]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
029190c5 | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
8793d854 | 8 | * Copyright (C) 2006 Google, Inc |
1da177e4 LT |
9 | * |
10 | * Portions derived from Patrick Mochel's sysfs code. | |
11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
1da177e4 | 12 | * |
825a46af | 13 | * 2003-10-10 Written by Simon Derr. |
1da177e4 | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
825a46af | 15 | * 2004 May-July Rework by Paul Jackson. |
8793d854 | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
cf417141 MK |
17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
18 | * by Max Krasnyansky | |
1da177e4 LT |
19 | * |
20 | * This file is subject to the terms and conditions of the GNU General Public | |
21 | * License. See the file COPYING in the main directory of the Linux | |
22 | * distribution for more details. | |
23 | */ | |
24 | ||
1da177e4 LT |
25 | #include <linux/cpu.h> |
26 | #include <linux/cpumask.h> | |
27 | #include <linux/cpuset.h> | |
28 | #include <linux/err.h> | |
29 | #include <linux/errno.h> | |
30 | #include <linux/file.h> | |
31 | #include <linux/fs.h> | |
32 | #include <linux/init.h> | |
33 | #include <linux/interrupt.h> | |
34 | #include <linux/kernel.h> | |
35 | #include <linux/kmod.h> | |
36 | #include <linux/list.h> | |
68860ec1 | 37 | #include <linux/mempolicy.h> |
1da177e4 | 38 | #include <linux/mm.h> |
f481891f | 39 | #include <linux/memory.h> |
1da177e4 LT |
40 | #include <linux/module.h> |
41 | #include <linux/mount.h> | |
42 | #include <linux/namei.h> | |
43 | #include <linux/pagemap.h> | |
44 | #include <linux/proc_fs.h> | |
6b9c2603 | 45 | #include <linux/rcupdate.h> |
1da177e4 LT |
46 | #include <linux/sched.h> |
47 | #include <linux/seq_file.h> | |
22fb52dd | 48 | #include <linux/security.h> |
1da177e4 | 49 | #include <linux/slab.h> |
1da177e4 LT |
50 | #include <linux/spinlock.h> |
51 | #include <linux/stat.h> | |
52 | #include <linux/string.h> | |
53 | #include <linux/time.h> | |
54 | #include <linux/backing-dev.h> | |
55 | #include <linux/sort.h> | |
56 | ||
57 | #include <asm/uaccess.h> | |
58 | #include <asm/atomic.h> | |
3d3f26a7 | 59 | #include <linux/mutex.h> |
956db3ca CW |
60 | #include <linux/workqueue.h> |
61 | #include <linux/cgroup.h> | |
1da177e4 | 62 | |
f90d4118 MX |
63 | /* |
64 | * Workqueue for cpuset related tasks. | |
65 | * | |
66 | * Using kevent workqueue may cause deadlock when memory_migrate | |
67 | * is set. So we create a separate workqueue thread for cpuset. | |
68 | */ | |
69 | static struct workqueue_struct *cpuset_wq; | |
70 | ||
202f72d5 PJ |
71 | /* |
72 | * Tracks how many cpusets are currently defined in system. | |
73 | * When there is only one cpuset (the root cpuset) we can | |
74 | * short circuit some hooks. | |
75 | */ | |
7edc5962 | 76 | int number_of_cpusets __read_mostly; |
202f72d5 | 77 | |
2df167a3 | 78 | /* Forward declare cgroup structures */ |
8793d854 PM |
79 | struct cgroup_subsys cpuset_subsys; |
80 | struct cpuset; | |
81 | ||
3e0d98b9 PJ |
82 | /* See "Frequency meter" comments, below. */ |
83 | ||
84 | struct fmeter { | |
85 | int cnt; /* unprocessed events count */ | |
86 | int val; /* most recent output value */ | |
87 | time_t time; /* clock (secs) when val computed */ | |
88 | spinlock_t lock; /* guards read or write of above */ | |
89 | }; | |
90 | ||
1da177e4 | 91 | struct cpuset { |
8793d854 PM |
92 | struct cgroup_subsys_state css; |
93 | ||
1da177e4 | 94 | unsigned long flags; /* "unsigned long" so bitops work */ |
300ed6cb | 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
1da177e4 LT |
96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
97 | ||
1da177e4 | 98 | struct cpuset *parent; /* my parent */ |
1da177e4 | 99 | |
3e0d98b9 | 100 | struct fmeter fmeter; /* memory_pressure filter */ |
029190c5 PJ |
101 | |
102 | /* partition number for rebuild_sched_domains() */ | |
103 | int pn; | |
956db3ca | 104 | |
1d3504fc HS |
105 | /* for custom sched domain */ |
106 | int relax_domain_level; | |
107 | ||
956db3ca CW |
108 | /* used for walking a cpuset heirarchy */ |
109 | struct list_head stack_list; | |
1da177e4 LT |
110 | }; |
111 | ||
8793d854 PM |
112 | /* Retrieve the cpuset for a cgroup */ |
113 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | |
114 | { | |
115 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | |
116 | struct cpuset, css); | |
117 | } | |
118 | ||
119 | /* Retrieve the cpuset for a task */ | |
120 | static inline struct cpuset *task_cs(struct task_struct *task) | |
121 | { | |
122 | return container_of(task_subsys_state(task, cpuset_subsys_id), | |
123 | struct cpuset, css); | |
124 | } | |
8793d854 | 125 | |
1da177e4 LT |
126 | /* bits in struct cpuset flags field */ |
127 | typedef enum { | |
128 | CS_CPU_EXCLUSIVE, | |
129 | CS_MEM_EXCLUSIVE, | |
78608366 | 130 | CS_MEM_HARDWALL, |
45b07ef3 | 131 | CS_MEMORY_MIGRATE, |
029190c5 | 132 | CS_SCHED_LOAD_BALANCE, |
825a46af PJ |
133 | CS_SPREAD_PAGE, |
134 | CS_SPREAD_SLAB, | |
1da177e4 LT |
135 | } cpuset_flagbits_t; |
136 | ||
137 | /* convenient tests for these bits */ | |
138 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
139 | { | |
7b5b9ef0 | 140 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
141 | } |
142 | ||
143 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
144 | { | |
7b5b9ef0 | 145 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
1da177e4 LT |
146 | } |
147 | ||
78608366 PM |
148 | static inline int is_mem_hardwall(const struct cpuset *cs) |
149 | { | |
150 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | |
151 | } | |
152 | ||
029190c5 PJ |
153 | static inline int is_sched_load_balance(const struct cpuset *cs) |
154 | { | |
155 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | |
156 | } | |
157 | ||
45b07ef3 PJ |
158 | static inline int is_memory_migrate(const struct cpuset *cs) |
159 | { | |
7b5b9ef0 | 160 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
45b07ef3 PJ |
161 | } |
162 | ||
825a46af PJ |
163 | static inline int is_spread_page(const struct cpuset *cs) |
164 | { | |
165 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | |
166 | } | |
167 | ||
168 | static inline int is_spread_slab(const struct cpuset *cs) | |
169 | { | |
170 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | |
171 | } | |
172 | ||
1da177e4 LT |
173 | static struct cpuset top_cpuset = { |
174 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
1da177e4 LT |
175 | }; |
176 | ||
1da177e4 | 177 | /* |
2df167a3 PM |
178 | * There are two global mutexes guarding cpuset structures. The first |
179 | * is the main control groups cgroup_mutex, accessed via | |
180 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | |
181 | * callback_mutex, below. They can nest. It is ok to first take | |
182 | * cgroup_mutex, then nest callback_mutex. We also require taking | |
183 | * task_lock() when dereferencing a task's cpuset pointer. See "The | |
184 | * task_lock() exception", at the end of this comment. | |
053199ed | 185 | * |
3d3f26a7 | 186 | * A task must hold both mutexes to modify cpusets. If a task |
2df167a3 | 187 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
3d3f26a7 | 188 | * ensuring that it is the only task able to also acquire callback_mutex |
053199ed PJ |
189 | * and be able to modify cpusets. It can perform various checks on |
190 | * the cpuset structure first, knowing nothing will change. It can | |
2df167a3 | 191 | * also allocate memory while just holding cgroup_mutex. While it is |
053199ed | 192 | * performing these checks, various callback routines can briefly |
3d3f26a7 IM |
193 | * acquire callback_mutex to query cpusets. Once it is ready to make |
194 | * the changes, it takes callback_mutex, blocking everyone else. | |
053199ed PJ |
195 | * |
196 | * Calls to the kernel memory allocator can not be made while holding | |
3d3f26a7 | 197 | * callback_mutex, as that would risk double tripping on callback_mutex |
053199ed PJ |
198 | * from one of the callbacks into the cpuset code from within |
199 | * __alloc_pages(). | |
200 | * | |
3d3f26a7 | 201 | * If a task is only holding callback_mutex, then it has read-only |
053199ed PJ |
202 | * access to cpusets. |
203 | * | |
58568d2a MX |
204 | * Now, the task_struct fields mems_allowed and mempolicy may be changed |
205 | * by other task, we use alloc_lock in the task_struct fields to protect | |
206 | * them. | |
053199ed | 207 | * |
3d3f26a7 | 208 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
053199ed PJ |
209 | * small pieces of code, such as when reading out possibly multi-word |
210 | * cpumasks and nodemasks. | |
211 | * | |
2df167a3 PM |
212 | * Accessing a task's cpuset should be done in accordance with the |
213 | * guidelines for accessing subsystem state in kernel/cgroup.c | |
1da177e4 LT |
214 | */ |
215 | ||
3d3f26a7 | 216 | static DEFINE_MUTEX(callback_mutex); |
4247bdc6 | 217 | |
75aa1994 DR |
218 | /* |
219 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | |
220 | * buffers. They are statically allocated to prevent using excess stack | |
221 | * when calling cpuset_print_task_mems_allowed(). | |
222 | */ | |
223 | #define CPUSET_NAME_LEN (128) | |
224 | #define CPUSET_NODELIST_LEN (256) | |
225 | static char cpuset_name[CPUSET_NAME_LEN]; | |
226 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | |
227 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | |
228 | ||
cf417141 MK |
229 | /* |
230 | * This is ugly, but preserves the userspace API for existing cpuset | |
8793d854 | 231 | * users. If someone tries to mount the "cpuset" filesystem, we |
cf417141 MK |
232 | * silently switch it to mount "cgroup" instead |
233 | */ | |
454e2398 DH |
234 | static int cpuset_get_sb(struct file_system_type *fs_type, |
235 | int flags, const char *unused_dev_name, | |
236 | void *data, struct vfsmount *mnt) | |
1da177e4 | 237 | { |
8793d854 PM |
238 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
239 | int ret = -ENODEV; | |
240 | if (cgroup_fs) { | |
241 | char mountopts[] = | |
242 | "cpuset,noprefix," | |
243 | "release_agent=/sbin/cpuset_release_agent"; | |
244 | ret = cgroup_fs->get_sb(cgroup_fs, flags, | |
245 | unused_dev_name, mountopts, mnt); | |
246 | put_filesystem(cgroup_fs); | |
247 | } | |
248 | return ret; | |
1da177e4 LT |
249 | } |
250 | ||
251 | static struct file_system_type cpuset_fs_type = { | |
252 | .name = "cpuset", | |
253 | .get_sb = cpuset_get_sb, | |
1da177e4 LT |
254 | }; |
255 | ||
1da177e4 | 256 | /* |
300ed6cb | 257 | * Return in pmask the portion of a cpusets's cpus_allowed that |
1da177e4 LT |
258 | * are online. If none are online, walk up the cpuset hierarchy |
259 | * until we find one that does have some online cpus. If we get | |
260 | * all the way to the top and still haven't found any online cpus, | |
261 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | |
262 | * task, return cpu_online_map. | |
263 | * | |
264 | * One way or another, we guarantee to return some non-empty subset | |
265 | * of cpu_online_map. | |
266 | * | |
3d3f26a7 | 267 | * Call with callback_mutex held. |
1da177e4 LT |
268 | */ |
269 | ||
6af866af LZ |
270 | static void guarantee_online_cpus(const struct cpuset *cs, |
271 | struct cpumask *pmask) | |
1da177e4 | 272 | { |
300ed6cb | 273 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
1da177e4 LT |
274 | cs = cs->parent; |
275 | if (cs) | |
300ed6cb | 276 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
1da177e4 | 277 | else |
300ed6cb LZ |
278 | cpumask_copy(pmask, cpu_online_mask); |
279 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | |
1da177e4 LT |
280 | } |
281 | ||
282 | /* | |
283 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
0e1e7c7a CL |
284 | * are online, with memory. If none are online with memory, walk |
285 | * up the cpuset hierarchy until we find one that does have some | |
286 | * online mems. If we get all the way to the top and still haven't | |
287 | * found any online mems, return node_states[N_HIGH_MEMORY]. | |
1da177e4 LT |
288 | * |
289 | * One way or another, we guarantee to return some non-empty subset | |
0e1e7c7a | 290 | * of node_states[N_HIGH_MEMORY]. |
1da177e4 | 291 | * |
3d3f26a7 | 292 | * Call with callback_mutex held. |
1da177e4 LT |
293 | */ |
294 | ||
295 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
296 | { | |
0e1e7c7a CL |
297 | while (cs && !nodes_intersects(cs->mems_allowed, |
298 | node_states[N_HIGH_MEMORY])) | |
1da177e4 LT |
299 | cs = cs->parent; |
300 | if (cs) | |
0e1e7c7a CL |
301 | nodes_and(*pmask, cs->mems_allowed, |
302 | node_states[N_HIGH_MEMORY]); | |
1da177e4 | 303 | else |
0e1e7c7a CL |
304 | *pmask = node_states[N_HIGH_MEMORY]; |
305 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | |
1da177e4 LT |
306 | } |
307 | ||
f3b39d47 MX |
308 | /* |
309 | * update task's spread flag if cpuset's page/slab spread flag is set | |
310 | * | |
311 | * Called with callback_mutex/cgroup_mutex held | |
312 | */ | |
313 | static void cpuset_update_task_spread_flag(struct cpuset *cs, | |
314 | struct task_struct *tsk) | |
315 | { | |
316 | if (is_spread_page(cs)) | |
317 | tsk->flags |= PF_SPREAD_PAGE; | |
318 | else | |
319 | tsk->flags &= ~PF_SPREAD_PAGE; | |
320 | if (is_spread_slab(cs)) | |
321 | tsk->flags |= PF_SPREAD_SLAB; | |
322 | else | |
323 | tsk->flags &= ~PF_SPREAD_SLAB; | |
324 | } | |
325 | ||
1da177e4 LT |
326 | /* |
327 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
328 | * | |
329 | * One cpuset is a subset of another if all its allowed CPUs and | |
330 | * Memory Nodes are a subset of the other, and its exclusive flags | |
2df167a3 | 331 | * are only set if the other's are set. Call holding cgroup_mutex. |
1da177e4 LT |
332 | */ |
333 | ||
334 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
335 | { | |
300ed6cb | 336 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
1da177e4 LT |
337 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
338 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
339 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
340 | } | |
341 | ||
645fcc9d LZ |
342 | /** |
343 | * alloc_trial_cpuset - allocate a trial cpuset | |
344 | * @cs: the cpuset that the trial cpuset duplicates | |
345 | */ | |
346 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | |
347 | { | |
300ed6cb LZ |
348 | struct cpuset *trial; |
349 | ||
350 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | |
351 | if (!trial) | |
352 | return NULL; | |
353 | ||
354 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | |
355 | kfree(trial); | |
356 | return NULL; | |
357 | } | |
358 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | |
359 | ||
360 | return trial; | |
645fcc9d LZ |
361 | } |
362 | ||
363 | /** | |
364 | * free_trial_cpuset - free the trial cpuset | |
365 | * @trial: the trial cpuset to be freed | |
366 | */ | |
367 | static void free_trial_cpuset(struct cpuset *trial) | |
368 | { | |
300ed6cb | 369 | free_cpumask_var(trial->cpus_allowed); |
645fcc9d LZ |
370 | kfree(trial); |
371 | } | |
372 | ||
1da177e4 LT |
373 | /* |
374 | * validate_change() - Used to validate that any proposed cpuset change | |
375 | * follows the structural rules for cpusets. | |
376 | * | |
377 | * If we replaced the flag and mask values of the current cpuset | |
378 | * (cur) with those values in the trial cpuset (trial), would | |
379 | * our various subset and exclusive rules still be valid? Presumes | |
2df167a3 | 380 | * cgroup_mutex held. |
1da177e4 LT |
381 | * |
382 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
383 | * such as list traversal that depend on the actual address of the | |
384 | * cpuset in the list must use cur below, not trial. | |
385 | * | |
386 | * 'trial' is the address of bulk structure copy of cur, with | |
387 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
388 | * or flags changed to new, trial values. | |
389 | * | |
390 | * Return 0 if valid, -errno if not. | |
391 | */ | |
392 | ||
393 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
394 | { | |
8793d854 | 395 | struct cgroup *cont; |
1da177e4 LT |
396 | struct cpuset *c, *par; |
397 | ||
398 | /* Each of our child cpusets must be a subset of us */ | |
8793d854 PM |
399 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
400 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | |
1da177e4 LT |
401 | return -EBUSY; |
402 | } | |
403 | ||
404 | /* Remaining checks don't apply to root cpuset */ | |
69604067 | 405 | if (cur == &top_cpuset) |
1da177e4 LT |
406 | return 0; |
407 | ||
69604067 PJ |
408 | par = cur->parent; |
409 | ||
1da177e4 LT |
410 | /* We must be a subset of our parent cpuset */ |
411 | if (!is_cpuset_subset(trial, par)) | |
412 | return -EACCES; | |
413 | ||
2df167a3 PM |
414 | /* |
415 | * If either I or some sibling (!= me) is exclusive, we can't | |
416 | * overlap | |
417 | */ | |
8793d854 PM |
418 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
419 | c = cgroup_cs(cont); | |
1da177e4 LT |
420 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
421 | c != cur && | |
300ed6cb | 422 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
1da177e4 LT |
423 | return -EINVAL; |
424 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
425 | c != cur && | |
426 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
427 | return -EINVAL; | |
428 | } | |
429 | ||
020958b6 PJ |
430 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
431 | if (cgroup_task_count(cur->css.cgroup)) { | |
300ed6cb | 432 | if (cpumask_empty(trial->cpus_allowed) || |
020958b6 PJ |
433 | nodes_empty(trial->mems_allowed)) { |
434 | return -ENOSPC; | |
435 | } | |
436 | } | |
437 | ||
1da177e4 LT |
438 | return 0; |
439 | } | |
440 | ||
db7f47cf | 441 | #ifdef CONFIG_SMP |
029190c5 | 442 | /* |
cf417141 | 443 | * Helper routine for generate_sched_domains(). |
029190c5 PJ |
444 | * Do cpusets a, b have overlapping cpus_allowed masks? |
445 | */ | |
029190c5 PJ |
446 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
447 | { | |
300ed6cb | 448 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
029190c5 PJ |
449 | } |
450 | ||
1d3504fc HS |
451 | static void |
452 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | |
453 | { | |
1d3504fc HS |
454 | if (dattr->relax_domain_level < c->relax_domain_level) |
455 | dattr->relax_domain_level = c->relax_domain_level; | |
456 | return; | |
457 | } | |
458 | ||
f5393693 LJ |
459 | static void |
460 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | |
461 | { | |
462 | LIST_HEAD(q); | |
463 | ||
464 | list_add(&c->stack_list, &q); | |
465 | while (!list_empty(&q)) { | |
466 | struct cpuset *cp; | |
467 | struct cgroup *cont; | |
468 | struct cpuset *child; | |
469 | ||
470 | cp = list_first_entry(&q, struct cpuset, stack_list); | |
471 | list_del(q.next); | |
472 | ||
300ed6cb | 473 | if (cpumask_empty(cp->cpus_allowed)) |
f5393693 LJ |
474 | continue; |
475 | ||
476 | if (is_sched_load_balance(cp)) | |
477 | update_domain_attr(dattr, cp); | |
478 | ||
479 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
480 | child = cgroup_cs(cont); | |
481 | list_add_tail(&child->stack_list, &q); | |
482 | } | |
483 | } | |
484 | } | |
485 | ||
029190c5 | 486 | /* |
cf417141 MK |
487 | * generate_sched_domains() |
488 | * | |
489 | * This function builds a partial partition of the systems CPUs | |
490 | * A 'partial partition' is a set of non-overlapping subsets whose | |
491 | * union is a subset of that set. | |
492 | * The output of this function needs to be passed to kernel/sched.c | |
493 | * partition_sched_domains() routine, which will rebuild the scheduler's | |
494 | * load balancing domains (sched domains) as specified by that partial | |
495 | * partition. | |
029190c5 | 496 | * |
45ce80fb | 497 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
029190c5 PJ |
498 | * for a background explanation of this. |
499 | * | |
500 | * Does not return errors, on the theory that the callers of this | |
501 | * routine would rather not worry about failures to rebuild sched | |
502 | * domains when operating in the severe memory shortage situations | |
503 | * that could cause allocation failures below. | |
504 | * | |
cf417141 | 505 | * Must be called with cgroup_lock held. |
029190c5 PJ |
506 | * |
507 | * The three key local variables below are: | |
aeed6824 | 508 | * q - a linked-list queue of cpuset pointers, used to implement a |
029190c5 PJ |
509 | * top-down scan of all cpusets. This scan loads a pointer |
510 | * to each cpuset marked is_sched_load_balance into the | |
511 | * array 'csa'. For our purposes, rebuilding the schedulers | |
512 | * sched domains, we can ignore !is_sched_load_balance cpusets. | |
513 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | |
514 | * that need to be load balanced, for convenient iterative | |
515 | * access by the subsequent code that finds the best partition, | |
516 | * i.e the set of domains (subsets) of CPUs such that the | |
517 | * cpus_allowed of every cpuset marked is_sched_load_balance | |
518 | * is a subset of one of these domains, while there are as | |
519 | * many such domains as possible, each as small as possible. | |
520 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | |
521 | * the kernel/sched.c routine partition_sched_domains() in a | |
522 | * convenient format, that can be easily compared to the prior | |
523 | * value to determine what partition elements (sched domains) | |
524 | * were changed (added or removed.) | |
525 | * | |
526 | * Finding the best partition (set of domains): | |
527 | * The triple nested loops below over i, j, k scan over the | |
528 | * load balanced cpusets (using the array of cpuset pointers in | |
529 | * csa[]) looking for pairs of cpusets that have overlapping | |
530 | * cpus_allowed, but which don't have the same 'pn' partition | |
531 | * number and gives them in the same partition number. It keeps | |
532 | * looping on the 'restart' label until it can no longer find | |
533 | * any such pairs. | |
534 | * | |
535 | * The union of the cpus_allowed masks from the set of | |
536 | * all cpusets having the same 'pn' value then form the one | |
537 | * element of the partition (one sched domain) to be passed to | |
538 | * partition_sched_domains(). | |
539 | */ | |
acc3f5d7 | 540 | static int generate_sched_domains(cpumask_var_t **domains, |
cf417141 | 541 | struct sched_domain_attr **attributes) |
029190c5 | 542 | { |
cf417141 | 543 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
029190c5 PJ |
544 | struct cpuset *cp; /* scans q */ |
545 | struct cpuset **csa; /* array of all cpuset ptrs */ | |
546 | int csn; /* how many cpuset ptrs in csa so far */ | |
547 | int i, j, k; /* indices for partition finding loops */ | |
acc3f5d7 | 548 | cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ |
1d3504fc | 549 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
1583715d | 550 | int ndoms = 0; /* number of sched domains in result */ |
6af866af | 551 | int nslot; /* next empty doms[] struct cpumask slot */ |
029190c5 | 552 | |
029190c5 | 553 | doms = NULL; |
1d3504fc | 554 | dattr = NULL; |
cf417141 | 555 | csa = NULL; |
029190c5 PJ |
556 | |
557 | /* Special case for the 99% of systems with one, full, sched domain */ | |
558 | if (is_sched_load_balance(&top_cpuset)) { | |
acc3f5d7 RR |
559 | ndoms = 1; |
560 | doms = alloc_sched_domains(ndoms); | |
029190c5 | 561 | if (!doms) |
cf417141 MK |
562 | goto done; |
563 | ||
1d3504fc HS |
564 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
565 | if (dattr) { | |
566 | *dattr = SD_ATTR_INIT; | |
93a65575 | 567 | update_domain_attr_tree(dattr, &top_cpuset); |
1d3504fc | 568 | } |
acc3f5d7 | 569 | cpumask_copy(doms[0], top_cpuset.cpus_allowed); |
cf417141 | 570 | |
cf417141 | 571 | goto done; |
029190c5 PJ |
572 | } |
573 | ||
029190c5 PJ |
574 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
575 | if (!csa) | |
576 | goto done; | |
577 | csn = 0; | |
578 | ||
aeed6824 LZ |
579 | list_add(&top_cpuset.stack_list, &q); |
580 | while (!list_empty(&q)) { | |
029190c5 PJ |
581 | struct cgroup *cont; |
582 | struct cpuset *child; /* scans child cpusets of cp */ | |
489a5393 | 583 | |
aeed6824 LZ |
584 | cp = list_first_entry(&q, struct cpuset, stack_list); |
585 | list_del(q.next); | |
586 | ||
300ed6cb | 587 | if (cpumask_empty(cp->cpus_allowed)) |
489a5393 LJ |
588 | continue; |
589 | ||
f5393693 LJ |
590 | /* |
591 | * All child cpusets contain a subset of the parent's cpus, so | |
592 | * just skip them, and then we call update_domain_attr_tree() | |
593 | * to calc relax_domain_level of the corresponding sched | |
594 | * domain. | |
595 | */ | |
596 | if (is_sched_load_balance(cp)) { | |
029190c5 | 597 | csa[csn++] = cp; |
f5393693 LJ |
598 | continue; |
599 | } | |
489a5393 | 600 | |
029190c5 PJ |
601 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
602 | child = cgroup_cs(cont); | |
aeed6824 | 603 | list_add_tail(&child->stack_list, &q); |
029190c5 PJ |
604 | } |
605 | } | |
606 | ||
607 | for (i = 0; i < csn; i++) | |
608 | csa[i]->pn = i; | |
609 | ndoms = csn; | |
610 | ||
611 | restart: | |
612 | /* Find the best partition (set of sched domains) */ | |
613 | for (i = 0; i < csn; i++) { | |
614 | struct cpuset *a = csa[i]; | |
615 | int apn = a->pn; | |
616 | ||
617 | for (j = 0; j < csn; j++) { | |
618 | struct cpuset *b = csa[j]; | |
619 | int bpn = b->pn; | |
620 | ||
621 | if (apn != bpn && cpusets_overlap(a, b)) { | |
622 | for (k = 0; k < csn; k++) { | |
623 | struct cpuset *c = csa[k]; | |
624 | ||
625 | if (c->pn == bpn) | |
626 | c->pn = apn; | |
627 | } | |
628 | ndoms--; /* one less element */ | |
629 | goto restart; | |
630 | } | |
631 | } | |
632 | } | |
633 | ||
cf417141 MK |
634 | /* |
635 | * Now we know how many domains to create. | |
636 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | |
637 | */ | |
acc3f5d7 | 638 | doms = alloc_sched_domains(ndoms); |
700018e0 | 639 | if (!doms) |
cf417141 | 640 | goto done; |
cf417141 MK |
641 | |
642 | /* | |
643 | * The rest of the code, including the scheduler, can deal with | |
644 | * dattr==NULL case. No need to abort if alloc fails. | |
645 | */ | |
1d3504fc | 646 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
029190c5 PJ |
647 | |
648 | for (nslot = 0, i = 0; i < csn; i++) { | |
649 | struct cpuset *a = csa[i]; | |
6af866af | 650 | struct cpumask *dp; |
029190c5 PJ |
651 | int apn = a->pn; |
652 | ||
cf417141 MK |
653 | if (apn < 0) { |
654 | /* Skip completed partitions */ | |
655 | continue; | |
656 | } | |
657 | ||
acc3f5d7 | 658 | dp = doms[nslot]; |
cf417141 MK |
659 | |
660 | if (nslot == ndoms) { | |
661 | static int warnings = 10; | |
662 | if (warnings) { | |
663 | printk(KERN_WARNING | |
664 | "rebuild_sched_domains confused:" | |
665 | " nslot %d, ndoms %d, csn %d, i %d," | |
666 | " apn %d\n", | |
667 | nslot, ndoms, csn, i, apn); | |
668 | warnings--; | |
029190c5 | 669 | } |
cf417141 MK |
670 | continue; |
671 | } | |
029190c5 | 672 | |
6af866af | 673 | cpumask_clear(dp); |
cf417141 MK |
674 | if (dattr) |
675 | *(dattr + nslot) = SD_ATTR_INIT; | |
676 | for (j = i; j < csn; j++) { | |
677 | struct cpuset *b = csa[j]; | |
678 | ||
679 | if (apn == b->pn) { | |
300ed6cb | 680 | cpumask_or(dp, dp, b->cpus_allowed); |
cf417141 MK |
681 | if (dattr) |
682 | update_domain_attr_tree(dattr + nslot, b); | |
683 | ||
684 | /* Done with this partition */ | |
685 | b->pn = -1; | |
029190c5 | 686 | } |
029190c5 | 687 | } |
cf417141 | 688 | nslot++; |
029190c5 PJ |
689 | } |
690 | BUG_ON(nslot != ndoms); | |
691 | ||
cf417141 MK |
692 | done: |
693 | kfree(csa); | |
694 | ||
700018e0 LZ |
695 | /* |
696 | * Fallback to the default domain if kmalloc() failed. | |
697 | * See comments in partition_sched_domains(). | |
698 | */ | |
699 | if (doms == NULL) | |
700 | ndoms = 1; | |
701 | ||
cf417141 MK |
702 | *domains = doms; |
703 | *attributes = dattr; | |
704 | return ndoms; | |
705 | } | |
706 | ||
707 | /* | |
708 | * Rebuild scheduler domains. | |
709 | * | |
710 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | |
711 | * Takes both cgroup_mutex and get_online_cpus(). | |
712 | * | |
713 | * Cannot be directly called from cpuset code handling changes | |
714 | * to the cpuset pseudo-filesystem, because it cannot be called | |
715 | * from code that already holds cgroup_mutex. | |
716 | */ | |
717 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
718 | { | |
719 | struct sched_domain_attr *attr; | |
acc3f5d7 | 720 | cpumask_var_t *doms; |
cf417141 MK |
721 | int ndoms; |
722 | ||
86ef5c9a | 723 | get_online_cpus(); |
cf417141 MK |
724 | |
725 | /* Generate domain masks and attrs */ | |
726 | cgroup_lock(); | |
727 | ndoms = generate_sched_domains(&doms, &attr); | |
728 | cgroup_unlock(); | |
729 | ||
730 | /* Have scheduler rebuild the domains */ | |
731 | partition_sched_domains(ndoms, doms, attr); | |
732 | ||
86ef5c9a | 733 | put_online_cpus(); |
cf417141 | 734 | } |
db7f47cf PM |
735 | #else /* !CONFIG_SMP */ |
736 | static void do_rebuild_sched_domains(struct work_struct *unused) | |
737 | { | |
738 | } | |
739 | ||
e1b8090b | 740 | static int generate_sched_domains(cpumask_var_t **domains, |
db7f47cf PM |
741 | struct sched_domain_attr **attributes) |
742 | { | |
743 | *domains = NULL; | |
744 | return 1; | |
745 | } | |
746 | #endif /* CONFIG_SMP */ | |
029190c5 | 747 | |
cf417141 MK |
748 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
749 | ||
750 | /* | |
751 | * Rebuild scheduler domains, asynchronously via workqueue. | |
752 | * | |
753 | * If the flag 'sched_load_balance' of any cpuset with non-empty | |
754 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | |
755 | * which has that flag enabled, or if any cpuset with a non-empty | |
756 | * 'cpus' is removed, then call this routine to rebuild the | |
757 | * scheduler's dynamic sched domains. | |
758 | * | |
759 | * The rebuild_sched_domains() and partition_sched_domains() | |
760 | * routines must nest cgroup_lock() inside get_online_cpus(), | |
761 | * but such cpuset changes as these must nest that locking the | |
762 | * other way, holding cgroup_lock() for much of the code. | |
763 | * | |
764 | * So in order to avoid an ABBA deadlock, the cpuset code handling | |
765 | * these user changes delegates the actual sched domain rebuilding | |
766 | * to a separate workqueue thread, which ends up processing the | |
767 | * above do_rebuild_sched_domains() function. | |
768 | */ | |
769 | static void async_rebuild_sched_domains(void) | |
770 | { | |
f90d4118 | 771 | queue_work(cpuset_wq, &rebuild_sched_domains_work); |
cf417141 MK |
772 | } |
773 | ||
774 | /* | |
775 | * Accomplishes the same scheduler domain rebuild as the above | |
776 | * async_rebuild_sched_domains(), however it directly calls the | |
777 | * rebuild routine synchronously rather than calling it via an | |
778 | * asynchronous work thread. | |
779 | * | |
780 | * This can only be called from code that is not holding | |
781 | * cgroup_mutex (not nested in a cgroup_lock() call.) | |
782 | */ | |
783 | void rebuild_sched_domains(void) | |
784 | { | |
785 | do_rebuild_sched_domains(NULL); | |
029190c5 PJ |
786 | } |
787 | ||
58f4790b CW |
788 | /** |
789 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | |
790 | * @tsk: task to test | |
791 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
792 | * | |
2df167a3 | 793 | * Call with cgroup_mutex held. May take callback_mutex during call. |
58f4790b CW |
794 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
795 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | |
796 | * words, if its mask is not equal to its cpuset's mask). | |
053199ed | 797 | */ |
9e0c914c AB |
798 | static int cpuset_test_cpumask(struct task_struct *tsk, |
799 | struct cgroup_scanner *scan) | |
58f4790b | 800 | { |
300ed6cb | 801 | return !cpumask_equal(&tsk->cpus_allowed, |
58f4790b CW |
802 | (cgroup_cs(scan->cg))->cpus_allowed); |
803 | } | |
053199ed | 804 | |
58f4790b CW |
805 | /** |
806 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | |
807 | * @tsk: task to test | |
808 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
809 | * | |
810 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | |
811 | * cpus_allowed mask needs to be changed. | |
812 | * | |
813 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
814 | * holding cgroup_lock() at this point. | |
815 | */ | |
9e0c914c AB |
816 | static void cpuset_change_cpumask(struct task_struct *tsk, |
817 | struct cgroup_scanner *scan) | |
58f4790b | 818 | { |
300ed6cb | 819 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); |
58f4790b CW |
820 | } |
821 | ||
0b2f630a MX |
822 | /** |
823 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | |
824 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | |
4e74339a | 825 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
826 | * |
827 | * Called with cgroup_mutex held | |
828 | * | |
829 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
830 | * calling callback functions for each. | |
831 | * | |
4e74339a LZ |
832 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
833 | * if @heap != NULL. | |
0b2f630a | 834 | */ |
4e74339a | 835 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
0b2f630a MX |
836 | { |
837 | struct cgroup_scanner scan; | |
0b2f630a MX |
838 | |
839 | scan.cg = cs->css.cgroup; | |
840 | scan.test_task = cpuset_test_cpumask; | |
841 | scan.process_task = cpuset_change_cpumask; | |
4e74339a LZ |
842 | scan.heap = heap; |
843 | cgroup_scan_tasks(&scan); | |
0b2f630a MX |
844 | } |
845 | ||
58f4790b CW |
846 | /** |
847 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | |
848 | * @cs: the cpuset to consider | |
849 | * @buf: buffer of cpu numbers written to this cpuset | |
850 | */ | |
645fcc9d LZ |
851 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
852 | const char *buf) | |
1da177e4 | 853 | { |
4e74339a | 854 | struct ptr_heap heap; |
58f4790b CW |
855 | int retval; |
856 | int is_load_balanced; | |
1da177e4 | 857 | |
4c4d50f7 PJ |
858 | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ |
859 | if (cs == &top_cpuset) | |
860 | return -EACCES; | |
861 | ||
6f7f02e7 | 862 | /* |
c8d9c90c | 863 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
020958b6 PJ |
864 | * Since cpulist_parse() fails on an empty mask, we special case |
865 | * that parsing. The validate_change() call ensures that cpusets | |
866 | * with tasks have cpus. | |
6f7f02e7 | 867 | */ |
020958b6 | 868 | if (!*buf) { |
300ed6cb | 869 | cpumask_clear(trialcs->cpus_allowed); |
6f7f02e7 | 870 | } else { |
300ed6cb | 871 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
6f7f02e7 DR |
872 | if (retval < 0) |
873 | return retval; | |
37340746 | 874 | |
6ad4c188 | 875 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) |
37340746 | 876 | return -EINVAL; |
6f7f02e7 | 877 | } |
645fcc9d | 878 | retval = validate_change(cs, trialcs); |
85d7b949 DG |
879 | if (retval < 0) |
880 | return retval; | |
029190c5 | 881 | |
8707d8b8 | 882 | /* Nothing to do if the cpus didn't change */ |
300ed6cb | 883 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
8707d8b8 | 884 | return 0; |
58f4790b | 885 | |
4e74339a LZ |
886 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
887 | if (retval) | |
888 | return retval; | |
889 | ||
645fcc9d | 890 | is_load_balanced = is_sched_load_balance(trialcs); |
029190c5 | 891 | |
3d3f26a7 | 892 | mutex_lock(&callback_mutex); |
300ed6cb | 893 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
3d3f26a7 | 894 | mutex_unlock(&callback_mutex); |
029190c5 | 895 | |
8707d8b8 PM |
896 | /* |
897 | * Scan tasks in the cpuset, and update the cpumasks of any | |
58f4790b | 898 | * that need an update. |
8707d8b8 | 899 | */ |
4e74339a LZ |
900 | update_tasks_cpumask(cs, &heap); |
901 | ||
902 | heap_free(&heap); | |
58f4790b | 903 | |
8707d8b8 | 904 | if (is_load_balanced) |
cf417141 | 905 | async_rebuild_sched_domains(); |
85d7b949 | 906 | return 0; |
1da177e4 LT |
907 | } |
908 | ||
e4e364e8 PJ |
909 | /* |
910 | * cpuset_migrate_mm | |
911 | * | |
912 | * Migrate memory region from one set of nodes to another. | |
913 | * | |
914 | * Temporarilly set tasks mems_allowed to target nodes of migration, | |
915 | * so that the migration code can allocate pages on these nodes. | |
916 | * | |
2df167a3 | 917 | * Call holding cgroup_mutex, so current's cpuset won't change |
c8d9c90c | 918 | * during this call, as manage_mutex holds off any cpuset_attach() |
e4e364e8 PJ |
919 | * calls. Therefore we don't need to take task_lock around the |
920 | * call to guarantee_online_mems(), as we know no one is changing | |
2df167a3 | 921 | * our task's cpuset. |
e4e364e8 | 922 | * |
e4e364e8 PJ |
923 | * While the mm_struct we are migrating is typically from some |
924 | * other task, the task_struct mems_allowed that we are hacking | |
925 | * is for our current task, which must allocate new pages for that | |
926 | * migrating memory region. | |
e4e364e8 PJ |
927 | */ |
928 | ||
929 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | |
930 | const nodemask_t *to) | |
931 | { | |
932 | struct task_struct *tsk = current; | |
933 | ||
e4e364e8 | 934 | tsk->mems_allowed = *to; |
e4e364e8 PJ |
935 | |
936 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | |
937 | ||
8793d854 | 938 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
e4e364e8 PJ |
939 | } |
940 | ||
3b6766fe | 941 | /* |
58568d2a MX |
942 | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy |
943 | * @tsk: the task to change | |
944 | * @newmems: new nodes that the task will be set | |
945 | * | |
946 | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | |
947 | * we structure updates as setting all new allowed nodes, then clearing newly | |
948 | * disallowed ones. | |
58568d2a MX |
949 | */ |
950 | static void cpuset_change_task_nodemask(struct task_struct *tsk, | |
951 | nodemask_t *newmems) | |
952 | { | |
c0ff7453 MX |
953 | repeat: |
954 | /* | |
955 | * Allow tasks that have access to memory reserves because they have | |
956 | * been OOM killed to get memory anywhere. | |
957 | */ | |
958 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
959 | return; | |
960 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | |
961 | return; | |
962 | ||
963 | task_lock(tsk); | |
58568d2a | 964 | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); |
c0ff7453 MX |
965 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); |
966 | ||
967 | ||
968 | /* | |
969 | * ensure checking ->mems_allowed_change_disable after setting all new | |
970 | * allowed nodes. | |
971 | * | |
972 | * the read-side task can see an nodemask with new allowed nodes and | |
973 | * old allowed nodes. and if it allocates page when cpuset clears newly | |
974 | * disallowed ones continuous, it can see the new allowed bits. | |
975 | * | |
976 | * And if setting all new allowed nodes is after the checking, setting | |
977 | * all new allowed nodes and clearing newly disallowed ones will be done | |
978 | * continuous, and the read-side task may find no node to alloc page. | |
979 | */ | |
980 | smp_mb(); | |
981 | ||
982 | /* | |
983 | * Allocation of memory is very fast, we needn't sleep when waiting | |
984 | * for the read-side. | |
985 | */ | |
986 | while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) { | |
987 | task_unlock(tsk); | |
988 | if (!task_curr(tsk)) | |
989 | yield(); | |
990 | goto repeat; | |
991 | } | |
992 | ||
993 | /* | |
994 | * ensure checking ->mems_allowed_change_disable before clearing all new | |
995 | * disallowed nodes. | |
996 | * | |
997 | * if clearing newly disallowed bits before the checking, the read-side | |
998 | * task may find no node to alloc page. | |
999 | */ | |
1000 | smp_mb(); | |
1001 | ||
1002 | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | |
58568d2a | 1003 | tsk->mems_allowed = *newmems; |
c0ff7453 | 1004 | task_unlock(tsk); |
58568d2a MX |
1005 | } |
1006 | ||
1007 | /* | |
1008 | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | |
1009 | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | |
1010 | * memory_migrate flag is set. Called with cgroup_mutex held. | |
3b6766fe LZ |
1011 | */ |
1012 | static void cpuset_change_nodemask(struct task_struct *p, | |
1013 | struct cgroup_scanner *scan) | |
1014 | { | |
1015 | struct mm_struct *mm; | |
1016 | struct cpuset *cs; | |
1017 | int migrate; | |
1018 | const nodemask_t *oldmem = scan->data; | |
53feb297 MX |
1019 | NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL); |
1020 | ||
1021 | if (!newmems) | |
1022 | return; | |
58568d2a MX |
1023 | |
1024 | cs = cgroup_cs(scan->cg); | |
53feb297 | 1025 | guarantee_online_mems(cs, newmems); |
58568d2a | 1026 | |
53feb297 | 1027 | cpuset_change_task_nodemask(p, newmems); |
3b6766fe | 1028 | |
53feb297 MX |
1029 | NODEMASK_FREE(newmems); |
1030 | ||
3b6766fe LZ |
1031 | mm = get_task_mm(p); |
1032 | if (!mm) | |
1033 | return; | |
1034 | ||
3b6766fe LZ |
1035 | migrate = is_memory_migrate(cs); |
1036 | ||
1037 | mpol_rebind_mm(mm, &cs->mems_allowed); | |
1038 | if (migrate) | |
1039 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | |
1040 | mmput(mm); | |
1041 | } | |
1042 | ||
8793d854 PM |
1043 | static void *cpuset_being_rebound; |
1044 | ||
0b2f630a MX |
1045 | /** |
1046 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | |
1047 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | |
1048 | * @oldmem: old mems_allowed of cpuset cs | |
010cfac4 | 1049 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
0b2f630a MX |
1050 | * |
1051 | * Called with cgroup_mutex held | |
010cfac4 LZ |
1052 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
1053 | * if @heap != NULL. | |
0b2f630a | 1054 | */ |
010cfac4 LZ |
1055 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, |
1056 | struct ptr_heap *heap) | |
1da177e4 | 1057 | { |
3b6766fe | 1058 | struct cgroup_scanner scan; |
59dac16f | 1059 | |
846a16bf | 1060 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
4225399a | 1061 | |
3b6766fe LZ |
1062 | scan.cg = cs->css.cgroup; |
1063 | scan.test_task = NULL; | |
1064 | scan.process_task = cpuset_change_nodemask; | |
010cfac4 | 1065 | scan.heap = heap; |
3b6766fe | 1066 | scan.data = (nodemask_t *)oldmem; |
4225399a PJ |
1067 | |
1068 | /* | |
3b6766fe LZ |
1069 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
1070 | * take while holding tasklist_lock. Forks can happen - the | |
1071 | * mpol_dup() cpuset_being_rebound check will catch such forks, | |
1072 | * and rebind their vma mempolicies too. Because we still hold | |
1073 | * the global cgroup_mutex, we know that no other rebind effort | |
1074 | * will be contending for the global variable cpuset_being_rebound. | |
4225399a | 1075 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
04c19fa6 | 1076 | * is idempotent. Also migrate pages in each mm to new nodes. |
4225399a | 1077 | */ |
010cfac4 | 1078 | cgroup_scan_tasks(&scan); |
4225399a | 1079 | |
2df167a3 | 1080 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
8793d854 | 1081 | cpuset_being_rebound = NULL; |
1da177e4 LT |
1082 | } |
1083 | ||
0b2f630a MX |
1084 | /* |
1085 | * Handle user request to change the 'mems' memory placement | |
1086 | * of a cpuset. Needs to validate the request, update the | |
58568d2a MX |
1087 | * cpusets mems_allowed, and for each task in the cpuset, |
1088 | * update mems_allowed and rebind task's mempolicy and any vma | |
1089 | * mempolicies and if the cpuset is marked 'memory_migrate', | |
1090 | * migrate the tasks pages to the new memory. | |
0b2f630a MX |
1091 | * |
1092 | * Call with cgroup_mutex held. May take callback_mutex during call. | |
1093 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | |
1094 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | |
1095 | * their mempolicies to the cpusets new mems_allowed. | |
1096 | */ | |
645fcc9d LZ |
1097 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
1098 | const char *buf) | |
0b2f630a | 1099 | { |
53feb297 | 1100 | NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL); |
0b2f630a | 1101 | int retval; |
010cfac4 | 1102 | struct ptr_heap heap; |
0b2f630a | 1103 | |
53feb297 MX |
1104 | if (!oldmem) |
1105 | return -ENOMEM; | |
1106 | ||
0b2f630a MX |
1107 | /* |
1108 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | |
1109 | * it's read-only | |
1110 | */ | |
53feb297 MX |
1111 | if (cs == &top_cpuset) { |
1112 | retval = -EACCES; | |
1113 | goto done; | |
1114 | } | |
0b2f630a | 1115 | |
0b2f630a MX |
1116 | /* |
1117 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | |
1118 | * Since nodelist_parse() fails on an empty mask, we special case | |
1119 | * that parsing. The validate_change() call ensures that cpusets | |
1120 | * with tasks have memory. | |
1121 | */ | |
1122 | if (!*buf) { | |
645fcc9d | 1123 | nodes_clear(trialcs->mems_allowed); |
0b2f630a | 1124 | } else { |
645fcc9d | 1125 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
0b2f630a MX |
1126 | if (retval < 0) |
1127 | goto done; | |
1128 | ||
645fcc9d | 1129 | if (!nodes_subset(trialcs->mems_allowed, |
53feb297 MX |
1130 | node_states[N_HIGH_MEMORY])) { |
1131 | retval = -EINVAL; | |
1132 | goto done; | |
1133 | } | |
0b2f630a | 1134 | } |
53feb297 MX |
1135 | *oldmem = cs->mems_allowed; |
1136 | if (nodes_equal(*oldmem, trialcs->mems_allowed)) { | |
0b2f630a MX |
1137 | retval = 0; /* Too easy - nothing to do */ |
1138 | goto done; | |
1139 | } | |
645fcc9d | 1140 | retval = validate_change(cs, trialcs); |
0b2f630a MX |
1141 | if (retval < 0) |
1142 | goto done; | |
1143 | ||
010cfac4 LZ |
1144 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1145 | if (retval < 0) | |
1146 | goto done; | |
1147 | ||
0b2f630a | 1148 | mutex_lock(&callback_mutex); |
645fcc9d | 1149 | cs->mems_allowed = trialcs->mems_allowed; |
0b2f630a MX |
1150 | mutex_unlock(&callback_mutex); |
1151 | ||
53feb297 | 1152 | update_tasks_nodemask(cs, oldmem, &heap); |
010cfac4 LZ |
1153 | |
1154 | heap_free(&heap); | |
0b2f630a | 1155 | done: |
53feb297 | 1156 | NODEMASK_FREE(oldmem); |
0b2f630a MX |
1157 | return retval; |
1158 | } | |
1159 | ||
8793d854 PM |
1160 | int current_cpuset_is_being_rebound(void) |
1161 | { | |
1162 | return task_cs(current) == cpuset_being_rebound; | |
1163 | } | |
1164 | ||
5be7a479 | 1165 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
1d3504fc | 1166 | { |
db7f47cf | 1167 | #ifdef CONFIG_SMP |
30e0e178 LZ |
1168 | if (val < -1 || val >= SD_LV_MAX) |
1169 | return -EINVAL; | |
db7f47cf | 1170 | #endif |
1d3504fc HS |
1171 | |
1172 | if (val != cs->relax_domain_level) { | |
1173 | cs->relax_domain_level = val; | |
300ed6cb LZ |
1174 | if (!cpumask_empty(cs->cpus_allowed) && |
1175 | is_sched_load_balance(cs)) | |
cf417141 | 1176 | async_rebuild_sched_domains(); |
1d3504fc HS |
1177 | } |
1178 | ||
1179 | return 0; | |
1180 | } | |
1181 | ||
950592f7 MX |
1182 | /* |
1183 | * cpuset_change_flag - make a task's spread flags the same as its cpuset's | |
1184 | * @tsk: task to be updated | |
1185 | * @scan: struct cgroup_scanner containing the cgroup of the task | |
1186 | * | |
1187 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1188 | * | |
1189 | * We don't need to re-check for the cgroup/cpuset membership, since we're | |
1190 | * holding cgroup_lock() at this point. | |
1191 | */ | |
1192 | static void cpuset_change_flag(struct task_struct *tsk, | |
1193 | struct cgroup_scanner *scan) | |
1194 | { | |
1195 | cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); | |
1196 | } | |
1197 | ||
1198 | /* | |
1199 | * update_tasks_flags - update the spread flags of tasks in the cpuset. | |
1200 | * @cs: the cpuset in which each task's spread flags needs to be changed | |
1201 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | |
1202 | * | |
1203 | * Called with cgroup_mutex held | |
1204 | * | |
1205 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1206 | * calling callback functions for each. | |
1207 | * | |
1208 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | |
1209 | * if @heap != NULL. | |
1210 | */ | |
1211 | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | |
1212 | { | |
1213 | struct cgroup_scanner scan; | |
1214 | ||
1215 | scan.cg = cs->css.cgroup; | |
1216 | scan.test_task = NULL; | |
1217 | scan.process_task = cpuset_change_flag; | |
1218 | scan.heap = heap; | |
1219 | cgroup_scan_tasks(&scan); | |
1220 | } | |
1221 | ||
1da177e4 LT |
1222 | /* |
1223 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
78608366 PM |
1224 | * bit: the bit to update (see cpuset_flagbits_t) |
1225 | * cs: the cpuset to update | |
1226 | * turning_on: whether the flag is being set or cleared | |
053199ed | 1227 | * |
2df167a3 | 1228 | * Call with cgroup_mutex held. |
1da177e4 LT |
1229 | */ |
1230 | ||
700fe1ab PM |
1231 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
1232 | int turning_on) | |
1da177e4 | 1233 | { |
645fcc9d | 1234 | struct cpuset *trialcs; |
40b6a762 | 1235 | int balance_flag_changed; |
950592f7 MX |
1236 | int spread_flag_changed; |
1237 | struct ptr_heap heap; | |
1238 | int err; | |
1da177e4 | 1239 | |
645fcc9d LZ |
1240 | trialcs = alloc_trial_cpuset(cs); |
1241 | if (!trialcs) | |
1242 | return -ENOMEM; | |
1243 | ||
1da177e4 | 1244 | if (turning_on) |
645fcc9d | 1245 | set_bit(bit, &trialcs->flags); |
1da177e4 | 1246 | else |
645fcc9d | 1247 | clear_bit(bit, &trialcs->flags); |
1da177e4 | 1248 | |
645fcc9d | 1249 | err = validate_change(cs, trialcs); |
85d7b949 | 1250 | if (err < 0) |
645fcc9d | 1251 | goto out; |
029190c5 | 1252 | |
950592f7 MX |
1253 | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
1254 | if (err < 0) | |
1255 | goto out; | |
1256 | ||
029190c5 | 1257 | balance_flag_changed = (is_sched_load_balance(cs) != |
645fcc9d | 1258 | is_sched_load_balance(trialcs)); |
029190c5 | 1259 | |
950592f7 MX |
1260 | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) |
1261 | || (is_spread_page(cs) != is_spread_page(trialcs))); | |
1262 | ||
3d3f26a7 | 1263 | mutex_lock(&callback_mutex); |
645fcc9d | 1264 | cs->flags = trialcs->flags; |
3d3f26a7 | 1265 | mutex_unlock(&callback_mutex); |
85d7b949 | 1266 | |
300ed6cb | 1267 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
cf417141 | 1268 | async_rebuild_sched_domains(); |
029190c5 | 1269 | |
950592f7 MX |
1270 | if (spread_flag_changed) |
1271 | update_tasks_flags(cs, &heap); | |
1272 | heap_free(&heap); | |
645fcc9d LZ |
1273 | out: |
1274 | free_trial_cpuset(trialcs); | |
1275 | return err; | |
1da177e4 LT |
1276 | } |
1277 | ||
3e0d98b9 | 1278 | /* |
80f7228b | 1279 | * Frequency meter - How fast is some event occurring? |
3e0d98b9 PJ |
1280 | * |
1281 | * These routines manage a digitally filtered, constant time based, | |
1282 | * event frequency meter. There are four routines: | |
1283 | * fmeter_init() - initialize a frequency meter. | |
1284 | * fmeter_markevent() - called each time the event happens. | |
1285 | * fmeter_getrate() - returns the recent rate of such events. | |
1286 | * fmeter_update() - internal routine used to update fmeter. | |
1287 | * | |
1288 | * A common data structure is passed to each of these routines, | |
1289 | * which is used to keep track of the state required to manage the | |
1290 | * frequency meter and its digital filter. | |
1291 | * | |
1292 | * The filter works on the number of events marked per unit time. | |
1293 | * The filter is single-pole low-pass recursive (IIR). The time unit | |
1294 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | |
1295 | * simulate 3 decimal digits of precision (multiplied by 1000). | |
1296 | * | |
1297 | * With an FM_COEF of 933, and a time base of 1 second, the filter | |
1298 | * has a half-life of 10 seconds, meaning that if the events quit | |
1299 | * happening, then the rate returned from the fmeter_getrate() | |
1300 | * will be cut in half each 10 seconds, until it converges to zero. | |
1301 | * | |
1302 | * It is not worth doing a real infinitely recursive filter. If more | |
1303 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | |
1304 | * just compute FM_MAXTICKS ticks worth, by which point the level | |
1305 | * will be stable. | |
1306 | * | |
1307 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | |
1308 | * arithmetic overflow in the fmeter_update() routine. | |
1309 | * | |
1310 | * Given the simple 32 bit integer arithmetic used, this meter works | |
1311 | * best for reporting rates between one per millisecond (msec) and | |
1312 | * one per 32 (approx) seconds. At constant rates faster than one | |
1313 | * per msec it maxes out at values just under 1,000,000. At constant | |
1314 | * rates between one per msec, and one per second it will stabilize | |
1315 | * to a value N*1000, where N is the rate of events per second. | |
1316 | * At constant rates between one per second and one per 32 seconds, | |
1317 | * it will be choppy, moving up on the seconds that have an event, | |
1318 | * and then decaying until the next event. At rates slower than | |
1319 | * about one in 32 seconds, it decays all the way back to zero between | |
1320 | * each event. | |
1321 | */ | |
1322 | ||
1323 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | |
1324 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | |
1325 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | |
1326 | #define FM_SCALE 1000 /* faux fixed point scale */ | |
1327 | ||
1328 | /* Initialize a frequency meter */ | |
1329 | static void fmeter_init(struct fmeter *fmp) | |
1330 | { | |
1331 | fmp->cnt = 0; | |
1332 | fmp->val = 0; | |
1333 | fmp->time = 0; | |
1334 | spin_lock_init(&fmp->lock); | |
1335 | } | |
1336 | ||
1337 | /* Internal meter update - process cnt events and update value */ | |
1338 | static void fmeter_update(struct fmeter *fmp) | |
1339 | { | |
1340 | time_t now = get_seconds(); | |
1341 | time_t ticks = now - fmp->time; | |
1342 | ||
1343 | if (ticks == 0) | |
1344 | return; | |
1345 | ||
1346 | ticks = min(FM_MAXTICKS, ticks); | |
1347 | while (ticks-- > 0) | |
1348 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | |
1349 | fmp->time = now; | |
1350 | ||
1351 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | |
1352 | fmp->cnt = 0; | |
1353 | } | |
1354 | ||
1355 | /* Process any previous ticks, then bump cnt by one (times scale). */ | |
1356 | static void fmeter_markevent(struct fmeter *fmp) | |
1357 | { | |
1358 | spin_lock(&fmp->lock); | |
1359 | fmeter_update(fmp); | |
1360 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | |
1361 | spin_unlock(&fmp->lock); | |
1362 | } | |
1363 | ||
1364 | /* Process any previous ticks, then return current value. */ | |
1365 | static int fmeter_getrate(struct fmeter *fmp) | |
1366 | { | |
1367 | int val; | |
1368 | ||
1369 | spin_lock(&fmp->lock); | |
1370 | fmeter_update(fmp); | |
1371 | val = fmp->val; | |
1372 | spin_unlock(&fmp->lock); | |
1373 | return val; | |
1374 | } | |
1375 | ||
2341d1b6 LZ |
1376 | /* Protected by cgroup_lock */ |
1377 | static cpumask_var_t cpus_attach; | |
1378 | ||
2df167a3 | 1379 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
be367d09 BB |
1380 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1381 | struct task_struct *tsk, bool threadgroup) | |
1da177e4 | 1382 | { |
be367d09 | 1383 | int ret; |
8793d854 | 1384 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1385 | |
300ed6cb | 1386 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
1da177e4 | 1387 | return -ENOSPC; |
9985b0ba | 1388 | |
6d7b2f5f DR |
1389 | /* |
1390 | * Kthreads bound to specific cpus cannot be moved to a new cpuset; we | |
1391 | * cannot change their cpu affinity and isolating such threads by their | |
1392 | * set of allowed nodes is unnecessary. Thus, cpusets are not | |
1393 | * applicable for such threads. This prevents checking for success of | |
1394 | * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may | |
1395 | * be changed. | |
1396 | */ | |
1397 | if (tsk->flags & PF_THREAD_BOUND) | |
1398 | return -EINVAL; | |
1da177e4 | 1399 | |
be367d09 BB |
1400 | ret = security_task_setscheduler(tsk, 0, NULL); |
1401 | if (ret) | |
1402 | return ret; | |
1403 | if (threadgroup) { | |
1404 | struct task_struct *c; | |
1405 | ||
1406 | rcu_read_lock(); | |
1407 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
1408 | ret = security_task_setscheduler(c, 0, NULL); | |
1409 | if (ret) { | |
1410 | rcu_read_unlock(); | |
1411 | return ret; | |
1412 | } | |
1413 | } | |
1414 | rcu_read_unlock(); | |
1415 | } | |
1416 | return 0; | |
1417 | } | |
1418 | ||
1419 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | |
1420 | struct cpuset *cs) | |
1421 | { | |
1422 | int err; | |
1423 | /* | |
1424 | * can_attach beforehand should guarantee that this doesn't fail. | |
1425 | * TODO: have a better way to handle failure here | |
1426 | */ | |
1427 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | |
1428 | WARN_ON_ONCE(err); | |
1429 | ||
be367d09 | 1430 | cpuset_change_task_nodemask(tsk, to); |
be367d09 BB |
1431 | cpuset_update_task_spread_flag(cs, tsk); |
1432 | ||
8793d854 | 1433 | } |
1da177e4 | 1434 | |
be367d09 BB |
1435 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1436 | struct cgroup *oldcont, struct task_struct *tsk, | |
1437 | bool threadgroup) | |
8793d854 | 1438 | { |
8793d854 PM |
1439 | struct mm_struct *mm; |
1440 | struct cpuset *cs = cgroup_cs(cont); | |
1441 | struct cpuset *oldcs = cgroup_cs(oldcont); | |
53feb297 MX |
1442 | NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL); |
1443 | NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL); | |
1444 | ||
1445 | if (from == NULL || to == NULL) | |
1446 | goto alloc_fail; | |
22fb52dd | 1447 | |
f5813d94 | 1448 | if (cs == &top_cpuset) { |
2341d1b6 | 1449 | cpumask_copy(cpus_attach, cpu_possible_mask); |
f5813d94 | 1450 | } else { |
2341d1b6 | 1451 | guarantee_online_cpus(cs, cpus_attach); |
f5813d94 | 1452 | } |
53feb297 | 1453 | guarantee_online_mems(cs, to); |
1da177e4 | 1454 | |
be367d09 | 1455 | /* do per-task migration stuff possibly for each in the threadgroup */ |
53feb297 | 1456 | cpuset_attach_task(tsk, to, cs); |
be367d09 BB |
1457 | if (threadgroup) { |
1458 | struct task_struct *c; | |
1459 | rcu_read_lock(); | |
1460 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | |
53feb297 | 1461 | cpuset_attach_task(c, to, cs); |
be367d09 BB |
1462 | } |
1463 | rcu_read_unlock(); | |
1464 | } | |
950592f7 | 1465 | |
be367d09 | 1466 | /* change mm; only needs to be done once even if threadgroup */ |
53feb297 MX |
1467 | *from = oldcs->mems_allowed; |
1468 | *to = cs->mems_allowed; | |
4225399a PJ |
1469 | mm = get_task_mm(tsk); |
1470 | if (mm) { | |
53feb297 | 1471 | mpol_rebind_mm(mm, to); |
2741a559 | 1472 | if (is_memory_migrate(cs)) |
53feb297 | 1473 | cpuset_migrate_mm(mm, from, to); |
4225399a PJ |
1474 | mmput(mm); |
1475 | } | |
53feb297 MX |
1476 | |
1477 | alloc_fail: | |
1478 | NODEMASK_FREE(from); | |
1479 | NODEMASK_FREE(to); | |
1da177e4 LT |
1480 | } |
1481 | ||
1482 | /* The various types of files and directories in a cpuset file system */ | |
1483 | ||
1484 | typedef enum { | |
45b07ef3 | 1485 | FILE_MEMORY_MIGRATE, |
1da177e4 LT |
1486 | FILE_CPULIST, |
1487 | FILE_MEMLIST, | |
1488 | FILE_CPU_EXCLUSIVE, | |
1489 | FILE_MEM_EXCLUSIVE, | |
78608366 | 1490 | FILE_MEM_HARDWALL, |
029190c5 | 1491 | FILE_SCHED_LOAD_BALANCE, |
1d3504fc | 1492 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
3e0d98b9 PJ |
1493 | FILE_MEMORY_PRESSURE_ENABLED, |
1494 | FILE_MEMORY_PRESSURE, | |
825a46af PJ |
1495 | FILE_SPREAD_PAGE, |
1496 | FILE_SPREAD_SLAB, | |
1da177e4 LT |
1497 | } cpuset_filetype_t; |
1498 | ||
700fe1ab PM |
1499 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
1500 | { | |
1501 | int retval = 0; | |
1502 | struct cpuset *cs = cgroup_cs(cgrp); | |
1503 | cpuset_filetype_t type = cft->private; | |
1504 | ||
e3712395 | 1505 | if (!cgroup_lock_live_group(cgrp)) |
700fe1ab | 1506 | return -ENODEV; |
700fe1ab PM |
1507 | |
1508 | switch (type) { | |
1da177e4 | 1509 | case FILE_CPU_EXCLUSIVE: |
700fe1ab | 1510 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
1da177e4 LT |
1511 | break; |
1512 | case FILE_MEM_EXCLUSIVE: | |
700fe1ab | 1513 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
1da177e4 | 1514 | break; |
78608366 PM |
1515 | case FILE_MEM_HARDWALL: |
1516 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | |
1517 | break; | |
029190c5 | 1518 | case FILE_SCHED_LOAD_BALANCE: |
700fe1ab | 1519 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
1d3504fc | 1520 | break; |
45b07ef3 | 1521 | case FILE_MEMORY_MIGRATE: |
700fe1ab | 1522 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
45b07ef3 | 1523 | break; |
3e0d98b9 | 1524 | case FILE_MEMORY_PRESSURE_ENABLED: |
700fe1ab | 1525 | cpuset_memory_pressure_enabled = !!val; |
3e0d98b9 PJ |
1526 | break; |
1527 | case FILE_MEMORY_PRESSURE: | |
1528 | retval = -EACCES; | |
1529 | break; | |
825a46af | 1530 | case FILE_SPREAD_PAGE: |
700fe1ab | 1531 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
825a46af PJ |
1532 | break; |
1533 | case FILE_SPREAD_SLAB: | |
700fe1ab | 1534 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
825a46af | 1535 | break; |
1da177e4 LT |
1536 | default: |
1537 | retval = -EINVAL; | |
700fe1ab | 1538 | break; |
1da177e4 | 1539 | } |
8793d854 | 1540 | cgroup_unlock(); |
1da177e4 LT |
1541 | return retval; |
1542 | } | |
1543 | ||
5be7a479 PM |
1544 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
1545 | { | |
1546 | int retval = 0; | |
1547 | struct cpuset *cs = cgroup_cs(cgrp); | |
1548 | cpuset_filetype_t type = cft->private; | |
1549 | ||
e3712395 | 1550 | if (!cgroup_lock_live_group(cgrp)) |
5be7a479 | 1551 | return -ENODEV; |
e3712395 | 1552 | |
5be7a479 PM |
1553 | switch (type) { |
1554 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1555 | retval = update_relax_domain_level(cs, val); | |
1556 | break; | |
1557 | default: | |
1558 | retval = -EINVAL; | |
1559 | break; | |
1560 | } | |
1561 | cgroup_unlock(); | |
1562 | return retval; | |
1563 | } | |
1564 | ||
e3712395 PM |
1565 | /* |
1566 | * Common handling for a write to a "cpus" or "mems" file. | |
1567 | */ | |
1568 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | |
1569 | const char *buf) | |
1570 | { | |
1571 | int retval = 0; | |
645fcc9d LZ |
1572 | struct cpuset *cs = cgroup_cs(cgrp); |
1573 | struct cpuset *trialcs; | |
e3712395 PM |
1574 | |
1575 | if (!cgroup_lock_live_group(cgrp)) | |
1576 | return -ENODEV; | |
1577 | ||
645fcc9d LZ |
1578 | trialcs = alloc_trial_cpuset(cs); |
1579 | if (!trialcs) | |
1580 | return -ENOMEM; | |
1581 | ||
e3712395 PM |
1582 | switch (cft->private) { |
1583 | case FILE_CPULIST: | |
645fcc9d | 1584 | retval = update_cpumask(cs, trialcs, buf); |
e3712395 PM |
1585 | break; |
1586 | case FILE_MEMLIST: | |
645fcc9d | 1587 | retval = update_nodemask(cs, trialcs, buf); |
e3712395 PM |
1588 | break; |
1589 | default: | |
1590 | retval = -EINVAL; | |
1591 | break; | |
1592 | } | |
645fcc9d LZ |
1593 | |
1594 | free_trial_cpuset(trialcs); | |
e3712395 PM |
1595 | cgroup_unlock(); |
1596 | return retval; | |
1597 | } | |
1598 | ||
1da177e4 LT |
1599 | /* |
1600 | * These ascii lists should be read in a single call, by using a user | |
1601 | * buffer large enough to hold the entire map. If read in smaller | |
1602 | * chunks, there is no guarantee of atomicity. Since the display format | |
1603 | * used, list of ranges of sequential numbers, is variable length, | |
1604 | * and since these maps can change value dynamically, one could read | |
1605 | * gibberish by doing partial reads while a list was changing. | |
1606 | * A single large read to a buffer that crosses a page boundary is | |
1607 | * ok, because the result being copied to user land is not recomputed | |
1608 | * across a page fault. | |
1609 | */ | |
1610 | ||
1611 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | |
1612 | { | |
5a7625df | 1613 | int ret; |
1da177e4 | 1614 | |
3d3f26a7 | 1615 | mutex_lock(&callback_mutex); |
300ed6cb | 1616 | ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); |
3d3f26a7 | 1617 | mutex_unlock(&callback_mutex); |
1da177e4 | 1618 | |
5a7625df | 1619 | return ret; |
1da177e4 LT |
1620 | } |
1621 | ||
1622 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | |
1623 | { | |
53feb297 MX |
1624 | NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL); |
1625 | int retval; | |
1626 | ||
1627 | if (mask == NULL) | |
1628 | return -ENOMEM; | |
1da177e4 | 1629 | |
3d3f26a7 | 1630 | mutex_lock(&callback_mutex); |
53feb297 | 1631 | *mask = cs->mems_allowed; |
3d3f26a7 | 1632 | mutex_unlock(&callback_mutex); |
1da177e4 | 1633 | |
53feb297 MX |
1634 | retval = nodelist_scnprintf(page, PAGE_SIZE, *mask); |
1635 | ||
1636 | NODEMASK_FREE(mask); | |
1637 | ||
1638 | return retval; | |
1da177e4 LT |
1639 | } |
1640 | ||
8793d854 PM |
1641 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
1642 | struct cftype *cft, | |
1643 | struct file *file, | |
1644 | char __user *buf, | |
1645 | size_t nbytes, loff_t *ppos) | |
1da177e4 | 1646 | { |
8793d854 | 1647 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 LT |
1648 | cpuset_filetype_t type = cft->private; |
1649 | char *page; | |
1650 | ssize_t retval = 0; | |
1651 | char *s; | |
1da177e4 | 1652 | |
e12ba74d | 1653 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
1da177e4 LT |
1654 | return -ENOMEM; |
1655 | ||
1656 | s = page; | |
1657 | ||
1658 | switch (type) { | |
1659 | case FILE_CPULIST: | |
1660 | s += cpuset_sprintf_cpulist(s, cs); | |
1661 | break; | |
1662 | case FILE_MEMLIST: | |
1663 | s += cpuset_sprintf_memlist(s, cs); | |
1664 | break; | |
1da177e4 LT |
1665 | default: |
1666 | retval = -EINVAL; | |
1667 | goto out; | |
1668 | } | |
1669 | *s++ = '\n'; | |
1da177e4 | 1670 | |
eacaa1f5 | 1671 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
1da177e4 LT |
1672 | out: |
1673 | free_page((unsigned long)page); | |
1674 | return retval; | |
1675 | } | |
1676 | ||
700fe1ab PM |
1677 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
1678 | { | |
1679 | struct cpuset *cs = cgroup_cs(cont); | |
1680 | cpuset_filetype_t type = cft->private; | |
1681 | switch (type) { | |
1682 | case FILE_CPU_EXCLUSIVE: | |
1683 | return is_cpu_exclusive(cs); | |
1684 | case FILE_MEM_EXCLUSIVE: | |
1685 | return is_mem_exclusive(cs); | |
78608366 PM |
1686 | case FILE_MEM_HARDWALL: |
1687 | return is_mem_hardwall(cs); | |
700fe1ab PM |
1688 | case FILE_SCHED_LOAD_BALANCE: |
1689 | return is_sched_load_balance(cs); | |
1690 | case FILE_MEMORY_MIGRATE: | |
1691 | return is_memory_migrate(cs); | |
1692 | case FILE_MEMORY_PRESSURE_ENABLED: | |
1693 | return cpuset_memory_pressure_enabled; | |
1694 | case FILE_MEMORY_PRESSURE: | |
1695 | return fmeter_getrate(&cs->fmeter); | |
1696 | case FILE_SPREAD_PAGE: | |
1697 | return is_spread_page(cs); | |
1698 | case FILE_SPREAD_SLAB: | |
1699 | return is_spread_slab(cs); | |
1700 | default: | |
1701 | BUG(); | |
1702 | } | |
cf417141 MK |
1703 | |
1704 | /* Unreachable but makes gcc happy */ | |
1705 | return 0; | |
700fe1ab | 1706 | } |
1da177e4 | 1707 | |
5be7a479 PM |
1708 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
1709 | { | |
1710 | struct cpuset *cs = cgroup_cs(cont); | |
1711 | cpuset_filetype_t type = cft->private; | |
1712 | switch (type) { | |
1713 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | |
1714 | return cs->relax_domain_level; | |
1715 | default: | |
1716 | BUG(); | |
1717 | } | |
cf417141 MK |
1718 | |
1719 | /* Unrechable but makes gcc happy */ | |
1720 | return 0; | |
5be7a479 PM |
1721 | } |
1722 | ||
1da177e4 LT |
1723 | |
1724 | /* | |
1725 | * for the common functions, 'private' gives the type of file | |
1726 | */ | |
1727 | ||
addf2c73 PM |
1728 | static struct cftype files[] = { |
1729 | { | |
1730 | .name = "cpus", | |
1731 | .read = cpuset_common_file_read, | |
e3712395 PM |
1732 | .write_string = cpuset_write_resmask, |
1733 | .max_write_len = (100U + 6 * NR_CPUS), | |
addf2c73 PM |
1734 | .private = FILE_CPULIST, |
1735 | }, | |
1736 | ||
1737 | { | |
1738 | .name = "mems", | |
1739 | .read = cpuset_common_file_read, | |
e3712395 PM |
1740 | .write_string = cpuset_write_resmask, |
1741 | .max_write_len = (100U + 6 * MAX_NUMNODES), | |
addf2c73 PM |
1742 | .private = FILE_MEMLIST, |
1743 | }, | |
1744 | ||
1745 | { | |
1746 | .name = "cpu_exclusive", | |
1747 | .read_u64 = cpuset_read_u64, | |
1748 | .write_u64 = cpuset_write_u64, | |
1749 | .private = FILE_CPU_EXCLUSIVE, | |
1750 | }, | |
1751 | ||
1752 | { | |
1753 | .name = "mem_exclusive", | |
1754 | .read_u64 = cpuset_read_u64, | |
1755 | .write_u64 = cpuset_write_u64, | |
1756 | .private = FILE_MEM_EXCLUSIVE, | |
1757 | }, | |
1758 | ||
78608366 PM |
1759 | { |
1760 | .name = "mem_hardwall", | |
1761 | .read_u64 = cpuset_read_u64, | |
1762 | .write_u64 = cpuset_write_u64, | |
1763 | .private = FILE_MEM_HARDWALL, | |
1764 | }, | |
1765 | ||
addf2c73 PM |
1766 | { |
1767 | .name = "sched_load_balance", | |
1768 | .read_u64 = cpuset_read_u64, | |
1769 | .write_u64 = cpuset_write_u64, | |
1770 | .private = FILE_SCHED_LOAD_BALANCE, | |
1771 | }, | |
1772 | ||
1773 | { | |
1774 | .name = "sched_relax_domain_level", | |
5be7a479 PM |
1775 | .read_s64 = cpuset_read_s64, |
1776 | .write_s64 = cpuset_write_s64, | |
addf2c73 PM |
1777 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
1778 | }, | |
1779 | ||
1780 | { | |
1781 | .name = "memory_migrate", | |
1782 | .read_u64 = cpuset_read_u64, | |
1783 | .write_u64 = cpuset_write_u64, | |
1784 | .private = FILE_MEMORY_MIGRATE, | |
1785 | }, | |
1786 | ||
1787 | { | |
1788 | .name = "memory_pressure", | |
1789 | .read_u64 = cpuset_read_u64, | |
1790 | .write_u64 = cpuset_write_u64, | |
1791 | .private = FILE_MEMORY_PRESSURE, | |
099fca32 | 1792 | .mode = S_IRUGO, |
addf2c73 PM |
1793 | }, |
1794 | ||
1795 | { | |
1796 | .name = "memory_spread_page", | |
1797 | .read_u64 = cpuset_read_u64, | |
1798 | .write_u64 = cpuset_write_u64, | |
1799 | .private = FILE_SPREAD_PAGE, | |
1800 | }, | |
1801 | ||
1802 | { | |
1803 | .name = "memory_spread_slab", | |
1804 | .read_u64 = cpuset_read_u64, | |
1805 | .write_u64 = cpuset_write_u64, | |
1806 | .private = FILE_SPREAD_SLAB, | |
1807 | }, | |
45b07ef3 PJ |
1808 | }; |
1809 | ||
3e0d98b9 PJ |
1810 | static struct cftype cft_memory_pressure_enabled = { |
1811 | .name = "memory_pressure_enabled", | |
700fe1ab PM |
1812 | .read_u64 = cpuset_read_u64, |
1813 | .write_u64 = cpuset_write_u64, | |
3e0d98b9 PJ |
1814 | .private = FILE_MEMORY_PRESSURE_ENABLED, |
1815 | }; | |
1816 | ||
8793d854 | 1817 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 LT |
1818 | { |
1819 | int err; | |
1820 | ||
addf2c73 PM |
1821 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); |
1822 | if (err) | |
1da177e4 | 1823 | return err; |
8793d854 | 1824 | /* memory_pressure_enabled is in root cpuset only */ |
addf2c73 | 1825 | if (!cont->parent) |
8793d854 | 1826 | err = cgroup_add_file(cont, ss, |
addf2c73 PM |
1827 | &cft_memory_pressure_enabled); |
1828 | return err; | |
1da177e4 LT |
1829 | } |
1830 | ||
8793d854 PM |
1831 | /* |
1832 | * post_clone() is called at the end of cgroup_clone(). | |
1833 | * 'cgroup' was just created automatically as a result of | |
1834 | * a cgroup_clone(), and the current task is about to | |
1835 | * be moved into 'cgroup'. | |
1836 | * | |
1837 | * Currently we refuse to set up the cgroup - thereby | |
1838 | * refusing the task to be entered, and as a result refusing | |
1839 | * the sys_unshare() or clone() which initiated it - if any | |
1840 | * sibling cpusets have exclusive cpus or mem. | |
1841 | * | |
1842 | * If this becomes a problem for some users who wish to | |
1843 | * allow that scenario, then cpuset_post_clone() could be | |
1844 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | |
2df167a3 PM |
1845 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
1846 | * held. | |
8793d854 PM |
1847 | */ |
1848 | static void cpuset_post_clone(struct cgroup_subsys *ss, | |
1849 | struct cgroup *cgroup) | |
1850 | { | |
1851 | struct cgroup *parent, *child; | |
1852 | struct cpuset *cs, *parent_cs; | |
1853 | ||
1854 | parent = cgroup->parent; | |
1855 | list_for_each_entry(child, &parent->children, sibling) { | |
1856 | cs = cgroup_cs(child); | |
1857 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | |
1858 | return; | |
1859 | } | |
1860 | cs = cgroup_cs(cgroup); | |
1861 | parent_cs = cgroup_cs(parent); | |
1862 | ||
1863 | cs->mems_allowed = parent_cs->mems_allowed; | |
300ed6cb | 1864 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); |
8793d854 PM |
1865 | return; |
1866 | } | |
1867 | ||
1da177e4 LT |
1868 | /* |
1869 | * cpuset_create - create a cpuset | |
2df167a3 PM |
1870 | * ss: cpuset cgroup subsystem |
1871 | * cont: control group that the new cpuset will be part of | |
1da177e4 LT |
1872 | */ |
1873 | ||
8793d854 PM |
1874 | static struct cgroup_subsys_state *cpuset_create( |
1875 | struct cgroup_subsys *ss, | |
1876 | struct cgroup *cont) | |
1da177e4 LT |
1877 | { |
1878 | struct cpuset *cs; | |
8793d854 | 1879 | struct cpuset *parent; |
1da177e4 | 1880 | |
8793d854 | 1881 | if (!cont->parent) { |
8793d854 PM |
1882 | return &top_cpuset.css; |
1883 | } | |
1884 | parent = cgroup_cs(cont->parent); | |
1da177e4 LT |
1885 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
1886 | if (!cs) | |
8793d854 | 1887 | return ERR_PTR(-ENOMEM); |
300ed6cb LZ |
1888 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
1889 | kfree(cs); | |
1890 | return ERR_PTR(-ENOMEM); | |
1891 | } | |
1da177e4 | 1892 | |
1da177e4 | 1893 | cs->flags = 0; |
825a46af PJ |
1894 | if (is_spread_page(parent)) |
1895 | set_bit(CS_SPREAD_PAGE, &cs->flags); | |
1896 | if (is_spread_slab(parent)) | |
1897 | set_bit(CS_SPREAD_SLAB, &cs->flags); | |
029190c5 | 1898 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
300ed6cb | 1899 | cpumask_clear(cs->cpus_allowed); |
f9a86fcb | 1900 | nodes_clear(cs->mems_allowed); |
3e0d98b9 | 1901 | fmeter_init(&cs->fmeter); |
1d3504fc | 1902 | cs->relax_domain_level = -1; |
1da177e4 LT |
1903 | |
1904 | cs->parent = parent; | |
202f72d5 | 1905 | number_of_cpusets++; |
8793d854 | 1906 | return &cs->css ; |
1da177e4 LT |
1907 | } |
1908 | ||
029190c5 | 1909 | /* |
029190c5 PJ |
1910 | * If the cpuset being removed has its flag 'sched_load_balance' |
1911 | * enabled, then simulate turning sched_load_balance off, which | |
cf417141 | 1912 | * will call async_rebuild_sched_domains(). |
029190c5 PJ |
1913 | */ |
1914 | ||
8793d854 | 1915 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) |
1da177e4 | 1916 | { |
8793d854 | 1917 | struct cpuset *cs = cgroup_cs(cont); |
1da177e4 | 1918 | |
029190c5 | 1919 | if (is_sched_load_balance(cs)) |
700fe1ab | 1920 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
029190c5 | 1921 | |
202f72d5 | 1922 | number_of_cpusets--; |
300ed6cb | 1923 | free_cpumask_var(cs->cpus_allowed); |
8793d854 | 1924 | kfree(cs); |
1da177e4 LT |
1925 | } |
1926 | ||
8793d854 PM |
1927 | struct cgroup_subsys cpuset_subsys = { |
1928 | .name = "cpuset", | |
1929 | .create = cpuset_create, | |
cf417141 | 1930 | .destroy = cpuset_destroy, |
8793d854 PM |
1931 | .can_attach = cpuset_can_attach, |
1932 | .attach = cpuset_attach, | |
1933 | .populate = cpuset_populate, | |
1934 | .post_clone = cpuset_post_clone, | |
1935 | .subsys_id = cpuset_subsys_id, | |
1936 | .early_init = 1, | |
1937 | }; | |
1938 | ||
1da177e4 LT |
1939 | /** |
1940 | * cpuset_init - initialize cpusets at system boot | |
1941 | * | |
1942 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1943 | **/ | |
1944 | ||
1945 | int __init cpuset_init(void) | |
1946 | { | |
8793d854 | 1947 | int err = 0; |
1da177e4 | 1948 | |
58568d2a MX |
1949 | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) |
1950 | BUG(); | |
1951 | ||
300ed6cb | 1952 | cpumask_setall(top_cpuset.cpus_allowed); |
f9a86fcb | 1953 | nodes_setall(top_cpuset.mems_allowed); |
1da177e4 | 1954 | |
3e0d98b9 | 1955 | fmeter_init(&top_cpuset.fmeter); |
029190c5 | 1956 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
1d3504fc | 1957 | top_cpuset.relax_domain_level = -1; |
1da177e4 | 1958 | |
1da177e4 LT |
1959 | err = register_filesystem(&cpuset_fs_type); |
1960 | if (err < 0) | |
8793d854 PM |
1961 | return err; |
1962 | ||
2341d1b6 LZ |
1963 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
1964 | BUG(); | |
1965 | ||
202f72d5 | 1966 | number_of_cpusets = 1; |
8793d854 | 1967 | return 0; |
1da177e4 LT |
1968 | } |
1969 | ||
956db3ca CW |
1970 | /** |
1971 | * cpuset_do_move_task - move a given task to another cpuset | |
1972 | * @tsk: pointer to task_struct the task to move | |
1973 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | |
1974 | * | |
1975 | * Called by cgroup_scan_tasks() for each task in a cgroup. | |
1976 | * Return nonzero to stop the walk through the tasks. | |
1977 | */ | |
9e0c914c AB |
1978 | static void cpuset_do_move_task(struct task_struct *tsk, |
1979 | struct cgroup_scanner *scan) | |
956db3ca | 1980 | { |
7f81b1ae | 1981 | struct cgroup *new_cgroup = scan->data; |
956db3ca | 1982 | |
7f81b1ae | 1983 | cgroup_attach_task(new_cgroup, tsk); |
956db3ca CW |
1984 | } |
1985 | ||
1986 | /** | |
1987 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | |
1988 | * @from: cpuset in which the tasks currently reside | |
1989 | * @to: cpuset to which the tasks will be moved | |
1990 | * | |
c8d9c90c PJ |
1991 | * Called with cgroup_mutex held |
1992 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
956db3ca CW |
1993 | * |
1994 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | |
1995 | * calling callback functions for each. | |
1996 | */ | |
1997 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | |
1998 | { | |
7f81b1ae | 1999 | struct cgroup_scanner scan; |
956db3ca | 2000 | |
7f81b1ae LZ |
2001 | scan.cg = from->css.cgroup; |
2002 | scan.test_task = NULL; /* select all tasks in cgroup */ | |
2003 | scan.process_task = cpuset_do_move_task; | |
2004 | scan.heap = NULL; | |
2005 | scan.data = to->css.cgroup; | |
956db3ca | 2006 | |
7f81b1ae | 2007 | if (cgroup_scan_tasks(&scan)) |
956db3ca CW |
2008 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
2009 | "cgroup_scan_tasks failed\n"); | |
2010 | } | |
2011 | ||
b1aac8bb | 2012 | /* |
cf417141 | 2013 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
b1aac8bb PJ |
2014 | * or memory nodes, we need to walk over the cpuset hierarchy, |
2015 | * removing that CPU or node from all cpusets. If this removes the | |
956db3ca CW |
2016 | * last CPU or node from a cpuset, then move the tasks in the empty |
2017 | * cpuset to its next-highest non-empty parent. | |
b1aac8bb | 2018 | * |
c8d9c90c PJ |
2019 | * Called with cgroup_mutex held |
2020 | * callback_mutex must not be held, as cpuset_attach() will take it. | |
b1aac8bb | 2021 | */ |
956db3ca CW |
2022 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
2023 | { | |
2024 | struct cpuset *parent; | |
2025 | ||
c8d9c90c PJ |
2026 | /* |
2027 | * The cgroup's css_sets list is in use if there are tasks | |
2028 | * in the cpuset; the list is empty if there are none; | |
2029 | * the cs->css.refcnt seems always 0. | |
2030 | */ | |
956db3ca CW |
2031 | if (list_empty(&cs->css.cgroup->css_sets)) |
2032 | return; | |
b1aac8bb | 2033 | |
956db3ca CW |
2034 | /* |
2035 | * Find its next-highest non-empty parent, (top cpuset | |
2036 | * has online cpus, so can't be empty). | |
2037 | */ | |
2038 | parent = cs->parent; | |
300ed6cb | 2039 | while (cpumask_empty(parent->cpus_allowed) || |
b4501295 | 2040 | nodes_empty(parent->mems_allowed)) |
956db3ca | 2041 | parent = parent->parent; |
956db3ca CW |
2042 | |
2043 | move_member_tasks_to_cpuset(cs, parent); | |
2044 | } | |
2045 | ||
2046 | /* | |
2047 | * Walk the specified cpuset subtree and look for empty cpusets. | |
2048 | * The tasks of such cpuset must be moved to a parent cpuset. | |
2049 | * | |
2df167a3 | 2050 | * Called with cgroup_mutex held. We take callback_mutex to modify |
956db3ca CW |
2051 | * cpus_allowed and mems_allowed. |
2052 | * | |
2053 | * This walk processes the tree from top to bottom, completing one layer | |
2054 | * before dropping down to the next. It always processes a node before | |
2055 | * any of its children. | |
2056 | * | |
2057 | * For now, since we lack memory hot unplug, we'll never see a cpuset | |
2058 | * that has tasks along with an empty 'mems'. But if we did see such | |
2059 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | |
2060 | */ | |
d294eb83 | 2061 | static void scan_for_empty_cpusets(struct cpuset *root) |
b1aac8bb | 2062 | { |
8d1e6266 | 2063 | LIST_HEAD(queue); |
956db3ca CW |
2064 | struct cpuset *cp; /* scans cpusets being updated */ |
2065 | struct cpuset *child; /* scans child cpusets of cp */ | |
8793d854 | 2066 | struct cgroup *cont; |
53feb297 MX |
2067 | NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL); |
2068 | ||
2069 | if (oldmems == NULL) | |
2070 | return; | |
b1aac8bb | 2071 | |
956db3ca CW |
2072 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
2073 | ||
956db3ca | 2074 | while (!list_empty(&queue)) { |
8d1e6266 | 2075 | cp = list_first_entry(&queue, struct cpuset, stack_list); |
956db3ca CW |
2076 | list_del(queue.next); |
2077 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | |
2078 | child = cgroup_cs(cont); | |
2079 | list_add_tail(&child->stack_list, &queue); | |
2080 | } | |
b4501295 PJ |
2081 | |
2082 | /* Continue past cpusets with all cpus, mems online */ | |
6ad4c188 | 2083 | if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) && |
b4501295 PJ |
2084 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) |
2085 | continue; | |
2086 | ||
53feb297 | 2087 | *oldmems = cp->mems_allowed; |
f9b4fb8d | 2088 | |
956db3ca | 2089 | /* Remove offline cpus and mems from this cpuset. */ |
b4501295 | 2090 | mutex_lock(&callback_mutex); |
300ed6cb | 2091 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, |
6ad4c188 | 2092 | cpu_active_mask); |
956db3ca CW |
2093 | nodes_and(cp->mems_allowed, cp->mems_allowed, |
2094 | node_states[N_HIGH_MEMORY]); | |
b4501295 PJ |
2095 | mutex_unlock(&callback_mutex); |
2096 | ||
2097 | /* Move tasks from the empty cpuset to a parent */ | |
300ed6cb | 2098 | if (cpumask_empty(cp->cpus_allowed) || |
b4501295 | 2099 | nodes_empty(cp->mems_allowed)) |
956db3ca | 2100 | remove_tasks_in_empty_cpuset(cp); |
f9b4fb8d | 2101 | else { |
4e74339a | 2102 | update_tasks_cpumask(cp, NULL); |
53feb297 | 2103 | update_tasks_nodemask(cp, oldmems, NULL); |
f9b4fb8d | 2104 | } |
b1aac8bb | 2105 | } |
53feb297 | 2106 | NODEMASK_FREE(oldmems); |
b1aac8bb PJ |
2107 | } |
2108 | ||
4c4d50f7 PJ |
2109 | /* |
2110 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | |
2111 | * period. This is necessary in order to make cpusets transparent | |
2112 | * (of no affect) on systems that are actively using CPU hotplug | |
2113 | * but making no active use of cpusets. | |
2114 | * | |
38837fc7 PJ |
2115 | * This routine ensures that top_cpuset.cpus_allowed tracks |
2116 | * cpu_online_map on each CPU hotplug (cpuhp) event. | |
cf417141 MK |
2117 | * |
2118 | * Called within get_online_cpus(). Needs to call cgroup_lock() | |
2119 | * before calling generate_sched_domains(). | |
4c4d50f7 | 2120 | */ |
cf417141 | 2121 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, |
029190c5 | 2122 | unsigned long phase, void *unused_cpu) |
4c4d50f7 | 2123 | { |
cf417141 | 2124 | struct sched_domain_attr *attr; |
acc3f5d7 | 2125 | cpumask_var_t *doms; |
cf417141 MK |
2126 | int ndoms; |
2127 | ||
3e84050c | 2128 | switch (phase) { |
3e84050c DA |
2129 | case CPU_ONLINE: |
2130 | case CPU_ONLINE_FROZEN: | |
6ad4c188 PZ |
2131 | case CPU_DOWN_PREPARE: |
2132 | case CPU_DOWN_PREPARE_FROZEN: | |
2133 | case CPU_DOWN_FAILED: | |
2134 | case CPU_DOWN_FAILED_FROZEN: | |
3e84050c | 2135 | break; |
cf417141 | 2136 | |
3e84050c | 2137 | default: |
ac076758 | 2138 | return NOTIFY_DONE; |
3e84050c | 2139 | } |
ac076758 | 2140 | |
cf417141 | 2141 | cgroup_lock(); |
0b4217b3 | 2142 | mutex_lock(&callback_mutex); |
6ad4c188 | 2143 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0b4217b3 | 2144 | mutex_unlock(&callback_mutex); |
cf417141 MK |
2145 | scan_for_empty_cpusets(&top_cpuset); |
2146 | ndoms = generate_sched_domains(&doms, &attr); | |
2147 | cgroup_unlock(); | |
2148 | ||
2149 | /* Have scheduler rebuild the domains */ | |
2150 | partition_sched_domains(ndoms, doms, attr); | |
2151 | ||
3e84050c | 2152 | return NOTIFY_OK; |
4c4d50f7 | 2153 | } |
4c4d50f7 | 2154 | |
b1aac8bb | 2155 | #ifdef CONFIG_MEMORY_HOTPLUG |
38837fc7 | 2156 | /* |
0e1e7c7a | 2157 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
cf417141 MK |
2158 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
2159 | * See also the previous routine cpuset_track_online_cpus(). | |
38837fc7 | 2160 | */ |
f481891f MX |
2161 | static int cpuset_track_online_nodes(struct notifier_block *self, |
2162 | unsigned long action, void *arg) | |
38837fc7 | 2163 | { |
53feb297 MX |
2164 | NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL); |
2165 | ||
2166 | if (oldmems == NULL) | |
2167 | return NOTIFY_DONE; | |
5ab116c9 | 2168 | |
cf417141 | 2169 | cgroup_lock(); |
f481891f MX |
2170 | switch (action) { |
2171 | case MEM_ONLINE: | |
53feb297 | 2172 | *oldmems = top_cpuset.mems_allowed; |
0b4217b3 | 2173 | mutex_lock(&callback_mutex); |
f481891f | 2174 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
0b4217b3 | 2175 | mutex_unlock(&callback_mutex); |
53feb297 | 2176 | update_tasks_nodemask(&top_cpuset, oldmems, NULL); |
5ab116c9 MX |
2177 | break; |
2178 | case MEM_OFFLINE: | |
2179 | /* | |
2180 | * needn't update top_cpuset.mems_allowed explicitly because | |
2181 | * scan_for_empty_cpusets() will update it. | |
2182 | */ | |
2183 | scan_for_empty_cpusets(&top_cpuset); | |
f481891f MX |
2184 | break; |
2185 | default: | |
2186 | break; | |
2187 | } | |
cf417141 | 2188 | cgroup_unlock(); |
53feb297 MX |
2189 | |
2190 | NODEMASK_FREE(oldmems); | |
f481891f | 2191 | return NOTIFY_OK; |
38837fc7 PJ |
2192 | } |
2193 | #endif | |
2194 | ||
1da177e4 LT |
2195 | /** |
2196 | * cpuset_init_smp - initialize cpus_allowed | |
2197 | * | |
2198 | * Description: Finish top cpuset after cpu, node maps are initialized | |
2199 | **/ | |
2200 | ||
2201 | void __init cpuset_init_smp(void) | |
2202 | { | |
6ad4c188 | 2203 | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); |
0e1e7c7a | 2204 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
4c4d50f7 | 2205 | |
cf417141 | 2206 | hotcpu_notifier(cpuset_track_online_cpus, 0); |
f481891f | 2207 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
f90d4118 MX |
2208 | |
2209 | cpuset_wq = create_singlethread_workqueue("cpuset"); | |
2210 | BUG_ON(!cpuset_wq); | |
1da177e4 LT |
2211 | } |
2212 | ||
2213 | /** | |
1da177e4 LT |
2214 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
2215 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
6af866af | 2216 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
1da177e4 | 2217 | * |
300ed6cb | 2218 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
1da177e4 LT |
2219 | * attached to the specified @tsk. Guaranteed to return some non-empty |
2220 | * subset of cpu_online_map, even if this means going outside the | |
2221 | * tasks cpuset. | |
2222 | **/ | |
2223 | ||
6af866af | 2224 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
1da177e4 | 2225 | { |
3d3f26a7 | 2226 | mutex_lock(&callback_mutex); |
909d75a3 | 2227 | task_lock(tsk); |
f9a86fcb | 2228 | guarantee_online_cpus(task_cs(tsk), pmask); |
909d75a3 | 2229 | task_unlock(tsk); |
897f0b3c | 2230 | mutex_unlock(&callback_mutex); |
1da177e4 LT |
2231 | } |
2232 | ||
9084bb82 ON |
2233 | int cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
2234 | { | |
2235 | const struct cpuset *cs; | |
2236 | int cpu; | |
2237 | ||
2238 | rcu_read_lock(); | |
2239 | cs = task_cs(tsk); | |
2240 | if (cs) | |
2241 | cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); | |
2242 | rcu_read_unlock(); | |
2243 | ||
2244 | /* | |
2245 | * We own tsk->cpus_allowed, nobody can change it under us. | |
2246 | * | |
2247 | * But we used cs && cs->cpus_allowed lockless and thus can | |
2248 | * race with cgroup_attach_task() or update_cpumask() and get | |
2249 | * the wrong tsk->cpus_allowed. However, both cases imply the | |
2250 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | |
2251 | * which takes task_rq_lock(). | |
2252 | * | |
2253 | * If we are called after it dropped the lock we must see all | |
2254 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | |
2255 | * set any mask even if it is not right from task_cs() pov, | |
2256 | * the pending set_cpus_allowed_ptr() will fix things. | |
2257 | */ | |
2258 | ||
2259 | cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); | |
2260 | if (cpu >= nr_cpu_ids) { | |
2261 | /* | |
2262 | * Either tsk->cpus_allowed is wrong (see above) or it | |
2263 | * is actually empty. The latter case is only possible | |
2264 | * if we are racing with remove_tasks_in_empty_cpuset(). | |
2265 | * Like above we can temporary set any mask and rely on | |
2266 | * set_cpus_allowed_ptr() as synchronization point. | |
2267 | */ | |
2268 | cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); | |
2269 | cpu = cpumask_any(cpu_active_mask); | |
2270 | } | |
2271 | ||
2272 | return cpu; | |
2273 | } | |
2274 | ||
1da177e4 LT |
2275 | void cpuset_init_current_mems_allowed(void) |
2276 | { | |
f9a86fcb | 2277 | nodes_setall(current->mems_allowed); |
1da177e4 LT |
2278 | } |
2279 | ||
909d75a3 PJ |
2280 | /** |
2281 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | |
2282 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | |
2283 | * | |
2284 | * Description: Returns the nodemask_t mems_allowed of the cpuset | |
2285 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
0e1e7c7a | 2286 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
909d75a3 PJ |
2287 | * tasks cpuset. |
2288 | **/ | |
2289 | ||
2290 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | |
2291 | { | |
2292 | nodemask_t mask; | |
2293 | ||
3d3f26a7 | 2294 | mutex_lock(&callback_mutex); |
909d75a3 | 2295 | task_lock(tsk); |
8793d854 | 2296 | guarantee_online_mems(task_cs(tsk), &mask); |
909d75a3 | 2297 | task_unlock(tsk); |
3d3f26a7 | 2298 | mutex_unlock(&callback_mutex); |
909d75a3 PJ |
2299 | |
2300 | return mask; | |
2301 | } | |
2302 | ||
d9fd8a6d | 2303 | /** |
19770b32 MG |
2304 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
2305 | * @nodemask: the nodemask to be checked | |
d9fd8a6d | 2306 | * |
19770b32 | 2307 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
1da177e4 | 2308 | */ |
19770b32 | 2309 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
1da177e4 | 2310 | { |
19770b32 | 2311 | return nodes_intersects(*nodemask, current->mems_allowed); |
1da177e4 LT |
2312 | } |
2313 | ||
9bf2229f | 2314 | /* |
78608366 PM |
2315 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
2316 | * mem_hardwall ancestor to the specified cpuset. Call holding | |
2317 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | |
2318 | * (an unusual configuration), then returns the root cpuset. | |
9bf2229f | 2319 | */ |
78608366 | 2320 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
9bf2229f | 2321 | { |
78608366 | 2322 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
9bf2229f PJ |
2323 | cs = cs->parent; |
2324 | return cs; | |
2325 | } | |
2326 | ||
d9fd8a6d | 2327 | /** |
a1bc5a4e DR |
2328 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
2329 | * @node: is this an allowed node? | |
02a0e53d | 2330 | * @gfp_mask: memory allocation flags |
d9fd8a6d | 2331 | * |
a1bc5a4e DR |
2332 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2333 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2334 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest | |
2335 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been | |
2336 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | |
2337 | * flag, yes. | |
9bf2229f PJ |
2338 | * Otherwise, no. |
2339 | * | |
a1bc5a4e DR |
2340 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
2341 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() | |
2342 | * might sleep, and might allow a node from an enclosing cpuset. | |
02a0e53d | 2343 | * |
a1bc5a4e DR |
2344 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
2345 | * cpusets, and never sleeps. | |
02a0e53d PJ |
2346 | * |
2347 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2348 | * by forcibly using a zonelist starting at a specified node, and by | |
2349 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2350 | * any node on the zonelist except the first. By the time any such | |
2351 | * calls get to this routine, we should just shut up and say 'yes'. | |
2352 | * | |
9bf2229f | 2353 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
c596d9f3 DR |
2354 | * and do not allow allocations outside the current tasks cpuset |
2355 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | |
9bf2229f | 2356 | * GFP_KERNEL allocations are not so marked, so can escape to the |
78608366 | 2357 | * nearest enclosing hardwalled ancestor cpuset. |
9bf2229f | 2358 | * |
02a0e53d PJ |
2359 | * Scanning up parent cpusets requires callback_mutex. The |
2360 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | |
2361 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | |
2362 | * current tasks mems_allowed came up empty on the first pass over | |
2363 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | |
2364 | * cpuset are short of memory, might require taking the callback_mutex | |
2365 | * mutex. | |
9bf2229f | 2366 | * |
36be57ff | 2367 | * The first call here from mm/page_alloc:get_page_from_freelist() |
02a0e53d PJ |
2368 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
2369 | * so no allocation on a node outside the cpuset is allowed (unless | |
2370 | * in interrupt, of course). | |
36be57ff PJ |
2371 | * |
2372 | * The second pass through get_page_from_freelist() doesn't even call | |
2373 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | |
2374 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | |
2375 | * in alloc_flags. That logic and the checks below have the combined | |
2376 | * affect that: | |
9bf2229f PJ |
2377 | * in_interrupt - any node ok (current task context irrelevant) |
2378 | * GFP_ATOMIC - any node ok | |
c596d9f3 | 2379 | * TIF_MEMDIE - any node ok |
78608366 | 2380 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
9bf2229f | 2381 | * GFP_USER - only nodes in current tasks mems allowed ok. |
36be57ff PJ |
2382 | * |
2383 | * Rule: | |
a1bc5a4e | 2384 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
36be57ff PJ |
2385 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
2386 | * the code that might scan up ancestor cpusets and sleep. | |
02a0e53d | 2387 | */ |
a1bc5a4e | 2388 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) |
1da177e4 | 2389 | { |
9bf2229f | 2390 | const struct cpuset *cs; /* current cpuset ancestors */ |
29afd49b | 2391 | int allowed; /* is allocation in zone z allowed? */ |
9bf2229f | 2392 | |
9b819d20 | 2393 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
9bf2229f | 2394 | return 1; |
92d1dbd2 | 2395 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
9bf2229f PJ |
2396 | if (node_isset(node, current->mems_allowed)) |
2397 | return 1; | |
c596d9f3 DR |
2398 | /* |
2399 | * Allow tasks that have access to memory reserves because they have | |
2400 | * been OOM killed to get memory anywhere. | |
2401 | */ | |
2402 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2403 | return 1; | |
9bf2229f PJ |
2404 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
2405 | return 0; | |
2406 | ||
5563e770 BP |
2407 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
2408 | return 1; | |
2409 | ||
9bf2229f | 2410 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
3d3f26a7 | 2411 | mutex_lock(&callback_mutex); |
053199ed | 2412 | |
053199ed | 2413 | task_lock(current); |
78608366 | 2414 | cs = nearest_hardwall_ancestor(task_cs(current)); |
053199ed PJ |
2415 | task_unlock(current); |
2416 | ||
9bf2229f | 2417 | allowed = node_isset(node, cs->mems_allowed); |
3d3f26a7 | 2418 | mutex_unlock(&callback_mutex); |
9bf2229f | 2419 | return allowed; |
1da177e4 LT |
2420 | } |
2421 | ||
02a0e53d | 2422 | /* |
a1bc5a4e DR |
2423 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
2424 | * @node: is this an allowed node? | |
02a0e53d PJ |
2425 | * @gfp_mask: memory allocation flags |
2426 | * | |
a1bc5a4e DR |
2427 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
2428 | * set, yes, we can always allocate. If node is in our task's mems_allowed, | |
2429 | * yes. If the task has been OOM killed and has access to memory reserves as | |
2430 | * specified by the TIF_MEMDIE flag, yes. | |
2431 | * Otherwise, no. | |
02a0e53d PJ |
2432 | * |
2433 | * The __GFP_THISNODE placement logic is really handled elsewhere, | |
2434 | * by forcibly using a zonelist starting at a specified node, and by | |
2435 | * (in get_page_from_freelist()) refusing to consider the zones for | |
2436 | * any node on the zonelist except the first. By the time any such | |
2437 | * calls get to this routine, we should just shut up and say 'yes'. | |
2438 | * | |
a1bc5a4e DR |
2439 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
2440 | * this variant requires that the node be in the current task's | |
02a0e53d PJ |
2441 | * mems_allowed or that we're in interrupt. It does not scan up the |
2442 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | |
2443 | * It never sleeps. | |
2444 | */ | |
a1bc5a4e | 2445 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) |
02a0e53d | 2446 | { |
02a0e53d PJ |
2447 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
2448 | return 1; | |
02a0e53d PJ |
2449 | if (node_isset(node, current->mems_allowed)) |
2450 | return 1; | |
dedf8b79 DW |
2451 | /* |
2452 | * Allow tasks that have access to memory reserves because they have | |
2453 | * been OOM killed to get memory anywhere. | |
2454 | */ | |
2455 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | |
2456 | return 1; | |
02a0e53d PJ |
2457 | return 0; |
2458 | } | |
2459 | ||
505970b9 PJ |
2460 | /** |
2461 | * cpuset_unlock - release lock on cpuset changes | |
2462 | * | |
2463 | * Undo the lock taken in a previous cpuset_lock() call. | |
2464 | */ | |
2465 | ||
2466 | void cpuset_unlock(void) | |
2467 | { | |
3d3f26a7 | 2468 | mutex_unlock(&callback_mutex); |
505970b9 PJ |
2469 | } |
2470 | ||
825a46af | 2471 | /** |
6adef3eb JS |
2472 | * cpuset_mem_spread_node() - On which node to begin search for a file page |
2473 | * cpuset_slab_spread_node() - On which node to begin search for a slab page | |
825a46af PJ |
2474 | * |
2475 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | |
2476 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | |
2477 | * and if the memory allocation used cpuset_mem_spread_node() | |
2478 | * to determine on which node to start looking, as it will for | |
2479 | * certain page cache or slab cache pages such as used for file | |
2480 | * system buffers and inode caches, then instead of starting on the | |
2481 | * local node to look for a free page, rather spread the starting | |
2482 | * node around the tasks mems_allowed nodes. | |
2483 | * | |
2484 | * We don't have to worry about the returned node being offline | |
2485 | * because "it can't happen", and even if it did, it would be ok. | |
2486 | * | |
2487 | * The routines calling guarantee_online_mems() are careful to | |
2488 | * only set nodes in task->mems_allowed that are online. So it | |
2489 | * should not be possible for the following code to return an | |
2490 | * offline node. But if it did, that would be ok, as this routine | |
2491 | * is not returning the node where the allocation must be, only | |
2492 | * the node where the search should start. The zonelist passed to | |
2493 | * __alloc_pages() will include all nodes. If the slab allocator | |
2494 | * is passed an offline node, it will fall back to the local node. | |
2495 | * See kmem_cache_alloc_node(). | |
2496 | */ | |
2497 | ||
6adef3eb | 2498 | static int cpuset_spread_node(int *rotor) |
825a46af PJ |
2499 | { |
2500 | int node; | |
2501 | ||
6adef3eb | 2502 | node = next_node(*rotor, current->mems_allowed); |
825a46af PJ |
2503 | if (node == MAX_NUMNODES) |
2504 | node = first_node(current->mems_allowed); | |
6adef3eb | 2505 | *rotor = node; |
825a46af PJ |
2506 | return node; |
2507 | } | |
6adef3eb JS |
2508 | |
2509 | int cpuset_mem_spread_node(void) | |
2510 | { | |
2511 | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | |
2512 | } | |
2513 | ||
2514 | int cpuset_slab_spread_node(void) | |
2515 | { | |
2516 | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | |
2517 | } | |
2518 | ||
825a46af PJ |
2519 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
2520 | ||
ef08e3b4 | 2521 | /** |
bbe373f2 DR |
2522 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
2523 | * @tsk1: pointer to task_struct of some task. | |
2524 | * @tsk2: pointer to task_struct of some other task. | |
2525 | * | |
2526 | * Description: Return true if @tsk1's mems_allowed intersects the | |
2527 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | |
2528 | * one of the task's memory usage might impact the memory available | |
2529 | * to the other. | |
ef08e3b4 PJ |
2530 | **/ |
2531 | ||
bbe373f2 DR |
2532 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
2533 | const struct task_struct *tsk2) | |
ef08e3b4 | 2534 | { |
bbe373f2 | 2535 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
ef08e3b4 PJ |
2536 | } |
2537 | ||
75aa1994 DR |
2538 | /** |
2539 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | |
2540 | * @task: pointer to task_struct of some task. | |
2541 | * | |
2542 | * Description: Prints @task's name, cpuset name, and cached copy of its | |
2543 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | |
2544 | * dereferencing task_cs(task). | |
2545 | */ | |
2546 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | |
2547 | { | |
2548 | struct dentry *dentry; | |
2549 | ||
2550 | dentry = task_cs(tsk)->css.cgroup->dentry; | |
2551 | spin_lock(&cpuset_buffer_lock); | |
2552 | snprintf(cpuset_name, CPUSET_NAME_LEN, | |
2553 | dentry ? (const char *)dentry->d_name.name : "/"); | |
2554 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | |
2555 | tsk->mems_allowed); | |
2556 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | |
2557 | tsk->comm, cpuset_name, cpuset_nodelist); | |
2558 | spin_unlock(&cpuset_buffer_lock); | |
2559 | } | |
2560 | ||
3e0d98b9 PJ |
2561 | /* |
2562 | * Collection of memory_pressure is suppressed unless | |
2563 | * this flag is enabled by writing "1" to the special | |
2564 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | |
2565 | */ | |
2566 | ||
c5b2aff8 | 2567 | int cpuset_memory_pressure_enabled __read_mostly; |
3e0d98b9 PJ |
2568 | |
2569 | /** | |
2570 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | |
2571 | * | |
2572 | * Keep a running average of the rate of synchronous (direct) | |
2573 | * page reclaim efforts initiated by tasks in each cpuset. | |
2574 | * | |
2575 | * This represents the rate at which some task in the cpuset | |
2576 | * ran low on memory on all nodes it was allowed to use, and | |
2577 | * had to enter the kernels page reclaim code in an effort to | |
2578 | * create more free memory by tossing clean pages or swapping | |
2579 | * or writing dirty pages. | |
2580 | * | |
2581 | * Display to user space in the per-cpuset read-only file | |
2582 | * "memory_pressure". Value displayed is an integer | |
2583 | * representing the recent rate of entry into the synchronous | |
2584 | * (direct) page reclaim by any task attached to the cpuset. | |
2585 | **/ | |
2586 | ||
2587 | void __cpuset_memory_pressure_bump(void) | |
2588 | { | |
3e0d98b9 | 2589 | task_lock(current); |
8793d854 | 2590 | fmeter_markevent(&task_cs(current)->fmeter); |
3e0d98b9 PJ |
2591 | task_unlock(current); |
2592 | } | |
2593 | ||
8793d854 | 2594 | #ifdef CONFIG_PROC_PID_CPUSET |
1da177e4 LT |
2595 | /* |
2596 | * proc_cpuset_show() | |
2597 | * - Print tasks cpuset path into seq_file. | |
2598 | * - Used for /proc/<pid>/cpuset. | |
053199ed PJ |
2599 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
2600 | * doesn't really matter if tsk->cpuset changes after we read it, | |
c8d9c90c | 2601 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
2df167a3 | 2602 | * anyway. |
1da177e4 | 2603 | */ |
029190c5 | 2604 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
1da177e4 | 2605 | { |
13b41b09 | 2606 | struct pid *pid; |
1da177e4 LT |
2607 | struct task_struct *tsk; |
2608 | char *buf; | |
8793d854 | 2609 | struct cgroup_subsys_state *css; |
99f89551 | 2610 | int retval; |
1da177e4 | 2611 | |
99f89551 | 2612 | retval = -ENOMEM; |
1da177e4 LT |
2613 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
2614 | if (!buf) | |
99f89551 EB |
2615 | goto out; |
2616 | ||
2617 | retval = -ESRCH; | |
13b41b09 EB |
2618 | pid = m->private; |
2619 | tsk = get_pid_task(pid, PIDTYPE_PID); | |
99f89551 EB |
2620 | if (!tsk) |
2621 | goto out_free; | |
1da177e4 | 2622 | |
99f89551 | 2623 | retval = -EINVAL; |
8793d854 PM |
2624 | cgroup_lock(); |
2625 | css = task_subsys_state(tsk, cpuset_subsys_id); | |
2626 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | |
1da177e4 | 2627 | if (retval < 0) |
99f89551 | 2628 | goto out_unlock; |
1da177e4 LT |
2629 | seq_puts(m, buf); |
2630 | seq_putc(m, '\n'); | |
99f89551 | 2631 | out_unlock: |
8793d854 | 2632 | cgroup_unlock(); |
99f89551 EB |
2633 | put_task_struct(tsk); |
2634 | out_free: | |
1da177e4 | 2635 | kfree(buf); |
99f89551 | 2636 | out: |
1da177e4 LT |
2637 | return retval; |
2638 | } | |
2639 | ||
2640 | static int cpuset_open(struct inode *inode, struct file *file) | |
2641 | { | |
13b41b09 EB |
2642 | struct pid *pid = PROC_I(inode)->pid; |
2643 | return single_open(file, proc_cpuset_show, pid); | |
1da177e4 LT |
2644 | } |
2645 | ||
9a32144e | 2646 | const struct file_operations proc_cpuset_operations = { |
1da177e4 LT |
2647 | .open = cpuset_open, |
2648 | .read = seq_read, | |
2649 | .llseek = seq_lseek, | |
2650 | .release = single_release, | |
2651 | }; | |
8793d854 | 2652 | #endif /* CONFIG_PROC_PID_CPUSET */ |
1da177e4 | 2653 | |
d01d4827 | 2654 | /* Display task mems_allowed in /proc/<pid>/status file. */ |
df5f8314 EB |
2655 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
2656 | { | |
df5f8314 | 2657 | seq_printf(m, "Mems_allowed:\t"); |
30e8e136 | 2658 | seq_nodemask(m, &task->mems_allowed); |
df5f8314 | 2659 | seq_printf(m, "\n"); |
39106dcf | 2660 | seq_printf(m, "Mems_allowed_list:\t"); |
30e8e136 | 2661 | seq_nodemask_list(m, &task->mems_allowed); |
39106dcf | 2662 | seq_printf(m, "\n"); |
1da177e4 | 2663 | } |