]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | Red Black Trees | |
3 | (C) 1999 Andrea Arcangeli <[email protected]> | |
4 | (C) 2002 David Woodhouse <[email protected]> | |
46b6135a ML |
5 | (C) 2012 Michel Lespinasse <[email protected]> |
6 | ||
1da177e4 LT |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
20 | ||
21 | linux/lib/rbtree.c | |
22 | */ | |
23 | ||
9c079add | 24 | #include <linux/rbtree_augmented.h> |
8bc3bcc9 | 25 | #include <linux/export.h> |
1da177e4 | 26 | |
5bc9188a ML |
27 | /* |
28 | * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree | |
29 | * | |
30 | * 1) A node is either red or black | |
31 | * 2) The root is black | |
32 | * 3) All leaves (NULL) are black | |
33 | * 4) Both children of every red node are black | |
34 | * 5) Every simple path from root to leaves contains the same number | |
35 | * of black nodes. | |
36 | * | |
37 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two | |
38 | * consecutive red nodes in a path and every red node is therefore followed by | |
39 | * a black. So if B is the number of black nodes on every simple path (as per | |
40 | * 5), then the longest possible path due to 4 is 2B. | |
41 | * | |
42 | * We shall indicate color with case, where black nodes are uppercase and red | |
6280d235 ML |
43 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within |
44 | * parentheses and have some accompanying text comment. | |
5bc9188a ML |
45 | */ |
46 | ||
d72da4a4 PZ |
47 | /* |
48 | * Notes on lockless lookups: | |
49 | * | |
50 | * All stores to the tree structure (rb_left and rb_right) must be done using | |
51 | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the | |
52 | * tree structure as seen in program order. | |
53 | * | |
54 | * These two requirements will allow lockless iteration of the tree -- not | |
55 | * correct iteration mind you, tree rotations are not atomic so a lookup might | |
56 | * miss entire subtrees. | |
57 | * | |
58 | * But they do guarantee that any such traversal will only see valid elements | |
59 | * and that it will indeed complete -- does not get stuck in a loop. | |
60 | * | |
61 | * It also guarantees that if the lookup returns an element it is the 'correct' | |
62 | * one. But not returning an element does _NOT_ mean it's not present. | |
63 | * | |
64 | * NOTE: | |
65 | * | |
66 | * Stores to __rb_parent_color are not important for simple lookups so those | |
67 | * are left undone as of now. Nor did I check for loops involving parent | |
68 | * pointers. | |
69 | */ | |
70 | ||
46b6135a ML |
71 | static inline void rb_set_black(struct rb_node *rb) |
72 | { | |
73 | rb->__rb_parent_color |= RB_BLACK; | |
74 | } | |
75 | ||
5bc9188a ML |
76 | static inline struct rb_node *rb_red_parent(struct rb_node *red) |
77 | { | |
78 | return (struct rb_node *)red->__rb_parent_color; | |
79 | } | |
80 | ||
5bc9188a ML |
81 | /* |
82 | * Helper function for rotations: | |
83 | * - old's parent and color get assigned to new | |
84 | * - old gets assigned new as a parent and 'color' as a color. | |
85 | */ | |
86 | static inline void | |
87 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, | |
88 | struct rb_root *root, int color) | |
89 | { | |
90 | struct rb_node *parent = rb_parent(old); | |
91 | new->__rb_parent_color = old->__rb_parent_color; | |
92 | rb_set_parent_color(old, new, color); | |
7abc704a | 93 | __rb_change_child(old, new, parent, root); |
5bc9188a ML |
94 | } |
95 | ||
14b94af0 ML |
96 | static __always_inline void |
97 | __rb_insert(struct rb_node *node, struct rb_root *root, | |
cd9e61ed | 98 | bool newleft, struct rb_node **leftmost, |
14b94af0 | 99 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
1da177e4 | 100 | { |
5bc9188a | 101 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; |
1da177e4 | 102 | |
cd9e61ed DB |
103 | if (newleft) |
104 | *leftmost = node; | |
105 | ||
6d58452d ML |
106 | while (true) { |
107 | /* | |
2aadf7fc | 108 | * Loop invariant: node is red. |
6d58452d | 109 | */ |
2aadf7fc DB |
110 | if (unlikely(!parent)) { |
111 | /* | |
112 | * The inserted node is root. Either this is the | |
113 | * first node, or we recursed at Case 1 below and | |
114 | * are no longer violating 4). | |
115 | */ | |
5bc9188a | 116 | rb_set_parent_color(node, NULL, RB_BLACK); |
6d58452d | 117 | break; |
2aadf7fc DB |
118 | } |
119 | ||
120 | /* | |
121 | * If there is a black parent, we are done. | |
122 | * Otherwise, take some corrective action as, | |
123 | * per 4), we don't want a red root or two | |
124 | * consecutive red nodes. | |
125 | */ | |
126 | if(rb_is_black(parent)) | |
6d58452d ML |
127 | break; |
128 | ||
5bc9188a ML |
129 | gparent = rb_red_parent(parent); |
130 | ||
59633abf ML |
131 | tmp = gparent->rb_right; |
132 | if (parent != tmp) { /* parent == gparent->rb_left */ | |
5bc9188a ML |
133 | if (tmp && rb_is_red(tmp)) { |
134 | /* | |
35dc67d7 | 135 | * Case 1 - node's uncle is red (color flips). |
5bc9188a ML |
136 | * |
137 | * G g | |
138 | * / \ / \ | |
139 | * p u --> P U | |
140 | * / / | |
1b9c53e8 | 141 | * n n |
5bc9188a ML |
142 | * |
143 | * However, since g's parent might be red, and | |
144 | * 4) does not allow this, we need to recurse | |
145 | * at g. | |
146 | */ | |
147 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
148 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
149 | node = gparent; | |
150 | parent = rb_parent(node); | |
151 | rb_set_parent_color(node, parent, RB_RED); | |
152 | continue; | |
1da177e4 LT |
153 | } |
154 | ||
59633abf ML |
155 | tmp = parent->rb_right; |
156 | if (node == tmp) { | |
5bc9188a | 157 | /* |
35dc67d7 DB |
158 | * Case 2 - node's uncle is black and node is |
159 | * the parent's right child (left rotate at parent). | |
5bc9188a ML |
160 | * |
161 | * G G | |
162 | * / \ / \ | |
163 | * p U --> n U | |
164 | * \ / | |
165 | * n p | |
166 | * | |
167 | * This still leaves us in violation of 4), the | |
168 | * continuation into Case 3 will fix that. | |
169 | */ | |
d72da4a4 PZ |
170 | tmp = node->rb_left; |
171 | WRITE_ONCE(parent->rb_right, tmp); | |
172 | WRITE_ONCE(node->rb_left, parent); | |
5bc9188a ML |
173 | if (tmp) |
174 | rb_set_parent_color(tmp, parent, | |
175 | RB_BLACK); | |
176 | rb_set_parent_color(parent, node, RB_RED); | |
14b94af0 | 177 | augment_rotate(parent, node); |
1da177e4 | 178 | parent = node; |
59633abf | 179 | tmp = node->rb_right; |
1da177e4 LT |
180 | } |
181 | ||
5bc9188a | 182 | /* |
35dc67d7 DB |
183 | * Case 3 - node's uncle is black and node is |
184 | * the parent's left child (right rotate at gparent). | |
5bc9188a ML |
185 | * |
186 | * G P | |
187 | * / \ / \ | |
188 | * p U --> n g | |
189 | * / \ | |
190 | * n U | |
191 | */ | |
d72da4a4 PZ |
192 | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */ |
193 | WRITE_ONCE(parent->rb_right, gparent); | |
5bc9188a ML |
194 | if (tmp) |
195 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
196 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
14b94af0 | 197 | augment_rotate(gparent, parent); |
1f052865 | 198 | break; |
1da177e4 | 199 | } else { |
5bc9188a ML |
200 | tmp = gparent->rb_left; |
201 | if (tmp && rb_is_red(tmp)) { | |
202 | /* Case 1 - color flips */ | |
203 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
204 | rb_set_parent_color(parent, gparent, RB_BLACK); | |
205 | node = gparent; | |
206 | parent = rb_parent(node); | |
207 | rb_set_parent_color(node, parent, RB_RED); | |
208 | continue; | |
1da177e4 LT |
209 | } |
210 | ||
59633abf ML |
211 | tmp = parent->rb_left; |
212 | if (node == tmp) { | |
5bc9188a | 213 | /* Case 2 - right rotate at parent */ |
d72da4a4 PZ |
214 | tmp = node->rb_right; |
215 | WRITE_ONCE(parent->rb_left, tmp); | |
216 | WRITE_ONCE(node->rb_right, parent); | |
5bc9188a ML |
217 | if (tmp) |
218 | rb_set_parent_color(tmp, parent, | |
219 | RB_BLACK); | |
220 | rb_set_parent_color(parent, node, RB_RED); | |
14b94af0 | 221 | augment_rotate(parent, node); |
1da177e4 | 222 | parent = node; |
59633abf | 223 | tmp = node->rb_left; |
1da177e4 LT |
224 | } |
225 | ||
5bc9188a | 226 | /* Case 3 - left rotate at gparent */ |
d72da4a4 PZ |
227 | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */ |
228 | WRITE_ONCE(parent->rb_left, gparent); | |
5bc9188a ML |
229 | if (tmp) |
230 | rb_set_parent_color(tmp, gparent, RB_BLACK); | |
231 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); | |
14b94af0 | 232 | augment_rotate(gparent, parent); |
1f052865 | 233 | break; |
1da177e4 LT |
234 | } |
235 | } | |
1da177e4 | 236 | } |
1da177e4 | 237 | |
3cb7a563 ML |
238 | /* |
239 | * Inline version for rb_erase() use - we want to be able to inline | |
240 | * and eliminate the dummy_rotate callback there | |
241 | */ | |
242 | static __always_inline void | |
243 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
9c079add | 244 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
1da177e4 | 245 | { |
46b6135a | 246 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; |
1da177e4 | 247 | |
d6ff1273 ML |
248 | while (true) { |
249 | /* | |
46b6135a ML |
250 | * Loop invariants: |
251 | * - node is black (or NULL on first iteration) | |
252 | * - node is not the root (parent is not NULL) | |
253 | * - All leaf paths going through parent and node have a | |
254 | * black node count that is 1 lower than other leaf paths. | |
d6ff1273 | 255 | */ |
59633abf ML |
256 | sibling = parent->rb_right; |
257 | if (node != sibling) { /* node == parent->rb_left */ | |
6280d235 ML |
258 | if (rb_is_red(sibling)) { |
259 | /* | |
260 | * Case 1 - left rotate at parent | |
261 | * | |
262 | * P S | |
263 | * / \ / \ | |
264 | * N s --> p Sr | |
265 | * / \ / \ | |
266 | * Sl Sr N Sl | |
267 | */ | |
d72da4a4 PZ |
268 | tmp1 = sibling->rb_left; |
269 | WRITE_ONCE(parent->rb_right, tmp1); | |
270 | WRITE_ONCE(sibling->rb_left, parent); | |
6280d235 ML |
271 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
272 | __rb_rotate_set_parents(parent, sibling, root, | |
273 | RB_RED); | |
9c079add | 274 | augment_rotate(parent, sibling); |
6280d235 | 275 | sibling = tmp1; |
1da177e4 | 276 | } |
6280d235 ML |
277 | tmp1 = sibling->rb_right; |
278 | if (!tmp1 || rb_is_black(tmp1)) { | |
279 | tmp2 = sibling->rb_left; | |
280 | if (!tmp2 || rb_is_black(tmp2)) { | |
281 | /* | |
282 | * Case 2 - sibling color flip | |
283 | * (p could be either color here) | |
284 | * | |
285 | * (p) (p) | |
286 | * / \ / \ | |
287 | * N S --> N s | |
288 | * / \ / \ | |
289 | * Sl Sr Sl Sr | |
290 | * | |
46b6135a ML |
291 | * This leaves us violating 5) which |
292 | * can be fixed by flipping p to black | |
293 | * if it was red, or by recursing at p. | |
294 | * p is red when coming from Case 1. | |
6280d235 ML |
295 | */ |
296 | rb_set_parent_color(sibling, parent, | |
297 | RB_RED); | |
46b6135a ML |
298 | if (rb_is_red(parent)) |
299 | rb_set_black(parent); | |
300 | else { | |
301 | node = parent; | |
302 | parent = rb_parent(node); | |
303 | if (parent) | |
304 | continue; | |
305 | } | |
306 | break; | |
1da177e4 | 307 | } |
6280d235 ML |
308 | /* |
309 | * Case 3 - right rotate at sibling | |
310 | * (p could be either color here) | |
311 | * | |
312 | * (p) (p) | |
313 | * / \ / \ | |
ce093a04 | 314 | * N S --> N sl |
6280d235 | 315 | * / \ \ |
ce093a04 | 316 | * sl Sr S |
6280d235 ML |
317 | * \ |
318 | * Sr | |
ce093a04 JC |
319 | * |
320 | * Note: p might be red, and then both | |
321 | * p and sl are red after rotation(which | |
322 | * breaks property 4). This is fixed in | |
323 | * Case 4 (in __rb_rotate_set_parents() | |
324 | * which set sl the color of p | |
325 | * and set p RB_BLACK) | |
326 | * | |
327 | * (p) (sl) | |
328 | * / \ / \ | |
329 | * N sl --> P S | |
330 | * \ / \ | |
331 | * S N Sr | |
332 | * \ | |
333 | * Sr | |
6280d235 | 334 | */ |
d72da4a4 PZ |
335 | tmp1 = tmp2->rb_right; |
336 | WRITE_ONCE(sibling->rb_left, tmp1); | |
337 | WRITE_ONCE(tmp2->rb_right, sibling); | |
338 | WRITE_ONCE(parent->rb_right, tmp2); | |
6280d235 ML |
339 | if (tmp1) |
340 | rb_set_parent_color(tmp1, sibling, | |
341 | RB_BLACK); | |
9c079add | 342 | augment_rotate(sibling, tmp2); |
6280d235 ML |
343 | tmp1 = sibling; |
344 | sibling = tmp2; | |
1da177e4 | 345 | } |
6280d235 ML |
346 | /* |
347 | * Case 4 - left rotate at parent + color flips | |
348 | * (p and sl could be either color here. | |
349 | * After rotation, p becomes black, s acquires | |
350 | * p's color, and sl keeps its color) | |
351 | * | |
352 | * (p) (s) | |
353 | * / \ / \ | |
354 | * N S --> P Sr | |
355 | * / \ / \ | |
356 | * (sl) sr N (sl) | |
357 | */ | |
d72da4a4 PZ |
358 | tmp2 = sibling->rb_left; |
359 | WRITE_ONCE(parent->rb_right, tmp2); | |
360 | WRITE_ONCE(sibling->rb_left, parent); | |
6280d235 ML |
361 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
362 | if (tmp2) | |
363 | rb_set_parent(tmp2, parent); | |
364 | __rb_rotate_set_parents(parent, sibling, root, | |
365 | RB_BLACK); | |
9c079add | 366 | augment_rotate(parent, sibling); |
e125d147 | 367 | break; |
d6ff1273 | 368 | } else { |
6280d235 ML |
369 | sibling = parent->rb_left; |
370 | if (rb_is_red(sibling)) { | |
371 | /* Case 1 - right rotate at parent */ | |
d72da4a4 PZ |
372 | tmp1 = sibling->rb_right; |
373 | WRITE_ONCE(parent->rb_left, tmp1); | |
374 | WRITE_ONCE(sibling->rb_right, parent); | |
6280d235 ML |
375 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
376 | __rb_rotate_set_parents(parent, sibling, root, | |
377 | RB_RED); | |
9c079add | 378 | augment_rotate(parent, sibling); |
6280d235 | 379 | sibling = tmp1; |
1da177e4 | 380 | } |
6280d235 ML |
381 | tmp1 = sibling->rb_left; |
382 | if (!tmp1 || rb_is_black(tmp1)) { | |
383 | tmp2 = sibling->rb_right; | |
384 | if (!tmp2 || rb_is_black(tmp2)) { | |
385 | /* Case 2 - sibling color flip */ | |
386 | rb_set_parent_color(sibling, parent, | |
387 | RB_RED); | |
46b6135a ML |
388 | if (rb_is_red(parent)) |
389 | rb_set_black(parent); | |
390 | else { | |
391 | node = parent; | |
392 | parent = rb_parent(node); | |
393 | if (parent) | |
394 | continue; | |
395 | } | |
396 | break; | |
1da177e4 | 397 | } |
ce093a04 | 398 | /* Case 3 - left rotate at sibling */ |
d72da4a4 PZ |
399 | tmp1 = tmp2->rb_left; |
400 | WRITE_ONCE(sibling->rb_right, tmp1); | |
401 | WRITE_ONCE(tmp2->rb_left, sibling); | |
402 | WRITE_ONCE(parent->rb_left, tmp2); | |
6280d235 ML |
403 | if (tmp1) |
404 | rb_set_parent_color(tmp1, sibling, | |
405 | RB_BLACK); | |
9c079add | 406 | augment_rotate(sibling, tmp2); |
6280d235 ML |
407 | tmp1 = sibling; |
408 | sibling = tmp2; | |
1da177e4 | 409 | } |
ce093a04 | 410 | /* Case 4 - right rotate at parent + color flips */ |
d72da4a4 PZ |
411 | tmp2 = sibling->rb_right; |
412 | WRITE_ONCE(parent->rb_left, tmp2); | |
413 | WRITE_ONCE(sibling->rb_right, parent); | |
6280d235 ML |
414 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
415 | if (tmp2) | |
416 | rb_set_parent(tmp2, parent); | |
417 | __rb_rotate_set_parents(parent, sibling, root, | |
418 | RB_BLACK); | |
9c079add | 419 | augment_rotate(parent, sibling); |
e125d147 | 420 | break; |
1da177e4 LT |
421 | } |
422 | } | |
1da177e4 | 423 | } |
3cb7a563 ML |
424 | |
425 | /* Non-inline version for rb_erase_augmented() use */ | |
426 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, | |
427 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) | |
428 | { | |
429 | ____rb_erase_color(parent, root, augment_rotate); | |
430 | } | |
9c079add | 431 | EXPORT_SYMBOL(__rb_erase_color); |
14b94af0 ML |
432 | |
433 | /* | |
434 | * Non-augmented rbtree manipulation functions. | |
435 | * | |
436 | * We use dummy augmented callbacks here, and have the compiler optimize them | |
437 | * out of the rb_insert_color() and rb_erase() function definitions. | |
438 | */ | |
439 | ||
440 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} | |
441 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} | |
442 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} | |
443 | ||
444 | static const struct rb_augment_callbacks dummy_callbacks = { | |
f231aebf KC |
445 | .propagate = dummy_propagate, |
446 | .copy = dummy_copy, | |
447 | .rotate = dummy_rotate | |
14b94af0 ML |
448 | }; |
449 | ||
450 | void rb_insert_color(struct rb_node *node, struct rb_root *root) | |
451 | { | |
cd9e61ed | 452 | __rb_insert(node, root, false, NULL, dummy_rotate); |
14b94af0 ML |
453 | } |
454 | EXPORT_SYMBOL(rb_insert_color); | |
455 | ||
456 | void rb_erase(struct rb_node *node, struct rb_root *root) | |
457 | { | |
3cb7a563 | 458 | struct rb_node *rebalance; |
cd9e61ed DB |
459 | rebalance = __rb_erase_augmented(node, root, |
460 | NULL, &dummy_callbacks); | |
3cb7a563 ML |
461 | if (rebalance) |
462 | ____rb_erase_color(rebalance, root, dummy_rotate); | |
1da177e4 LT |
463 | } |
464 | EXPORT_SYMBOL(rb_erase); | |
465 | ||
cd9e61ed DB |
466 | void rb_insert_color_cached(struct rb_node *node, |
467 | struct rb_root_cached *root, bool leftmost) | |
468 | { | |
469 | __rb_insert(node, &root->rb_root, leftmost, | |
470 | &root->rb_leftmost, dummy_rotate); | |
471 | } | |
472 | EXPORT_SYMBOL(rb_insert_color_cached); | |
473 | ||
474 | void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root) | |
475 | { | |
476 | struct rb_node *rebalance; | |
477 | rebalance = __rb_erase_augmented(node, &root->rb_root, | |
478 | &root->rb_leftmost, &dummy_callbacks); | |
479 | if (rebalance) | |
480 | ____rb_erase_color(rebalance, &root->rb_root, dummy_rotate); | |
481 | } | |
482 | EXPORT_SYMBOL(rb_erase_cached); | |
483 | ||
14b94af0 ML |
484 | /* |
485 | * Augmented rbtree manipulation functions. | |
486 | * | |
487 | * This instantiates the same __always_inline functions as in the non-augmented | |
488 | * case, but this time with user-defined callbacks. | |
489 | */ | |
490 | ||
491 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, | |
cd9e61ed | 492 | bool newleft, struct rb_node **leftmost, |
14b94af0 ML |
493 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
494 | { | |
cd9e61ed | 495 | __rb_insert(node, root, newleft, leftmost, augment_rotate); |
14b94af0 ML |
496 | } |
497 | EXPORT_SYMBOL(__rb_insert_augmented); | |
498 | ||
1da177e4 LT |
499 | /* |
500 | * This function returns the first node (in sort order) of the tree. | |
501 | */ | |
f4b477c4 | 502 | struct rb_node *rb_first(const struct rb_root *root) |
1da177e4 LT |
503 | { |
504 | struct rb_node *n; | |
505 | ||
506 | n = root->rb_node; | |
507 | if (!n) | |
508 | return NULL; | |
509 | while (n->rb_left) | |
510 | n = n->rb_left; | |
511 | return n; | |
512 | } | |
513 | EXPORT_SYMBOL(rb_first); | |
514 | ||
f4b477c4 | 515 | struct rb_node *rb_last(const struct rb_root *root) |
1da177e4 LT |
516 | { |
517 | struct rb_node *n; | |
518 | ||
519 | n = root->rb_node; | |
520 | if (!n) | |
521 | return NULL; | |
522 | while (n->rb_right) | |
523 | n = n->rb_right; | |
524 | return n; | |
525 | } | |
526 | EXPORT_SYMBOL(rb_last); | |
527 | ||
f4b477c4 | 528 | struct rb_node *rb_next(const struct rb_node *node) |
1da177e4 | 529 | { |
55a98102 DW |
530 | struct rb_node *parent; |
531 | ||
4c199a93 | 532 | if (RB_EMPTY_NODE(node)) |
10fd48f2 JA |
533 | return NULL; |
534 | ||
7ce6ff9e ML |
535 | /* |
536 | * If we have a right-hand child, go down and then left as far | |
537 | * as we can. | |
538 | */ | |
1da177e4 | 539 | if (node->rb_right) { |
cd9e61ed | 540 | node = node->rb_right; |
1da177e4 LT |
541 | while (node->rb_left) |
542 | node=node->rb_left; | |
f4b477c4 | 543 | return (struct rb_node *)node; |
1da177e4 LT |
544 | } |
545 | ||
7ce6ff9e ML |
546 | /* |
547 | * No right-hand children. Everything down and left is smaller than us, | |
548 | * so any 'next' node must be in the general direction of our parent. | |
549 | * Go up the tree; any time the ancestor is a right-hand child of its | |
550 | * parent, keep going up. First time it's a left-hand child of its | |
551 | * parent, said parent is our 'next' node. | |
552 | */ | |
55a98102 DW |
553 | while ((parent = rb_parent(node)) && node == parent->rb_right) |
554 | node = parent; | |
1da177e4 | 555 | |
55a98102 | 556 | return parent; |
1da177e4 LT |
557 | } |
558 | EXPORT_SYMBOL(rb_next); | |
559 | ||
f4b477c4 | 560 | struct rb_node *rb_prev(const struct rb_node *node) |
1da177e4 | 561 | { |
55a98102 DW |
562 | struct rb_node *parent; |
563 | ||
4c199a93 | 564 | if (RB_EMPTY_NODE(node)) |
10fd48f2 JA |
565 | return NULL; |
566 | ||
7ce6ff9e ML |
567 | /* |
568 | * If we have a left-hand child, go down and then right as far | |
569 | * as we can. | |
570 | */ | |
1da177e4 | 571 | if (node->rb_left) { |
cd9e61ed | 572 | node = node->rb_left; |
1da177e4 LT |
573 | while (node->rb_right) |
574 | node=node->rb_right; | |
f4b477c4 | 575 | return (struct rb_node *)node; |
1da177e4 LT |
576 | } |
577 | ||
7ce6ff9e ML |
578 | /* |
579 | * No left-hand children. Go up till we find an ancestor which | |
580 | * is a right-hand child of its parent. | |
581 | */ | |
55a98102 DW |
582 | while ((parent = rb_parent(node)) && node == parent->rb_left) |
583 | node = parent; | |
1da177e4 | 584 | |
55a98102 | 585 | return parent; |
1da177e4 LT |
586 | } |
587 | EXPORT_SYMBOL(rb_prev); | |
588 | ||
589 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, | |
590 | struct rb_root *root) | |
591 | { | |
55a98102 | 592 | struct rb_node *parent = rb_parent(victim); |
1da177e4 | 593 | |
c1adf200 DH |
594 | /* Copy the pointers/colour from the victim to the replacement */ |
595 | *new = *victim; | |
596 | ||
1da177e4 | 597 | /* Set the surrounding nodes to point to the replacement */ |
1da177e4 | 598 | if (victim->rb_left) |
55a98102 | 599 | rb_set_parent(victim->rb_left, new); |
1da177e4 | 600 | if (victim->rb_right) |
55a98102 | 601 | rb_set_parent(victim->rb_right, new); |
c1adf200 DH |
602 | __rb_change_child(victim, new, parent, root); |
603 | } | |
604 | EXPORT_SYMBOL(rb_replace_node); | |
605 | ||
606 | void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new, | |
607 | struct rb_root *root) | |
608 | { | |
609 | struct rb_node *parent = rb_parent(victim); | |
1da177e4 LT |
610 | |
611 | /* Copy the pointers/colour from the victim to the replacement */ | |
612 | *new = *victim; | |
c1adf200 DH |
613 | |
614 | /* Set the surrounding nodes to point to the replacement */ | |
615 | if (victim->rb_left) | |
616 | rb_set_parent(victim->rb_left, new); | |
617 | if (victim->rb_right) | |
618 | rb_set_parent(victim->rb_right, new); | |
619 | ||
620 | /* Set the parent's pointer to the new node last after an RCU barrier | |
621 | * so that the pointers onwards are seen to be set correctly when doing | |
622 | * an RCU walk over the tree. | |
623 | */ | |
624 | __rb_change_child_rcu(victim, new, parent, root); | |
1da177e4 | 625 | } |
c1adf200 | 626 | EXPORT_SYMBOL(rb_replace_node_rcu); |
9dee5c51 CS |
627 | |
628 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) | |
629 | { | |
630 | for (;;) { | |
631 | if (node->rb_left) | |
632 | node = node->rb_left; | |
633 | else if (node->rb_right) | |
634 | node = node->rb_right; | |
635 | else | |
636 | return (struct rb_node *)node; | |
637 | } | |
638 | } | |
639 | ||
640 | struct rb_node *rb_next_postorder(const struct rb_node *node) | |
641 | { | |
642 | const struct rb_node *parent; | |
643 | if (!node) | |
644 | return NULL; | |
645 | parent = rb_parent(node); | |
646 | ||
647 | /* If we're sitting on node, we've already seen our children */ | |
648 | if (parent && node == parent->rb_left && parent->rb_right) { | |
649 | /* If we are the parent's left node, go to the parent's right | |
650 | * node then all the way down to the left */ | |
651 | return rb_left_deepest_node(parent->rb_right); | |
652 | } else | |
653 | /* Otherwise we are the parent's right node, and the parent | |
654 | * should be next */ | |
655 | return (struct rb_node *)parent; | |
656 | } | |
657 | EXPORT_SYMBOL(rb_next_postorder); | |
658 | ||
659 | struct rb_node *rb_first_postorder(const struct rb_root *root) | |
660 | { | |
661 | if (!root->rb_node) | |
662 | return NULL; | |
663 | ||
664 | return rb_left_deepest_node(root->rb_node); | |
665 | } | |
666 | EXPORT_SYMBOL(rb_first_postorder); |