | |
580 | **/ | |
581 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | |
582 | int cleaned_count) | |
583 | { | |
584 | struct net_device *netdev = adapter->netdev; | |
585 | struct pci_dev *pdev = adapter->pdev; | |
586 | union e1000_rx_desc_packet_split *rx_desc; | |
587 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
588 | struct e1000_buffer *buffer_info; | |
589 | struct e1000_ps_page *ps_page; | |
590 | struct sk_buff *skb; | |
591 | unsigned int i, j; | |
592 | ||
593 | i = rx_ring->next_to_use; | |
594 | buffer_info = &rx_ring->buffer_info[i]; | |
595 | ||
596 | while (cleaned_count--) { | |
597 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | |
598 | ||
599 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
47f44e40 AK |
600 | ps_page = &buffer_info->ps_pages[j]; |
601 | if (j >= adapter->rx_ps_pages) { | |
602 | /* all unused desc entries get hw null ptr */ | |
a39fe742 | 603 | rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
47f44e40 AK |
604 | continue; |
605 | } | |
606 | if (!ps_page->page) { | |
607 | ps_page->page = alloc_page(GFP_ATOMIC); | |
bc7f75fa | 608 | if (!ps_page->page) { |
47f44e40 AK |
609 | adapter->alloc_rx_buff_failed++; |
610 | goto no_buffers; | |
611 | } | |
0be3f55f NN |
612 | ps_page->dma = dma_map_page(&pdev->dev, |
613 | ps_page->page, | |
614 | 0, PAGE_SIZE, | |
615 | DMA_FROM_DEVICE); | |
616 | if (dma_mapping_error(&pdev->dev, | |
617 | ps_page->dma)) { | |
47f44e40 AK |
618 | dev_err(&adapter->pdev->dev, |
619 | "RX DMA page map failed\n"); | |
620 | adapter->rx_dma_failed++; | |
621 | goto no_buffers; | |
bc7f75fa | 622 | } |
bc7f75fa | 623 | } |
47f44e40 AK |
624 | /* |
625 | * Refresh the desc even if buffer_addrs | |
626 | * didn't change because each write-back | |
627 | * erases this info. | |
628 | */ | |
629 | rx_desc->read.buffer_addr[j+1] = | |
630 | cpu_to_le64(ps_page->dma); | |
bc7f75fa AK |
631 | } |
632 | ||
89d71a66 ED |
633 | skb = netdev_alloc_skb_ip_align(netdev, |
634 | adapter->rx_ps_bsize0); | |
bc7f75fa AK |
635 | |
636 | if (!skb) { | |
637 | adapter->alloc_rx_buff_failed++; | |
638 | break; | |
639 | } | |
640 | ||
bc7f75fa | 641 | buffer_info->skb = skb; |
0be3f55f | 642 | buffer_info->dma = dma_map_single(&pdev->dev, skb->data, |
bc7f75fa | 643 | adapter->rx_ps_bsize0, |
0be3f55f NN |
644 | DMA_FROM_DEVICE); |
645 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | |
bc7f75fa AK |
646 | dev_err(&pdev->dev, "RX DMA map failed\n"); |
647 | adapter->rx_dma_failed++; | |
648 | /* cleanup skb */ | |
649 | dev_kfree_skb_any(skb); | |
650 | buffer_info->skb = NULL; | |
651 | break; | |
652 | } | |
653 | ||
654 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | |
655 | ||
50849d79 TH |
656 | if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { |
657 | /* | |
658 | * Force memory writes to complete before letting h/w | |
659 | * know there are new descriptors to fetch. (Only | |
660 | * applicable for weak-ordered memory model archs, | |
661 | * such as IA-64). | |
662 | */ | |
663 | wmb(); | |
664 | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | |
665 | } | |
666 | ||
bc7f75fa AK |
667 | i++; |
668 | if (i == rx_ring->count) | |
669 | i = 0; | |
670 | buffer_info = &rx_ring->buffer_info[i]; | |
671 | } | |
672 | ||
673 | no_buffers: | |
50849d79 | 674 | rx_ring->next_to_use = i; |
bc7f75fa AK |
675 | } |
676 | ||
97ac8cae BA |
677 | /** |
678 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | |
679 | * @adapter: address of board private structure | |
97ac8cae BA |
680 | * @cleaned_count: number of buffers to allocate this pass |
681 | **/ | |
682 | ||
683 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | |
684 | int cleaned_count) | |
685 | { | |
686 | struct net_device *netdev = adapter->netdev; | |
687 | struct pci_dev *pdev = adapter->pdev; | |
688 | struct e1000_rx_desc *rx_desc; | |
689 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
690 | struct e1000_buffer *buffer_info; | |
691 | struct sk_buff *skb; | |
692 | unsigned int i; | |
89d71a66 | 693 | unsigned int bufsz = 256 - 16 /* for skb_reserve */; |
97ac8cae BA |
694 | |
695 | i = rx_ring->next_to_use; | |
696 | buffer_info = &rx_ring->buffer_info[i]; | |
697 | ||
698 | while (cleaned_count--) { | |
699 | skb = buffer_info->skb; | |
700 | if (skb) { | |
701 | skb_trim(skb, 0); | |
702 | goto check_page; | |
703 | } | |
704 | ||
89d71a66 | 705 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
97ac8cae BA |
706 | if (unlikely(!skb)) { |
707 | /* Better luck next round */ | |
708 | adapter->alloc_rx_buff_failed++; | |
709 | break; | |
710 | } | |
711 | ||
97ac8cae BA |
712 | buffer_info->skb = skb; |
713 | check_page: | |
714 | /* allocate a new page if necessary */ | |
715 | if (!buffer_info->page) { | |
716 | buffer_info->page = alloc_page(GFP_ATOMIC); | |
717 | if (unlikely(!buffer_info->page)) { | |
718 | adapter->alloc_rx_buff_failed++; | |
719 | break; | |
720 | } | |
721 | } | |
722 | ||
723 | if (!buffer_info->dma) | |
0be3f55f | 724 | buffer_info->dma = dma_map_page(&pdev->dev, |
97ac8cae BA |
725 | buffer_info->page, 0, |
726 | PAGE_SIZE, | |
0be3f55f | 727 | DMA_FROM_DEVICE); |
97ac8cae BA |
728 | |
729 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
730 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
731 | ||
732 | if (unlikely(++i == rx_ring->count)) | |
733 | i = 0; | |
734 | buffer_info = &rx_ring->buffer_info[i]; | |
735 | } | |
736 | ||
737 | if (likely(rx_ring->next_to_use != i)) { | |
738 | rx_ring->next_to_use = i; | |
739 | if (unlikely(i-- == 0)) | |
740 | i = (rx_ring->count - 1); | |
741 | ||
742 | /* Force memory writes to complete before letting h/w | |
743 | * know there are new descriptors to fetch. (Only | |
744 | * applicable for weak-ordered memory model archs, | |
745 | * such as IA-64). */ | |
746 | wmb(); | |
747 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | |
748 | } | |
749 | } | |
750 | ||
bc7f75fa AK |
751 | /** |
752 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | |
753 | * @adapter: board private structure | |
754 | * | |
755 | * the return value indicates whether actual cleaning was done, there | |
756 | * is no guarantee that everything was cleaned | |
757 | **/ | |
758 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | |
759 | int *work_done, int work_to_do) | |
760 | { | |
761 | struct net_device *netdev = adapter->netdev; | |
762 | struct pci_dev *pdev = adapter->pdev; | |
3bb99fe2 | 763 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa AK |
764 | struct e1000_ring *rx_ring = adapter->rx_ring; |
765 | struct e1000_rx_desc *rx_desc, *next_rxd; | |
766 | struct e1000_buffer *buffer_info, *next_buffer; | |
767 | u32 length; | |
768 | unsigned int i; | |
769 | int cleaned_count = 0; | |
770 | bool cleaned = 0; | |
771 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | |
772 | ||
773 | i = rx_ring->next_to_clean; | |
774 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
775 | buffer_info = &rx_ring->buffer_info[i]; | |
776 | ||
777 | while (rx_desc->status & E1000_RXD_STAT_DD) { | |
778 | struct sk_buff *skb; | |
779 | u8 status; | |
780 | ||
781 | if (*work_done >= work_to_do) | |
782 | break; | |
783 | (*work_done)++; | |
2d0bb1c1 | 784 | rmb(); /* read descriptor and rx_buffer_info after status DD */ |
bc7f75fa AK |
785 | |
786 | status = rx_desc->status; | |
787 | skb = buffer_info->skb; | |
788 | buffer_info->skb = NULL; | |
789 | ||
790 | prefetch(skb->data - NET_IP_ALIGN); | |
791 | ||
792 | i++; | |
793 | if (i == rx_ring->count) | |
794 | i = 0; | |
795 | next_rxd = E1000_RX_DESC(*rx_ring, i); | |
796 | prefetch(next_rxd); | |
797 | ||
798 | next_buffer = &rx_ring->buffer_info[i]; | |
799 | ||
800 | cleaned = 1; | |
801 | cleaned_count++; | |
0be3f55f | 802 | dma_unmap_single(&pdev->dev, |
bc7f75fa AK |
803 | buffer_info->dma, |
804 | adapter->rx_buffer_len, | |
0be3f55f | 805 | DMA_FROM_DEVICE); |
bc7f75fa AK |
806 | buffer_info->dma = 0; |
807 | ||
808 | length = le16_to_cpu(rx_desc->length); | |
809 | ||
b94b5028 JB |
810 | /* |
811 | * !EOP means multiple descriptors were used to store a single | |
812 | * packet, if that's the case we need to toss it. In fact, we | |
813 | * need to toss every packet with the EOP bit clear and the | |
814 | * next frame that _does_ have the EOP bit set, as it is by | |
815 | * definition only a frame fragment | |
816 | */ | |
817 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) | |
818 | adapter->flags2 |= FLAG2_IS_DISCARDING; | |
819 | ||
820 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | |
bc7f75fa | 821 | /* All receives must fit into a single buffer */ |
3bb99fe2 | 822 | e_dbg("Receive packet consumed multiple buffers\n"); |
bc7f75fa AK |
823 | /* recycle */ |
824 | buffer_info->skb = skb; | |
b94b5028 JB |
825 | if (status & E1000_RXD_STAT_EOP) |
826 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | |
bc7f75fa AK |
827 | goto next_desc; |
828 | } | |
829 | ||
830 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | |
831 | /* recycle */ | |
832 | buffer_info->skb = skb; | |
833 | goto next_desc; | |
834 | } | |
835 | ||
eb7c3adb JK |
836 | /* adjust length to remove Ethernet CRC */ |
837 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
838 | length -= 4; | |
839 | ||
bc7f75fa AK |
840 | total_rx_bytes += length; |
841 | total_rx_packets++; | |
842 | ||
ad68076e BA |
843 | /* |
844 | * code added for copybreak, this should improve | |
bc7f75fa | 845 | * performance for small packets with large amounts |
ad68076e BA |
846 | * of reassembly being done in the stack |
847 | */ | |
bc7f75fa AK |
848 | if (length < copybreak) { |
849 | struct sk_buff *new_skb = | |
89d71a66 | 850 | netdev_alloc_skb_ip_align(netdev, length); |
bc7f75fa | 851 | if (new_skb) { |
808ff676 BA |
852 | skb_copy_to_linear_data_offset(new_skb, |
853 | -NET_IP_ALIGN, | |
854 | (skb->data - | |
855 | NET_IP_ALIGN), | |
856 | (length + | |
857 | NET_IP_ALIGN)); | |
bc7f75fa AK |
858 | /* save the skb in buffer_info as good */ |
859 | buffer_info->skb = skb; | |
860 | skb = new_skb; | |
861 | } | |
862 | /* else just continue with the old one */ | |
863 | } | |
864 | /* end copybreak code */ | |
865 | skb_put(skb, length); | |
866 | ||
867 | /* Receive Checksum Offload */ | |
868 | e1000_rx_checksum(adapter, | |
869 | (u32)(status) | | |
870 | ((u32)(rx_desc->errors) << 24), | |
871 | le16_to_cpu(rx_desc->csum), skb); | |
872 | ||
873 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | |
874 | ||
875 | next_desc: | |
876 | rx_desc->status = 0; | |
877 | ||
878 | /* return some buffers to hardware, one at a time is too slow */ | |
879 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | |
880 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
881 | cleaned_count = 0; | |
882 | } | |
883 | ||
884 | /* use prefetched values */ | |
885 | rx_desc = next_rxd; | |
886 | buffer_info = next_buffer; | |
887 | } | |
888 | rx_ring->next_to_clean = i; | |
889 | ||
890 | cleaned_count = e1000_desc_unused(rx_ring); | |
891 | if (cleaned_count) | |
892 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
893 | ||
bc7f75fa | 894 | adapter->total_rx_bytes += total_rx_bytes; |
7c25769f | 895 | adapter->total_rx_packets += total_rx_packets; |
7274c20f AK |
896 | netdev->stats.rx_bytes += total_rx_bytes; |
897 | netdev->stats.rx_packets += total_rx_packets; | |
bc7f75fa AK |
898 | return cleaned; |
899 | } | |
900 | ||
bc7f75fa AK |
901 | static void e1000_put_txbuf(struct e1000_adapter *adapter, |
902 | struct e1000_buffer *buffer_info) | |
903 | { | |
03b1320d AD |
904 | if (buffer_info->dma) { |
905 | if (buffer_info->mapped_as_page) | |
0be3f55f NN |
906 | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
907 | buffer_info->length, DMA_TO_DEVICE); | |
03b1320d | 908 | else |
0be3f55f NN |
909 | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
910 | buffer_info->length, DMA_TO_DEVICE); | |
03b1320d AD |
911 | buffer_info->dma = 0; |
912 | } | |
bc7f75fa AK |
913 | if (buffer_info->skb) { |
914 | dev_kfree_skb_any(buffer_info->skb); | |
915 | buffer_info->skb = NULL; | |
916 | } | |
1b7719c4 | 917 | buffer_info->time_stamp = 0; |
bc7f75fa AK |
918 | } |
919 | ||
41cec6f1 | 920 | static void e1000_print_hw_hang(struct work_struct *work) |
bc7f75fa | 921 | { |
41cec6f1 BA |
922 | struct e1000_adapter *adapter = container_of(work, |
923 | struct e1000_adapter, | |
924 | print_hang_task); | |
bc7f75fa AK |
925 | struct e1000_ring *tx_ring = adapter->tx_ring; |
926 | unsigned int i = tx_ring->next_to_clean; | |
927 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | |
928 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
41cec6f1 BA |
929 | struct e1000_hw *hw = &adapter->hw; |
930 | u16 phy_status, phy_1000t_status, phy_ext_status; | |
931 | u16 pci_status; | |
932 | ||
933 | e1e_rphy(hw, PHY_STATUS, &phy_status); | |
934 | e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status); | |
935 | e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status); | |
bc7f75fa | 936 | |
41cec6f1 BA |
937 | pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); |
938 | ||
939 | /* detected Hardware unit hang */ | |
940 | e_err("Detected Hardware Unit Hang:\n" | |
44defeb3 JK |
941 | " TDH <%x>\n" |
942 | " TDT <%x>\n" | |
943 | " next_to_use <%x>\n" | |
944 | " next_to_clean <%x>\n" | |
945 | "buffer_info[next_to_clean]:\n" | |
946 | " time_stamp <%lx>\n" | |
947 | " next_to_watch <%x>\n" | |
948 | " jiffies <%lx>\n" | |
41cec6f1 BA |
949 | " next_to_watch.status <%x>\n" |
950 | "MAC Status <%x>\n" | |
951 | "PHY Status <%x>\n" | |
952 | "PHY 1000BASE-T Status <%x>\n" | |
953 | "PHY Extended Status <%x>\n" | |
954 | "PCI Status <%x>\n", | |
44defeb3 JK |
955 | readl(adapter->hw.hw_addr + tx_ring->head), |
956 | readl(adapter->hw.hw_addr + tx_ring->tail), | |
957 | tx_ring->next_to_use, | |
958 | tx_ring->next_to_clean, | |
959 | tx_ring->buffer_info[eop].time_stamp, | |
960 | eop, | |
961 | jiffies, | |
41cec6f1 BA |
962 | eop_desc->upper.fields.status, |
963 | er32(STATUS), | |
964 | phy_status, | |
965 | phy_1000t_status, | |
966 | phy_ext_status, | |
967 | pci_status); | |
bc7f75fa AK |
968 | } |
969 | ||
970 | /** | |
971 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | |
972 | * @adapter: board private structure | |
973 | * | |
974 | * the return value indicates whether actual cleaning was done, there | |
975 | * is no guarantee that everything was cleaned | |
976 | **/ | |
977 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | |
978 | { | |
979 | struct net_device *netdev = adapter->netdev; | |
980 | struct e1000_hw *hw = &adapter->hw; | |
981 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
982 | struct e1000_tx_desc *tx_desc, *eop_desc; | |
983 | struct e1000_buffer *buffer_info; | |
984 | unsigned int i, eop; | |
985 | unsigned int count = 0; | |
bc7f75fa AK |
986 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
987 | ||
988 | i = tx_ring->next_to_clean; | |
989 | eop = tx_ring->buffer_info[i].next_to_watch; | |
990 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
991 | ||
12d04a3c AD |
992 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
993 | (count < tx_ring->count)) { | |
a86043c2 | 994 | bool cleaned = false; |
2d0bb1c1 | 995 | rmb(); /* read buffer_info after eop_desc */ |
a86043c2 | 996 | for (; !cleaned; count++) { |
bc7f75fa AK |
997 | tx_desc = E1000_TX_DESC(*tx_ring, i); |
998 | buffer_info = &tx_ring->buffer_info[i]; | |
999 | cleaned = (i == eop); | |
1000 | ||
1001 | if (cleaned) { | |
9ed318d5 TH |
1002 | total_tx_packets += buffer_info->segs; |
1003 | total_tx_bytes += buffer_info->bytecount; | |
bc7f75fa AK |
1004 | } |
1005 | ||
1006 | e1000_put_txbuf(adapter, buffer_info); | |
1007 | tx_desc->upper.data = 0; | |
1008 | ||
1009 | i++; | |
1010 | if (i == tx_ring->count) | |
1011 | i = 0; | |
1012 | } | |
1013 | ||
dac87619 TL |
1014 | if (i == tx_ring->next_to_use) |
1015 | break; | |
bc7f75fa AK |
1016 | eop = tx_ring->buffer_info[i].next_to_watch; |
1017 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | |
bc7f75fa AK |
1018 | } |
1019 | ||
1020 | tx_ring->next_to_clean = i; | |
1021 | ||
1022 | #define TX_WAKE_THRESHOLD 32 | |
a86043c2 JB |
1023 | if (count && netif_carrier_ok(netdev) && |
1024 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | |
bc7f75fa AK |
1025 | /* Make sure that anybody stopping the queue after this |
1026 | * sees the new next_to_clean. | |
1027 | */ | |
1028 | smp_mb(); | |
1029 | ||
1030 | if (netif_queue_stopped(netdev) && | |
1031 | !(test_bit(__E1000_DOWN, &adapter->state))) { | |
1032 | netif_wake_queue(netdev); | |
1033 | ++adapter->restart_queue; | |
1034 | } | |
1035 | } | |
1036 | ||
1037 | if (adapter->detect_tx_hung) { | |
41cec6f1 BA |
1038 | /* |
1039 | * Detect a transmit hang in hardware, this serializes the | |
1040 | * check with the clearing of time_stamp and movement of i | |
1041 | */ | |
bc7f75fa | 1042 | adapter->detect_tx_hung = 0; |
12d04a3c AD |
1043 | if (tx_ring->buffer_info[i].time_stamp && |
1044 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp | |
8e95a202 JP |
1045 | + (adapter->tx_timeout_factor * HZ)) && |
1046 | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | |
41cec6f1 | 1047 | schedule_work(&adapter->print_hang_task); |
bc7f75fa AK |
1048 | netif_stop_queue(netdev); |
1049 | } | |
1050 | } | |
1051 | adapter->total_tx_bytes += total_tx_bytes; | |
1052 | adapter->total_tx_packets += total_tx_packets; | |
7274c20f AK |
1053 | netdev->stats.tx_bytes += total_tx_bytes; |
1054 | netdev->stats.tx_packets += total_tx_packets; | |
12d04a3c | 1055 | return (count < tx_ring->count); |
bc7f75fa AK |
1056 | } |
1057 | ||
bc7f75fa AK |
1058 | /** |
1059 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | |
1060 | * @adapter: board private structure | |
1061 | * | |
1062 | * the return value indicates whether actual cleaning was done, there | |
1063 | * is no guarantee that everything was cleaned | |
1064 | **/ | |
1065 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | |
1066 | int *work_done, int work_to_do) | |
1067 | { | |
3bb99fe2 | 1068 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa AK |
1069 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
1070 | struct net_device *netdev = adapter->netdev; | |
1071 | struct pci_dev *pdev = adapter->pdev; | |
1072 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1073 | struct e1000_buffer *buffer_info, *next_buffer; | |
1074 | struct e1000_ps_page *ps_page; | |
1075 | struct sk_buff *skb; | |
1076 | unsigned int i, j; | |
1077 | u32 length, staterr; | |
1078 | int cleaned_count = 0; | |
1079 | bool cleaned = 0; | |
1080 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | |
1081 | ||
1082 | i = rx_ring->next_to_clean; | |
1083 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | |
1084 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | |
1085 | buffer_info = &rx_ring->buffer_info[i]; | |
1086 | ||
1087 | while (staterr & E1000_RXD_STAT_DD) { | |
1088 | if (*work_done >= work_to_do) | |
1089 | break; | |
1090 | (*work_done)++; | |
1091 | skb = buffer_info->skb; | |
2d0bb1c1 | 1092 | rmb(); /* read descriptor and rx_buffer_info after status DD */ |
bc7f75fa AK |
1093 | |
1094 | /* in the packet split case this is header only */ | |
1095 | prefetch(skb->data - NET_IP_ALIGN); | |
1096 | ||
1097 | i++; | |
1098 | if (i == rx_ring->count) | |
1099 | i = 0; | |
1100 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | |
1101 | prefetch(next_rxd); | |
1102 | ||
1103 | next_buffer = &rx_ring->buffer_info[i]; | |
1104 | ||
1105 | cleaned = 1; | |
1106 | cleaned_count++; | |
0be3f55f | 1107 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
bc7f75fa | 1108 | adapter->rx_ps_bsize0, |
0be3f55f | 1109 | DMA_FROM_DEVICE); |
bc7f75fa AK |
1110 | buffer_info->dma = 0; |
1111 | ||
b94b5028 JB |
1112 | /* see !EOP comment in other rx routine */ |
1113 | if (!(staterr & E1000_RXD_STAT_EOP)) | |
1114 | adapter->flags2 |= FLAG2_IS_DISCARDING; | |
1115 | ||
1116 | if (adapter->flags2 & FLAG2_IS_DISCARDING) { | |
3bb99fe2 BA |
1117 | e_dbg("Packet Split buffers didn't pick up the full " |
1118 | "packet\n"); | |
bc7f75fa | 1119 | dev_kfree_skb_irq(skb); |
b94b5028 JB |
1120 | if (staterr & E1000_RXD_STAT_EOP) |
1121 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; | |
bc7f75fa AK |
1122 | goto next_desc; |
1123 | } | |
1124 | ||
1125 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | |
1126 | dev_kfree_skb_irq(skb); | |
1127 | goto next_desc; | |
1128 | } | |
1129 | ||
1130 | length = le16_to_cpu(rx_desc->wb.middle.length0); | |
1131 | ||
1132 | if (!length) { | |
3bb99fe2 BA |
1133 | e_dbg("Last part of the packet spanning multiple " |
1134 | "descriptors\n"); | |
bc7f75fa AK |
1135 | dev_kfree_skb_irq(skb); |
1136 | goto next_desc; | |
1137 | } | |
1138 | ||
1139 | /* Good Receive */ | |
1140 | skb_put(skb, length); | |
1141 | ||
1142 | { | |
ad68076e BA |
1143 | /* |
1144 | * this looks ugly, but it seems compiler issues make it | |
1145 | * more efficient than reusing j | |
1146 | */ | |
bc7f75fa AK |
1147 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
1148 | ||
ad68076e BA |
1149 | /* |
1150 | * page alloc/put takes too long and effects small packet | |
1151 | * throughput, so unsplit small packets and save the alloc/put | |
1152 | * only valid in softirq (napi) context to call kmap_* | |
1153 | */ | |
bc7f75fa AK |
1154 | if (l1 && (l1 <= copybreak) && |
1155 | ((length + l1) <= adapter->rx_ps_bsize0)) { | |
1156 | u8 *vaddr; | |
1157 | ||
47f44e40 | 1158 | ps_page = &buffer_info->ps_pages[0]; |
bc7f75fa | 1159 | |
ad68076e BA |
1160 | /* |
1161 | * there is no documentation about how to call | |
bc7f75fa | 1162 | * kmap_atomic, so we can't hold the mapping |
ad68076e BA |
1163 | * very long |
1164 | */ | |
0be3f55f NN |
1165 | dma_sync_single_for_cpu(&pdev->dev, ps_page->dma, |
1166 | PAGE_SIZE, DMA_FROM_DEVICE); | |
bc7f75fa AK |
1167 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); |
1168 | memcpy(skb_tail_pointer(skb), vaddr, l1); | |
1169 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | |
0be3f55f NN |
1170 | dma_sync_single_for_device(&pdev->dev, ps_page->dma, |
1171 | PAGE_SIZE, DMA_FROM_DEVICE); | |
140a7480 | 1172 | |
eb7c3adb JK |
1173 | /* remove the CRC */ |
1174 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
1175 | l1 -= 4; | |
1176 | ||
bc7f75fa AK |
1177 | skb_put(skb, l1); |
1178 | goto copydone; | |
1179 | } /* if */ | |
1180 | } | |
1181 | ||
1182 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
1183 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | |
1184 | if (!length) | |
1185 | break; | |
1186 | ||
47f44e40 | 1187 | ps_page = &buffer_info->ps_pages[j]; |
0be3f55f NN |
1188 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
1189 | DMA_FROM_DEVICE); | |
bc7f75fa AK |
1190 | ps_page->dma = 0; |
1191 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | |
1192 | ps_page->page = NULL; | |
1193 | skb->len += length; | |
1194 | skb->data_len += length; | |
1195 | skb->truesize += length; | |
1196 | } | |
1197 | ||
eb7c3adb JK |
1198 | /* strip the ethernet crc, problem is we're using pages now so |
1199 | * this whole operation can get a little cpu intensive | |
1200 | */ | |
1201 | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | |
1202 | pskb_trim(skb, skb->len - 4); | |
1203 | ||
bc7f75fa AK |
1204 | copydone: |
1205 | total_rx_bytes += skb->len; | |
1206 | total_rx_packets++; | |
1207 | ||
1208 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | |
1209 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | |
1210 | ||
1211 | if (rx_desc->wb.upper.header_status & | |
1212 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | |
1213 | adapter->rx_hdr_split++; | |
1214 | ||
1215 | e1000_receive_skb(adapter, netdev, skb, | |
1216 | staterr, rx_desc->wb.middle.vlan); | |
1217 | ||
1218 | next_desc: | |
1219 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | |
1220 | buffer_info->skb = NULL; | |
1221 | ||
1222 | /* return some buffers to hardware, one at a time is too slow */ | |
1223 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | |
1224 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1225 | cleaned_count = 0; | |
1226 | } | |
1227 | ||
1228 | /* use prefetched values */ | |
1229 | rx_desc = next_rxd; | |
1230 | buffer_info = next_buffer; | |
1231 | ||
1232 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | |
1233 | } | |
1234 | rx_ring->next_to_clean = i; | |
1235 | ||
1236 | cleaned_count = e1000_desc_unused(rx_ring); | |
1237 | if (cleaned_count) | |
1238 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1239 | ||
bc7f75fa | 1240 | adapter->total_rx_bytes += total_rx_bytes; |
7c25769f | 1241 | adapter->total_rx_packets += total_rx_packets; |
7274c20f AK |
1242 | netdev->stats.rx_bytes += total_rx_bytes; |
1243 | netdev->stats.rx_packets += total_rx_packets; | |
bc7f75fa AK |
1244 | return cleaned; |
1245 | } | |
1246 | ||
97ac8cae BA |
1247 | /** |
1248 | * e1000_consume_page - helper function | |
1249 | **/ | |
1250 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | |
1251 | u16 length) | |
1252 | { | |
1253 | bi->page = NULL; | |
1254 | skb->len += length; | |
1255 | skb->data_len += length; | |
1256 | skb->truesize += length; | |
1257 | } | |
1258 | ||
1259 | /** | |
1260 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | |
1261 | * @adapter: board private structure | |
1262 | * | |
1263 | * the return value indicates whether actual cleaning was done, there | |
1264 | * is no guarantee that everything was cleaned | |
1265 | **/ | |
1266 | ||
1267 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | |
1268 | int *work_done, int work_to_do) | |
1269 | { | |
1270 | struct net_device *netdev = adapter->netdev; | |
1271 | struct pci_dev *pdev = adapter->pdev; | |
1272 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1273 | struct e1000_rx_desc *rx_desc, *next_rxd; | |
1274 | struct e1000_buffer *buffer_info, *next_buffer; | |
1275 | u32 length; | |
1276 | unsigned int i; | |
1277 | int cleaned_count = 0; | |
1278 | bool cleaned = false; | |
1279 | unsigned int total_rx_bytes=0, total_rx_packets=0; | |
1280 | ||
1281 | i = rx_ring->next_to_clean; | |
1282 | rx_desc = E1000_RX_DESC(*rx_ring, i); | |
1283 | buffer_info = &rx_ring->buffer_info[i]; | |
1284 | ||
1285 | while (rx_desc->status & E1000_RXD_STAT_DD) { | |
1286 | struct sk_buff *skb; | |
1287 | u8 status; | |
1288 | ||
1289 | if (*work_done >= work_to_do) | |
1290 | break; | |
1291 | (*work_done)++; | |
2d0bb1c1 | 1292 | rmb(); /* read descriptor and rx_buffer_info after status DD */ |
97ac8cae BA |
1293 | |
1294 | status = rx_desc->status; | |
1295 | skb = buffer_info->skb; | |
1296 | buffer_info->skb = NULL; | |
1297 | ||
1298 | ++i; | |
1299 | if (i == rx_ring->count) | |
1300 | i = 0; | |
1301 | next_rxd = E1000_RX_DESC(*rx_ring, i); | |
1302 | prefetch(next_rxd); | |
1303 | ||
1304 | next_buffer = &rx_ring->buffer_info[i]; | |
1305 | ||
1306 | cleaned = true; | |
1307 | cleaned_count++; | |
0be3f55f NN |
1308 | dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, |
1309 | DMA_FROM_DEVICE); | |
97ac8cae BA |
1310 | buffer_info->dma = 0; |
1311 | ||
1312 | length = le16_to_cpu(rx_desc->length); | |
1313 | ||
1314 | /* errors is only valid for DD + EOP descriptors */ | |
1315 | if (unlikely((status & E1000_RXD_STAT_EOP) && | |
1316 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | |
1317 | /* recycle both page and skb */ | |
1318 | buffer_info->skb = skb; | |
1319 | /* an error means any chain goes out the window | |
1320 | * too */ | |
1321 | if (rx_ring->rx_skb_top) | |
1322 | dev_kfree_skb(rx_ring->rx_skb_top); | |
1323 | rx_ring->rx_skb_top = NULL; | |
1324 | goto next_desc; | |
1325 | } | |
1326 | ||
1327 | #define rxtop rx_ring->rx_skb_top | |
1328 | if (!(status & E1000_RXD_STAT_EOP)) { | |
1329 | /* this descriptor is only the beginning (or middle) */ | |
1330 | if (!rxtop) { | |
1331 | /* this is the beginning of a chain */ | |
1332 | rxtop = skb; | |
1333 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | |
1334 | 0, length); | |
1335 | } else { | |
1336 | /* this is the middle of a chain */ | |
1337 | skb_fill_page_desc(rxtop, | |
1338 | skb_shinfo(rxtop)->nr_frags, | |
1339 | buffer_info->page, 0, length); | |
1340 | /* re-use the skb, only consumed the page */ | |
1341 | buffer_info->skb = skb; | |
1342 | } | |
1343 | e1000_consume_page(buffer_info, rxtop, length); | |
1344 | goto next_desc; | |
1345 | } else { | |
1346 | if (rxtop) { | |
1347 | /* end of the chain */ | |
1348 | skb_fill_page_desc(rxtop, | |
1349 | skb_shinfo(rxtop)->nr_frags, | |
1350 | buffer_info->page, 0, length); | |
1351 | /* re-use the current skb, we only consumed the | |
1352 | * page */ | |
1353 | buffer_info->skb = skb; | |
1354 | skb = rxtop; | |
1355 | rxtop = NULL; | |
1356 | e1000_consume_page(buffer_info, skb, length); | |
1357 | } else { | |
1358 | /* no chain, got EOP, this buf is the packet | |
1359 | * copybreak to save the put_page/alloc_page */ | |
1360 | if (length <= copybreak && | |
1361 | skb_tailroom(skb) >= length) { | |
1362 | u8 *vaddr; | |
1363 | vaddr = kmap_atomic(buffer_info->page, | |
1364 | KM_SKB_DATA_SOFTIRQ); | |
1365 | memcpy(skb_tail_pointer(skb), vaddr, | |
1366 | length); | |
1367 | kunmap_atomic(vaddr, | |
1368 | KM_SKB_DATA_SOFTIRQ); | |
1369 | /* re-use the page, so don't erase | |
1370 | * buffer_info->page */ | |
1371 | skb_put(skb, length); | |
1372 | } else { | |
1373 | skb_fill_page_desc(skb, 0, | |
1374 | buffer_info->page, 0, | |
1375 | length); | |
1376 | e1000_consume_page(buffer_info, skb, | |
1377 | length); | |
1378 | } | |
1379 | } | |
1380 | } | |
1381 | ||
1382 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | |
1383 | e1000_rx_checksum(adapter, | |
1384 | (u32)(status) | | |
1385 | ((u32)(rx_desc->errors) << 24), | |
1386 | le16_to_cpu(rx_desc->csum), skb); | |
1387 | ||
1388 | /* probably a little skewed due to removing CRC */ | |
1389 | total_rx_bytes += skb->len; | |
1390 | total_rx_packets++; | |
1391 | ||
1392 | /* eth type trans needs skb->data to point to something */ | |
1393 | if (!pskb_may_pull(skb, ETH_HLEN)) { | |
44defeb3 | 1394 | e_err("pskb_may_pull failed.\n"); |
97ac8cae BA |
1395 | dev_kfree_skb(skb); |
1396 | goto next_desc; | |
1397 | } | |
1398 | ||
1399 | e1000_receive_skb(adapter, netdev, skb, status, | |
1400 | rx_desc->special); | |
1401 | ||
1402 | next_desc: | |
1403 | rx_desc->status = 0; | |
1404 | ||
1405 | /* return some buffers to hardware, one at a time is too slow */ | |
1406 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | |
1407 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1408 | cleaned_count = 0; | |
1409 | } | |
1410 | ||
1411 | /* use prefetched values */ | |
1412 | rx_desc = next_rxd; | |
1413 | buffer_info = next_buffer; | |
1414 | } | |
1415 | rx_ring->next_to_clean = i; | |
1416 | ||
1417 | cleaned_count = e1000_desc_unused(rx_ring); | |
1418 | if (cleaned_count) | |
1419 | adapter->alloc_rx_buf(adapter, cleaned_count); | |
1420 | ||
1421 | adapter->total_rx_bytes += total_rx_bytes; | |
1422 | adapter->total_rx_packets += total_rx_packets; | |
7274c20f AK |
1423 | netdev->stats.rx_bytes += total_rx_bytes; |
1424 | netdev->stats.rx_packets += total_rx_packets; | |
97ac8cae BA |
1425 | return cleaned; |
1426 | } | |
1427 | ||
bc7f75fa AK |
1428 | /** |
1429 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | |
1430 | * @adapter: board private structure | |
1431 | **/ | |
1432 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | |
1433 | { | |
1434 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1435 | struct e1000_buffer *buffer_info; | |
1436 | struct e1000_ps_page *ps_page; | |
1437 | struct pci_dev *pdev = adapter->pdev; | |
bc7f75fa AK |
1438 | unsigned int i, j; |
1439 | ||
1440 | /* Free all the Rx ring sk_buffs */ | |
1441 | for (i = 0; i < rx_ring->count; i++) { | |
1442 | buffer_info = &rx_ring->buffer_info[i]; | |
1443 | if (buffer_info->dma) { | |
1444 | if (adapter->clean_rx == e1000_clean_rx_irq) | |
0be3f55f | 1445 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
bc7f75fa | 1446 | adapter->rx_buffer_len, |
0be3f55f | 1447 | DMA_FROM_DEVICE); |
97ac8cae | 1448 | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
0be3f55f | 1449 | dma_unmap_page(&pdev->dev, buffer_info->dma, |
97ac8cae | 1450 | PAGE_SIZE, |
0be3f55f | 1451 | DMA_FROM_DEVICE); |
bc7f75fa | 1452 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
0be3f55f | 1453 | dma_unmap_single(&pdev->dev, buffer_info->dma, |
bc7f75fa | 1454 | adapter->rx_ps_bsize0, |
0be3f55f | 1455 | DMA_FROM_DEVICE); |
bc7f75fa AK |
1456 | buffer_info->dma = 0; |
1457 | } | |
1458 | ||
97ac8cae BA |
1459 | if (buffer_info->page) { |
1460 | put_page(buffer_info->page); | |
1461 | buffer_info->page = NULL; | |
1462 | } | |
1463 | ||
bc7f75fa AK |
1464 | if (buffer_info->skb) { |
1465 | dev_kfree_skb(buffer_info->skb); | |
1466 | buffer_info->skb = NULL; | |
1467 | } | |
1468 | ||
1469 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | |
47f44e40 | 1470 | ps_page = &buffer_info->ps_pages[j]; |
bc7f75fa AK |
1471 | if (!ps_page->page) |
1472 | break; | |
0be3f55f NN |
1473 | dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, |
1474 | DMA_FROM_DEVICE); | |
bc7f75fa AK |
1475 | ps_page->dma = 0; |
1476 | put_page(ps_page->page); | |
1477 | ps_page->page = NULL; | |
1478 | } | |
1479 | } | |
1480 | ||
1481 | /* there also may be some cached data from a chained receive */ | |
1482 | if (rx_ring->rx_skb_top) { | |
1483 | dev_kfree_skb(rx_ring->rx_skb_top); | |
1484 | rx_ring->rx_skb_top = NULL; | |
1485 | } | |
1486 | ||
bc7f75fa AK |
1487 | /* Zero out the descriptor ring */ |
1488 | memset(rx_ring->desc, 0, rx_ring->size); | |
1489 | ||
1490 | rx_ring->next_to_clean = 0; | |
1491 | rx_ring->next_to_use = 0; | |
b94b5028 | 1492 | adapter->flags2 &= ~FLAG2_IS_DISCARDING; |
bc7f75fa AK |
1493 | |
1494 | writel(0, adapter->hw.hw_addr + rx_ring->head); | |
1495 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | |
1496 | } | |
1497 | ||
a8f88ff5 JB |
1498 | static void e1000e_downshift_workaround(struct work_struct *work) |
1499 | { | |
1500 | struct e1000_adapter *adapter = container_of(work, | |
1501 | struct e1000_adapter, downshift_task); | |
1502 | ||
1503 | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); | |
1504 | } | |
1505 | ||
bc7f75fa AK |
1506 | /** |
1507 | * e1000_intr_msi - Interrupt Handler | |
1508 | * @irq: interrupt number | |
1509 | * @data: pointer to a network interface device structure | |
1510 | **/ | |
1511 | static irqreturn_t e1000_intr_msi(int irq, void *data) | |
1512 | { | |
1513 | struct net_device *netdev = data; | |
1514 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1515 | struct e1000_hw *hw = &adapter->hw; | |
1516 | u32 icr = er32(ICR); | |
1517 | ||
ad68076e BA |
1518 | /* |
1519 | * read ICR disables interrupts using IAM | |
1520 | */ | |
bc7f75fa | 1521 | |
573cca8c | 1522 | if (icr & E1000_ICR_LSC) { |
bc7f75fa | 1523 | hw->mac.get_link_status = 1; |
ad68076e BA |
1524 | /* |
1525 | * ICH8 workaround-- Call gig speed drop workaround on cable | |
1526 | * disconnect (LSC) before accessing any PHY registers | |
1527 | */ | |
bc7f75fa AK |
1528 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
1529 | (!(er32(STATUS) & E1000_STATUS_LU))) | |
a8f88ff5 | 1530 | schedule_work(&adapter->downshift_task); |
bc7f75fa | 1531 | |
ad68076e BA |
1532 | /* |
1533 | * 80003ES2LAN workaround-- For packet buffer work-around on | |
bc7f75fa | 1534 | * link down event; disable receives here in the ISR and reset |
ad68076e BA |
1535 | * adapter in watchdog |
1536 | */ | |
bc7f75fa AK |
1537 | if (netif_carrier_ok(netdev) && |
1538 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | |
1539 | /* disable receives */ | |
1540 | u32 rctl = er32(RCTL); | |
1541 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
318a94d6 | 1542 | adapter->flags |= FLAG_RX_RESTART_NOW; |
bc7f75fa AK |
1543 | } |
1544 | /* guard against interrupt when we're going down */ | |
1545 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1546 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1547 | } | |
1548 | ||
288379f0 | 1549 | if (napi_schedule_prep(&adapter->napi)) { |
bc7f75fa AK |
1550 | adapter->total_tx_bytes = 0; |
1551 | adapter->total_tx_packets = 0; | |
1552 | adapter->total_rx_bytes = 0; | |
1553 | adapter->total_rx_packets = 0; | |
288379f0 | 1554 | __napi_schedule(&adapter->napi); |
bc7f75fa AK |
1555 | } |
1556 | ||
1557 | return IRQ_HANDLED; | |
1558 | } | |
1559 | ||
1560 | /** | |
1561 | * e1000_intr - Interrupt Handler | |
1562 | * @irq: interrupt number | |
1563 | * @data: pointer to a network interface device structure | |
1564 | **/ | |
1565 | static irqreturn_t e1000_intr(int irq, void *data) | |
1566 | { | |
1567 | struct net_device *netdev = data; | |
1568 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1569 | struct e1000_hw *hw = &adapter->hw; | |
bc7f75fa | 1570 | u32 rctl, icr = er32(ICR); |
4662e82b | 1571 | |
a68ea775 | 1572 | if (!icr || test_bit(__E1000_DOWN, &adapter->state)) |
bc7f75fa AK |
1573 | return IRQ_NONE; /* Not our interrupt */ |
1574 | ||
ad68076e BA |
1575 | /* |
1576 | * IMS will not auto-mask if INT_ASSERTED is not set, and if it is | |
1577 | * not set, then the adapter didn't send an interrupt | |
1578 | */ | |
bc7f75fa AK |
1579 | if (!(icr & E1000_ICR_INT_ASSERTED)) |
1580 | return IRQ_NONE; | |
1581 | ||
ad68076e BA |
1582 | /* |
1583 | * Interrupt Auto-Mask...upon reading ICR, | |
1584 | * interrupts are masked. No need for the | |
1585 | * IMC write | |
1586 | */ | |
bc7f75fa | 1587 | |
573cca8c | 1588 | if (icr & E1000_ICR_LSC) { |
bc7f75fa | 1589 | hw->mac.get_link_status = 1; |
ad68076e BA |
1590 | /* |
1591 | * ICH8 workaround-- Call gig speed drop workaround on cable | |
1592 | * disconnect (LSC) before accessing any PHY registers | |
1593 | */ | |
bc7f75fa AK |
1594 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
1595 | (!(er32(STATUS) & E1000_STATUS_LU))) | |
a8f88ff5 | 1596 | schedule_work(&adapter->downshift_task); |
bc7f75fa | 1597 | |
ad68076e BA |
1598 | /* |
1599 | * 80003ES2LAN workaround-- | |
bc7f75fa AK |
1600 | * For packet buffer work-around on link down event; |
1601 | * disable receives here in the ISR and | |
1602 | * reset adapter in watchdog | |
1603 | */ | |
1604 | if (netif_carrier_ok(netdev) && | |
1605 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | |
1606 | /* disable receives */ | |
1607 | rctl = er32(RCTL); | |
1608 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
318a94d6 | 1609 | adapter->flags |= FLAG_RX_RESTART_NOW; |
bc7f75fa AK |
1610 | } |
1611 | /* guard against interrupt when we're going down */ | |
1612 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1613 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1614 | } | |
1615 | ||
288379f0 | 1616 | if (napi_schedule_prep(&adapter->napi)) { |
bc7f75fa AK |
1617 | adapter->total_tx_bytes = 0; |
1618 | adapter->total_tx_packets = 0; | |
1619 | adapter->total_rx_bytes = 0; | |
1620 | adapter->total_rx_packets = 0; | |
288379f0 | 1621 | __napi_schedule(&adapter->napi); |
bc7f75fa AK |
1622 | } |
1623 | ||
1624 | return IRQ_HANDLED; | |
1625 | } | |
1626 | ||
4662e82b BA |
1627 | static irqreturn_t e1000_msix_other(int irq, void *data) |
1628 | { | |
1629 | struct net_device *netdev = data; | |
1630 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1631 | struct e1000_hw *hw = &adapter->hw; | |
1632 | u32 icr = er32(ICR); | |
1633 | ||
1634 | if (!(icr & E1000_ICR_INT_ASSERTED)) { | |
a3c69fef JB |
1635 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
1636 | ew32(IMS, E1000_IMS_OTHER); | |
4662e82b BA |
1637 | return IRQ_NONE; |
1638 | } | |
1639 | ||
1640 | if (icr & adapter->eiac_mask) | |
1641 | ew32(ICS, (icr & adapter->eiac_mask)); | |
1642 | ||
1643 | if (icr & E1000_ICR_OTHER) { | |
1644 | if (!(icr & E1000_ICR_LSC)) | |
1645 | goto no_link_interrupt; | |
1646 | hw->mac.get_link_status = 1; | |
1647 | /* guard against interrupt when we're going down */ | |
1648 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
1649 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | |
1650 | } | |
1651 | ||
1652 | no_link_interrupt: | |
a3c69fef JB |
1653 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
1654 | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); | |
4662e82b BA |
1655 | |
1656 | return IRQ_HANDLED; | |
1657 | } | |
1658 | ||
1659 | ||
1660 | static irqreturn_t e1000_intr_msix_tx(int irq, void *data) | |
1661 | { | |
1662 | struct net_device *netdev = data; | |
1663 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1664 | struct e1000_hw *hw = &adapter->hw; | |
1665 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1666 | ||
1667 | ||
1668 | adapter->total_tx_bytes = 0; | |
1669 | adapter->total_tx_packets = 0; | |
1670 | ||
1671 | if (!e1000_clean_tx_irq(adapter)) | |
1672 | /* Ring was not completely cleaned, so fire another interrupt */ | |
1673 | ew32(ICS, tx_ring->ims_val); | |
1674 | ||
1675 | return IRQ_HANDLED; | |
1676 | } | |
1677 | ||
1678 | static irqreturn_t e1000_intr_msix_rx(int irq, void *data) | |
1679 | { | |
1680 | struct net_device *netdev = data; | |
1681 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
1682 | ||
1683 | /* Write the ITR value calculated at the end of the | |
1684 | * previous interrupt. | |
1685 | */ | |
1686 | if (adapter->rx_ring->set_itr) { | |
1687 | writel(1000000000 / (adapter->rx_ring->itr_val * 256), | |
1688 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | |
1689 | adapter->rx_ring->set_itr = 0; | |
1690 | } | |
1691 | ||
288379f0 | 1692 | if (napi_schedule_prep(&adapter->napi)) { |
4662e82b BA |
1693 | adapter->total_rx_bytes = 0; |
1694 | adapter->total_rx_packets = 0; | |
288379f0 | 1695 | __napi_schedule(&adapter->napi); |
4662e82b BA |
1696 | } |
1697 | return IRQ_HANDLED; | |
1698 | } | |
1699 | ||
1700 | /** | |
1701 | * e1000_configure_msix - Configure MSI-X hardware | |
1702 | * | |
1703 | * e1000_configure_msix sets up the hardware to properly | |
1704 | * generate MSI-X interrupts. | |
1705 | **/ | |
1706 | static void e1000_configure_msix(struct e1000_adapter *adapter) | |
1707 | { | |
1708 | struct e1000_hw *hw = &adapter->hw; | |
1709 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
1710 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
1711 | int vector = 0; | |
1712 | u32 ctrl_ext, ivar = 0; | |
1713 | ||
1714 | adapter->eiac_mask = 0; | |
1715 | ||
1716 | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ | |
1717 | if (hw->mac.type == e1000_82574) { | |
1718 | u32 rfctl = er32(RFCTL); | |
1719 | rfctl |= E1000_RFCTL_ACK_DIS; | |
1720 | ew32(RFCTL, rfctl); | |
1721 | } | |
1722 | ||
1723 | #define E1000_IVAR_INT_ALLOC_VALID 0x8 | |
1724 | /* Configure Rx vector */ | |
1725 | rx_ring->ims_val = E1000_IMS_RXQ0; | |
1726 | adapter->eiac_mask |= rx_ring->ims_val; | |
1727 | if (rx_ring->itr_val) | |
1728 | writel(1000000000 / (rx_ring->itr_val * 256), | |
1729 | hw->hw_addr + rx_ring->itr_register); | |
1730 | else | |
1731 | writel(1, hw->hw_addr + rx_ring->itr_register); | |
1732 | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; | |
1733 | ||
1734 | /* Configure Tx vector */ | |
1735 | tx_ring->ims_val = E1000_IMS_TXQ0; | |
1736 | vector++; | |
1737 | if (tx_ring->itr_val) | |
1738 | writel(1000000000 / (tx_ring->itr_val * 256), | |
1739 | hw->hw_addr + tx_ring->itr_register); | |
1740 | else | |
1741 | writel(1, hw->hw_addr + tx_ring->itr_register); | |
1742 | adapter->eiac_mask |= tx_ring->ims_val; | |
1743 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); | |
1744 | ||
1745 | /* set vector for Other Causes, e.g. link changes */ | |
1746 | vector++; | |
1747 | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); | |
1748 | if (rx_ring->itr_val) | |
1749 | writel(1000000000 / (rx_ring->itr_val * 256), | |
1750 | hw->hw_addr + E1000_EITR_82574(vector)); | |
1751 | else | |
1752 | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); | |
1753 | ||
1754 | /* Cause Tx interrupts on every write back */ | |
1755 | ivar |= (1 << 31); | |
1756 | ||
1757 | ew32(IVAR, ivar); | |
1758 | ||
1759 | /* enable MSI-X PBA support */ | |
1760 | ctrl_ext = er32(CTRL_EXT); | |
1761 | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; | |
1762 | ||
1763 | /* Auto-Mask Other interrupts upon ICR read */ | |
1764 | #define E1000_EIAC_MASK_82574 0x01F00000 | |
1765 | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); | |
1766 | ctrl_ext |= E1000_CTRL_EXT_EIAME; | |
1767 | ew32(CTRL_EXT, ctrl_ext); | |
1768 | e1e_flush(); | |
1769 | } | |
1770 | ||
1771 | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) | |
1772 | { | |
1773 | if (adapter->msix_entries) { | |
1774 | pci_disable_msix(adapter->pdev); | |
1775 | kfree(adapter->msix_entries); | |
1776 | adapter->msix_entries = NULL; | |
1777 | } else if (adapter->flags & FLAG_MSI_ENABLED) { | |
1778 | pci_disable_msi(adapter->pdev); | |
1779 | adapter->flags &= ~FLAG_MSI_ENABLED; | |
1780 | } | |
4662e82b BA |
1781 | } |
1782 | ||
1783 | /** | |
1784 | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported | |
1785 | * | |
1786 | * Attempt to configure interrupts using the best available | |
1787 | * capabilities of the hardware and kernel. | |
1788 | **/ | |
1789 | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) | |
1790 | { | |
1791 | int err; | |
8e86acd7 | 1792 | int i; |
4662e82b BA |
1793 | |
1794 | switch (adapter->int_mode) { | |
1795 | case E1000E_INT_MODE_MSIX: | |
1796 | if (adapter->flags & FLAG_HAS_MSIX) { | |
8e86acd7 JK |
1797 | adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ |
1798 | adapter->msix_entries = kcalloc(adapter->num_vectors, | |
4662e82b BA |
1799 | sizeof(struct msix_entry), |
1800 | GFP_KERNEL); | |
1801 | if (adapter->msix_entries) { | |
8e86acd7 | 1802 | for (i = 0; i < adapter->num_vectors; i++) |
4662e82b BA |
1803 | adapter->msix_entries[i].entry = i; |
1804 | ||
1805 | err = pci_enable_msix(adapter->pdev, | |
1806 | adapter->msix_entries, | |
8e86acd7 JK |
1807 | adapter->num_vectors); |
1808 | if (err == 0) { | |
4662e82b | 1809 | return; |
8e86acd7 | 1810 | } |
4662e82b BA |
1811 | } |
1812 | /* MSI-X failed, so fall through and try MSI */ | |
1813 | e_err("Failed to initialize MSI-X interrupts. " | |
1814 | "Falling back to MSI interrupts.\n"); | |
1815 | e1000e_reset_interrupt_capability(adapter); | |
1816 | } | |
1817 | adapter->int_mode = E1000E_INT_MODE_MSI; | |
1818 | /* Fall through */ | |
1819 | case E1000E_INT_MODE_MSI: | |
1820 | if (!pci_enable_msi(adapter->pdev)) { | |
1821 | adapter->flags |= FLAG_MSI_ENABLED; | |
1822 | } else { | |
1823 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | |
1824 | e_err("Failed to initialize MSI interrupts. Falling " | |
1825 | "back to legacy interrupts.\n"); | |
1826 | } | |
1827 | /* Fall through */ | |
1828 | case E1000E_INT_MODE_LEGACY: | |
1829 | /* Don't do anything; this is the system default */ | |
1830 | break; | |
1831 | } | |
8e86acd7 JK |
1832 | |
1833 | /* store the number of vectors being used */ | |
1834 | adapter->num_vectors = 1; | |
4662e82b BA |
1835 | } |
1836 | ||
1837 | /** | |
1838 | * e1000_request_msix - Initialize MSI-X interrupts | |
1839 | * | |
1840 | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the | |
1841 | * kernel. | |
1842 | **/ | |
1843 | static int e1000_request_msix(struct e1000_adapter *adapter) | |
1844 | { | |
1845 | struct net_device *netdev = adapter->netdev; | |
1846 | int err = 0, vector = 0; | |
1847 | ||
1848 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | |
cb7b48f6 | 1849 | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); |
4662e82b BA |
1850 | else |
1851 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | |
1852 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1853 | e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
4662e82b BA |
1854 | netdev); |
1855 | if (err) | |
1856 | goto out; | |
1857 | adapter->rx_ring->itr_register = E1000_EITR_82574(vector); | |
1858 | adapter->rx_ring->itr_val = adapter->itr; | |
1859 | vector++; | |
1860 | ||
1861 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | |
cb7b48f6 | 1862 | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); |
4662e82b BA |
1863 | else |
1864 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | |
1865 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1866 | e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
4662e82b BA |
1867 | netdev); |
1868 | if (err) | |
1869 | goto out; | |
1870 | adapter->tx_ring->itr_register = E1000_EITR_82574(vector); | |
1871 | adapter->tx_ring->itr_val = adapter->itr; | |
1872 | vector++; | |
1873 | ||
1874 | err = request_irq(adapter->msix_entries[vector].vector, | |
a0607fd3 | 1875 | e1000_msix_other, 0, netdev->name, netdev); |
4662e82b BA |
1876 | if (err) |
1877 | goto out; | |
1878 | ||
1879 | e1000_configure_msix(adapter); | |
1880 | return 0; | |
1881 | out: | |
1882 | return err; | |
1883 | } | |
1884 | ||
f8d59f78 BA |
1885 | /** |
1886 | * e1000_request_irq - initialize interrupts | |
1887 | * | |
1888 | * Attempts to configure interrupts using the best available | |
1889 | * capabilities of the hardware and kernel. | |
1890 | **/ | |
bc7f75fa AK |
1891 | static int e1000_request_irq(struct e1000_adapter *adapter) |
1892 | { | |
1893 | struct net_device *netdev = adapter->netdev; | |
bc7f75fa AK |
1894 | int err; |
1895 | ||
4662e82b BA |
1896 | if (adapter->msix_entries) { |
1897 | err = e1000_request_msix(adapter); | |
1898 | if (!err) | |
1899 | return err; | |
1900 | /* fall back to MSI */ | |
1901 | e1000e_reset_interrupt_capability(adapter); | |
1902 | adapter->int_mode = E1000E_INT_MODE_MSI; | |
1903 | e1000e_set_interrupt_capability(adapter); | |
bc7f75fa | 1904 | } |
4662e82b | 1905 | if (adapter->flags & FLAG_MSI_ENABLED) { |
a0607fd3 | 1906 | err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, |
4662e82b BA |
1907 | netdev->name, netdev); |
1908 | if (!err) | |
1909 | return err; | |
bc7f75fa | 1910 | |
4662e82b BA |
1911 | /* fall back to legacy interrupt */ |
1912 | e1000e_reset_interrupt_capability(adapter); | |
1913 | adapter->int_mode = E1000E_INT_MODE_LEGACY; | |
bc7f75fa AK |
1914 | } |
1915 | ||
a0607fd3 | 1916 | err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, |
4662e82b BA |
1917 | netdev->name, netdev); |
1918 | if (err) | |
1919 | e_err("Unable to allocate interrupt, Error: %d\n", err); | |
1920 | ||
bc7f75fa AK |
1921 | return err; |
1922 | } | |
1923 | ||
1924 | static void e1000_free_irq(struct e1000_adapter *adapter) | |
1925 | { | |
1926 | struct net_device *netdev = adapter->netdev; | |
1927 | ||
4662e82b BA |
1928 | if (adapter->msix_entries) { |
1929 | int vector = 0; | |
1930 | ||
1931 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1932 | vector++; | |
1933 | ||
1934 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1935 | vector++; | |
1936 | ||
1937 | /* Other Causes interrupt vector */ | |
1938 | free_irq(adapter->msix_entries[vector].vector, netdev); | |
1939 | return; | |
bc7f75fa | 1940 | } |
4662e82b BA |
1941 | |
1942 | free_irq(adapter->pdev->irq, netdev); | |
bc7f75fa AK |
1943 | } |
1944 | ||
1945 | /** | |
1946 | * e1000_irq_disable - Mask off interrupt generation on the NIC | |
1947 | **/ | |
1948 | static void e1000_irq_disable(struct e1000_adapter *adapter) | |
1949 | { | |
1950 | struct e1000_hw *hw = &adapter->hw; | |
1951 | ||
bc7f75fa | 1952 | ew32(IMC, ~0); |
4662e82b BA |
1953 | if (adapter->msix_entries) |
1954 | ew32(EIAC_82574, 0); | |
bc7f75fa | 1955 | e1e_flush(); |
8e86acd7 JK |
1956 | |
1957 | if (adapter->msix_entries) { | |
1958 | int i; | |
1959 | for (i = 0; i < adapter->num_vectors; i++) | |
1960 | synchronize_irq(adapter->msix_entries[i].vector); | |
1961 | } else { | |
1962 | synchronize_irq(adapter->pdev->irq); | |
1963 | } | |
bc7f75fa AK |
1964 | } |
1965 | ||
1966 | /** | |
1967 | * e1000_irq_enable - Enable default interrupt generation settings | |
1968 | **/ | |
1969 | static void e1000_irq_enable(struct e1000_adapter *adapter) | |
1970 | { | |
1971 | struct e1000_hw *hw = &adapter->hw; | |
1972 | ||
4662e82b BA |
1973 | if (adapter->msix_entries) { |
1974 | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); | |
1975 | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); | |
1976 | } else { | |
1977 | ew32(IMS, IMS_ENABLE_MASK); | |
1978 | } | |
74ef9c39 | 1979 | e1e_flush(); |
bc7f75fa AK |
1980 | } |
1981 | ||
1982 | /** | |
1983 | * e1000_get_hw_control - get control of the h/w from f/w | |
1984 | * @adapter: address of board private structure | |
1985 | * | |
489815ce | 1986 | * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
bc7f75fa AK |
1987 | * For ASF and Pass Through versions of f/w this means that |
1988 | * the driver is loaded. For AMT version (only with 82573) | |
1989 | * of the f/w this means that the network i/f is open. | |
1990 | **/ | |
1991 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | |
1992 | { | |
1993 | struct e1000_hw *hw = &adapter->hw; | |
1994 | u32 ctrl_ext; | |
1995 | u32 swsm; | |
1996 | ||
1997 | /* Let firmware know the driver has taken over */ | |
1998 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | |
1999 | swsm = er32(SWSM); | |
2000 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | |
2001 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | |
2002 | ctrl_ext = er32(CTRL_EXT); | |
ad68076e | 2003 | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
bc7f75fa AK |
2004 | } |
2005 | } | |
2006 | ||
2007 | /** | |
2008 | * e1000_release_hw_control - release control of the h/w to f/w | |
2009 | * @adapter: address of board private structure | |
2010 | * | |
489815ce | 2011 | * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
bc7f75fa AK |
2012 | * For ASF and Pass Through versions of f/w this means that the |
2013 | * driver is no longer loaded. For AMT version (only with 82573) i | |
2014 | * of the f/w this means that the network i/f is closed. | |
2015 | * | |
2016 | **/ | |
2017 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | |
2018 | { | |
2019 | struct e1000_hw *hw = &adapter->hw; | |
2020 | u32 ctrl_ext; | |
2021 | u32 swsm; | |
2022 | ||
2023 | /* Let firmware taken over control of h/w */ | |
2024 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | |
2025 | swsm = er32(SWSM); | |
2026 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | |
2027 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | |
2028 | ctrl_ext = er32(CTRL_EXT); | |
ad68076e | 2029 | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
bc7f75fa AK |
2030 | } |
2031 | } | |
2032 | ||
bc7f75fa AK |
2033 | /** |
2034 | * @e1000_alloc_ring - allocate memory for a ring structure | |
2035 | **/ | |
2036 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | |
2037 | struct e1000_ring *ring) | |
2038 | { | |
2039 | struct pci_dev *pdev = adapter->pdev; | |
2040 | ||
2041 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | |
2042 | GFP_KERNEL); | |
2043 | if (!ring->desc) | |
2044 | return -ENOMEM; | |
2045 | ||
2046 | return 0; | |
2047 | } | |
2048 | ||
2049 | /** | |
2050 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | |
2051 | * @adapter: board private structure | |
2052 | * | |
2053 | * Return 0 on success, negative on failure | |
2054 | **/ | |
2055 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | |
2056 | { | |
2057 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
2058 | int err = -ENOMEM, size; | |
2059 | ||
2060 | size = sizeof(struct e1000_buffer) * tx_ring->count; | |
2061 | tx_ring->buffer_info = vmalloc(size); | |
2062 | if (!tx_ring->buffer_info) | |
2063 | goto err; | |
2064 | memset(tx_ring->buffer_info, 0, size); | |
2065 | ||
2066 | /* round up to nearest 4K */ | |
2067 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | |
2068 | tx_ring->size = ALIGN(tx_ring->size, 4096); | |
2069 | ||
2070 | err = e1000_alloc_ring_dma(adapter, tx_ring); | |
2071 | if (err) | |
2072 | goto err; | |
2073 | ||
2074 | tx_ring->next_to_use = 0; | |
2075 | tx_ring->next_to_clean = 0; | |
bc7f75fa AK |
2076 | |
2077 | return 0; | |
2078 | err: | |
2079 | vfree(tx_ring->buffer_info); | |
44defeb3 | 2080 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
bc7f75fa AK |
2081 | return err; |
2082 | } | |
2083 | ||
2084 | /** | |
2085 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | |
2086 | * @adapter: board private structure | |
2087 | * | |
2088 | * Returns 0 on success, negative on failure | |
2089 | **/ | |
2090 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | |
2091 | { | |
2092 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
47f44e40 AK |
2093 | struct e1000_buffer *buffer_info; |
2094 | int i, size, desc_len, err = -ENOMEM; | |
bc7f75fa AK |
2095 | |
2096 | size = sizeof(struct e1000_buffer) * rx_ring->count; | |
2097 | rx_ring->buffer_info = vmalloc(size); | |
2098 | if (!rx_ring->buffer_info) | |
2099 | goto err; | |
2100 | memset(rx_ring->buffer_info, 0, size); | |
2101 | ||
47f44e40 AK |
2102 | for (i = 0; i < rx_ring->count; i++) { |
2103 | buffer_info = &rx_ring->buffer_info[i]; | |
2104 | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | |
2105 | sizeof(struct e1000_ps_page), | |
2106 | GFP_KERNEL); | |
2107 | if (!buffer_info->ps_pages) | |
2108 | goto err_pages; | |
2109 | } | |
bc7f75fa AK |
2110 | |
2111 | desc_len = sizeof(union e1000_rx_desc_packet_split); | |
2112 | ||
2113 | /* Round up to nearest 4K */ | |
2114 | rx_ring->size = rx_ring->count * desc_len; | |
2115 | rx_ring->size = ALIGN(rx_ring->size, 4096); | |
2116 | ||
2117 | err = e1000_alloc_ring_dma(adapter, rx_ring); | |
2118 | if (err) | |
47f44e40 | 2119 | goto err_pages; |
bc7f75fa AK |
2120 | |
2121 | rx_ring->next_to_clean = 0; | |
2122 | rx_ring->next_to_use = 0; | |
2123 | rx_ring->rx_skb_top = NULL; | |
2124 | ||
2125 | return 0; | |
47f44e40 AK |
2126 | |
2127 | err_pages: | |
2128 | for (i = 0; i < rx_ring->count; i++) { | |
2129 | buffer_info = &rx_ring->buffer_info[i]; | |
2130 | kfree(buffer_info->ps_pages); | |
2131 | } | |
bc7f75fa AK |
2132 | err: |
2133 | vfree(rx_ring->buffer_info); | |
44defeb3 | 2134 | e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
bc7f75fa AK |
2135 | return err; |
2136 | } | |
2137 | ||
2138 | /** | |
2139 | * e1000_clean_tx_ring - Free Tx Buffers | |
2140 | * @adapter: board private structure | |
2141 | **/ | |
2142 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | |
2143 | { | |
2144 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
2145 | struct e1000_buffer *buffer_info; | |
2146 | unsigned long size; | |
2147 | unsigned int i; | |
2148 | ||
2149 | for (i = 0; i < tx_ring->count; i++) { | |
2150 | buffer_info = &tx_ring->buffer_info[i]; | |
2151 | e1000_put_txbuf(adapter, buffer_info); | |
2152 | } | |
2153 | ||
2154 | size = sizeof(struct e1000_buffer) * tx_ring->count; | |
2155 | memset(tx_ring->buffer_info, 0, size); | |
2156 | ||
2157 | memset(tx_ring->desc, 0, tx_ring->size); | |
2158 | ||
2159 | tx_ring->next_to_use = 0; | |
2160 | tx_ring->next_to_clean = 0; | |
2161 | ||
2162 | writel(0, adapter->hw.hw_addr + tx_ring->head); | |
2163 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | |
2164 | } | |
2165 | ||
2166 | /** | |
2167 | * e1000e_free_tx_resources - Free Tx Resources per Queue | |
2168 | * @adapter: board private structure | |
2169 | * | |
2170 | * Free all transmit software resources | |
2171 | **/ | |
2172 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | |
2173 | { | |
2174 | struct pci_dev *pdev = adapter->pdev; | |
2175 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
2176 | ||
2177 | e1000_clean_tx_ring(adapter); | |
2178 | ||
2179 | vfree(tx_ring->buffer_info); | |
2180 | tx_ring->buffer_info = NULL; | |
2181 | ||
2182 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | |
2183 | tx_ring->dma); | |
2184 | tx_ring->desc = NULL; | |
2185 | } | |
2186 | ||
2187 | /** | |
2188 | * e1000e_free_rx_resources - Free Rx Resources | |
2189 | * @adapter: board private structure | |
2190 | * | |
2191 | * Free all receive software resources | |
2192 | **/ | |
2193 | ||
2194 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | |
2195 | { | |
2196 | struct pci_dev *pdev = adapter->pdev; | |
2197 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
47f44e40 | 2198 | int i; |
bc7f75fa AK |
2199 | |
2200 | e1000_clean_rx_ring(adapter); | |
2201 | ||
47f44e40 AK |
2202 | for (i = 0; i < rx_ring->count; i++) { |
2203 | kfree(rx_ring->buffer_info[i].ps_pages); | |
2204 | } | |
2205 | ||
bc7f75fa AK |
2206 | vfree(rx_ring->buffer_info); |
2207 | rx_ring->buffer_info = NULL; | |
2208 | ||
bc7f75fa AK |
2209 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
2210 | rx_ring->dma); | |
2211 | rx_ring->desc = NULL; | |
2212 | } | |
2213 | ||
2214 | /** | |
2215 | * e1000_update_itr - update the dynamic ITR value based on statistics | |
489815ce AK |
2216 | * @adapter: pointer to adapter |
2217 | * @itr_setting: current adapter->itr | |
2218 | * @packets: the number of packets during this measurement interval | |
2219 | * @bytes: the number of bytes during this measurement interval | |
2220 | * | |
bc7f75fa AK |
2221 | * Stores a new ITR value based on packets and byte |
2222 | * counts during the last interrupt. The advantage of per interrupt | |
2223 | * computation is faster updates and more accurate ITR for the current | |
2224 | * traffic pattern. Constants in this function were computed | |
2225 | * based on theoretical maximum wire speed and thresholds were set based | |
2226 | * on testing data as well as attempting to minimize response time | |
4662e82b BA |
2227 | * while increasing bulk throughput. This functionality is controlled |
2228 | * by the InterruptThrottleRate module parameter. | |
bc7f75fa AK |
2229 | **/ |
2230 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | |
2231 | u16 itr_setting, int packets, | |
2232 | int bytes) | |
2233 | { | |
2234 | unsigned int retval = itr_setting; | |
2235 | ||
2236 | if (packets == 0) | |
2237 | goto update_itr_done; | |
2238 | ||
2239 | switch (itr_setting) { | |
2240 | case lowest_latency: | |
2241 | /* handle TSO and jumbo frames */ | |
2242 | if (bytes/packets > 8000) | |
2243 | retval = bulk_latency; | |
2244 | else if ((packets < 5) && (bytes > 512)) { | |
2245 | retval = low_latency; | |
2246 | } | |
2247 | break; | |
2248 | case low_latency: /* 50 usec aka 20000 ints/s */ | |
2249 | if (bytes > 10000) { | |
2250 | /* this if handles the TSO accounting */ | |
2251 | if (bytes/packets > 8000) { | |
2252 | retval = bulk_latency; | |
2253 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | |
2254 | retval = bulk_latency; | |
2255 | } else if ((packets > 35)) { | |
2256 | retval = lowest_latency; | |
2257 | } | |
2258 | } else if (bytes/packets > 2000) { | |
2259 | retval = bulk_latency; | |
2260 | } else if (packets <= 2 && bytes < 512) { | |
2261 | retval = lowest_latency; | |
2262 | } | |
2263 | break; | |
2264 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | |
2265 | if (bytes > 25000) { | |
2266 | if (packets > 35) { | |
2267 | retval = low_latency; | |
2268 | } | |
2269 | } else if (bytes < 6000) { | |
2270 | retval = low_latency; | |
2271 | } | |
2272 | break; | |
2273 | } | |
2274 | ||
2275 | update_itr_done: | |
2276 | return retval; | |
2277 | } | |
2278 | ||
2279 | static void e1000_set_itr(struct e1000_adapter *adapter) | |
2280 | { | |
2281 | struct e1000_hw *hw = &adapter->hw; | |
2282 | u16 current_itr; | |
2283 | u32 new_itr = adapter->itr; | |
2284 | ||
2285 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | |
2286 | if (adapter->link_speed != SPEED_1000) { | |
2287 | current_itr = 0; | |
2288 | new_itr = 4000; | |
2289 | goto set_itr_now; | |
2290 | } | |
2291 | ||
2292 | adapter->tx_itr = e1000_update_itr(adapter, | |
2293 | adapter->tx_itr, | |
2294 | adapter->total_tx_packets, | |
2295 | adapter->total_tx_bytes); | |
2296 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | |
2297 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | |
2298 | adapter->tx_itr = low_latency; | |
2299 | ||
2300 | adapter->rx_itr = e1000_update_itr(adapter, | |
2301 | adapter->rx_itr, | |
2302 | adapter->total_rx_packets, | |
2303 | adapter->total_rx_bytes); | |
2304 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | |
2305 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | |
2306 | adapter->rx_itr = low_latency; | |
2307 | ||
2308 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | |
2309 | ||
2310 | switch (current_itr) { | |
2311 | /* counts and packets in update_itr are dependent on these numbers */ | |
2312 | case lowest_latency: | |
2313 | new_itr = 70000; | |
2314 | break; | |
2315 | case low_latency: | |
2316 | new_itr = 20000; /* aka hwitr = ~200 */ | |
2317 | break; | |
2318 | case bulk_latency: | |
2319 | new_itr = 4000; | |
2320 | break; | |
2321 | default: | |
2322 | break; | |
2323 | } | |
2324 | ||
2325 | set_itr_now: | |
2326 | if (new_itr != adapter->itr) { | |
ad68076e BA |
2327 | /* |
2328 | * this attempts to bias the interrupt rate towards Bulk | |
bc7f75fa | 2329 | * by adding intermediate steps when interrupt rate is |
ad68076e BA |
2330 | * increasing |
2331 | */ | |
bc7f75fa AK |
2332 | new_itr = new_itr > adapter->itr ? |
2333 | min(adapter->itr + (new_itr >> 2), new_itr) : | |
2334 | new_itr; | |
2335 | adapter->itr = new_itr; | |
4662e82b BA |
2336 | adapter->rx_ring->itr_val = new_itr; |
2337 | if (adapter->msix_entries) | |
2338 | adapter->rx_ring->set_itr = 1; | |
2339 | else | |
2340 | ew32(ITR, 1000000000 / (new_itr * 256)); | |
bc7f75fa AK |
2341 | } |
2342 | } | |
2343 | ||
4662e82b BA |
2344 | /** |
2345 | * e1000_alloc_queues - Allocate memory for all rings | |
2346 | * @adapter: board private structure to initialize | |
2347 | **/ | |
2348 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | |
2349 | { | |
2350 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | |
2351 | if (!adapter->tx_ring) | |
2352 | goto err; | |
2353 | ||
2354 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | |
2355 | if (!adapter->rx_ring) | |
2356 | goto err; | |
2357 | ||
2358 | return 0; | |
2359 | err: | |
2360 | e_err("Unable to allocate memory for queues\n"); | |
2361 | kfree(adapter->rx_ring); | |
2362 | kfree(adapter->tx_ring); | |
2363 | return -ENOMEM; | |
2364 | } | |
2365 | ||
bc7f75fa AK |
2366 | /** |
2367 | * e1000_clean - NAPI Rx polling callback | |
ad68076e | 2368 | * @napi: struct associated with this polling callback |
489815ce | 2369 | * @budget: amount of packets driver is allowed to process this poll |
bc7f75fa AK |
2370 | **/ |
2371 | static int e1000_clean(struct napi_struct *napi, int budget) | |
2372 | { | |
2373 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | |
4662e82b | 2374 | struct e1000_hw *hw = &adapter->hw; |
bc7f75fa | 2375 | struct net_device *poll_dev = adapter->netdev; |
679e8a0f | 2376 | int tx_cleaned = 1, work_done = 0; |
bc7f75fa | 2377 | |
4cf1653a | 2378 | adapter = netdev_priv(poll_dev); |
bc7f75fa | 2379 | |
4662e82b BA |
2380 | if (adapter->msix_entries && |
2381 | !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) | |
2382 | goto clean_rx; | |
2383 | ||
92af3e95 | 2384 | tx_cleaned = e1000_clean_tx_irq(adapter); |
bc7f75fa | 2385 | |
4662e82b | 2386 | clean_rx: |
bc7f75fa | 2387 | adapter->clean_rx(adapter, &work_done, budget); |
d2c7ddd6 | 2388 | |
12d04a3c | 2389 | if (!tx_cleaned) |
d2c7ddd6 | 2390 | work_done = budget; |
bc7f75fa | 2391 | |
53e52c72 DM |
2392 | /* If budget not fully consumed, exit the polling mode */ |
2393 | if (work_done < budget) { | |
bc7f75fa AK |
2394 | if (adapter->itr_setting & 3) |
2395 | e1000_set_itr(adapter); | |
288379f0 | 2396 | napi_complete(napi); |
a3c69fef JB |
2397 | if (!test_bit(__E1000_DOWN, &adapter->state)) { |
2398 | if (adapter->msix_entries) | |
2399 | ew32(IMS, adapter->rx_ring->ims_val); | |
2400 | else | |
2401 | e1000_irq_enable(adapter); | |
2402 | } | |
bc7f75fa AK |
2403 | } |
2404 | ||
2405 | return work_done; | |
2406 | } | |
2407 | ||
2408 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | |
2409 | { | |
2410 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2411 | struct e1000_hw *hw = &adapter->hw; | |
2412 | u32 vfta, index; | |
2413 | ||
2414 | /* don't update vlan cookie if already programmed */ | |
2415 | if ((adapter->hw.mng_cookie.status & | |
2416 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
2417 | (vid == adapter->mng_vlan_id)) | |
2418 | return; | |
caaddaf8 | 2419 | |
bc7f75fa | 2420 | /* add VID to filter table */ |
caaddaf8 BA |
2421 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
2422 | index = (vid >> 5) & 0x7F; | |
2423 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | |
2424 | vfta |= (1 << (vid & 0x1F)); | |
2425 | hw->mac.ops.write_vfta(hw, index, vfta); | |
2426 | } | |
bc7f75fa AK |
2427 | } |
2428 | ||
2429 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | |
2430 | { | |
2431 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2432 | struct e1000_hw *hw = &adapter->hw; | |
2433 | u32 vfta, index; | |
2434 | ||
74ef9c39 JB |
2435 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2436 | e1000_irq_disable(adapter); | |
bc7f75fa | 2437 | vlan_group_set_device(adapter->vlgrp, vid, NULL); |
74ef9c39 JB |
2438 | |
2439 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
2440 | e1000_irq_enable(adapter); | |
bc7f75fa AK |
2441 | |
2442 | if ((adapter->hw.mng_cookie.status & | |
2443 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
2444 | (vid == adapter->mng_vlan_id)) { | |
2445 | /* release control to f/w */ | |
2446 | e1000_release_hw_control(adapter); | |
2447 | return; | |
2448 | } | |
2449 | ||
2450 | /* remove VID from filter table */ | |
caaddaf8 BA |
2451 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
2452 | index = (vid >> 5) & 0x7F; | |
2453 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | |
2454 | vfta &= ~(1 << (vid & 0x1F)); | |
2455 | hw->mac.ops.write_vfta(hw, index, vfta); | |
2456 | } | |
bc7f75fa AK |
2457 | } |
2458 | ||
2459 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | |
2460 | { | |
2461 | struct net_device *netdev = adapter->netdev; | |
2462 | u16 vid = adapter->hw.mng_cookie.vlan_id; | |
2463 | u16 old_vid = adapter->mng_vlan_id; | |
2464 | ||
2465 | if (!adapter->vlgrp) | |
2466 | return; | |
2467 | ||
2468 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | |
2469 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
2470 | if (adapter->hw.mng_cookie.status & | |
2471 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | |
2472 | e1000_vlan_rx_add_vid(netdev, vid); | |
2473 | adapter->mng_vlan_id = vid; | |
2474 | } | |
2475 | ||
2476 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | |
2477 | (vid != old_vid) && | |
2478 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | |
2479 | e1000_vlan_rx_kill_vid(netdev, old_vid); | |
2480 | } else { | |
2481 | adapter->mng_vlan_id = vid; | |
2482 | } | |
2483 | } | |
2484 | ||
2485 | ||
2486 | static void e1000_vlan_rx_register(struct net_device *netdev, | |
2487 | struct vlan_group *grp) | |
2488 | { | |
2489 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2490 | struct e1000_hw *hw = &adapter->hw; | |
2491 | u32 ctrl, rctl; | |
2492 | ||
74ef9c39 JB |
2493 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2494 | e1000_irq_disable(adapter); | |
bc7f75fa AK |
2495 | adapter->vlgrp = grp; |
2496 | ||
2497 | if (grp) { | |
2498 | /* enable VLAN tag insert/strip */ | |
2499 | ctrl = er32(CTRL); | |
2500 | ctrl |= E1000_CTRL_VME; | |
2501 | ew32(CTRL, ctrl); | |
2502 | ||
2503 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | |
2504 | /* enable VLAN receive filtering */ | |
2505 | rctl = er32(RCTL); | |
bc7f75fa AK |
2506 | rctl &= ~E1000_RCTL_CFIEN; |
2507 | ew32(RCTL, rctl); | |
2508 | e1000_update_mng_vlan(adapter); | |
2509 | } | |
2510 | } else { | |
2511 | /* disable VLAN tag insert/strip */ | |
2512 | ctrl = er32(CTRL); | |
2513 | ctrl &= ~E1000_CTRL_VME; | |
2514 | ew32(CTRL, ctrl); | |
2515 | ||
2516 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | |
bc7f75fa AK |
2517 | if (adapter->mng_vlan_id != |
2518 | (u16)E1000_MNG_VLAN_NONE) { | |
2519 | e1000_vlan_rx_kill_vid(netdev, | |
2520 | adapter->mng_vlan_id); | |
2521 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
2522 | } | |
2523 | } | |
2524 | } | |
2525 | ||
74ef9c39 JB |
2526 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
2527 | e1000_irq_enable(adapter); | |
bc7f75fa AK |
2528 | } |
2529 | ||
2530 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | |
2531 | { | |
2532 | u16 vid; | |
2533 | ||
2534 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | |
2535 | ||
2536 | if (!adapter->vlgrp) | |
2537 | return; | |
2538 | ||
2539 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | |
2540 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | |
2541 | continue; | |
2542 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | |
2543 | } | |
2544 | } | |
2545 | ||
cd791618 | 2546 | static void e1000_init_manageability_pt(struct e1000_adapter *adapter) |
bc7f75fa AK |
2547 | { |
2548 | struct e1000_hw *hw = &adapter->hw; | |
cd791618 | 2549 | u32 manc, manc2h, mdef, i, j; |
bc7f75fa AK |
2550 | |
2551 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | |
2552 | return; | |
2553 | ||
2554 | manc = er32(MANC); | |
2555 | ||
ad68076e BA |
2556 | /* |
2557 | * enable receiving management packets to the host. this will probably | |
bc7f75fa | 2558 | * generate destination unreachable messages from the host OS, but |
ad68076e BA |
2559 | * the packets will be handled on SMBUS |
2560 | */ | |
bc7f75fa AK |
2561 | manc |= E1000_MANC_EN_MNG2HOST; |
2562 | manc2h = er32(MANC2H); | |
cd791618 BA |
2563 | |
2564 | switch (hw->mac.type) { | |
2565 | default: | |
2566 | manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); | |
2567 | break; | |
2568 | case e1000_82574: | |
2569 | case e1000_82583: | |
2570 | /* | |
2571 | * Check if IPMI pass-through decision filter already exists; | |
2572 | * if so, enable it. | |
2573 | */ | |
2574 | for (i = 0, j = 0; i < 8; i++) { | |
2575 | mdef = er32(MDEF(i)); | |
2576 | ||
2577 | /* Ignore filters with anything other than IPMI ports */ | |
3b21b508 | 2578 | if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) |
cd791618 BA |
2579 | continue; |
2580 | ||
2581 | /* Enable this decision filter in MANC2H */ | |
2582 | if (mdef) | |
2583 | manc2h |= (1 << i); | |
2584 | ||
2585 | j |= mdef; | |
2586 | } | |
2587 | ||
2588 | if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) | |
2589 | break; | |
2590 | ||
2591 | /* Create new decision filter in an empty filter */ | |
2592 | for (i = 0, j = 0; i < 8; i++) | |
2593 | if (er32(MDEF(i)) == 0) { | |
2594 | ew32(MDEF(i), (E1000_MDEF_PORT_623 | | |
2595 | E1000_MDEF_PORT_664)); | |
2596 | manc2h |= (1 << 1); | |
2597 | j++; | |
2598 | break; | |
2599 | } | |
2600 | ||
2601 | if (!j) | |
2602 | e_warn("Unable to create IPMI pass-through filter\n"); | |
2603 | break; | |
2604 | } | |
2605 | ||
bc7f75fa AK |
2606 | ew32(MANC2H, manc2h); |
2607 | ew32(MANC, manc); | |
2608 | } | |
2609 | ||
2610 | /** | |
2611 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | |
2612 | * @adapter: board private structure | |
2613 | * | |
2614 | * Configure the Tx unit of the MAC after a reset. | |
2615 | **/ | |
2616 | static void e1000_configure_tx(struct e1000_adapter *adapter) | |
2617 | { | |
2618 | struct e1000_hw *hw = &adapter->hw; | |
2619 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
2620 | u64 tdba; | |
2621 | u32 tdlen, tctl, tipg, tarc; | |
2622 | u32 ipgr1, ipgr2; | |
2623 | ||
2624 | /* Setup the HW Tx Head and Tail descriptor pointers */ | |
2625 | tdba = tx_ring->dma; | |
2626 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | |
284901a9 | 2627 | ew32(TDBAL, (tdba & DMA_BIT_MASK(32))); |
bc7f75fa AK |
2628 | ew32(TDBAH, (tdba >> 32)); |
2629 | ew32(TDLEN, tdlen); | |
2630 | ew32(TDH, 0); | |
2631 | ew32(TDT, 0); | |
2632 | tx_ring->head = E1000_TDH; | |
2633 | tx_ring->tail = E1000_TDT; | |
2634 | ||
2635 | /* Set the default values for the Tx Inter Packet Gap timer */ | |
2636 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ | |
2637 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ | |
2638 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ | |
2639 | ||
2640 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | |
2641 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ | |
2642 | ||
2643 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | |
2644 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | |
2645 | ew32(TIPG, tipg); | |
2646 | ||
2647 | /* Set the Tx Interrupt Delay register */ | |
2648 | ew32(TIDV, adapter->tx_int_delay); | |
ad68076e | 2649 | /* Tx irq moderation */ |
bc7f75fa AK |
2650 | ew32(TADV, adapter->tx_abs_int_delay); |
2651 | ||
2652 | /* Program the Transmit Control Register */ | |
2653 | tctl = er32(TCTL); | |
2654 | tctl &= ~E1000_TCTL_CT; | |
2655 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | |
2656 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | |
2657 | ||
2658 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | |
e9ec2c0f | 2659 | tarc = er32(TARC(0)); |
ad68076e BA |
2660 | /* |
2661 | * set the speed mode bit, we'll clear it if we're not at | |
2662 | * gigabit link later | |
2663 | */ | |
bc7f75fa AK |
2664 | #define SPEED_MODE_BIT (1 << 21) |
2665 | tarc |= SPEED_MODE_BIT; | |
e9ec2c0f | 2666 | ew32(TARC(0), tarc); |
bc7f75fa AK |
2667 | } |
2668 | ||
2669 | /* errata: program both queues to unweighted RR */ | |
2670 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | |
e9ec2c0f | 2671 | tarc = er32(TARC(0)); |
bc7f75fa | 2672 | tarc |= 1; |
e9ec2c0f JK |
2673 | ew32(TARC(0), tarc); |
2674 | tarc = er32(TARC(1)); | |
bc7f75fa | 2675 | tarc |= 1; |
e9ec2c0f | 2676 | ew32(TARC(1), tarc); |
bc7f75fa AK |
2677 | } |
2678 | ||
bc7f75fa AK |
2679 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
2680 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | |
2681 | ||
2682 | /* only set IDE if we are delaying interrupts using the timers */ | |
2683 | if (adapter->tx_int_delay) | |
2684 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | |
2685 | ||
2686 | /* enable Report Status bit */ | |
2687 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | |
2688 | ||
2689 | ew32(TCTL, tctl); | |
2690 | ||
edfea6e6 | 2691 | e1000e_config_collision_dist(hw); |
bc7f75fa AK |
2692 | } |
2693 | ||
2694 | /** | |
2695 | * e1000_setup_rctl - configure the receive control registers | |
2696 | * @adapter: Board private structure | |
2697 | **/ | |
2698 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | |
2699 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | |
2700 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | |
2701 | { | |
2702 | struct e1000_hw *hw = &adapter->hw; | |
2703 | u32 rctl, rfctl; | |
2704 | u32 psrctl = 0; | |
2705 | u32 pages = 0; | |
2706 | ||
2707 | /* Program MC offset vector base */ | |
2708 | rctl = er32(RCTL); | |
2709 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | |
2710 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | |
2711 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | |
2712 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | |
2713 | ||
2714 | /* Do not Store bad packets */ | |
2715 | rctl &= ~E1000_RCTL_SBP; | |
2716 | ||
2717 | /* Enable Long Packet receive */ | |
2718 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | |
2719 | rctl &= ~E1000_RCTL_LPE; | |
2720 | else | |
2721 | rctl |= E1000_RCTL_LPE; | |
2722 | ||
eb7c3adb JK |
2723 | /* Some systems expect that the CRC is included in SMBUS traffic. The |
2724 | * hardware strips the CRC before sending to both SMBUS (BMC) and to | |
2725 | * host memory when this is enabled | |
2726 | */ | |
2727 | if (adapter->flags2 & FLAG2_CRC_STRIPPING) | |
2728 | rctl |= E1000_RCTL_SECRC; | |
5918bd88 | 2729 | |
a4f58f54 BA |
2730 | /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ |
2731 | if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { | |
2732 | u16 phy_data; | |
2733 | ||
2734 | e1e_rphy(hw, PHY_REG(770, 26), &phy_data); | |
2735 | phy_data &= 0xfff8; | |
2736 | phy_data |= (1 << 2); | |
2737 | e1e_wphy(hw, PHY_REG(770, 26), phy_data); | |
2738 | ||
2739 | e1e_rphy(hw, 22, &phy_data); | |
2740 | phy_data &= 0x0fff; | |
2741 | phy_data |= (1 << 14); | |
2742 | e1e_wphy(hw, 0x10, 0x2823); | |
2743 | e1e_wphy(hw, 0x11, 0x0003); | |
2744 | e1e_wphy(hw, 22, phy_data); | |
2745 | } | |
2746 | ||
d3738bb8 BA |
2747 | /* Workaround Si errata on 82579 - configure jumbo frame flow */ |
2748 | if (hw->mac.type == e1000_pch2lan) { | |
2749 | s32 ret_val; | |
2750 | ||
2751 | if (rctl & E1000_RCTL_LPE) | |
2752 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); | |
2753 | else | |
2754 | ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); | |
2755 | } | |
2756 | ||
bc7f75fa AK |
2757 | /* Setup buffer sizes */ |
2758 | rctl &= ~E1000_RCTL_SZ_4096; | |
2759 | rctl |= E1000_RCTL_BSEX; | |
2760 | switch (adapter->rx_buffer_len) { | |
bc7f75fa AK |
2761 | case 2048: |
2762 | default: | |
2763 | rctl |= E1000_RCTL_SZ_2048; | |
2764 | rctl &= ~E1000_RCTL_BSEX; | |
2765 | break; | |
2766 | case 4096: | |
2767 | rctl |= E1000_RCTL_SZ_4096; | |
2768 | break; | |
2769 | case 8192: | |
2770 | rctl |= E1000_RCTL_SZ_8192; | |
2771 | break; | |
2772 | case 16384: | |
2773 | rctl |= E1000_RCTL_SZ_16384; | |
2774 | break; | |
2775 | } | |
2776 | ||
2777 | /* | |
2778 | * 82571 and greater support packet-split where the protocol | |
2779 | * header is placed in skb->data and the packet data is | |
2780 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | |
2781 | * In the case of a non-split, skb->data is linearly filled, | |
2782 | * followed by the page buffers. Therefore, skb->data is | |
2783 | * sized to hold the largest protocol header. | |
2784 | * | |
2785 | * allocations using alloc_page take too long for regular MTU | |
2786 | * so only enable packet split for jumbo frames | |
2787 | * | |
2788 | * Using pages when the page size is greater than 16k wastes | |
2789 | * a lot of memory, since we allocate 3 pages at all times | |
2790 | * per packet. | |
2791 | */ | |
bc7f75fa | 2792 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
dbcb9fec | 2793 | if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) && |
97ac8cae | 2794 | (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
bc7f75fa | 2795 | adapter->rx_ps_pages = pages; |
97ac8cae BA |
2796 | else |
2797 | adapter->rx_ps_pages = 0; | |
bc7f75fa AK |
2798 | |
2799 | if (adapter->rx_ps_pages) { | |
2800 | /* Configure extra packet-split registers */ | |
2801 | rfctl = er32(RFCTL); | |
2802 | rfctl |= E1000_RFCTL_EXTEN; | |
ad68076e BA |
2803 | /* |
2804 | * disable packet split support for IPv6 extension headers, | |
2805 | * because some malformed IPv6 headers can hang the Rx | |
2806 | */ | |
bc7f75fa AK |
2807 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
2808 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | |
2809 | ||
2810 | ew32(RFCTL, rfctl); | |
2811 | ||
140a7480 AK |
2812 | /* Enable Packet split descriptors */ |
2813 | rctl |= E1000_RCTL_DTYP_PS; | |
bc7f75fa AK |
2814 | |
2815 | psrctl |= adapter->rx_ps_bsize0 >> | |
2816 | E1000_PSRCTL_BSIZE0_SHIFT; | |
2817 | ||
2818 | switch (adapter->rx_ps_pages) { | |
2819 | case 3: | |
2820 | psrctl |= PAGE_SIZE << | |
2821 | E1000_PSRCTL_BSIZE3_SHIFT; | |
2822 | case 2: | |
2823 | psrctl |= PAGE_SIZE << | |
2824 | E1000_PSRCTL_BSIZE2_SHIFT; | |
2825 | case 1: | |
2826 | psrctl |= PAGE_SIZE >> | |
2827 | E1000_PSRCTL_BSIZE1_SHIFT; | |
2828 | break; | |
2829 | } | |
2830 | ||
2831 | ew32(PSRCTL, psrctl); | |
2832 | } | |
2833 | ||
2834 | ew32(RCTL, rctl); | |
318a94d6 JK |
2835 | /* just started the receive unit, no need to restart */ |
2836 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | |
bc7f75fa AK |
2837 | } |
2838 | ||
2839 | /** | |
2840 | * e1000_configure_rx - Configure Receive Unit after Reset | |
2841 | * @adapter: board private structure | |
2842 | * | |
2843 | * Configure the Rx unit of the MAC after a reset. | |
2844 | **/ | |
2845 | static void e1000_configure_rx(struct e1000_adapter *adapter) | |
2846 | { | |
2847 | struct e1000_hw *hw = &adapter->hw; | |
2848 | struct e1000_ring *rx_ring = adapter->rx_ring; | |
2849 | u64 rdba; | |
2850 | u32 rdlen, rctl, rxcsum, ctrl_ext; | |
2851 | ||
2852 | if (adapter->rx_ps_pages) { | |
2853 | /* this is a 32 byte descriptor */ | |
2854 | rdlen = rx_ring->count * | |
2855 | sizeof(union e1000_rx_desc_packet_split); | |
2856 | adapter->clean_rx = e1000_clean_rx_irq_ps; | |
2857 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | |
97ac8cae BA |
2858 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
2859 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | |
2860 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | |
2861 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | |
bc7f75fa | 2862 | } else { |
97ac8cae | 2863 | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
bc7f75fa AK |
2864 | adapter->clean_rx = e1000_clean_rx_irq; |
2865 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | |
2866 | } | |
2867 | ||
2868 | /* disable receives while setting up the descriptors */ | |
2869 | rctl = er32(RCTL); | |
2870 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
2871 | e1e_flush(); | |
2872 | msleep(10); | |
2873 | ||
2874 | /* set the Receive Delay Timer Register */ | |
2875 | ew32(RDTR, adapter->rx_int_delay); | |
2876 | ||
2877 | /* irq moderation */ | |
2878 | ew32(RADV, adapter->rx_abs_int_delay); | |
2879 | if (adapter->itr_setting != 0) | |
ad68076e | 2880 | ew32(ITR, 1000000000 / (adapter->itr * 256)); |
bc7f75fa AK |
2881 | |
2882 | ctrl_ext = er32(CTRL_EXT); | |
bc7f75fa AK |
2883 | /* Auto-Mask interrupts upon ICR access */ |
2884 | ctrl_ext |= E1000_CTRL_EXT_IAME; | |
2885 | ew32(IAM, 0xffffffff); | |
2886 | ew32(CTRL_EXT, ctrl_ext); | |
2887 | e1e_flush(); | |
2888 | ||
ad68076e BA |
2889 | /* |
2890 | * Setup the HW Rx Head and Tail Descriptor Pointers and | |
2891 | * the Base and Length of the Rx Descriptor Ring | |
2892 | */ | |
bc7f75fa | 2893 | rdba = rx_ring->dma; |
284901a9 | 2894 | ew32(RDBAL, (rdba & DMA_BIT_MASK(32))); |
bc7f75fa AK |
2895 | ew32(RDBAH, (rdba >> 32)); |
2896 | ew32(RDLEN, rdlen); | |
2897 | ew32(RDH, 0); | |
2898 | ew32(RDT, 0); | |
2899 | rx_ring->head = E1000_RDH; | |
2900 | rx_ring->tail = E1000_RDT; | |
2901 | ||
2902 | /* Enable Receive Checksum Offload for TCP and UDP */ | |
2903 | rxcsum = er32(RXCSUM); | |
2904 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | |
2905 | rxcsum |= E1000_RXCSUM_TUOFL; | |
2906 | ||
ad68076e BA |
2907 | /* |
2908 | * IPv4 payload checksum for UDP fragments must be | |
2909 | * used in conjunction with packet-split. | |
2910 | */ | |
bc7f75fa AK |
2911 | if (adapter->rx_ps_pages) |
2912 | rxcsum |= E1000_RXCSUM_IPPCSE; | |
2913 | } else { | |
2914 | rxcsum &= ~E1000_RXCSUM_TUOFL; | |
2915 | /* no need to clear IPPCSE as it defaults to 0 */ | |
2916 | } | |
2917 | ew32(RXCSUM, rxcsum); | |
2918 | ||
ad68076e BA |
2919 | /* |
2920 | * Enable early receives on supported devices, only takes effect when | |
bc7f75fa | 2921 | * packet size is equal or larger than the specified value (in 8 byte |
ad68076e BA |
2922 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
2923 | */ | |
53ec5498 BA |
2924 | if (adapter->flags & FLAG_HAS_ERT) { |
2925 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | |
2926 | u32 rxdctl = er32(RXDCTL(0)); | |
2927 | ew32(RXDCTL(0), rxdctl | 0x3); | |
2928 | ew32(ERT, E1000_ERT_2048 | (1 << 13)); | |
2929 | /* | |
2930 | * With jumbo frames and early-receive enabled, | |
2931 | * excessive C-state transition latencies result in | |
2932 | * dropped transactions. | |
2933 | */ | |
ed77134b | 2934 | pm_qos_update_request( |
82f68251 | 2935 | &adapter->netdev->pm_qos_req, 55); |
53ec5498 | 2936 | } else { |
ed77134b | 2937 | pm_qos_update_request( |
82f68251 | 2938 | &adapter->netdev->pm_qos_req, |
ed77134b | 2939 | PM_QOS_DEFAULT_VALUE); |
53ec5498 | 2940 | } |
97ac8cae | 2941 | } |
bc7f75fa AK |
2942 | |
2943 | /* Enable Receives */ | |
2944 | ew32(RCTL, rctl); | |
2945 | } | |
2946 | ||
2947 | /** | |
e2de3eb6 | 2948 | * e1000_update_mc_addr_list - Update Multicast addresses |
bc7f75fa AK |
2949 | * @hw: pointer to the HW structure |
2950 | * @mc_addr_list: array of multicast addresses to program | |
2951 | * @mc_addr_count: number of multicast addresses to program | |
bc7f75fa | 2952 | * |
ab8932f3 | 2953 | * Updates the Multicast Table Array. |
bc7f75fa | 2954 | * The caller must have a packed mc_addr_list of multicast addresses. |
bc7f75fa | 2955 | **/ |
e2de3eb6 | 2956 | static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
ab8932f3 | 2957 | u32 mc_addr_count) |
bc7f75fa | 2958 | { |
ab8932f3 | 2959 | hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count); |
bc7f75fa AK |
2960 | } |
2961 | ||
2962 | /** | |
2963 | * e1000_set_multi - Multicast and Promiscuous mode set | |
2964 | * @netdev: network interface device structure | |
2965 | * | |
2966 | * The set_multi entry point is called whenever the multicast address | |
2967 | * list or the network interface flags are updated. This routine is | |
2968 | * responsible for configuring the hardware for proper multicast, | |
2969 | * promiscuous mode, and all-multi behavior. | |
2970 | **/ | |
2971 | static void e1000_set_multi(struct net_device *netdev) | |
2972 | { | |
2973 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
2974 | struct e1000_hw *hw = &adapter->hw; | |
22bedad3 | 2975 | struct netdev_hw_addr *ha; |
bc7f75fa AK |
2976 | u8 *mta_list; |
2977 | u32 rctl; | |
2978 | int i; | |
2979 | ||
2980 | /* Check for Promiscuous and All Multicast modes */ | |
2981 | ||
2982 | rctl = er32(RCTL); | |
2983 | ||
2984 | if (netdev->flags & IFF_PROMISC) { | |
2985 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | |
746b9f02 | 2986 | rctl &= ~E1000_RCTL_VFE; |
bc7f75fa | 2987 | } else { |
746b9f02 PM |
2988 | if (netdev->flags & IFF_ALLMULTI) { |
2989 | rctl |= E1000_RCTL_MPE; | |
2990 | rctl &= ~E1000_RCTL_UPE; | |
2991 | } else { | |
2992 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | |
2993 | } | |
78ed11a5 | 2994 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
746b9f02 | 2995 | rctl |= E1000_RCTL_VFE; |
bc7f75fa AK |
2996 | } |
2997 | ||
2998 | ew32(RCTL, rctl); | |
2999 | ||
7aeef972 JP |
3000 | if (!netdev_mc_empty(netdev)) { |
3001 | mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | |
bc7f75fa AK |
3002 | if (!mta_list) |
3003 | return; | |
3004 | ||
3005 | /* prepare a packed array of only addresses. */ | |
7aeef972 | 3006 | i = 0; |
22bedad3 JP |
3007 | netdev_for_each_mc_addr(ha, netdev) |
3008 | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | |
bc7f75fa | 3009 | |
ab8932f3 | 3010 | e1000_update_mc_addr_list(hw, mta_list, i); |
bc7f75fa AK |
3011 | kfree(mta_list); |
3012 | } else { | |
3013 | /* | |
3014 | * if we're called from probe, we might not have | |
3015 | * anything to do here, so clear out the list | |
3016 | */ | |
ab8932f3 | 3017 | e1000_update_mc_addr_list(hw, NULL, 0); |
bc7f75fa AK |
3018 | } |
3019 | } | |
3020 | ||
3021 | /** | |
ad68076e | 3022 | * e1000_configure - configure the hardware for Rx and Tx |
bc7f75fa AK |
3023 | * @adapter: private board structure |
3024 | **/ | |
3025 | static void e1000_configure(struct e1000_adapter *adapter) | |
3026 | { | |
3027 | e1000_set_multi(adapter->netdev); | |
3028 | ||
3029 | e1000_restore_vlan(adapter); | |
cd791618 | 3030 | e1000_init_manageability_pt(adapter); |
bc7f75fa AK |
3031 | |
3032 | e1000_configure_tx(adapter); | |
3033 | e1000_setup_rctl(adapter); | |
3034 | e1000_configure_rx(adapter); | |
ad68076e | 3035 | adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
bc7f75fa AK |
3036 | } |
3037 | ||
3038 | /** | |
3039 | * e1000e_power_up_phy - restore link in case the phy was powered down | |
3040 | * @adapter: address of board private structure | |
3041 | * | |
3042 | * The phy may be powered down to save power and turn off link when the | |
3043 | * driver is unloaded and wake on lan is not enabled (among others) | |
3044 | * *** this routine MUST be followed by a call to e1000e_reset *** | |
3045 | **/ | |
3046 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | |
3047 | { | |
17f208de BA |
3048 | if (adapter->hw.phy.ops.power_up) |
3049 | adapter->hw.phy.ops.power_up(&adapter->hw); | |
bc7f75fa AK |
3050 | |
3051 | adapter->hw.mac.ops.setup_link(&adapter->hw); | |
3052 | } | |
3053 | ||
3054 | /** | |
3055 | * e1000_power_down_phy - Power down the PHY | |
3056 | * | |
17f208de BA |
3057 | * Power down the PHY so no link is implied when interface is down. |
3058 | * The PHY cannot be powered down if management or WoL is active. | |
bc7f75fa AK |
3059 | */ |
3060 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | |
3061 | { | |
bc7f75fa | 3062 | /* WoL is enabled */ |
23b66e2b | 3063 | if (adapter->wol) |
bc7f75fa AK |
3064 | return; |
3065 | ||
17f208de BA |
3066 | if (adapter->hw.phy.ops.power_down) |
3067 | adapter->hw.phy.ops.power_down(&adapter->hw); | |
bc7f75fa AK |
3068 | } |
3069 | ||
3070 | /** | |
3071 | * e1000e_reset - bring the hardware into a known good state | |
3072 | * | |
3073 | * This function boots the hardware and enables some settings that | |
3074 | * require a configuration cycle of the hardware - those cannot be | |
3075 | * set/changed during runtime. After reset the device needs to be | |
ad68076e | 3076 | * properly configured for Rx, Tx etc. |
bc7f75fa AK |
3077 | */ |
3078 | void e1000e_reset(struct e1000_adapter *adapter) | |
3079 | { | |
3080 | struct e1000_mac_info *mac = &adapter->hw.mac; | |
318a94d6 | 3081 | struct e1000_fc_info *fc = &adapter->hw.fc; |
bc7f75fa AK |
3082 | struct e1000_hw *hw = &adapter->hw; |
3083 | u32 tx_space, min_tx_space, min_rx_space; | |
318a94d6 | 3084 | u32 pba = adapter->pba; |
bc7f75fa AK |
3085 | u16 hwm; |
3086 | ||
ad68076e | 3087 | /* reset Packet Buffer Allocation to default */ |
318a94d6 | 3088 | ew32(PBA, pba); |
df762464 | 3089 | |
318a94d6 | 3090 | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
ad68076e BA |
3091 | /* |
3092 | * To maintain wire speed transmits, the Tx FIFO should be | |
bc7f75fa AK |
3093 | * large enough to accommodate two full transmit packets, |
3094 | * rounded up to the next 1KB and expressed in KB. Likewise, | |
3095 | * the Rx FIFO should be large enough to accommodate at least | |
3096 | * one full receive packet and is similarly rounded up and | |
ad68076e BA |
3097 | * expressed in KB. |
3098 | */ | |
df762464 | 3099 | pba = er32(PBA); |
bc7f75fa | 3100 | /* upper 16 bits has Tx packet buffer allocation size in KB */ |
df762464 | 3101 | tx_space = pba >> 16; |
bc7f75fa | 3102 | /* lower 16 bits has Rx packet buffer allocation size in KB */ |
df762464 | 3103 | pba &= 0xffff; |
ad68076e BA |
3104 | /* |
3105 | * the Tx fifo also stores 16 bytes of information about the tx | |
3106 | * but don't include ethernet FCS because hardware appends it | |
318a94d6 JK |
3107 | */ |
3108 | min_tx_space = (adapter->max_frame_size + | |
bc7f75fa AK |
3109 | sizeof(struct e1000_tx_desc) - |
3110 | ETH_FCS_LEN) * 2; | |
3111 | min_tx_space = ALIGN(min_tx_space, 1024); | |
3112 | min_tx_space >>= 10; | |
3113 | /* software strips receive CRC, so leave room for it */ | |
318a94d6 | 3114 | min_rx_space = adapter->max_frame_size; |
bc7f75fa AK |
3115 | min_rx_space = ALIGN(min_rx_space, 1024); |
3116 | min_rx_space >>= 10; | |
3117 | ||
ad68076e BA |
3118 | /* |
3119 | * If current Tx allocation is less than the min Tx FIFO size, | |
bc7f75fa | 3120 | * and the min Tx FIFO size is less than the current Rx FIFO |
ad68076e BA |
3121 | * allocation, take space away from current Rx allocation |
3122 | */ | |
df762464 AK |
3123 | if ((tx_space < min_tx_space) && |
3124 | ((min_tx_space - tx_space) < pba)) { | |
3125 | pba -= min_tx_space - tx_space; | |
bc7f75fa | 3126 | |
ad68076e BA |
3127 | /* |
3128 | * if short on Rx space, Rx wins and must trump tx | |
3129 | * adjustment or use Early Receive if available | |
3130 | */ | |
df762464 | 3131 | if ((pba < min_rx_space) && |
bc7f75fa AK |
3132 | (!(adapter->flags & FLAG_HAS_ERT))) |
3133 | /* ERT enabled in e1000_configure_rx */ | |
df762464 | 3134 | pba = min_rx_space; |
bc7f75fa | 3135 | } |
df762464 AK |
3136 | |
3137 | ew32(PBA, pba); | |
bc7f75fa AK |
3138 | } |
3139 | ||
bc7f75fa | 3140 | |
ad68076e BA |
3141 | /* |
3142 | * flow control settings | |
3143 | * | |
38eb394e | 3144 | * The high water mark must be low enough to fit one full frame |
bc7f75fa AK |
3145 | * (or the size used for early receive) above it in the Rx FIFO. |
3146 | * Set it to the lower of: | |
3147 | * - 90% of the Rx FIFO size, and | |
3148 | * - the full Rx FIFO size minus the early receive size (for parts | |
3149 | * with ERT support assuming ERT set to E1000_ERT_2048), or | |
38eb394e | 3150 | * - the full Rx FIFO size minus one full frame |
ad68076e | 3151 | */ |
d3738bb8 BA |
3152 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
3153 | fc->pause_time = 0xFFFF; | |
3154 | else | |
3155 | fc->pause_time = E1000_FC_PAUSE_TIME; | |
3156 | fc->send_xon = 1; | |
3157 | fc->current_mode = fc->requested_mode; | |
3158 | ||
3159 | switch (hw->mac.type) { | |
3160 | default: | |
3161 | if ((adapter->flags & FLAG_HAS_ERT) && | |
3162 | (adapter->netdev->mtu > ETH_DATA_LEN)) | |
3163 | hwm = min(((pba << 10) * 9 / 10), | |
3164 | ((pba << 10) - (E1000_ERT_2048 << 3))); | |
3165 | else | |
3166 | hwm = min(((pba << 10) * 9 / 10), | |
3167 | ((pba << 10) - adapter->max_frame_size)); | |
3168 | ||
3169 | fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ | |
3170 | fc->low_water = fc->high_water - 8; | |
3171 | break; | |
3172 | case e1000_pchlan: | |
38eb394e BA |
3173 | /* |
3174 | * Workaround PCH LOM adapter hangs with certain network | |
3175 | * loads. If hangs persist, try disabling Tx flow control. | |
3176 | */ | |
3177 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | |
3178 | fc->high_water = 0x3500; | |
3179 | fc->low_water = 0x1500; | |
3180 | } else { | |
3181 | fc->high_water = 0x5000; | |
3182 | fc->low_water = 0x3000; | |
3183 | } | |
a305595b | 3184 | fc->refresh_time = 0x1000; |
d3738bb8 BA |
3185 | break; |
3186 | case e1000_pch2lan: | |
3187 | fc->high_water = 0x05C20; | |
3188 | fc->low_water = 0x05048; | |
3189 | fc->pause_time = 0x0650; | |
3190 | fc->refresh_time = 0x0400; | |
3191 | break; | |
38eb394e | 3192 | } |
bc7f75fa | 3193 | |
bc7f75fa AK |
3194 | /* Allow time for pending master requests to run */ |
3195 | mac->ops.reset_hw(hw); | |
97ac8cae BA |
3196 | |
3197 | /* | |
3198 | * For parts with AMT enabled, let the firmware know | |
3199 | * that the network interface is in control | |
3200 | */ | |
c43bc57e | 3201 | if (adapter->flags & FLAG_HAS_AMT) |
97ac8cae BA |
3202 | e1000_get_hw_control(adapter); |
3203 | ||
bc7f75fa AK |
3204 | ew32(WUC, 0); |
3205 | ||
3206 | if (mac->ops.init_hw(hw)) | |
44defeb3 | 3207 | e_err("Hardware Error\n"); |
bc7f75fa AK |
3208 | |
3209 | e1000_update_mng_vlan(adapter); | |
3210 | ||
3211 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | |
3212 | ew32(VET, ETH_P_8021Q); | |
3213 | ||
3214 | e1000e_reset_adaptive(hw); | |
3215 | e1000_get_phy_info(hw); | |
3216 | ||
918d7197 BA |
3217 | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && |
3218 | !(adapter->flags & FLAG_SMART_POWER_DOWN)) { | |
bc7f75fa | 3219 | u16 phy_data = 0; |
ad68076e BA |
3220 | /* |
3221 | * speed up time to link by disabling smart power down, ignore | |
bc7f75fa | 3222 | * the return value of this function because there is nothing |
ad68076e BA |
3223 | * different we would do if it failed |
3224 | */ | |
bc7f75fa AK |
3225 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
3226 | phy_data &= ~IGP02E1000_PM_SPD; | |
3227 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | |
3228 | } | |
bc7f75fa AK |
3229 | } |
3230 | ||
3231 | int e1000e_up(struct e1000_adapter *adapter) | |
3232 | { | |
3233 | struct e1000_hw *hw = &adapter->hw; | |
3234 | ||
3235 | /* hardware has been reset, we need to reload some things */ | |
3236 | e1000_configure(adapter); | |
3237 | ||
3238 | clear_bit(__E1000_DOWN, &adapter->state); | |
3239 | ||
3240 | napi_enable(&adapter->napi); | |
4662e82b BA |
3241 | if (adapter->msix_entries) |
3242 | e1000_configure_msix(adapter); | |
bc7f75fa AK |
3243 | e1000_irq_enable(adapter); |
3244 | ||
4cb9be7a JB |
3245 | netif_wake_queue(adapter->netdev); |
3246 | ||
bc7f75fa | 3247 | /* fire a link change interrupt to start the watchdog */ |
52a9b231 BA |
3248 | if (adapter->msix_entries) |
3249 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | |
3250 | else | |
3251 | ew32(ICS, E1000_ICS_LSC); | |
3252 | ||
bc7f75fa AK |
3253 | return 0; |
3254 | } | |
3255 | ||
3256 | void e1000e_down(struct e1000_adapter *adapter) | |
3257 | { | |
3258 | struct net_device *netdev = adapter->netdev; | |
3259 | struct e1000_hw *hw = &adapter->hw; | |
3260 | u32 tctl, rctl; | |
3261 | ||
ad68076e BA |
3262 | /* |
3263 | * signal that we're down so the interrupt handler does not | |
3264 | * reschedule our watchdog timer | |
3265 | */ | |
bc7f75fa AK |
3266 | set_bit(__E1000_DOWN, &adapter->state); |
3267 | ||
3268 | /* disable receives in the hardware */ | |
3269 | rctl = er32(RCTL); | |
3270 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | |
3271 | /* flush and sleep below */ | |
3272 | ||
4cb9be7a | 3273 | netif_stop_queue(netdev); |
bc7f75fa AK |
3274 | |
3275 | /* disable transmits in the hardware */ | |
3276 | tctl = er32(TCTL); | |
3277 | tctl &= ~E1000_TCTL_EN; | |
3278 | ew32(TCTL, tctl); | |
3279 | /* flush both disables and wait for them to finish */ | |
3280 | e1e_flush(); | |
3281 | msleep(10); | |
3282 | ||
3283 | napi_disable(&adapter->napi); | |
3284 | e1000_irq_disable(adapter); | |
3285 | ||
3286 | del_timer_sync(&adapter->watchdog_timer); | |
3287 | del_timer_sync(&adapter->phy_info_timer); | |
3288 | ||
bc7f75fa AK |
3289 | netif_carrier_off(netdev); |
3290 | adapter->link_speed = 0; | |
3291 | adapter->link_duplex = 0; | |
3292 | ||
52cc3086 JK |
3293 | if (!pci_channel_offline(adapter->pdev)) |
3294 | e1000e_reset(adapter); | |
bc7f75fa AK |
3295 | e1000_clean_tx_ring(adapter); |
3296 | e1000_clean_rx_ring(adapter); | |
3297 | ||
3298 | /* | |
3299 | * TODO: for power management, we could drop the link and | |
3300 | * pci_disable_device here. | |
3301 | */ | |
3302 | } | |
3303 | ||
3304 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | |
3305 | { | |
3306 | might_sleep(); | |
3307 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | |
3308 | msleep(1); | |
3309 | e1000e_down(adapter); | |
3310 | e1000e_up(adapter); | |
3311 | clear_bit(__E1000_RESETTING, &adapter->state); | |
3312 | } | |
3313 | ||
3314 | /** | |
3315 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | |
3316 | * @adapter: board private structure to initialize | |
3317 | * | |
3318 | * e1000_sw_init initializes the Adapter private data structure. | |
3319 | * Fields are initialized based on PCI device information and | |
3320 | * OS network device settings (MTU size). | |
3321 | **/ | |
3322 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | |
3323 | { | |
bc7f75fa AK |
3324 | struct net_device *netdev = adapter->netdev; |
3325 | ||
3326 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | |
3327 | adapter->rx_ps_bsize0 = 128; | |
318a94d6 JK |
3328 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
3329 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | |
bc7f75fa | 3330 | |
4662e82b | 3331 | e1000e_set_interrupt_capability(adapter); |
bc7f75fa | 3332 | |
4662e82b BA |
3333 | if (e1000_alloc_queues(adapter)) |
3334 | return -ENOMEM; | |
bc7f75fa | 3335 | |
bc7f75fa | 3336 | /* Explicitly disable IRQ since the NIC can be in any state. */ |
bc7f75fa AK |
3337 | e1000_irq_disable(adapter); |
3338 | ||
bc7f75fa AK |
3339 | set_bit(__E1000_DOWN, &adapter->state); |
3340 | return 0; | |
bc7f75fa AK |
3341 | } |
3342 | ||
f8d59f78 BA |
3343 | /** |
3344 | * e1000_intr_msi_test - Interrupt Handler | |
3345 | * @irq: interrupt number | |
3346 | * @data: pointer to a network interface device structure | |
3347 | **/ | |
3348 | static irqreturn_t e1000_intr_msi_test(int irq, void *data) | |
3349 | { | |
3350 | struct net_device *netdev = data; | |
3351 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3352 | struct e1000_hw *hw = &adapter->hw; | |
3353 | u32 icr = er32(ICR); | |
3354 | ||
3bb99fe2 | 3355 | e_dbg("icr is %08X\n", icr); |
f8d59f78 BA |
3356 | if (icr & E1000_ICR_RXSEQ) { |
3357 | adapter->flags &= ~FLAG_MSI_TEST_FAILED; | |
3358 | wmb(); | |
3359 | } | |
3360 | ||
3361 | return IRQ_HANDLED; | |
3362 | } | |
3363 | ||
3364 | /** | |
3365 | * e1000_test_msi_interrupt - Returns 0 for successful test | |
3366 | * @adapter: board private struct | |
3367 | * | |
3368 | * code flow taken from tg3.c | |
3369 | **/ | |
3370 | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) | |
3371 | { | |
3372 | struct net_device *netdev = adapter->netdev; | |
3373 | struct e1000_hw *hw = &adapter->hw; | |
3374 | int err; | |
3375 | ||
3376 | /* poll_enable hasn't been called yet, so don't need disable */ | |
3377 | /* clear any pending events */ | |
3378 | er32(ICR); | |
3379 | ||
3380 | /* free the real vector and request a test handler */ | |
3381 | e1000_free_irq(adapter); | |
4662e82b | 3382 | e1000e_reset_interrupt_capability(adapter); |
f8d59f78 BA |
3383 | |
3384 | /* Assume that the test fails, if it succeeds then the test | |
3385 | * MSI irq handler will unset this flag */ | |
3386 | adapter->flags |= FLAG_MSI_TEST_FAILED; | |
3387 | ||
3388 | err = pci_enable_msi(adapter->pdev); | |
3389 | if (err) | |
3390 | goto msi_test_failed; | |
3391 | ||
a0607fd3 | 3392 | err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, |
f8d59f78 BA |
3393 | netdev->name, netdev); |
3394 | if (err) { | |
3395 | pci_disable_msi(adapter->pdev); | |
3396 | goto msi_test_failed; | |
3397 | } | |
3398 | ||
3399 | wmb(); | |
3400 | ||
3401 | e1000_irq_enable(adapter); | |
3402 | ||
3403 | /* fire an unusual interrupt on the test handler */ | |
3404 | ew32(ICS, E1000_ICS_RXSEQ); | |
3405 | e1e_flush(); | |
3406 | msleep(50); | |
3407 | ||
3408 | e1000_irq_disable(adapter); | |
3409 | ||
3410 | rmb(); | |
3411 | ||
3412 | if (adapter->flags & FLAG_MSI_TEST_FAILED) { | |
4662e82b | 3413 | adapter->int_mode = E1000E_INT_MODE_LEGACY; |
f8d59f78 BA |
3414 | err = -EIO; |
3415 | e_info("MSI interrupt test failed!\n"); | |
3416 | } | |
3417 | ||
3418 | free_irq(adapter->pdev->irq, netdev); | |
3419 | pci_disable_msi(adapter->pdev); | |
3420 | ||
3421 | if (err == -EIO) | |
3422 | goto msi_test_failed; | |
3423 | ||
3424 | /* okay so the test worked, restore settings */ | |
3bb99fe2 | 3425 | e_dbg("MSI interrupt test succeeded!\n"); |
f8d59f78 | 3426 | msi_test_failed: |
4662e82b | 3427 | e1000e_set_interrupt_capability(adapter); |
f8d59f78 BA |
3428 | e1000_request_irq(adapter); |
3429 | return err; | |
3430 | } | |
3431 | ||
3432 | /** | |
3433 | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored | |
3434 | * @adapter: board private struct | |
3435 | * | |
3436 | * code flow taken from tg3.c, called with e1000 interrupts disabled. | |
3437 | **/ | |
3438 | static int e1000_test_msi(struct e1000_adapter *adapter) | |
3439 | { | |
3440 | int err; | |
3441 | u16 pci_cmd; | |
3442 | ||
3443 | if (!(adapter->flags & FLAG_MSI_ENABLED)) | |
3444 | return 0; | |
3445 | ||
3446 | /* disable SERR in case the MSI write causes a master abort */ | |
3447 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | |
36f2407f DN |
3448 | if (pci_cmd & PCI_COMMAND_SERR) |
3449 | pci_write_config_word(adapter->pdev, PCI_COMMAND, | |
3450 | pci_cmd & ~PCI_COMMAND_SERR); | |
f8d59f78 BA |
3451 | |
3452 | err = e1000_test_msi_interrupt(adapter); | |
3453 | ||
36f2407f DN |
3454 | /* re-enable SERR */ |
3455 | if (pci_cmd & PCI_COMMAND_SERR) { | |
3456 | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | |
3457 | pci_cmd |= PCI_COMMAND_SERR; | |
3458 | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); | |
3459 | } | |
f8d59f78 BA |
3460 | |
3461 | /* success ! */ | |
3462 | if (!err) | |
3463 | return 0; | |
3464 | ||
3465 | /* EIO means MSI test failed */ | |
3466 | if (err != -EIO) | |
3467 | return err; | |
3468 | ||
3469 | /* back to INTx mode */ | |
3470 | e_warn("MSI interrupt test failed, using legacy interrupt.\n"); | |
3471 | ||
3472 | e1000_free_irq(adapter); | |
3473 | ||
3474 | err = e1000_request_irq(adapter); | |
3475 | ||
3476 | return err; | |
3477 | } | |
3478 | ||
bc7f75fa AK |
3479 | /** |
3480 | * e1000_open - Called when a network interface is made active | |
3481 | * @netdev: network interface device structure | |
3482 | * | |
3483 | * Returns 0 on success, negative value on failure | |
3484 | * | |
3485 | * The open entry point is called when a network interface is made | |
3486 | * active by the system (IFF_UP). At this point all resources needed | |
3487 | * for transmit and receive operations are allocated, the interrupt | |
3488 | * handler is registered with the OS, the watchdog timer is started, | |
3489 | * and the stack is notified that the interface is ready. | |
3490 | **/ | |
3491 | static int e1000_open(struct net_device *netdev) | |
3492 | { | |
3493 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3494 | struct e1000_hw *hw = &adapter->hw; | |
23606cf5 | 3495 | struct pci_dev *pdev = adapter->pdev; |
bc7f75fa AK |
3496 | int err; |
3497 | ||
3498 | /* disallow open during test */ | |
3499 | if (test_bit(__E1000_TESTING, &adapter->state)) | |
3500 | return -EBUSY; | |
3501 | ||
23606cf5 RW |
3502 | pm_runtime_get_sync(&pdev->dev); |
3503 | ||
9c563d20 JB |
3504 | netif_carrier_off(netdev); |
3505 | ||
bc7f75fa AK |
3506 | /* allocate transmit descriptors */ |
3507 | err = e1000e_setup_tx_resources(adapter); | |
3508 | if (err) | |
3509 | goto err_setup_tx; | |
3510 | ||
3511 | /* allocate receive descriptors */ | |
3512 | err = e1000e_setup_rx_resources(adapter); | |
3513 | if (err) | |
3514 | goto err_setup_rx; | |
3515 | ||
11b08be8 BA |
3516 | /* |
3517 | * If AMT is enabled, let the firmware know that the network | |
3518 | * interface is now open and reset the part to a known state. | |
3519 | */ | |
3520 | if (adapter->flags & FLAG_HAS_AMT) { | |
3521 | e1000_get_hw_control(adapter); | |
3522 | e1000e_reset(adapter); | |
3523 | } | |
3524 | ||
bc7f75fa AK |
3525 | e1000e_power_up_phy(adapter); |
3526 | ||
3527 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | |
3528 | if ((adapter->hw.mng_cookie.status & | |
3529 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | |
3530 | e1000_update_mng_vlan(adapter); | |
3531 | ||
c128ec29 FM |
3532 | /* DMA latency requirement to workaround early-receive/jumbo issue */ |
3533 | if (adapter->flags & FLAG_HAS_ERT) | |
6ba74014 LT |
3534 | pm_qos_add_request(&adapter->netdev->pm_qos_req, |
3535 | PM_QOS_CPU_DMA_LATENCY, | |
3536 | PM_QOS_DEFAULT_VALUE); | |
c128ec29 | 3537 | |
ad68076e BA |
3538 | /* |
3539 | * before we allocate an interrupt, we must be ready to handle it. | |
bc7f75fa AK |
3540 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
3541 | * as soon as we call pci_request_irq, so we have to setup our | |
ad68076e BA |
3542 | * clean_rx handler before we do so. |
3543 | */ | |
bc7f75fa AK |
3544 | e1000_configure(adapter); |
3545 | ||
3546 | err = e1000_request_irq(adapter); | |
3547 | if (err) | |
3548 | goto err_req_irq; | |
3549 | ||
f8d59f78 BA |
3550 | /* |
3551 | * Work around PCIe errata with MSI interrupts causing some chipsets to | |
3552 | * ignore e1000e MSI messages, which means we need to test our MSI | |
3553 | * interrupt now | |
3554 | */ | |
4662e82b | 3555 | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
f8d59f78 BA |
3556 | err = e1000_test_msi(adapter); |
3557 | if (err) { | |
3558 | e_err("Interrupt allocation failed\n"); | |
3559 | goto err_req_irq; | |
3560 | } | |
3561 | } | |
3562 | ||
bc7f75fa AK |
3563 | /* From here on the code is the same as e1000e_up() */ |
3564 | clear_bit(__E1000_DOWN, &adapter->state); | |
3565 | ||
3566 | napi_enable(&adapter->napi); | |
3567 | ||
3568 | e1000_irq_enable(adapter); | |
3569 | ||
4cb9be7a | 3570 | netif_start_queue(netdev); |
d55b53ff | 3571 | |
23606cf5 RW |
3572 | adapter->idle_check = true; |
3573 | pm_runtime_put(&pdev->dev); | |
3574 | ||
bc7f75fa | 3575 | /* fire a link status change interrupt to start the watchdog */ |
52a9b231 BA |
3576 | if (adapter->msix_entries) |
3577 | ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); | |
3578 | else | |
3579 | ew32(ICS, E1000_ICS_LSC); | |
bc7f75fa AK |
3580 | |
3581 | return 0; | |
3582 | ||
3583 | err_req_irq: | |
3584 | e1000_release_hw_control(adapter); | |
3585 | e1000_power_down_phy(adapter); | |
3586 | e1000e_free_rx_resources(adapter); | |
3587 | err_setup_rx: | |
3588 | e1000e_free_tx_resources(adapter); | |
3589 | err_setup_tx: | |
3590 | e1000e_reset(adapter); | |
23606cf5 | 3591 | pm_runtime_put_sync(&pdev->dev); |
bc7f75fa AK |
3592 | |
3593 | return err; | |
3594 | } | |
3595 | ||
3596 | /** | |
3597 | * e1000_close - Disables a network interface | |
3598 | * @netdev: network interface device structure | |
3599 | * | |
3600 | * Returns 0, this is not allowed to fail | |
3601 | * | |
3602 | * The close entry point is called when an interface is de-activated | |
3603 | * by the OS. The hardware is still under the drivers control, but | |
3604 | * needs to be disabled. A global MAC reset is issued to stop the | |
3605 | * hardware, and all transmit and receive resources are freed. | |
3606 | **/ | |
3607 | static int e1000_close(struct net_device *netdev) | |
3608 | { | |
3609 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
23606cf5 | 3610 | struct pci_dev *pdev = adapter->pdev; |
bc7f75fa AK |
3611 | |
3612 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | |
23606cf5 RW |
3613 | |
3614 | pm_runtime_get_sync(&pdev->dev); | |
3615 | ||
3616 | if (!test_bit(__E1000_DOWN, &adapter->state)) { | |
3617 | e1000e_down(adapter); | |
3618 | e1000_free_irq(adapter); | |
3619 | } | |
bc7f75fa | 3620 | e1000_power_down_phy(adapter); |
bc7f75fa AK |
3621 | |
3622 | e1000e_free_tx_resources(adapter); | |
3623 | e1000e_free_rx_resources(adapter); | |
3624 | ||
ad68076e BA |
3625 | /* |
3626 | * kill manageability vlan ID if supported, but not if a vlan with | |
3627 | * the same ID is registered on the host OS (let 8021q kill it) | |
3628 | */ | |
bc7f75fa AK |
3629 | if ((adapter->hw.mng_cookie.status & |
3630 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | |
3631 | !(adapter->vlgrp && | |
3632 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | |
3633 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | |
3634 | ||
ad68076e BA |
3635 | /* |
3636 | * If AMT is enabled, let the firmware know that the network | |
3637 | * interface is now closed | |
3638 | */ | |
c43bc57e | 3639 | if (adapter->flags & FLAG_HAS_AMT) |
bc7f75fa AK |
3640 | e1000_release_hw_control(adapter); |
3641 | ||
6ba74014 LT |
3642 | if (adapter->flags & FLAG_HAS_ERT) |
3643 | pm_qos_remove_request(&adapter->netdev->pm_qos_req); | |
c128ec29 | 3644 | |
23606cf5 RW |
3645 | pm_runtime_put_sync(&pdev->dev); |
3646 | ||
bc7f75fa AK |
3647 | return 0; |
3648 | } | |
3649 | /** | |
3650 | * e1000_set_mac - Change the Ethernet Address of the NIC | |
3651 | * @netdev: network interface device structure | |
3652 | * @p: pointer to an address structure | |
3653 | * | |
3654 | * Returns 0 on success, negative on failure | |
3655 | **/ | |
3656 | static int e1000_set_mac(struct net_device *netdev, void *p) | |
3657 | { | |
3658 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
3659 | struct sockaddr *addr = p; | |
3660 | ||
3661 | if (!is_valid_ether_addr(addr->sa_data)) | |
3662 | return -EADDRNOTAVAIL; | |
3663 | ||
3664 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | |
3665 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | |
3666 | ||
3667 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | |
3668 | ||
3669 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | |
3670 | /* activate the work around */ | |
3671 | e1000e_set_laa_state_82571(&adapter->hw, 1); | |
3672 | ||
ad68076e BA |
3673 | /* |
3674 | * Hold a copy of the LAA in RAR[14] This is done so that | |
bc7f75fa AK |
3675 | * between the time RAR[0] gets clobbered and the time it |
3676 | * gets fixed (in e1000_watchdog), the actual LAA is in one | |
3677 | * of the RARs and no incoming packets directed to this port | |
3678 | * are dropped. Eventually the LAA will be in RAR[0] and | |
ad68076e BA |
3679 | * RAR[14] |
3680 | */ | |
bc7f75fa AK |
3681 | e1000e_rar_set(&adapter->hw, |
3682 | adapter->hw.mac.addr, | |
3683 | adapter->hw.mac.rar_entry_count - 1); | |
3684 | } | |
3685 | ||
3686 | return 0; | |
3687 | } | |
3688 | ||
a8f88ff5 JB |
3689 | /** |
3690 | * e1000e_update_phy_task - work thread to update phy | |
3691 | * @work: pointer to our work struct | |
3692 | * | |
3693 | * this worker thread exists because we must acquire a | |
3694 | * semaphore to read the phy, which we could msleep while | |
3695 | * waiting for it, and we can't msleep in a timer. | |
3696 | **/ | |
3697 | static void e1000e_update_phy_task(struct work_struct *work) | |
3698 | { | |
3699 | struct e1000_adapter *adapter = container_of(work, | |
3700 | struct e1000_adapter, update_phy_task); | |
3701 | e1000_get_phy_info(&adapter->hw); | |
3702 | } | |
3703 | ||
ad68076e BA |
3704 | /* |
3705 | * Need to wait a few seconds after link up to get diagnostic information from | |
3706 | * the phy | |
3707 | */ | |
bc7f75fa AK |
3708 | static void e1000_update_phy_info(unsigned long data) |
3709 | { | |
3710 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | |
a8f88ff5 | 3711 | schedule_work(&adapter->update_phy_task); |
bc7f75fa AK |
3712 | } |
3713 | ||
8c7bbb92 BA |
3714 | /** |
3715 | * e1000e_update_phy_stats - Update the PHY statistics counters | |
3716 | * @adapter: board private structure | |
3717 | **/ | |
3718 | static void e1000e_update_phy_stats(struct e1000_adapter *adapter) | |
3719 | { | |
3720 | struct e1000_hw *hw = &adapter->hw; | |
3721 | s32 ret_val; | |
3722 | u16 phy_data; | |
3723 | ||
3724 | ret_val = hw->phy.ops.acquire(hw); | |
3725 | if (ret_val) | |
3726 | return; | |
3727 | ||
3728 | hw->phy.addr = 1; | |
3729 | ||
3730 | #define HV_PHY_STATS_PAGE 778 | |
3731 | /* | |
3732 | * A page set is expensive so check if already on desired page. | |
3733 | * If not, set to the page with the PHY status registers. | |
3734 | */ | |
3735 | ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | |
3736 | &phy_data); | |
3737 | if (ret_val) | |
3738 | goto release; | |
3739 | if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) { | |
3740 | ret_val = e1000e_write_phy_reg_mdic(hw, | |
3741 | IGP01E1000_PHY_PAGE_SELECT, | |
3742 | (HV_PHY_STATS_PAGE << | |
3743 | IGP_PAGE_SHIFT)); | |
3744 | if (ret_val) | |
3745 | goto release; | |
3746 | } | |
3747 | ||
3748 | /* Read/clear the upper 16-bit registers and read/accumulate lower */ | |
3749 | ||
3750 | /* Single Collision Count */ | |
3751 | e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS, | |
3752 | &phy_data); | |
3753 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3754 | HV_SCC_LOWER & MAX_PHY_REG_ADDRESS, | |
3755 | &phy_data); | |
3756 | if (!ret_val) | |
3757 | adapter->stats.scc += phy_data; | |
3758 | ||
3759 | /* Excessive Collision Count */ | |
3760 | e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS, | |
3761 | &phy_data); | |
3762 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3763 | HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS, | |
3764 | &phy_data); | |
3765 | if (!ret_val) | |
3766 | adapter->stats.ecol += phy_data; | |
3767 | ||
3768 | /* Multiple Collision Count */ | |
3769 | e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS, | |
3770 | &phy_data); | |
3771 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3772 | HV_MCC_LOWER & MAX_PHY_REG_ADDRESS, | |
3773 | &phy_data); | |
3774 | if (!ret_val) | |
3775 | adapter->stats.mcc += phy_data; | |
3776 | ||
3777 | /* Late Collision Count */ | |
3778 | e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS, | |
3779 | &phy_data); | |
3780 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3781 | HV_LATECOL_LOWER & | |
3782 | MAX_PHY_REG_ADDRESS, | |
3783 | &phy_data); | |
3784 | if (!ret_val) | |
3785 | adapter->stats.latecol += phy_data; | |
3786 | ||
3787 | /* Collision Count - also used for adaptive IFS */ | |
3788 | e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS, | |
3789 | &phy_data); | |
3790 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3791 | HV_COLC_LOWER & MAX_PHY_REG_ADDRESS, | |
3792 | &phy_data); | |
3793 | if (!ret_val) | |
3794 | hw->mac.collision_delta = phy_data; | |
3795 | ||
3796 | /* Defer Count */ | |
3797 | e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS, | |
3798 | &phy_data); | |
3799 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3800 | HV_DC_LOWER & MAX_PHY_REG_ADDRESS, | |
3801 | &phy_data); | |
3802 | if (!ret_val) | |
3803 | adapter->stats.dc += phy_data; | |
3804 | ||
3805 | /* Transmit with no CRS */ | |
3806 | e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS, | |
3807 | &phy_data); | |
3808 | ret_val = e1000e_read_phy_reg_mdic(hw, | |
3809 | HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS, | |
3810 | &phy_data); | |
3811 | if (!ret_val) | |
3812 | adapter->stats.tncrs += phy_data; | |
3813 | ||
3814 | release: | |
3815 | hw->phy.ops.release(hw); | |
3816 | } | |
3817 | ||
bc7f75fa AK |
3818 | /** |
3819 | * e1000e_update_stats - Update the board statistics counters | |
3820 | * @adapter: board private structure | |
3821 | **/ | |
3822 | void e1000e_update_stats(struct e1000_adapter *adapter) | |
3823 | { | |
7274c20f | 3824 | struct net_device *netdev = adapter->netdev; |
bc7f75fa AK |
3825 | struct e1000_hw *hw = &adapter->hw; |
3826 | struct pci_dev *pdev = adapter->pdev; | |
bc7f75fa AK |
3827 | |
3828 | /* | |
3829 | * Prevent stats update while adapter is being reset, or if the pci | |
3830 | * connection is down. | |
3831 | */ | |
3832 | if (adapter->link_speed == 0) | |
3833 | return; | |
3834 | if (pci_channel_offline(pdev)) | |
3835 | return; | |
3836 | ||
bc7f75fa AK |
3837 | adapter->stats.crcerrs += er32(CRCERRS); |
3838 | adapter->stats.gprc += er32(GPRC); | |
7c25769f BA |
3839 | adapter->stats.gorc += er32(GORCL); |
3840 | er32(GORCH); /* Clear gorc */ | |
bc7f75fa AK |
3841 | adapter->stats.bprc += er32(BPRC); |
3842 | adapter->stats.mprc += er32(MPRC); | |
3843 | adapter->stats.roc += er32(ROC); | |
3844 | ||
bc7f75fa | 3845 | adapter->stats.mpc += er32(MPC); |
8c7bbb92 BA |
3846 | |
3847 | /* Half-duplex statistics */ | |
3848 | if (adapter->link_duplex == HALF_DUPLEX) { | |
3849 | if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { | |
3850 | e1000e_update_phy_stats(adapter); | |
3851 | } else { | |
3852 | adapter->stats.scc += er32(SCC); | |
3853 | adapter->stats.ecol += er32(ECOL); | |
3854 | adapter->stats.mcc += er32(MCC); | |
3855 | adapter->stats.latecol += er32(LATECOL); | |
3856 | adapter->stats.dc += er32(DC); | |
3857 | ||
3858 | hw->mac.collision_delta = er32(COLC); | |
3859 | ||
3860 | if ((hw->mac.type != e1000_82574) && | |
3861 | (hw->mac.type != e1000_82583)) | |
3862 | adapter->stats.tncrs += er32(TNCRS); | |
3863 | } | |
3864 | adapter->stats.colc += hw->mac.collision_delta; | |
a4f58f54 | 3865 | } |
8c7bbb92 | 3866 | |
bc7f75fa AK |
3867 | adapter->stats.xonrxc += er32(XONRXC); |
3868 | adapter->stats.xontxc += er32(XONTXC); | |
3869 | adapter->stats.xoffrxc += er32(XOFFRXC); | |
3870 | adapter->stats.xofftxc += er32(XOFFTXC); | |
bc7f75fa | 3871 | adapter->stats.gptc += er32(GPTC); |
7c25769f BA |
3872 | adapter->stats.gotc += er32(GOTCL); |
3873 | er32(GOTCH); /* Clear gotc */ | |
bc7f75fa AK |
3874 | adapter->stats.rnbc += er32(RNBC); |
3875 | adapter->stats.ruc += er32(RUC); | |
bc7f75fa AK |
3876 | |
3877 | adapter->stats.mptc += er32(MPTC); | |
3878 | adapter->stats.bptc += er32(BPTC); | |
3879 | ||
3880 | /* used for adaptive IFS */ | |
3881 | ||
3882 | hw->mac.tx_packet_delta = er32(TPT); | |
3883 | adapter->stats.tpt += hw->mac.tx_packet_delta; | |
bc7f75fa AK |
3884 | |
3885 | adapter->stats.algnerrc += er32(ALGNERRC); | |
3886 | adapter->stats.rxerrc += er32(RXERRC); | |
bc7f75fa AK |
3887 | adapter->stats.cexterr += er32(CEXTERR); |
3888 | adapter->stats.tsctc += er32(TSCTC); | |
3889 | adapter->stats.tsctfc += er32(TSCTFC); | |
3890 | ||
bc7f75fa | 3891 | /* Fill out the OS statistics structure */ |
7274c20f AK |
3892 | netdev->stats.multicast = adapter->stats.mprc; |
3893 | netdev->stats.collisions = adapter->stats.colc; | |
bc7f75fa AK |
3894 | |
3895 | /* Rx Errors */ | |
3896 | ||
ad68076e BA |
3897 | /* |
3898 | * RLEC on some newer hardware can be incorrect so build | |
3899 | * our own version based on RUC and ROC | |
3900 | */ | |
7274c20f | 3901 | netdev->stats.rx_errors = adapter->stats.rxerrc + |
bc7f75fa AK |
3902 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
3903 | adapter->stats.ruc + adapter->stats.roc + | |
3904 | adapter->stats.cexterr; | |
7274c20f | 3905 | netdev->stats.rx_length_errors = adapter->stats.ruc + |
bc7f75fa | 3906 | adapter->stats.roc; |
7274c20f AK |
3907 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
3908 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | |
3909 | netdev->stats.rx_missed_errors = adapter->stats.mpc; | |
bc7f75fa AK |
3910 | |
3911 | /* Tx Errors */ | |
7274c20f | 3912 | netdev->stats.tx_errors = adapter->stats.ecol + |
bc7f75fa | 3913 | adapter->stats.latecol; |
7274c20f AK |
3914 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
3915 | netdev->stats.tx_window_errors = adapter->stats.latecol; | |
3916 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | |
bc7f75fa AK |
3917 | |
3918 | /* Tx Dropped needs to be maintained elsewhere */ | |
3919 | ||
bc7f75fa AK |
3920 | /* Management Stats */ |
3921 | adapter->stats.mgptc += er32(MGTPTC); | |
3922 | adapter->stats.mgprc += er32(MGTPRC); | |
3923 | adapter->stats.mgpdc += er32(MGTPDC); | |
bc7f75fa AK |
3924 | } |
3925 | ||
7c25769f BA |
3926 | /** |
3927 | * e1000_phy_read_status - Update the PHY register status snapshot | |
3928 | * @adapter: board private structure | |
3929 | **/ | |
3930 | static void e1000_phy_read_status(struct e1000_adapter *adapter) | |
3931 | { | |
3932 | struct e1000_hw *hw = &adapter->hw; | |
3933 | struct e1000_phy_regs *phy = &adapter->phy_regs; | |
3934 | int ret_val; | |
7c25769f BA |
3935 | |
3936 | if ((er32(STATUS) & E1000_STATUS_LU) && | |
3937 | (adapter->hw.phy.media_type == e1000_media_type_copper)) { | |
3938 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); | |
3939 | ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); | |
3940 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); | |
3941 | ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); | |
3942 | ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); | |
3943 | ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); | |
3944 | ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); | |
3945 | ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); | |
3946 | if (ret_val) | |
44defeb3 | 3947 | e_warn("Error reading PHY register\n"); |
7c25769f BA |
3948 | } else { |
3949 | /* | |
3950 | * Do not read PHY registers if link is not up | |
3951 | * Set values to typical power-on defaults | |
3952 | */ | |
3953 | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); | |
3954 | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | | |
3955 | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | | |
3956 | BMSR_ERCAP); | |
3957 | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | | |
3958 | ADVERTISE_ALL | ADVERTISE_CSMA); | |
3959 | phy->lpa = 0; | |
3960 | phy->expansion = EXPANSION_ENABLENPAGE; | |
3961 | phy->ctrl1000 = ADVERTISE_1000FULL; | |
3962 | phy->stat1000 = 0; | |
3963 | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); | |
3964 | } | |
7c25769f BA |
3965 | } |
3966 | ||
bc7f75fa AK |
3967 | static void e1000_print_link_info(struct e1000_adapter *adapter) |
3968 | { | |
bc7f75fa AK |
3969 | struct e1000_hw *hw = &adapter->hw; |
3970 | u32 ctrl = er32(CTRL); | |
3971 | ||
8f12fe86 BA |
3972 | /* Link status message must follow this format for user tools */ |
3973 | printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " | |
3974 | "Flow Control: %s\n", | |
3975 | adapter->netdev->name, | |
44defeb3 JK |
3976 | adapter->link_speed, |
3977 | (adapter->link_duplex == FULL_DUPLEX) ? | |
3978 | "Full Duplex" : "Half Duplex", | |
3979 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | |
3980 | "RX/TX" : | |
3981 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | |
3982 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | |
bc7f75fa AK |
3983 | } |
3984 | ||
0c6bdb30 | 3985 | static bool e1000e_has_link(struct e1000_adapter *adapter) |
318a94d6 JK |
3986 | { |
3987 | struct e1000_hw *hw = &adapter->hw; | |
3988 | bool link_active = 0; | |
3989 | s32 ret_val = 0; | |
3990 | ||
3991 | /* | |
3992 | * get_link_status is set on LSC (link status) interrupt or | |
3993 | * Rx sequence error interrupt. get_link_status will stay | |
3994 | * false until the check_for_link establishes link | |
3995 | * for copper adapters ONLY | |
3996 | */ | |
3997 | switch (hw->phy.media_type) { | |
3998 | case e1000_media_type_copper: | |
3999 | if (hw->mac.get_link_status) { | |
4000 | ret_val = hw->mac.ops.check_for_link(hw); | |
4001 | link_active = !hw->mac.get_link_status; | |
4002 | } else { | |
4003 | link_active = 1; | |
4004 | } | |
4005 | break; | |
4006 | case e1000_media_type_fiber: | |
4007 | ret_val = hw->mac.ops.check_for_link(hw); | |
4008 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | |
4009 | break; | |
4010 | case e1000_media_type_internal_serdes: | |
4011 | ret_val = hw->mac.ops.check_for_link(hw); | |
4012 | link_active = adapter->hw.mac.serdes_has_link; | |
4013 | break; | |
4014 | default: | |
4015 | case e1000_media_type_unknown: | |
4016 | break; | |
4017 | } | |
4018 | ||
4019 | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | |
4020 | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | |
4021 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | |
44defeb3 | 4022 | e_info("Gigabit has been disabled, downgrading speed\n"); |
318a94d6 JK |
4023 | } |
4024 | ||
4025 | return link_active; | |
4026 | } | |
4027 | ||
4028 | static void e1000e_enable_receives(struct e1000_adapter *adapter) | |
4029 | { | |
4030 | /* make sure the receive unit is started */ | |
4031 | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | |
4032 | (adapter->flags & FLAG_RX_RESTART_NOW)) { | |
4033 | struct e1000_hw *hw = &adapter->hw; | |
4034 | u32 rctl = er32(RCTL); | |
4035 | ew32(RCTL, rctl | E1000_RCTL_EN); | |
4036 | adapter->flags &= ~FLAG_RX_RESTART_NOW; | |
4037 | } | |
4038 | } | |
4039 | ||
bc7f75fa AK |
4040 | /** |
4041 | * e1000_watchdog - Timer Call-back | |
4042 | * @data: pointer to adapter cast into an unsigned long | |
4043 | **/ | |
4044 | static void e1000_watchdog(unsigned long data) | |
4045 | { | |
4046 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | |
4047 | ||
4048 | /* Do the rest outside of interrupt context */ | |
4049 | schedule_work(&adapter->watchdog_task); | |
4050 | ||
4051 | /* TODO: make this use queue_delayed_work() */ | |
4052 | } | |
4053 | ||
4054 | static void e1000_watchdog_task(struct work_struct *work) | |
4055 | { | |
4056 | struct e1000_adapter *adapter = container_of(work, | |
4057 | struct e1000_adapter, watchdog_task); | |
bc7f75fa AK |
4058 | struct net_device *netdev = adapter->netdev; |
4059 | struct e1000_mac_info *mac = &adapter->hw.mac; | |
75eb0fad | 4060 | struct e1000_phy_info *phy = &adapter->hw.phy; |
bc7f75fa AK |
4061 | struct e1000_ring *tx_ring = adapter->tx_ring; |
4062 | struct e1000_hw *hw = &adapter->hw; | |
4063 | u32 link, tctl; | |
bc7f75fa AK |
4064 | int tx_pending = 0; |
4065 | ||
b405e8df | 4066 | link = e1000e_has_link(adapter); |
318a94d6 | 4067 | if ((netif_carrier_ok(netdev)) && link) { |
23606cf5 RW |
4068 | /* Cancel scheduled suspend requests. */ |
4069 | pm_runtime_resume(netdev->dev.parent); | |
4070 | ||
318a94d6 | 4071 | e1000e_enable_receives(adapter); |
bc7f75fa | 4072 | goto link_up; |
bc7f75fa AK |
4073 | } |
4074 | ||
4075 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | |
4076 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | |
4077 | e1000_update_mng_vlan(adapter); | |
4078 | ||
bc7f75fa AK |
4079 | if (link) { |
4080 | if (!netif_carrier_ok(netdev)) { | |
4081 | bool txb2b = 1; | |
23606cf5 RW |
4082 | |
4083 | /* Cancel scheduled suspend requests. */ | |
4084 | pm_runtime_resume(netdev->dev.parent); | |
4085 | ||
318a94d6 | 4086 | /* update snapshot of PHY registers on LSC */ |
7c25769f | 4087 | e1000_phy_read_status(adapter); |
bc7f75fa AK |
4088 | mac->ops.get_link_up_info(&adapter->hw, |
4089 | &adapter->link_speed, | |
4090 | &adapter->link_duplex); | |
4091 | e1000_print_link_info(adapter); | |
f4187b56 BA |
4092 | /* |
4093 | * On supported PHYs, check for duplex mismatch only | |
4094 | * if link has autonegotiated at 10/100 half | |
4095 | */ | |
4096 | if ((hw->phy.type == e1000_phy_igp_3 || | |
4097 | hw->phy.type == e1000_phy_bm) && | |
4098 | (hw->mac.autoneg == true) && | |
4099 | (adapter->link_speed == SPEED_10 || | |
4100 | adapter->link_speed == SPEED_100) && | |
4101 | (adapter->link_duplex == HALF_DUPLEX)) { | |
4102 | u16 autoneg_exp; | |
4103 | ||
4104 | e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); | |
4105 | ||
4106 | if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) | |
4107 | e_info("Autonegotiated half duplex but" | |
4108 | " link partner cannot autoneg. " | |
4109 | " Try forcing full duplex if " | |
4110 | "link gets many collisions.\n"); | |
4111 | } | |
4112 | ||
f49c57e1 | 4113 | /* adjust timeout factor according to speed/duplex */ |
bc7f75fa AK |
4114 | adapter->tx_timeout_factor = 1; |
4115 | switch (adapter->link_speed) { | |
4116 | case SPEED_10: | |
4117 | txb2b = 0; | |
10f1b492 | 4118 | adapter->tx_timeout_factor = 16; |
bc7f75fa AK |
4119 | break; |
4120 | case SPEED_100: | |
4121 | txb2b = 0; | |
4c86e0b9 | 4122 | adapter->tx_timeout_factor = 10; |
bc7f75fa AK |
4123 | break; |
4124 | } | |
4125 | ||
ad68076e BA |
4126 | /* |
4127 | * workaround: re-program speed mode bit after | |
4128 | * link-up event | |
4129 | */ | |
bc7f75fa AK |
4130 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
4131 | !txb2b) { | |
4132 | u32 tarc0; | |
e9ec2c0f | 4133 | tarc0 = er32(TARC(0)); |
bc7f75fa | 4134 | tarc0 &= ~SPEED_MODE_BIT; |
e9ec2c0f | 4135 | ew32(TARC(0), tarc0); |
bc7f75fa AK |
4136 | } |
4137 | ||
ad68076e BA |
4138 | /* |
4139 | * disable TSO for pcie and 10/100 speeds, to avoid | |
4140 | * some hardware issues | |
4141 | */ | |
bc7f75fa AK |
4142 | if (!(adapter->flags & FLAG_TSO_FORCE)) { |
4143 | switch (adapter->link_speed) { | |
4144 | case SPEED_10: | |
4145 | case SPEED_100: | |
44defeb3 | 4146 | e_info("10/100 speed: disabling TSO\n"); |
bc7f75fa AK |
4147 | netdev->features &= ~NETIF_F_TSO; |
4148 | netdev->features &= ~NETIF_F_TSO6; | |
4149 | break; | |
4150 | case SPEED_1000: | |
4151 | netdev->features |= NETIF_F_TSO; | |
4152 | netdev->features |= NETIF_F_TSO6; | |
4153 | break; | |
4154 | default: | |
4155 | /* oops */ | |
4156 | break; | |
4157 | } | |
4158 | } | |
4159 | ||
ad68076e BA |
4160 | /* |
4161 | * enable transmits in the hardware, need to do this | |
4162 | * after setting TARC(0) | |
4163 | */ | |
bc7f75fa AK |
4164 | tctl = er32(TCTL); |
4165 | tctl |= E1000_TCTL_EN; | |
4166 | ew32(TCTL, tctl); | |
4167 | ||
75eb0fad BA |
4168 | /* |
4169 | * Perform any post-link-up configuration before | |
4170 | * reporting link up. | |
4171 | */ | |
4172 | if (phy->ops.cfg_on_link_up) | |
4173 | phy->ops.cfg_on_link_up(hw); | |
4174 | ||
bc7f75fa | 4175 | netif_carrier_on(netdev); |
bc7f75fa AK |
4176 | |
4177 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
4178 | mod_timer(&adapter->phy_info_timer, | |
4179 | round_jiffies(jiffies + 2 * HZ)); | |
bc7f75fa AK |
4180 | } |
4181 | } else { | |
4182 | if (netif_carrier_ok(netdev)) { | |
4183 | adapter->link_speed = 0; | |
4184 | adapter->link_duplex = 0; | |
8f12fe86 BA |
4185 | /* Link status message must follow this format */ |
4186 | printk(KERN_INFO "e1000e: %s NIC Link is Down\n", | |
4187 | adapter->netdev->name); | |
bc7f75fa | 4188 | netif_carrier_off(netdev); |
bc7f75fa AK |
4189 | if (!test_bit(__E1000_DOWN, &adapter->state)) |
4190 | mod_timer(&adapter->phy_info_timer, | |
4191 | round_jiffies(jiffies + 2 * HZ)); | |
4192 | ||
4193 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | |
4194 | schedule_work(&adapter->reset_task); | |
23606cf5 RW |
4195 | else |
4196 | pm_schedule_suspend(netdev->dev.parent, | |
4197 | LINK_TIMEOUT); | |
bc7f75fa AK |
4198 | } |
4199 | } | |
4200 | ||
4201 | link_up: | |
4202 | e1000e_update_stats(adapter); | |
4203 | ||
4204 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | |
4205 | adapter->tpt_old = adapter->stats.tpt; | |
4206 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | |
4207 | adapter->colc_old = adapter->stats.colc; | |
4208 | ||
7c25769f BA |
4209 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
4210 | adapter->gorc_old = adapter->stats.gorc; | |
4211 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | |
4212 | adapter->gotc_old = adapter->stats.gotc; | |
bc7f75fa AK |
4213 | |
4214 | e1000e_update_adaptive(&adapter->hw); | |
4215 | ||
4216 | if (!netif_carrier_ok(netdev)) { | |
4217 | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | |
4218 | tx_ring->count); | |
4219 | if (tx_pending) { | |
ad68076e BA |
4220 | /* |
4221 | * We've lost link, so the controller stops DMA, | |
bc7f75fa AK |
4222 | * but we've got queued Tx work that's never going |
4223 | * to get done, so reset controller to flush Tx. | |
ad68076e BA |
4224 | * (Do the reset outside of interrupt context). |
4225 | */ | |
bc7f75fa AK |
4226 | adapter->tx_timeout_count++; |
4227 | schedule_work(&adapter->reset_task); | |
c2d5ab49 JB |
4228 | /* return immediately since reset is imminent */ |
4229 | return; | |
bc7f75fa AK |
4230 | } |
4231 | } | |
4232 | ||
eab2abf5 JB |
4233 | /* Simple mode for Interrupt Throttle Rate (ITR) */ |
4234 | if (adapter->itr_setting == 4) { | |
4235 | /* | |
4236 | * Symmetric Tx/Rx gets a reduced ITR=2000; | |
4237 | * Total asymmetrical Tx or Rx gets ITR=8000; | |
4238 | * everyone else is between 2000-8000. | |
4239 | */ | |
4240 | u32 goc = (adapter->gotc + adapter->gorc) / 10000; | |
4241 | u32 dif = (adapter->gotc > adapter->gorc ? | |
4242 | adapter->gotc - adapter->gorc : | |
4243 | adapter->gorc - adapter->gotc) / 10000; | |
4244 | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | |
4245 | ||
4246 | ew32(ITR, 1000000000 / (itr * 256)); | |
4247 | } | |
4248 | ||
ad68076e | 4249 | /* Cause software interrupt to ensure Rx ring is cleaned */ |
4662e82b BA |
4250 | if (adapter->msix_entries) |
4251 | ew32(ICS, adapter->rx_ring->ims_val); | |
4252 | else | |
4253 | ew32(ICS, E1000_ICS_RXDMT0); | |
bc7f75fa AK |
4254 | |
4255 | /* Force detection of hung controller every watchdog period */ | |
4256 | adapter->detect_tx_hung = 1; | |
4257 | ||
ad68076e BA |
4258 | /* |
4259 | * With 82571 controllers, LAA may be overwritten due to controller | |
4260 | * reset from the other port. Set the appropriate LAA in RAR[0] | |
4261 | */ | |
bc7f75fa AK |
4262 | if (e1000e_get_laa_state_82571(hw)) |
4263 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | |
4264 | ||
4265 | /* Reset the timer */ | |
4266 | if (!test_bit(__E1000_DOWN, &adapter->state)) | |
4267 | mod_timer(&adapter->watchdog_timer, | |
4268 | round_jiffies(jiffies + 2 * HZ)); | |
4269 | } | |
4270 | ||
4271 | #define E1000_TX_FLAGS_CSUM 0x00000001 | |
4272 | #define E1000_TX_FLAGS_VLAN 0x00000002 | |
4273 | #define E1000_TX_FLAGS_TSO 0x00000004 | |
4274 | #define E1000_TX_FLAGS_IPV4 0x00000008 | |
4275 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | |
4276 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | |
4277 | ||
4278 | static int e1000_tso(struct e1000_adapter *adapter, | |
4279 | struct sk_buff *skb) | |
4280 | { | |
4281 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
4282 | struct e1000_context_desc *context_desc; | |
4283 | struct e1000_buffer *buffer_info; | |
4284 | unsigned int i; | |
4285 | u32 cmd_length = 0; | |
4286 | u16 ipcse = 0, tucse, mss; | |
4287 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | |
4288 | int err; | |
4289 | ||
3d5e33c9 BA |
4290 | if (!skb_is_gso(skb)) |
4291 | return 0; | |
bc7f75fa | 4292 | |
3d5e33c9 BA |
4293 | if (skb_header_cloned(skb)) { |
4294 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | |
4295 | if (err) | |
4296 | return err; | |
bc7f75fa AK |
4297 | } |
4298 | ||
3d5e33c9 BA |
4299 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
4300 | mss = skb_shinfo(skb)->gso_size; | |
4301 | if (skb->protocol == htons(ETH_P_IP)) { | |
4302 | struct iphdr *iph = ip_hdr(skb); | |
4303 | iph->tot_len = 0; | |
4304 | iph->check = 0; | |
4305 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, | |
4306 | 0, IPPROTO_TCP, 0); | |
4307 | cmd_length = E1000_TXD_CMD_IP; | |
4308 | ipcse = skb_transport_offset(skb) - 1; | |
8e1e8a47 | 4309 | } else if (skb_is_gso_v6(skb)) { |
3d5e33c9 BA |
4310 | ipv6_hdr(skb)->payload_len = 0; |
4311 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | |
4312 | &ipv6_hdr(skb)->daddr, | |
4313 | 0, IPPROTO_TCP, 0); | |
4314 | ipcse = 0; | |
4315 | } | |
4316 | ipcss = skb_network_offset(skb); | |
4317 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | |
4318 | tucss = skb_transport_offset(skb); | |
4319 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | |
4320 | tucse = 0; | |
4321 | ||
4322 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | |
4323 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | |
4324 | ||
4325 | i = tx_ring->next_to_use; | |
4326 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | |
4327 | buffer_info = &tx_ring->buffer_info[i]; | |
4328 | ||
4329 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | |
4330 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | |
4331 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | |
4332 | context_desc->upper_setup.tcp_fields.tucss = tucss; | |
4333 | context_desc->upper_setup.tcp_fields.tucso = tucso; | |
4334 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | |
4335 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | |
4336 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | |
4337 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | |
4338 | ||
4339 | buffer_info->time_stamp = jiffies; | |
4340 | buffer_info->next_to_watch = i; | |
4341 | ||
4342 | i++; | |
4343 | if (i == tx_ring->count) | |
4344 | i = 0; | |
4345 | tx_ring->next_to_use = i; | |
4346 | ||
4347 | return 1; | |
bc7f75fa AK |
4348 | } |
4349 | ||
4350 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | |
4351 | { | |
4352 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
4353 | struct e1000_context_desc *context_desc; | |
4354 | struct e1000_buffer *buffer_info; | |
4355 | unsigned int i; | |
4356 | u8 css; | |
af807c82 | 4357 | u32 cmd_len = E1000_TXD_CMD_DEXT; |
5f66f208 | 4358 | __be16 protocol; |
bc7f75fa | 4359 | |
af807c82 DG |
4360 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
4361 | return 0; | |
bc7f75fa | 4362 | |
5f66f208 AJ |
4363 | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) |
4364 | protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; | |
4365 | else | |
4366 | protocol = skb->protocol; | |
4367 | ||
3f518390 | 4368 | switch (protocol) { |
09640e63 | 4369 | case cpu_to_be16(ETH_P_IP): |
af807c82 DG |
4370 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
4371 | cmd_len |= E1000_TXD_CMD_TCP; | |
4372 | break; | |
09640e63 | 4373 | case cpu_to_be16(ETH_P_IPV6): |
af807c82 DG |
4374 | /* XXX not handling all IPV6 headers */ |
4375 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | |
4376 | cmd_len |= E1000_TXD_CMD_TCP; | |
4377 | break; | |
4378 | default: | |
4379 | if (unlikely(net_ratelimit())) | |
5f66f208 AJ |
4380 | e_warn("checksum_partial proto=%x!\n", |
4381 | be16_to_cpu(protocol)); | |
af807c82 | 4382 | break; |
bc7f75fa AK |
4383 | } |
4384 | ||
af807c82 DG |
4385 | css = skb_transport_offset(skb); |
4386 | ||
4387 | i = tx_ring->next_to_use; | |
4388 | buffer_info = &tx_ring->buffer_info[i]; | |
4389 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | |
4390 | ||
4391 | context_desc->lower_setup.ip_config = 0; | |
4392 | context_desc->upper_setup.tcp_fields.tucss = css; | |
4393 | context_desc->upper_setup.tcp_fields.tucso = | |
4394 | css + skb->csum_offset; | |
4395 | context_desc->upper_setup.tcp_fields.tucse = 0; | |
4396 | context_desc->tcp_seg_setup.data = 0; | |
4397 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | |
4398 | ||
4399 | buffer_info->time_stamp = jiffies; | |
4400 | buffer_info->next_to_watch = i; | |
4401 | ||
4402 | i++; | |
4403 | if (i == tx_ring->count) | |
4404 | i = 0; | |
4405 | tx_ring->next_to_use = i; | |
4406 | ||
4407 | return 1; | |
bc7f75fa AK |
4408 | } |
4409 | ||
4410 | #define E1000_MAX_PER_TXD 8192 | |
4411 | #define E1000_MAX_TXD_PWR 12 | |
4412 | ||
4413 | static int e1000_tx_map(struct e1000_adapter *adapter, | |
4414 | struct sk_buff *skb, unsigned int first, | |
4415 | unsigned int max_per_txd, unsigned int nr_frags, | |
4416 | unsigned int mss) | |
4417 | { | |
4418 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
03b1320d | 4419 | struct pci_dev *pdev = adapter->pdev; |
1b7719c4 | 4420 | struct e1000_buffer *buffer_info; |
8ddc951c | 4421 | unsigned int len = skb_headlen(skb); |
03b1320d | 4422 | unsigned int offset = 0, size, count = 0, i; |
9ed318d5 | 4423 | unsigned int f, bytecount, segs; |
bc7f75fa AK |
4424 | |
4425 | i = tx_ring->next_to_use; | |
4426 | ||
4427 | while (len) { | |
1b7719c4 | 4428 | buffer_info = &tx_ring->buffer_info[i]; |
bc7f75fa AK |
4429 | size = min(len, max_per_txd); |
4430 | ||
bc7f75fa | 4431 | buffer_info->length = size; |
bc7f75fa | 4432 | buffer_info->time_stamp = jiffies; |
bc7f75fa | 4433 | buffer_info->next_to_watch = i; |
0be3f55f NN |
4434 | buffer_info->dma = dma_map_single(&pdev->dev, |
4435 | skb->data + offset, | |
4436 | size, DMA_TO_DEVICE); | |
03b1320d | 4437 | buffer_info->mapped_as_page = false; |
0be3f55f | 4438 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
03b1320d | 4439 | goto dma_error; |
bc7f75fa AK |
4440 | |
4441 | len -= size; | |
4442 | offset += size; | |
03b1320d | 4443 | count++; |
1b7719c4 AD |
4444 | |
4445 | if (len) { | |
4446 | i++; | |
4447 | if (i == tx_ring->count) | |
4448 | i = 0; | |
4449 | } | |
bc7f75fa AK |
4450 | } |
4451 | ||
4452 | for (f = 0; f < nr_frags; f++) { | |
4453 | struct skb_frag_struct *frag; | |
4454 | ||
4455 | frag = &skb_shinfo(skb)->frags[f]; | |
4456 | len = frag->size; | |
03b1320d | 4457 | offset = frag->page_offset; |
bc7f75fa AK |
4458 | |
4459 | while (len) { | |
1b7719c4 AD |
4460 | i++; |
4461 | if (i == tx_ring->count) | |
4462 | i = 0; | |
4463 | ||
bc7f75fa AK |
4464 | buffer_info = &tx_ring->buffer_info[i]; |
4465 | size = min(len, max_per_txd); | |
bc7f75fa AK |
4466 | |
4467 | buffer_info->length = size; | |
4468 | buffer_info->time_stamp = jiffies; | |
bc7f75fa | 4469 | buffer_info->next_to_watch = i; |
0be3f55f | 4470 | buffer_info->dma = dma_map_page(&pdev->dev, frag->page, |
03b1320d | 4471 | offset, size, |
0be3f55f | 4472 | DMA_TO_DEVICE); |
03b1320d | 4473 | buffer_info->mapped_as_page = true; |
0be3f55f | 4474 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
03b1320d | 4475 | goto dma_error; |
bc7f75fa AK |
4476 | |
4477 | len -= size; | |
4478 | offset += size; | |
4479 | count++; | |
bc7f75fa AK |
4480 | } |
4481 | } | |
4482 | ||
9ed318d5 TH |
4483 | segs = skb_shinfo(skb)->gso_segs ?: 1; |
4484 | /* multiply data chunks by size of headers */ | |
4485 | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; | |
4486 | ||
bc7f75fa | 4487 | tx_ring->buffer_info[i].skb = skb; |
9ed318d5 TH |
4488 | tx_ring->buffer_info[i].segs = segs; |
4489 | tx_ring->buffer_info[i].bytecount = bytecount; | |
bc7f75fa AK |
4490 | tx_ring->buffer_info[first].next_to_watch = i; |
4491 | ||
4492 | return count; | |
03b1320d AD |
4493 | |
4494 | dma_error: | |
4495 | dev_err(&pdev->dev, "TX DMA map failed\n"); | |
4496 | buffer_info->dma = 0; | |
c1fa347f | 4497 | if (count) |
03b1320d | 4498 | count--; |
c1fa347f RK |
4499 | |
4500 | while (count--) { | |
4501 | if (i==0) | |
03b1320d | 4502 | i += tx_ring->count; |
c1fa347f | 4503 | i--; |
03b1320d AD |
4504 | buffer_info = &tx_ring->buffer_info[i]; |
4505 | e1000_put_txbuf(adapter, buffer_info);; | |
4506 | } | |
4507 | ||
4508 | return 0; | |
bc7f75fa AK |
4509 | } |
4510 | ||
4511 | static void e1000_tx_queue(struct e1000_adapter *adapter, | |
4512 | int tx_flags, int count) | |
4513 | { | |
4514 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
4515 | struct e1000_tx_desc *tx_desc = NULL; | |
4516 | struct e1000_buffer *buffer_info; | |
4517 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | |
4518 | unsigned int i; | |
4519 | ||
4520 | if (tx_flags & E1000_TX_FLAGS_TSO) { | |
4521 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | |
4522 | E1000_TXD_CMD_TSE; | |
4523 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | |
4524 | ||
4525 | if (tx_flags & E1000_TX_FLAGS_IPV4) | |
4526 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | |
4527 | } | |
4528 | ||
4529 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | |
4530 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | |
4531 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | |
4532 | } | |
4533 | ||
4534 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | |
4535 | txd_lower |= E1000_TXD_CMD_VLE; | |
4536 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | |
4537 | } | |
4538 | ||
4539 | i = tx_ring->next_to_use; | |
4540 | ||
4541 | while (count--) { | |
4542 | buffer_info = &tx_ring->buffer_info[i]; | |
4543 | tx_desc = E1000_TX_DESC(*tx_ring, i); | |
4544 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | |
4545 | tx_desc->lower.data = | |
4546 | cpu_to_le32(txd_lower | buffer_info->length); | |
4547 | tx_desc->upper.data = cpu_to_le32(txd_upper); | |
4548 | ||
4549 | i++; | |
4550 | if (i == tx_ring->count) | |
4551 | i = 0; | |
4552 | } | |
4553 | ||
4554 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | |
4555 | ||
ad68076e BA |
4556 | /* |
4557 | * Force memory writes to complete before letting h/w | |
bc7f75fa AK |
4558 | * know there are new descriptors to fetch. (Only |
4559 | * applicable for weak-ordered memory model archs, | |
ad68076e BA |
4560 | * such as IA-64). |
4561 | */ | |
bc7f75fa AK |
4562 | wmb(); |
4563 | ||
4564 | tx_ring->next_to_use = i; | |
4565 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | |
ad68076e BA |
4566 | /* |
4567 | * we need this if more than one processor can write to our tail | |
4568 | * at a time, it synchronizes IO on IA64/Altix systems | |
4569 | */ | |
bc7f75fa AK |
4570 | mmiowb(); |
4571 | } | |
4572 | ||
4573 | #define MINIMUM_DHCP_PACKET_SIZE 282 | |
4574 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | |
4575 | struct sk_buff *skb) | |
4576 | { | |
4577 | struct e1000_hw *hw = &adapter->hw; | |
4578 | u16 length, offset; | |
4579 | ||
4580 | if (vlan_tx_tag_present(skb)) { | |
8e95a202 JP |
4581 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && |
4582 | (adapter->hw.mng_cookie.status & | |
bc7f75fa AK |
4583 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
4584 | return 0; | |
4585 | } | |
4586 | ||
4587 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | |
4588 | return 0; | |
4589 | ||
4590 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | |
4591 | return 0; | |
4592 | ||
4593 | { | |
4594 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | |
4595 | struct udphdr *udp; | |
4596 | ||
4597 | if (ip->protocol != IPPROTO_UDP) | |
4598 | return 0; | |
4599 | ||
4600 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | |
4601 | if (ntohs(udp->dest) != 67) | |
4602 | return 0; | |
4603 | ||
4604 | offset = (u8 *)udp + 8 - skb->data; | |
4605 | length = skb->len - offset; | |
4606 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | |
4607 | } | |
4608 | ||
4609 | return 0; | |
4610 | } | |
4611 | ||
4612 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | |
4613 | { | |
4614 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4615 | ||
4616 | netif_stop_queue(netdev); | |
ad68076e BA |
4617 | /* |
4618 | * Herbert's original patch had: | |
bc7f75fa | 4619 | * smp_mb__after_netif_stop_queue(); |
ad68076e BA |
4620 | * but since that doesn't exist yet, just open code it. |
4621 | */ | |
bc7f75fa AK |
4622 | smp_mb(); |
4623 | ||
ad68076e BA |
4624 | /* |
4625 | * We need to check again in a case another CPU has just | |
4626 | * made room available. | |
4627 | */ | |
bc7f75fa AK |
4628 | if (e1000_desc_unused(adapter->tx_ring) < size) |
4629 | return -EBUSY; | |
4630 | ||
4631 | /* A reprieve! */ | |
4632 | netif_start_queue(netdev); | |
4633 | ++adapter->restart_queue; | |
4634 | return 0; | |
4635 | } | |
4636 | ||
4637 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | |
4638 | { | |
4639 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4640 | ||
4641 | if (e1000_desc_unused(adapter->tx_ring) >= size) | |
4642 | return 0; | |
4643 | return __e1000_maybe_stop_tx(netdev, size); | |
4644 | } | |
4645 | ||
4646 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | |
3b29a56d SH |
4647 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
4648 | struct net_device *netdev) | |
bc7f75fa AK |
4649 | { |
4650 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4651 | struct e1000_ring *tx_ring = adapter->tx_ring; | |
4652 | unsigned int first; | |
4653 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | |
4654 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | |
4655 | unsigned int tx_flags = 0; | |
e743d313 | 4656 | unsigned int len = skb_headlen(skb); |
4e6c709c AK |
4657 | unsigned int nr_frags; |
4658 | unsigned int mss; | |
bc7f75fa AK |
4659 | int count = 0; |
4660 | int tso; | |
4661 | unsigned int f; | |
bc7f75fa AK |
4662 | |
4663 | if (test_bit(__E1000_DOWN, &adapter->state)) { | |
4664 | dev_kfree_skb_any(skb); | |
4665 | return NETDEV_TX_OK; | |
4666 | } | |
4667 | ||
4668 | if (skb->len <= 0) { | |
4669 | dev_kfree_skb_any(skb); | |
4670 | return NETDEV_TX_OK; | |
4671 | } | |
4672 | ||
4673 | mss = skb_shinfo(skb)->gso_size; | |
ad68076e BA |
4674 | /* |
4675 | * The controller does a simple calculation to | |
bc7f75fa AK |
4676 | * make sure there is enough room in the FIFO before |
4677 | * initiating the DMA for each buffer. The calc is: | |
4678 | * 4 = ceil(buffer len/mss). To make sure we don't | |
4679 | * overrun the FIFO, adjust the max buffer len if mss | |
ad68076e BA |
4680 | * drops. |
4681 | */ | |
bc7f75fa AK |
4682 | if (mss) { |
4683 | u8 hdr_len; | |
4684 | max_per_txd = min(mss << 2, max_per_txd); | |
4685 | max_txd_pwr = fls(max_per_txd) - 1; | |
4686 | ||
ad68076e BA |
4687 | /* |
4688 | * TSO Workaround for 82571/2/3 Controllers -- if skb->data | |
4689 | * points to just header, pull a few bytes of payload from | |
4690 | * frags into skb->data | |
4691 | */ | |
bc7f75fa | 4692 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
ad68076e BA |
4693 | /* |
4694 | * we do this workaround for ES2LAN, but it is un-necessary, | |
4695 | * avoiding it could save a lot of cycles | |
4696 | */ | |
4e6c709c | 4697 | if (skb->data_len && (hdr_len == len)) { |
bc7f75fa AK |
4698 | unsigned int pull_size; |
4699 | ||
4700 | pull_size = min((unsigned int)4, skb->data_len); | |
4701 | if (!__pskb_pull_tail(skb, pull_size)) { | |
44defeb3 | 4702 | e_err("__pskb_pull_tail failed.\n"); |
bc7f75fa AK |
4703 | dev_kfree_skb_any(skb); |
4704 | return NETDEV_TX_OK; | |
4705 | } | |
e743d313 | 4706 | len = skb_headlen(skb); |
bc7f75fa AK |
4707 | } |
4708 | } | |
4709 | ||
4710 | /* reserve a descriptor for the offload context */ | |
4711 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | |
4712 | count++; | |
4713 | count++; | |
4714 | ||
4715 | count += TXD_USE_COUNT(len, max_txd_pwr); | |
4716 | ||
4717 | nr_frags = skb_shinfo(skb)->nr_frags; | |
4718 | for (f = 0; f < nr_frags; f++) | |
4719 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | |
4720 | max_txd_pwr); | |
4721 | ||
4722 | if (adapter->hw.mac.tx_pkt_filtering) | |
4723 | e1000_transfer_dhcp_info(adapter, skb); | |
4724 | ||
ad68076e BA |
4725 | /* |
4726 | * need: count + 2 desc gap to keep tail from touching | |
4727 | * head, otherwise try next time | |
4728 | */ | |
92af3e95 | 4729 | if (e1000_maybe_stop_tx(netdev, count + 2)) |
bc7f75fa | 4730 | return NETDEV_TX_BUSY; |
bc7f75fa AK |
4731 | |
4732 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | |
4733 | tx_flags |= E1000_TX_FLAGS_VLAN; | |
4734 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | |
4735 | } | |
4736 | ||
4737 | first = tx_ring->next_to_use; | |
4738 | ||
4739 | tso = e1000_tso(adapter, skb); | |
4740 | if (tso < 0) { | |
4741 | dev_kfree_skb_any(skb); | |
bc7f75fa AK |
4742 | return NETDEV_TX_OK; |
4743 | } | |
4744 | ||
4745 | if (tso) | |
4746 | tx_flags |= E1000_TX_FLAGS_TSO; | |
4747 | else if (e1000_tx_csum(adapter, skb)) | |
4748 | tx_flags |= E1000_TX_FLAGS_CSUM; | |
4749 | ||
ad68076e BA |
4750 | /* |
4751 | * Old method was to assume IPv4 packet by default if TSO was enabled. | |
bc7f75fa | 4752 | * 82571 hardware supports TSO capabilities for IPv6 as well... |
ad68076e BA |
4753 | * no longer assume, we must. |
4754 | */ | |
bc7f75fa AK |
4755 | if (skb->protocol == htons(ETH_P_IP)) |
4756 | tx_flags |= E1000_TX_FLAGS_IPV4; | |
4757 | ||
1b7719c4 | 4758 | /* if count is 0 then mapping error has occured */ |
bc7f75fa | 4759 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
1b7719c4 AD |
4760 | if (count) { |
4761 | e1000_tx_queue(adapter, tx_flags, count); | |
1b7719c4 AD |
4762 | /* Make sure there is space in the ring for the next send. */ |
4763 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | |
4764 | ||
4765 | } else { | |
bc7f75fa | 4766 | dev_kfree_skb_any(skb); |
1b7719c4 AD |
4767 | tx_ring->buffer_info[first].time_stamp = 0; |
4768 | tx_ring->next_to_use = first; | |
bc7f75fa AK |
4769 | } |
4770 | ||
bc7f75fa AK |
4771 | return NETDEV_TX_OK; |
4772 | } | |
4773 | ||
4774 | /** | |
4775 | * e1000_tx_timeout - Respond to a Tx Hang | |
4776 | * @netdev: network interface device structure | |
4777 | **/ | |
4778 | static void e1000_tx_timeout(struct net_device *netdev) | |
4779 | { | |
4780 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4781 | ||
4782 | /* Do the reset outside of interrupt context */ | |
4783 | adapter->tx_timeout_count++; | |
4784 | schedule_work(&adapter->reset_task); | |
4785 | } | |
4786 | ||
4787 | static void e1000_reset_task(struct work_struct *work) | |
4788 | { | |
4789 | struct e1000_adapter *adapter; | |
4790 | adapter = container_of(work, struct e1000_adapter, reset_task); | |
4791 | ||
84f4ee90 TI |
4792 | e1000e_dump(adapter); |
4793 | e_err("Reset adapter\n"); | |
bc7f75fa AK |
4794 | e1000e_reinit_locked(adapter); |
4795 | } | |
4796 | ||
4797 | /** | |
4798 | * e1000_get_stats - Get System Network Statistics | |
4799 | * @netdev: network interface device structure | |
4800 | * | |
4801 | * Returns the address of the device statistics structure. | |
4802 | * The statistics are actually updated from the timer callback. | |
4803 | **/ | |
4804 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | |
4805 | { | |
bc7f75fa | 4806 | /* only return the current stats */ |
7274c20f | 4807 | return &netdev->stats; |
bc7f75fa AK |
4808 | } |
4809 | ||
4810 | /** | |
4811 | * e1000_change_mtu - Change the Maximum Transfer Unit | |
4812 | * @netdev: network interface device structure | |
4813 | * @new_mtu: new value for maximum frame size | |
4814 | * | |
4815 | * Returns 0 on success, negative on failure | |
4816 | **/ | |
4817 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | |
4818 | { | |
4819 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4820 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | |
4821 | ||
2adc55c9 BA |
4822 | /* Jumbo frame support */ |
4823 | if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && | |
4824 | !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | |
4825 | e_err("Jumbo Frames not supported.\n"); | |
bc7f75fa AK |
4826 | return -EINVAL; |
4827 | } | |
4828 | ||
2adc55c9 BA |
4829 | /* Supported frame sizes */ |
4830 | if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || | |
4831 | (max_frame > adapter->max_hw_frame_size)) { | |
4832 | e_err("Unsupported MTU setting\n"); | |
bc7f75fa AK |
4833 | return -EINVAL; |
4834 | } | |
4835 | ||
6f461f6c BA |
4836 | /* 82573 Errata 17 */ |
4837 | if (((adapter->hw.mac.type == e1000_82573) || | |
4838 | (adapter->hw.mac.type == e1000_82574)) && | |
4839 | (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) { | |
4840 | adapter->flags2 |= FLAG2_DISABLE_ASPM_L1; | |
4841 | e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1); | |
4842 | } | |
4843 | ||
bc7f75fa AK |
4844 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
4845 | msleep(1); | |
610c9928 | 4846 | /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ |
318a94d6 | 4847 | adapter->max_frame_size = max_frame; |
610c9928 BA |
4848 | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
4849 | netdev->mtu = new_mtu; | |
bc7f75fa AK |
4850 | if (netif_running(netdev)) |
4851 | e1000e_down(adapter); | |
4852 | ||
ad68076e BA |
4853 | /* |
4854 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | |
bc7f75fa AK |
4855 | * means we reserve 2 more, this pushes us to allocate from the next |
4856 | * larger slab size. | |
ad68076e | 4857 | * i.e. RXBUFFER_2048 --> size-4096 slab |
97ac8cae BA |
4858 | * However with the new *_jumbo_rx* routines, jumbo receives will use |
4859 | * fragmented skbs | |
ad68076e | 4860 | */ |
bc7f75fa | 4861 | |
9926146b | 4862 | if (max_frame <= 2048) |
bc7f75fa AK |
4863 | adapter->rx_buffer_len = 2048; |
4864 | else | |
4865 | adapter->rx_buffer_len = 4096; | |
4866 | ||
4867 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | |
4868 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | |
4869 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | |
4870 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | |
ad68076e | 4871 | + ETH_FCS_LEN; |
bc7f75fa | 4872 | |
bc7f75fa AK |
4873 | if (netif_running(netdev)) |
4874 | e1000e_up(adapter); | |
4875 | else | |
4876 | e1000e_reset(adapter); | |
4877 | ||
4878 | clear_bit(__E1000_RESETTING, &adapter->state); | |
4879 | ||
4880 | return 0; | |
4881 | } | |
4882 | ||
4883 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | |
4884 | int cmd) | |
4885 | { | |
4886 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
4887 | struct mii_ioctl_data *data = if_mii(ifr); | |
bc7f75fa | 4888 | |
318a94d6 | 4889 | if (adapter->hw.phy.media_type != e1000_media_type_copper) |
bc7f75fa AK |
4890 | return -EOPNOTSUPP; |
4891 | ||
4892 | switch (cmd) { | |
4893 | case SIOCGMIIPHY: | |
4894 | data->phy_id = adapter->hw.phy.addr; | |
4895 | break; | |
4896 | case SIOCGMIIREG: | |
b16a002e BA |
4897 | e1000_phy_read_status(adapter); |
4898 | ||
7c25769f BA |
4899 | switch (data->reg_num & 0x1F) { |
4900 | case MII_BMCR: | |
4901 | data->val_out = adapter->phy_regs.bmcr; | |
4902 | break; | |
4903 | case MII_BMSR: | |
4904 | data->val_out = adapter->phy_regs.bmsr; | |
4905 | break; | |
4906 | case MII_PHYSID1: | |
4907 | data->val_out = (adapter->hw.phy.id >> 16); | |
4908 | break; | |
4909 | case MII_PHYSID2: | |
4910 | data->val_out = (adapter->hw.phy.id & 0xFFFF); | |
4911 | break; | |
4912 | case MII_ADVERTISE: | |
4913 | data->val_out = adapter->phy_regs.advertise; | |
4914 | break; | |
4915 | case MII_LPA: | |
4916 | data->val_out = adapter->phy_regs.lpa; | |
4917 | break; | |
4918 | case MII_EXPANSION: | |
4919 | data->val_out = adapter->phy_regs.expansion; | |
4920 | break; | |
4921 | case MII_CTRL1000: | |
4922 | data->val_out = adapter->phy_regs.ctrl1000; | |
4923 | break; | |
4924 | case MII_STAT1000: | |
4925 | data->val_out = adapter->phy_regs.stat1000; | |
4926 | break; | |
4927 | case MII_ESTATUS: | |
4928 | data->val_out = adapter->phy_regs.estatus; | |
4929 | break; | |
4930 | default: | |
bc7f75fa AK |
4931 | return -EIO; |
4932 | } | |
bc7f75fa AK |
4933 | break; |
4934 | case SIOCSMIIREG: | |
4935 | default: | |
4936 | return -EOPNOTSUPP; | |
4937 | } | |
4938 | return 0; | |
4939 | } | |
4940 | ||
4941 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | |
4942 | { | |
4943 | switch (cmd) { | |
4944 | case SIOCGMIIPHY: | |
4945 | case SIOCGMIIREG: | |
4946 | case SIOCSMIIREG: | |
4947 | return e1000_mii_ioctl(netdev, ifr, cmd); | |
4948 | default: | |
4949 | return -EOPNOTSUPP; | |
4950 | } | |
4951 | } | |
4952 | ||
a4f58f54 BA |
4953 | static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) |
4954 | { | |
4955 | struct e1000_hw *hw = &adapter->hw; | |
4956 | u32 i, mac_reg; | |
4957 | u16 phy_reg; | |
4958 | int retval = 0; | |
4959 | ||
4960 | /* copy MAC RARs to PHY RARs */ | |
d3738bb8 | 4961 | e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
a4f58f54 BA |
4962 | |
4963 | /* copy MAC MTA to PHY MTA */ | |
4964 | for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { | |
4965 | mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); | |
4966 | e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF)); | |
4967 | e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF)); | |
4968 | } | |
4969 | ||
4970 | /* configure PHY Rx Control register */ | |
4971 | e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg); | |
4972 | mac_reg = er32(RCTL); | |
4973 | if (mac_reg & E1000_RCTL_UPE) | |
4974 | phy_reg |= BM_RCTL_UPE; | |
4975 | if (mac_reg & E1000_RCTL_MPE) | |
4976 | phy_reg |= BM_RCTL_MPE; | |
4977 | phy_reg &= ~(BM_RCTL_MO_MASK); | |
4978 | if (mac_reg & E1000_RCTL_MO_3) | |
4979 | phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) | |
4980 | << BM_RCTL_MO_SHIFT); | |
4981 | if (mac_reg & E1000_RCTL_BAM) | |
4982 | phy_reg |= BM_RCTL_BAM; | |
4983 | if (mac_reg & E1000_RCTL_PMCF) | |
4984 | phy_reg |= BM_RCTL_PMCF; | |
4985 | mac_reg = er32(CTRL); | |
4986 | if (mac_reg & E1000_CTRL_RFCE) | |
4987 | phy_reg |= BM_RCTL_RFCE; | |
4988 | e1e_wphy(&adapter->hw, BM_RCTL, phy_reg); | |
4989 | ||
4990 | /* enable PHY wakeup in MAC register */ | |
4991 | ew32(WUFC, wufc); | |
4992 | ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN); | |
4993 | ||
4994 | /* configure and enable PHY wakeup in PHY registers */ | |
4995 | e1e_wphy(&adapter->hw, BM_WUFC, wufc); | |
4996 | e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); | |
4997 | ||
4998 | /* activate PHY wakeup */ | |
94d8186a | 4999 | retval = hw->phy.ops.acquire(hw); |
a4f58f54 BA |
5000 | if (retval) { |
5001 | e_err("Could not acquire PHY\n"); | |
5002 | return retval; | |
5003 | } | |
5004 | e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | |
5005 | (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); | |
5006 | retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); | |
5007 | if (retval) { | |
5008 | e_err("Could not read PHY page 769\n"); | |
5009 | goto out; | |
5010 | } | |
5011 | phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; | |
5012 | retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); | |
5013 | if (retval) | |
5014 | e_err("Could not set PHY Host Wakeup bit\n"); | |
5015 | out: | |
94d8186a | 5016 | hw->phy.ops.release(hw); |
a4f58f54 BA |
5017 | |
5018 | return retval; | |
5019 | } | |
5020 | ||
23606cf5 RW |
5021 | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake, |
5022 | bool runtime) | |
bc7f75fa AK |
5023 | { |
5024 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5025 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5026 | struct e1000_hw *hw = &adapter->hw; | |
5027 | u32 ctrl, ctrl_ext, rctl, status; | |
23606cf5 RW |
5028 | /* Runtime suspend should only enable wakeup for link changes */ |
5029 | u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; | |
bc7f75fa AK |
5030 | int retval = 0; |
5031 | ||
5032 | netif_device_detach(netdev); | |
5033 | ||
5034 | if (netif_running(netdev)) { | |
5035 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | |
5036 | e1000e_down(adapter); | |
5037 | e1000_free_irq(adapter); | |
5038 | } | |
4662e82b | 5039 | e1000e_reset_interrupt_capability(adapter); |
bc7f75fa AK |
5040 | |
5041 | retval = pci_save_state(pdev); | |
5042 | if (retval) | |
5043 | return retval; | |
5044 | ||
5045 | status = er32(STATUS); | |
5046 | if (status & E1000_STATUS_LU) | |
5047 | wufc &= ~E1000_WUFC_LNKC; | |
5048 | ||
5049 | if (wufc) { | |
5050 | e1000_setup_rctl(adapter); | |
5051 | e1000_set_multi(netdev); | |
5052 | ||
5053 | /* turn on all-multi mode if wake on multicast is enabled */ | |
5054 | if (wufc & E1000_WUFC_MC) { | |
5055 | rctl = er32(RCTL); | |
5056 | rctl |= E1000_RCTL_MPE; | |
5057 | ew32(RCTL, rctl); | |
5058 | } | |
5059 | ||
5060 | ctrl = er32(CTRL); | |
5061 | /* advertise wake from D3Cold */ | |
5062 | #define E1000_CTRL_ADVD3WUC 0x00100000 | |
5063 | /* phy power management enable */ | |
5064 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | |
a4f58f54 BA |
5065 | ctrl |= E1000_CTRL_ADVD3WUC; |
5066 | if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) | |
5067 | ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; | |
bc7f75fa AK |
5068 | ew32(CTRL, ctrl); |
5069 | ||
318a94d6 JK |
5070 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
5071 | adapter->hw.phy.media_type == | |
5072 | e1000_media_type_internal_serdes) { | |
bc7f75fa AK |
5073 | /* keep the laser running in D3 */ |
5074 | ctrl_ext = er32(CTRL_EXT); | |
93a23f48 | 5075 | ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; |
bc7f75fa AK |
5076 | ew32(CTRL_EXT, ctrl_ext); |
5077 | } | |
5078 | ||
97ac8cae BA |
5079 | if (adapter->flags & FLAG_IS_ICH) |
5080 | e1000e_disable_gig_wol_ich8lan(&adapter->hw); | |
5081 | ||
bc7f75fa AK |
5082 | /* Allow time for pending master requests to run */ |
5083 | e1000e_disable_pcie_master(&adapter->hw); | |
5084 | ||
82776a4b | 5085 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { |
a4f58f54 BA |
5086 | /* enable wakeup by the PHY */ |
5087 | retval = e1000_init_phy_wakeup(adapter, wufc); | |
5088 | if (retval) | |
5089 | return retval; | |
5090 | } else { | |
5091 | /* enable wakeup by the MAC */ | |
5092 | ew32(WUFC, wufc); | |
5093 | ew32(WUC, E1000_WUC_PME_EN); | |
5094 | } | |
bc7f75fa AK |
5095 | } else { |
5096 | ew32(WUC, 0); | |
5097 | ew32(WUFC, 0); | |
bc7f75fa AK |
5098 | } |
5099 | ||
4f9de721 RW |
5100 | *enable_wake = !!wufc; |
5101 | ||
bc7f75fa | 5102 | /* make sure adapter isn't asleep if manageability is enabled */ |
82776a4b BA |
5103 | if ((adapter->flags & FLAG_MNG_PT_ENABLED) || |
5104 | (hw->mac.ops.check_mng_mode(hw))) | |
4f9de721 | 5105 | *enable_wake = true; |
bc7f75fa AK |
5106 | |
5107 | if (adapter->hw.phy.type == e1000_phy_igp_3) | |
5108 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | |
5109 | ||
ad68076e BA |
5110 | /* |
5111 | * Release control of h/w to f/w. If f/w is AMT enabled, this | |
5112 | * would have already happened in close and is redundant. | |
5113 | */ | |
bc7f75fa AK |
5114 | e1000_release_hw_control(adapter); |
5115 | ||
5116 | pci_disable_device(pdev); | |
5117 | ||
4f9de721 RW |
5118 | return 0; |
5119 | } | |
5120 | ||
5121 | static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake) | |
5122 | { | |
5123 | if (sleep && wake) { | |
5124 | pci_prepare_to_sleep(pdev); | |
5125 | return; | |
5126 | } | |
5127 | ||
5128 | pci_wake_from_d3(pdev, wake); | |
5129 | pci_set_power_state(pdev, PCI_D3hot); | |
5130 | } | |
5131 | ||
5132 | static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep, | |
5133 | bool wake) | |
5134 | { | |
5135 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5136 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5137 | ||
005cbdfc AD |
5138 | /* |
5139 | * The pci-e switch on some quad port adapters will report a | |
5140 | * correctable error when the MAC transitions from D0 to D3. To | |
5141 | * prevent this we need to mask off the correctable errors on the | |
5142 | * downstream port of the pci-e switch. | |
5143 | */ | |
5144 | if (adapter->flags & FLAG_IS_QUAD_PORT) { | |
5145 | struct pci_dev *us_dev = pdev->bus->self; | |
5146 | int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); | |
5147 | u16 devctl; | |
5148 | ||
5149 | pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); | |
5150 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, | |
5151 | (devctl & ~PCI_EXP_DEVCTL_CERE)); | |
5152 | ||
4f9de721 | 5153 | e1000_power_off(pdev, sleep, wake); |
005cbdfc AD |
5154 | |
5155 | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); | |
5156 | } else { | |
4f9de721 | 5157 | e1000_power_off(pdev, sleep, wake); |
005cbdfc | 5158 | } |
bc7f75fa AK |
5159 | } |
5160 | ||
6f461f6c BA |
5161 | #ifdef CONFIG_PCIEASPM |
5162 | static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | |
5163 | { | |
5164 | pci_disable_link_state(pdev, state); | |
5165 | } | |
5166 | #else | |
5167 | static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | |
1eae4eb2 AK |
5168 | { |
5169 | int pos; | |
6f461f6c | 5170 | u16 reg16; |
1eae4eb2 AK |
5171 | |
5172 | /* | |
6f461f6c BA |
5173 | * Both device and parent should have the same ASPM setting. |
5174 | * Disable ASPM in downstream component first and then upstream. | |
1eae4eb2 | 5175 | */ |
6f461f6c BA |
5176 | pos = pci_pcie_cap(pdev); |
5177 | pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16); | |
5178 | reg16 &= ~state; | |
5179 | pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16); | |
5180 | ||
0c75ba22 AB |
5181 | if (!pdev->bus->self) |
5182 | return; | |
5183 | ||
6f461f6c BA |
5184 | pos = pci_pcie_cap(pdev->bus->self); |
5185 | pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16); | |
5186 | reg16 &= ~state; | |
5187 | pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16); | |
5188 | } | |
5189 | #endif | |
5190 | void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) | |
5191 | { | |
5192 | dev_info(&pdev->dev, "Disabling ASPM %s %s\n", | |
5193 | (state & PCIE_LINK_STATE_L0S) ? "L0s" : "", | |
5194 | (state & PCIE_LINK_STATE_L1) ? "L1" : ""); | |
5195 | ||
5196 | __e1000e_disable_aspm(pdev, state); | |
1eae4eb2 AK |
5197 | } |
5198 | ||
a0340162 | 5199 | #ifdef CONFIG_PM_OPS |
23606cf5 | 5200 | static bool e1000e_pm_ready(struct e1000_adapter *adapter) |
4f9de721 | 5201 | { |
23606cf5 | 5202 | return !!adapter->tx_ring->buffer_info; |
4f9de721 RW |
5203 | } |
5204 | ||
23606cf5 | 5205 | static int __e1000_resume(struct pci_dev *pdev) |
bc7f75fa AK |
5206 | { |
5207 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5208 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5209 | struct e1000_hw *hw = &adapter->hw; | |
5210 | u32 err; | |
5211 | ||
5212 | pci_set_power_state(pdev, PCI_D0); | |
5213 | pci_restore_state(pdev); | |
28b8f04a | 5214 | pci_save_state(pdev); |
6f461f6c BA |
5215 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
5216 | e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); | |
6e4f6f6b | 5217 | |
4662e82b | 5218 | e1000e_set_interrupt_capability(adapter); |
bc7f75fa AK |
5219 | if (netif_running(netdev)) { |
5220 | err = e1000_request_irq(adapter); | |
5221 | if (err) | |
5222 | return err; | |
5223 | } | |
5224 | ||
5225 | e1000e_power_up_phy(adapter); | |
a4f58f54 BA |
5226 | |
5227 | /* report the system wakeup cause from S3/S4 */ | |
5228 | if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { | |
5229 | u16 phy_data; | |
5230 | ||
5231 | e1e_rphy(&adapter->hw, BM_WUS, &phy_data); | |
5232 | if (phy_data) { | |
5233 | e_info("PHY Wakeup cause - %s\n", | |
5234 | phy_data & E1000_WUS_EX ? "Unicast Packet" : | |
5235 | phy_data & E1000_WUS_MC ? "Multicast Packet" : | |
5236 | phy_data & E1000_WUS_BC ? "Broadcast Packet" : | |
5237 | phy_data & E1000_WUS_MAG ? "Magic Packet" : | |
5238 | phy_data & E1000_WUS_LNKC ? "Link Status " | |
5239 | " Change" : "other"); | |
5240 | } | |
5241 | e1e_wphy(&adapter->hw, BM_WUS, ~0); | |
5242 | } else { | |
5243 | u32 wus = er32(WUS); | |
5244 | if (wus) { | |
5245 | e_info("MAC Wakeup cause - %s\n", | |
5246 | wus & E1000_WUS_EX ? "Unicast Packet" : | |
5247 | wus & E1000_WUS_MC ? "Multicast Packet" : | |
5248 | wus & E1000_WUS_BC ? "Broadcast Packet" : | |
5249 | wus & E1000_WUS_MAG ? "Magic Packet" : | |
5250 | wus & E1000_WUS_LNKC ? "Link Status Change" : | |
5251 | "other"); | |
5252 | } | |
5253 | ew32(WUS, ~0); | |
5254 | } | |
5255 | ||
bc7f75fa | 5256 | e1000e_reset(adapter); |
bc7f75fa | 5257 | |
cd791618 | 5258 | e1000_init_manageability_pt(adapter); |
bc7f75fa AK |
5259 | |
5260 | if (netif_running(netdev)) | |
5261 | e1000e_up(adapter); | |
5262 | ||
5263 | netif_device_attach(netdev); | |
5264 | ||
ad68076e BA |
5265 | /* |
5266 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 5267 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
5268 | * under the control of the driver. |
5269 | */ | |
c43bc57e | 5270 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
5271 | e1000_get_hw_control(adapter); |
5272 | ||
5273 | return 0; | |
5274 | } | |
23606cf5 | 5275 | |
a0340162 RW |
5276 | #ifdef CONFIG_PM_SLEEP |
5277 | static int e1000_suspend(struct device *dev) | |
5278 | { | |
5279 | struct pci_dev *pdev = to_pci_dev(dev); | |
5280 | int retval; | |
5281 | bool wake; | |
5282 | ||
5283 | retval = __e1000_shutdown(pdev, &wake, false); | |
5284 | if (!retval) | |
5285 | e1000_complete_shutdown(pdev, true, wake); | |
5286 | ||
5287 | return retval; | |
5288 | } | |
5289 | ||
23606cf5 RW |
5290 | static int e1000_resume(struct device *dev) |
5291 | { | |
5292 | struct pci_dev *pdev = to_pci_dev(dev); | |
5293 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5294 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5295 | ||
5296 | if (e1000e_pm_ready(adapter)) | |
5297 | adapter->idle_check = true; | |
5298 | ||
5299 | return __e1000_resume(pdev); | |
5300 | } | |
a0340162 RW |
5301 | #endif /* CONFIG_PM_SLEEP */ |
5302 | ||
5303 | #ifdef CONFIG_PM_RUNTIME | |
5304 | static int e1000_runtime_suspend(struct device *dev) | |
5305 | { | |
5306 | struct pci_dev *pdev = to_pci_dev(dev); | |
5307 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5308 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5309 | ||
5310 | if (e1000e_pm_ready(adapter)) { | |
5311 | bool wake; | |
5312 | ||
5313 | __e1000_shutdown(pdev, &wake, true); | |
5314 | } | |
5315 | ||
5316 | return 0; | |
5317 | } | |
5318 | ||
5319 | static int e1000_idle(struct device *dev) | |
5320 | { | |
5321 | struct pci_dev *pdev = to_pci_dev(dev); | |
5322 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5323 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5324 | ||
5325 | if (!e1000e_pm_ready(adapter)) | |
5326 | return 0; | |
5327 | ||
5328 | if (adapter->idle_check) { | |
5329 | adapter->idle_check = false; | |
5330 | if (!e1000e_has_link(adapter)) | |
5331 | pm_schedule_suspend(dev, MSEC_PER_SEC); | |
5332 | } | |
5333 | ||
5334 | return -EBUSY; | |
5335 | } | |
23606cf5 RW |
5336 | |
5337 | static int e1000_runtime_resume(struct device *dev) | |
5338 | { | |
5339 | struct pci_dev *pdev = to_pci_dev(dev); | |
5340 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5341 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5342 | ||
5343 | if (!e1000e_pm_ready(adapter)) | |
5344 | return 0; | |
5345 | ||
5346 | adapter->idle_check = !dev->power.runtime_auto; | |
5347 | return __e1000_resume(pdev); | |
5348 | } | |
a0340162 RW |
5349 | #endif /* CONFIG_PM_RUNTIME */ |
5350 | #endif /* CONFIG_PM_OPS */ | |
bc7f75fa AK |
5351 | |
5352 | static void e1000_shutdown(struct pci_dev *pdev) | |
5353 | { | |
4f9de721 RW |
5354 | bool wake = false; |
5355 | ||
23606cf5 | 5356 | __e1000_shutdown(pdev, &wake, false); |
4f9de721 RW |
5357 | |
5358 | if (system_state == SYSTEM_POWER_OFF) | |
5359 | e1000_complete_shutdown(pdev, false, wake); | |
bc7f75fa AK |
5360 | } |
5361 | ||
5362 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
5363 | /* | |
5364 | * Polling 'interrupt' - used by things like netconsole to send skbs | |
5365 | * without having to re-enable interrupts. It's not called while | |
5366 | * the interrupt routine is executing. | |
5367 | */ | |
5368 | static void e1000_netpoll(struct net_device *netdev) | |
5369 | { | |
5370 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5371 | ||
5372 | disable_irq(adapter->pdev->irq); | |
5373 | e1000_intr(adapter->pdev->irq, netdev); | |
5374 | ||
bc7f75fa AK |
5375 | enable_irq(adapter->pdev->irq); |
5376 | } | |
5377 | #endif | |
5378 | ||
5379 | /** | |
5380 | * e1000_io_error_detected - called when PCI error is detected | |
5381 | * @pdev: Pointer to PCI device | |
5382 | * @state: The current pci connection state | |
5383 | * | |
5384 | * This function is called after a PCI bus error affecting | |
5385 | * this device has been detected. | |
5386 | */ | |
5387 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | |
5388 | pci_channel_state_t state) | |
5389 | { | |
5390 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5391 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5392 | ||
5393 | netif_device_detach(netdev); | |
5394 | ||
c93b5a76 MM |
5395 | if (state == pci_channel_io_perm_failure) |
5396 | return PCI_ERS_RESULT_DISCONNECT; | |
5397 | ||
bc7f75fa AK |
5398 | if (netif_running(netdev)) |
5399 | e1000e_down(adapter); | |
5400 | pci_disable_device(pdev); | |
5401 | ||
5402 | /* Request a slot slot reset. */ | |
5403 | return PCI_ERS_RESULT_NEED_RESET; | |
5404 | } | |
5405 | ||
5406 | /** | |
5407 | * e1000_io_slot_reset - called after the pci bus has been reset. | |
5408 | * @pdev: Pointer to PCI device | |
5409 | * | |
5410 | * Restart the card from scratch, as if from a cold-boot. Implementation | |
5411 | * resembles the first-half of the e1000_resume routine. | |
5412 | */ | |
5413 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | |
5414 | { | |
5415 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5416 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5417 | struct e1000_hw *hw = &adapter->hw; | |
6e4f6f6b | 5418 | int err; |
111b9dc5 | 5419 | pci_ers_result_t result; |
bc7f75fa | 5420 | |
6f461f6c BA |
5421 | if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) |
5422 | e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); | |
f0f422e5 | 5423 | err = pci_enable_device_mem(pdev); |
6e4f6f6b | 5424 | if (err) { |
bc7f75fa AK |
5425 | dev_err(&pdev->dev, |
5426 | "Cannot re-enable PCI device after reset.\n"); | |
111b9dc5 JB |
5427 | result = PCI_ERS_RESULT_DISCONNECT; |
5428 | } else { | |
5429 | pci_set_master(pdev); | |
23606cf5 | 5430 | pdev->state_saved = true; |
111b9dc5 | 5431 | pci_restore_state(pdev); |
bc7f75fa | 5432 | |
111b9dc5 JB |
5433 | pci_enable_wake(pdev, PCI_D3hot, 0); |
5434 | pci_enable_wake(pdev, PCI_D3cold, 0); | |
bc7f75fa | 5435 | |
111b9dc5 JB |
5436 | e1000e_reset(adapter); |
5437 | ew32(WUS, ~0); | |
5438 | result = PCI_ERS_RESULT_RECOVERED; | |
5439 | } | |
bc7f75fa | 5440 | |
111b9dc5 JB |
5441 | pci_cleanup_aer_uncorrect_error_status(pdev); |
5442 | ||
5443 | return result; | |
bc7f75fa AK |
5444 | } |
5445 | ||
5446 | /** | |
5447 | * e1000_io_resume - called when traffic can start flowing again. | |
5448 | * @pdev: Pointer to PCI device | |
5449 | * | |
5450 | * This callback is called when the error recovery driver tells us that | |
5451 | * its OK to resume normal operation. Implementation resembles the | |
5452 | * second-half of the e1000_resume routine. | |
5453 | */ | |
5454 | static void e1000_io_resume(struct pci_dev *pdev) | |
5455 | { | |
5456 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5457 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
5458 | ||
cd791618 | 5459 | e1000_init_manageability_pt(adapter); |
bc7f75fa AK |
5460 | |
5461 | if (netif_running(netdev)) { | |
5462 | if (e1000e_up(adapter)) { | |
5463 | dev_err(&pdev->dev, | |
5464 | "can't bring device back up after reset\n"); | |
5465 | return; | |
5466 | } | |
5467 | } | |
5468 | ||
5469 | netif_device_attach(netdev); | |
5470 | ||
ad68076e BA |
5471 | /* |
5472 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 5473 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
5474 | * under the control of the driver. |
5475 | */ | |
c43bc57e | 5476 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
5477 | e1000_get_hw_control(adapter); |
5478 | ||
5479 | } | |
5480 | ||
5481 | static void e1000_print_device_info(struct e1000_adapter *adapter) | |
5482 | { | |
5483 | struct e1000_hw *hw = &adapter->hw; | |
5484 | struct net_device *netdev = adapter->netdev; | |
69e3fd8c | 5485 | u32 pba_num; |
bc7f75fa AK |
5486 | |
5487 | /* print bus type/speed/width info */ | |
7c510e4b | 5488 | e_info("(PCI Express:2.5GB/s:%s) %pM\n", |
44defeb3 JK |
5489 | /* bus width */ |
5490 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | |
5491 | "Width x1"), | |
5492 | /* MAC address */ | |
7c510e4b | 5493 | netdev->dev_addr); |
44defeb3 JK |
5494 | e_info("Intel(R) PRO/%s Network Connection\n", |
5495 | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); | |
69e3fd8c | 5496 | e1000e_read_pba_num(hw, &pba_num); |
44defeb3 JK |
5497 | e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
5498 | hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); | |
bc7f75fa AK |
5499 | } |
5500 | ||
10aa4c04 AK |
5501 | static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
5502 | { | |
5503 | struct e1000_hw *hw = &adapter->hw; | |
5504 | int ret_val; | |
5505 | u16 buf = 0; | |
5506 | ||
5507 | if (hw->mac.type != e1000_82573) | |
5508 | return; | |
5509 | ||
5510 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); | |
e243455d | 5511 | if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { |
10aa4c04 | 5512 | /* Deep Smart Power Down (DSPD) */ |
6c2a9efa FP |
5513 | dev_warn(&adapter->pdev->dev, |
5514 | "Warning: detected DSPD enabled in EEPROM\n"); | |
10aa4c04 | 5515 | } |
10aa4c04 AK |
5516 | } |
5517 | ||
651c2466 SH |
5518 | static const struct net_device_ops e1000e_netdev_ops = { |
5519 | .ndo_open = e1000_open, | |
5520 | .ndo_stop = e1000_close, | |
00829823 | 5521 | .ndo_start_xmit = e1000_xmit_frame, |
651c2466 SH |
5522 | .ndo_get_stats = e1000_get_stats, |
5523 | .ndo_set_multicast_list = e1000_set_multi, | |
5524 | .ndo_set_mac_address = e1000_set_mac, | |
5525 | .ndo_change_mtu = e1000_change_mtu, | |
5526 | .ndo_do_ioctl = e1000_ioctl, | |
5527 | .ndo_tx_timeout = e1000_tx_timeout, | |
5528 | .ndo_validate_addr = eth_validate_addr, | |
5529 | ||
5530 | .ndo_vlan_rx_register = e1000_vlan_rx_register, | |
5531 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, | |
5532 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, | |
5533 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
5534 | .ndo_poll_controller = e1000_netpoll, | |
5535 | #endif | |
5536 | }; | |
5537 | ||
bc7f75fa AK |
5538 | /** |
5539 | * e1000_probe - Device Initialization Routine | |
5540 | * @pdev: PCI device information struct | |
5541 | * @ent: entry in e1000_pci_tbl | |
5542 | * | |
5543 | * Returns 0 on success, negative on failure | |
5544 | * | |
5545 | * e1000_probe initializes an adapter identified by a pci_dev structure. | |
5546 | * The OS initialization, configuring of the adapter private structure, | |
5547 | * and a hardware reset occur. | |
5548 | **/ | |
5549 | static int __devinit e1000_probe(struct pci_dev *pdev, | |
5550 | const struct pci_device_id *ent) | |
5551 | { | |
5552 | struct net_device *netdev; | |
5553 | struct e1000_adapter *adapter; | |
5554 | struct e1000_hw *hw; | |
5555 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | |
f47e81fc BB |
5556 | resource_size_t mmio_start, mmio_len; |
5557 | resource_size_t flash_start, flash_len; | |
bc7f75fa AK |
5558 | |
5559 | static int cards_found; | |
5560 | int i, err, pci_using_dac; | |
5561 | u16 eeprom_data = 0; | |
5562 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | |
5563 | ||
6f461f6c BA |
5564 | if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) |
5565 | e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1); | |
6e4f6f6b | 5566 | |
f0f422e5 | 5567 | err = pci_enable_device_mem(pdev); |
bc7f75fa AK |
5568 | if (err) |
5569 | return err; | |
5570 | ||
5571 | pci_using_dac = 0; | |
0be3f55f | 5572 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
bc7f75fa | 5573 | if (!err) { |
0be3f55f | 5574 | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
bc7f75fa AK |
5575 | if (!err) |
5576 | pci_using_dac = 1; | |
5577 | } else { | |
0be3f55f | 5578 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
bc7f75fa | 5579 | if (err) { |
0be3f55f NN |
5580 | err = dma_set_coherent_mask(&pdev->dev, |
5581 | DMA_BIT_MASK(32)); | |
bc7f75fa AK |
5582 | if (err) { |
5583 | dev_err(&pdev->dev, "No usable DMA " | |
5584 | "configuration, aborting\n"); | |
5585 | goto err_dma; | |
5586 | } | |
5587 | } | |
5588 | } | |
5589 | ||
e8de1481 | 5590 | err = pci_request_selected_regions_exclusive(pdev, |
f0f422e5 BA |
5591 | pci_select_bars(pdev, IORESOURCE_MEM), |
5592 | e1000e_driver_name); | |
bc7f75fa AK |
5593 | if (err) |
5594 | goto err_pci_reg; | |
5595 | ||
68eac460 | 5596 | /* AER (Advanced Error Reporting) hooks */ |
19d5afd4 | 5597 | pci_enable_pcie_error_reporting(pdev); |
68eac460 | 5598 | |
bc7f75fa | 5599 | pci_set_master(pdev); |
438b365a BA |
5600 | /* PCI config space info */ |
5601 | err = pci_save_state(pdev); | |
5602 | if (err) | |
5603 | goto err_alloc_etherdev; | |
bc7f75fa AK |
5604 | |
5605 | err = -ENOMEM; | |
5606 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | |
5607 | if (!netdev) | |
5608 | goto err_alloc_etherdev; | |
5609 | ||
bc7f75fa AK |
5610 | SET_NETDEV_DEV(netdev, &pdev->dev); |
5611 | ||
f85e4dfa TH |
5612 | netdev->irq = pdev->irq; |
5613 | ||
bc7f75fa AK |
5614 | pci_set_drvdata(pdev, netdev); |
5615 | adapter = netdev_priv(netdev); | |
5616 | hw = &adapter->hw; | |
5617 | adapter->netdev = netdev; | |
5618 | adapter->pdev = pdev; | |
5619 | adapter->ei = ei; | |
5620 | adapter->pba = ei->pba; | |
5621 | adapter->flags = ei->flags; | |
eb7c3adb | 5622 | adapter->flags2 = ei->flags2; |
bc7f75fa AK |
5623 | adapter->hw.adapter = adapter; |
5624 | adapter->hw.mac.type = ei->mac; | |
2adc55c9 | 5625 | adapter->max_hw_frame_size = ei->max_hw_frame_size; |
bc7f75fa AK |
5626 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
5627 | ||
5628 | mmio_start = pci_resource_start(pdev, 0); | |
5629 | mmio_len = pci_resource_len(pdev, 0); | |
5630 | ||
5631 | err = -EIO; | |
5632 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | |
5633 | if (!adapter->hw.hw_addr) | |
5634 | goto err_ioremap; | |
5635 | ||
5636 | if ((adapter->flags & FLAG_HAS_FLASH) && | |
5637 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | |
5638 | flash_start = pci_resource_start(pdev, 1); | |
5639 | flash_len = pci_resource_len(pdev, 1); | |
5640 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | |
5641 | if (!adapter->hw.flash_address) | |
5642 | goto err_flashmap; | |
5643 | } | |
5644 | ||
5645 | /* construct the net_device struct */ | |
651c2466 | 5646 | netdev->netdev_ops = &e1000e_netdev_ops; |
bc7f75fa | 5647 | e1000e_set_ethtool_ops(netdev); |
bc7f75fa AK |
5648 | netdev->watchdog_timeo = 5 * HZ; |
5649 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | |
bc7f75fa AK |
5650 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
5651 | ||
5652 | netdev->mem_start = mmio_start; | |
5653 | netdev->mem_end = mmio_start + mmio_len; | |
5654 | ||
5655 | adapter->bd_number = cards_found++; | |
5656 | ||
4662e82b BA |
5657 | e1000e_check_options(adapter); |
5658 | ||
bc7f75fa AK |
5659 | /* setup adapter struct */ |
5660 | err = e1000_sw_init(adapter); | |
5661 | if (err) | |
5662 | goto err_sw_init; | |
5663 | ||
bc7f75fa AK |
5664 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
5665 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | |
5666 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | |
5667 | ||
69e3fd8c | 5668 | err = ei->get_variants(adapter); |
bc7f75fa AK |
5669 | if (err) |
5670 | goto err_hw_init; | |
5671 | ||
4a770358 BA |
5672 | if ((adapter->flags & FLAG_IS_ICH) && |
5673 | (adapter->flags & FLAG_READ_ONLY_NVM)) | |
5674 | e1000e_write_protect_nvm_ich8lan(&adapter->hw); | |
5675 | ||
bc7f75fa AK |
5676 | hw->mac.ops.get_bus_info(&adapter->hw); |
5677 | ||
318a94d6 | 5678 | adapter->hw.phy.autoneg_wait_to_complete = 0; |
bc7f75fa AK |
5679 | |
5680 | /* Copper options */ | |
318a94d6 | 5681 | if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
bc7f75fa AK |
5682 | adapter->hw.phy.mdix = AUTO_ALL_MODES; |
5683 | adapter->hw.phy.disable_polarity_correction = 0; | |
5684 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | |
5685 | } | |
5686 | ||
5687 | if (e1000_check_reset_block(&adapter->hw)) | |
44defeb3 | 5688 | e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
bc7f75fa AK |
5689 | |
5690 | netdev->features = NETIF_F_SG | | |
5691 | NETIF_F_HW_CSUM | | |
5692 | NETIF_F_HW_VLAN_TX | | |
5693 | NETIF_F_HW_VLAN_RX; | |
5694 | ||
5695 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | |
5696 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | |
5697 | ||
5698 | netdev->features |= NETIF_F_TSO; | |
5699 | netdev->features |= NETIF_F_TSO6; | |
5700 | ||
a5136e23 JK |
5701 | netdev->vlan_features |= NETIF_F_TSO; |
5702 | netdev->vlan_features |= NETIF_F_TSO6; | |
5703 | netdev->vlan_features |= NETIF_F_HW_CSUM; | |
5704 | netdev->vlan_features |= NETIF_F_SG; | |
5705 | ||
bc7f75fa AK |
5706 | if (pci_using_dac) |
5707 | netdev->features |= NETIF_F_HIGHDMA; | |
5708 | ||
bc7f75fa AK |
5709 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
5710 | adapter->flags |= FLAG_MNG_PT_ENABLED; | |
5711 | ||
ad68076e BA |
5712 | /* |
5713 | * before reading the NVM, reset the controller to | |
5714 | * put the device in a known good starting state | |
5715 | */ | |
bc7f75fa AK |
5716 | adapter->hw.mac.ops.reset_hw(&adapter->hw); |
5717 | ||
5718 | /* | |
5719 | * systems with ASPM and others may see the checksum fail on the first | |
5720 | * attempt. Let's give it a few tries | |
5721 | */ | |
5722 | for (i = 0;; i++) { | |
5723 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | |
5724 | break; | |
5725 | if (i == 2) { | |
44defeb3 | 5726 | e_err("The NVM Checksum Is Not Valid\n"); |
bc7f75fa AK |
5727 | err = -EIO; |
5728 | goto err_eeprom; | |
5729 | } | |
5730 | } | |
5731 | ||
10aa4c04 AK |
5732 | e1000_eeprom_checks(adapter); |
5733 | ||
608f8a0d | 5734 | /* copy the MAC address */ |
bc7f75fa | 5735 | if (e1000e_read_mac_addr(&adapter->hw)) |
44defeb3 | 5736 | e_err("NVM Read Error while reading MAC address\n"); |
bc7f75fa AK |
5737 | |
5738 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | |
5739 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | |
5740 | ||
5741 | if (!is_valid_ether_addr(netdev->perm_addr)) { | |
7c510e4b | 5742 | e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); |
bc7f75fa AK |
5743 | err = -EIO; |
5744 | goto err_eeprom; | |
5745 | } | |
5746 | ||
5747 | init_timer(&adapter->watchdog_timer); | |
c061b18d | 5748 | adapter->watchdog_timer.function = e1000_watchdog; |
bc7f75fa AK |
5749 | adapter->watchdog_timer.data = (unsigned long) adapter; |
5750 | ||
5751 | init_timer(&adapter->phy_info_timer); | |
c061b18d | 5752 | adapter->phy_info_timer.function = e1000_update_phy_info; |
bc7f75fa AK |
5753 | adapter->phy_info_timer.data = (unsigned long) adapter; |
5754 | ||
5755 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | |
5756 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | |
a8f88ff5 JB |
5757 | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
5758 | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); | |
41cec6f1 | 5759 | INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); |
bc7f75fa | 5760 | |
bc7f75fa AK |
5761 | /* Initialize link parameters. User can change them with ethtool */ |
5762 | adapter->hw.mac.autoneg = 1; | |
309af40b | 5763 | adapter->fc_autoneg = 1; |
5c48ef3e BA |
5764 | adapter->hw.fc.requested_mode = e1000_fc_default; |
5765 | adapter->hw.fc.current_mode = e1000_fc_default; | |
bc7f75fa AK |
5766 | adapter->hw.phy.autoneg_advertised = 0x2f; |
5767 | ||
5768 | /* ring size defaults */ | |
5769 | adapter->rx_ring->count = 256; | |
5770 | adapter->tx_ring->count = 256; | |
5771 | ||
5772 | /* | |
5773 | * Initial Wake on LAN setting - If APM wake is enabled in | |
5774 | * the EEPROM, enable the ACPI Magic Packet filter | |
5775 | */ | |
5776 | if (adapter->flags & FLAG_APME_IN_WUC) { | |
5777 | /* APME bit in EEPROM is mapped to WUC.APME */ | |
5778 | eeprom_data = er32(WUC); | |
5779 | eeprom_apme_mask = E1000_WUC_APME; | |
a4f58f54 BA |
5780 | if (eeprom_data & E1000_WUC_PHY_WAKE) |
5781 | adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; | |
bc7f75fa AK |
5782 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
5783 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | |
5784 | (adapter->hw.bus.func == 1)) | |
5785 | e1000_read_nvm(&adapter->hw, | |
5786 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | |
5787 | else | |
5788 | e1000_read_nvm(&adapter->hw, | |
5789 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | |
5790 | } | |
5791 | ||
5792 | /* fetch WoL from EEPROM */ | |
5793 | if (eeprom_data & eeprom_apme_mask) | |
5794 | adapter->eeprom_wol |= E1000_WUFC_MAG; | |
5795 | ||
5796 | /* | |
5797 | * now that we have the eeprom settings, apply the special cases | |
5798 | * where the eeprom may be wrong or the board simply won't support | |
5799 | * wake on lan on a particular port | |
5800 | */ | |
5801 | if (!(adapter->flags & FLAG_HAS_WOL)) | |
5802 | adapter->eeprom_wol = 0; | |
5803 | ||
5804 | /* initialize the wol settings based on the eeprom settings */ | |
5805 | adapter->wol = adapter->eeprom_wol; | |
6ff68026 | 5806 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
bc7f75fa | 5807 | |
84527590 BA |
5808 | /* save off EEPROM version number */ |
5809 | e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); | |
5810 | ||
bc7f75fa AK |
5811 | /* reset the hardware with the new settings */ |
5812 | e1000e_reset(adapter); | |
5813 | ||
ad68076e BA |
5814 | /* |
5815 | * If the controller has AMT, do not set DRV_LOAD until the interface | |
bc7f75fa | 5816 | * is up. For all other cases, let the f/w know that the h/w is now |
ad68076e BA |
5817 | * under the control of the driver. |
5818 | */ | |
c43bc57e | 5819 | if (!(adapter->flags & FLAG_HAS_AMT)) |
bc7f75fa AK |
5820 | e1000_get_hw_control(adapter); |
5821 | ||
bc7f75fa AK |
5822 | strcpy(netdev->name, "eth%d"); |
5823 | err = register_netdev(netdev); | |
5824 | if (err) | |
5825 | goto err_register; | |
5826 | ||
9c563d20 JB |
5827 | /* carrier off reporting is important to ethtool even BEFORE open */ |
5828 | netif_carrier_off(netdev); | |
5829 | ||
bc7f75fa AK |
5830 | e1000_print_device_info(adapter); |
5831 | ||
f3ec4f87 AS |
5832 | if (pci_dev_run_wake(pdev)) |
5833 | pm_runtime_put_noidle(&pdev->dev); | |
23606cf5 | 5834 | |
bc7f75fa AK |
5835 | return 0; |
5836 | ||
5837 | err_register: | |
c43bc57e JB |
5838 | if (!(adapter->flags & FLAG_HAS_AMT)) |
5839 | e1000_release_hw_control(adapter); | |
bc7f75fa AK |
5840 | err_eeprom: |
5841 | if (!e1000_check_reset_block(&adapter->hw)) | |
5842 | e1000_phy_hw_reset(&adapter->hw); | |
c43bc57e | 5843 | err_hw_init: |
bc7f75fa | 5844 | |
bc7f75fa AK |
5845 | kfree(adapter->tx_ring); |
5846 | kfree(adapter->rx_ring); | |
5847 | err_sw_init: | |
c43bc57e JB |
5848 | if (adapter->hw.flash_address) |
5849 | iounmap(adapter->hw.flash_address); | |
e82f54ba | 5850 | e1000e_reset_interrupt_capability(adapter); |
c43bc57e | 5851 | err_flashmap: |
bc7f75fa AK |
5852 | iounmap(adapter->hw.hw_addr); |
5853 | err_ioremap: | |
5854 | free_netdev(netdev); | |
5855 | err_alloc_etherdev: | |
f0f422e5 BA |
5856 | pci_release_selected_regions(pdev, |
5857 | pci_select_bars(pdev, IORESOURCE_MEM)); | |
bc7f75fa AK |
5858 | err_pci_reg: |
5859 | err_dma: | |
5860 | pci_disable_device(pdev); | |
5861 | return err; | |
5862 | } | |
5863 | ||
5864 | /** | |
5865 | * e1000_remove - Device Removal Routine | |
5866 | * @pdev: PCI device information struct | |
5867 | * | |
5868 | * e1000_remove is called by the PCI subsystem to alert the driver | |
5869 | * that it should release a PCI device. The could be caused by a | |
5870 | * Hot-Plug event, or because the driver is going to be removed from | |
5871 | * memory. | |
5872 | **/ | |
5873 | static void __devexit e1000_remove(struct pci_dev *pdev) | |
5874 | { | |
5875 | struct net_device *netdev = pci_get_drvdata(pdev); | |
5876 | struct e1000_adapter *adapter = netdev_priv(netdev); | |
23606cf5 RW |
5877 | bool down = test_bit(__E1000_DOWN, &adapter->state); |
5878 | ||
ad68076e BA |
5879 | /* |
5880 | * flush_scheduled work may reschedule our watchdog task, so | |
5881 | * explicitly disable watchdog tasks from being rescheduled | |
5882 | */ | |
23606cf5 RW |
5883 | if (!down) |
5884 | set_bit(__E1000_DOWN, &adapter->state); | |
bc7f75fa AK |
5885 | del_timer_sync(&adapter->watchdog_timer); |
5886 | del_timer_sync(&adapter->phy_info_timer); | |
5887 | ||
41cec6f1 BA |
5888 | cancel_work_sync(&adapter->reset_task); |
5889 | cancel_work_sync(&adapter->watchdog_task); | |
5890 | cancel_work_sync(&adapter->downshift_task); | |
5891 | cancel_work_sync(&adapter->update_phy_task); | |
5892 | cancel_work_sync(&adapter->print_hang_task); | |
bc7f75fa AK |
5893 | flush_scheduled_work(); |
5894 | ||
17f208de BA |
5895 | if (!(netdev->flags & IFF_UP)) |
5896 | e1000_power_down_phy(adapter); | |
5897 | ||
23606cf5 RW |
5898 | /* Don't lie to e1000_close() down the road. */ |
5899 | if (!down) | |
5900 | clear_bit(__E1000_DOWN, &adapter->state); | |
17f208de BA |
5901 | unregister_netdev(netdev); |
5902 | ||
f3ec4f87 AS |
5903 | if (pci_dev_run_wake(pdev)) |
5904 | pm_runtime_get_noresume(&pdev->dev); | |
23606cf5 | 5905 | |
ad68076e BA |
5906 | /* |
5907 | * Release control of h/w to f/w. If f/w is AMT enabled, this | |
5908 | * would have already happened in close and is redundant. | |
5909 | */ | |
bc7f75fa AK |
5910 | e1000_release_hw_control(adapter); |
5911 | ||
4662e82b | 5912 | e1000e_reset_interrupt_capability(adapter); |
bc7f75fa AK |
5913 | kfree(adapter->tx_ring); |
5914 | kfree(adapter->rx_ring); | |
5915 | ||
5916 | iounmap(adapter->hw.hw_addr); | |
5917 | if (adapter->hw.flash_address) | |
5918 | iounmap(adapter->hw.flash_address); | |
f0f422e5 BA |
5919 | pci_release_selected_regions(pdev, |
5920 | pci_select_bars(pdev, IORESOURCE_MEM)); | |
bc7f75fa AK |
5921 | |
5922 | free_netdev(netdev); | |
5923 | ||
111b9dc5 | 5924 | /* AER disable */ |
19d5afd4 | 5925 | pci_disable_pcie_error_reporting(pdev); |
111b9dc5 | 5926 | |
bc7f75fa AK |
5927 | pci_disable_device(pdev); |
5928 | } | |
5929 | ||
5930 | /* PCI Error Recovery (ERS) */ | |
5931 | static struct pci_error_handlers e1000_err_handler = { | |
5932 | .error_detected = e1000_io_error_detected, | |
5933 | .slot_reset = e1000_io_slot_reset, | |
5934 | .resume = e1000_io_resume, | |
5935 | }; | |
5936 | ||
a3aa1884 | 5937 | static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
bc7f75fa AK |
5938 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
5939 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | |
5940 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | |
5941 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | |
5942 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | |
5943 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | |
040babf9 AK |
5944 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
5945 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | |
5946 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | |
ad68076e | 5947 | |
bc7f75fa AK |
5948 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
5949 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | |
5950 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | |
5951 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | |
ad68076e | 5952 | |
bc7f75fa AK |
5953 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
5954 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | |
5955 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | |
ad68076e | 5956 | |
4662e82b | 5957 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
bef28b11 | 5958 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, |
8c81c9c3 | 5959 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, |
4662e82b | 5960 | |
bc7f75fa AK |
5961 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
5962 | board_80003es2lan }, | |
5963 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | |
5964 | board_80003es2lan }, | |
5965 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | |
5966 | board_80003es2lan }, | |
5967 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | |
5968 | board_80003es2lan }, | |
ad68076e | 5969 | |
bc7f75fa AK |
5970 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
5971 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | |
5972 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | |
5973 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | |
5974 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | |
5975 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | |
5976 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | |
9e135a2e | 5977 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, |
ad68076e | 5978 | |
bc7f75fa AK |
5979 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
5980 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | |
5981 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | |
5982 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | |
5983 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | |
2f15f9d6 | 5984 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
97ac8cae BA |
5985 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
5986 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, | |
5987 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, | |
5988 | ||
5989 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, | |
5990 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, | |
5991 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, | |
bc7f75fa | 5992 | |
f4187b56 BA |
5993 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
5994 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, | |
10df0b91 | 5995 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, |
f4187b56 | 5996 | |
a4f58f54 BA |
5997 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, |
5998 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, | |
5999 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, | |
6000 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, | |
6001 | ||
d3738bb8 BA |
6002 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, |
6003 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, | |
6004 | ||
bc7f75fa AK |
6005 | { } /* terminate list */ |
6006 | }; | |
6007 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | |
6008 | ||
a0340162 | 6009 | #ifdef CONFIG_PM_OPS |
23606cf5 | 6010 | static const struct dev_pm_ops e1000_pm_ops = { |
a0340162 RW |
6011 | SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume) |
6012 | SET_RUNTIME_PM_OPS(e1000_runtime_suspend, | |
6013 | e1000_runtime_resume, e1000_idle) | |
23606cf5 | 6014 | }; |
e50208a0 | 6015 | #endif |
23606cf5 | 6016 | |
bc7f75fa AK |
6017 | /* PCI Device API Driver */ |
6018 | static struct pci_driver e1000_driver = { | |
6019 | .name = e1000e_driver_name, | |
6020 | .id_table = e1000_pci_tbl, | |
6021 | .probe = e1000_probe, | |
6022 | .remove = __devexit_p(e1000_remove), | |
a0340162 | 6023 | #ifdef CONFIG_PM_OPS |
23606cf5 | 6024 | .driver.pm = &e1000_pm_ops, |
bc7f75fa AK |
6025 | #endif |
6026 | .shutdown = e1000_shutdown, | |
6027 | .err_handler = &e1000_err_handler | |
6028 | }; | |
6029 | ||
6030 | /** | |
6031 | * e1000_init_module - Driver Registration Routine | |
6032 | * | |
6033 | * e1000_init_module is the first routine called when the driver is | |
6034 | * loaded. All it does is register with the PCI subsystem. | |
6035 | **/ | |
6036 | static int __init e1000_init_module(void) | |
6037 | { | |
6038 | int ret; | |
8544b9f7 BA |
6039 | pr_info("Intel(R) PRO/1000 Network Driver - %s\n", |
6040 | e1000e_driver_version); | |
451152d9 | 6041 | pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n"); |
bc7f75fa | 6042 | ret = pci_register_driver(&e1000_driver); |
53ec5498 | 6043 | |
bc7f75fa AK |
6044 | return ret; |
6045 | } | |
6046 | module_init(e1000_init_module); | |
6047 | ||
6048 | /** | |
6049 | * e1000_exit_module - Driver Exit Cleanup Routine | |
6050 | * | |
6051 | * e1000_exit_module is called just before the driver is removed | |
6052 | * from memory. | |
6053 | **/ | |
6054 | static void __exit e1000_exit_module(void) | |
6055 | { | |
6056 | pci_unregister_driver(&e1000_driver); | |
6057 | } | |
6058 | module_exit(e1000_exit_module); | |
6059 | ||
6060 | ||
6061 | MODULE_AUTHOR("Intel Corporation, <[email protected]>"); | |
6062 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | |
6063 | MODULE_LICENSE("GPL"); | |
6064 | MODULE_VERSION(DRV_VERSION); | |
6065 | ||
6066 | /* e1000_main.c */ |