]>
Commit | Line | Data |
---|---|---|
4126dacb SI |
1 | Ramoops oops/panic logger |
2 | ========================= | |
3 | ||
4 | Sergiu Iordache <[email protected]> | |
5 | ||
9ba80d99 | 6 | Updated: 17 November 2011 |
4126dacb | 7 | |
b2777b65 MCC |
8 | Introduction |
9 | ------------ | |
4126dacb SI |
10 | |
11 | Ramoops is an oops/panic logger that writes its logs to RAM before the system | |
12 | crashes. It works by logging oopses and panics in a circular buffer. Ramoops | |
13 | needs a system with persistent RAM so that the content of that area can | |
14 | survive after a restart. | |
15 | ||
b2777b65 MCC |
16 | Ramoops concepts |
17 | ---------------- | |
4126dacb | 18 | |
027bc8b0 TL |
19 | Ramoops uses a predefined memory area to store the dump. The start and size |
20 | and type of the memory area are set using three variables: | |
b2777b65 MCC |
21 | |
22 | * ``mem_address`` for the start | |
23 | * ``mem_size`` for the size. The memory size will be rounded down to a | |
24 | power of two. | |
25 | * ``mem_type`` to specifiy if the memory type (default is pgprot_writecombine). | |
26 | ||
27 | Typically the default value of ``mem_type=0`` should be used as that sets the pstore | |
28 | mapping to pgprot_writecombine. Setting ``mem_type=1`` attempts to use | |
29 | ``pgprot_noncached``, which only works on some platforms. This is because pstore | |
027bc8b0 TL |
30 | depends on atomic operations. At least on ARM, pgprot_noncached causes the |
31 | memory to be mapped strongly ordered, and atomic operations on strongly ordered | |
32 | memory are implementation defined, and won't work on many ARMs such as omaps. | |
4126dacb | 33 | |
b2777b65 MCC |
34 | The memory area is divided into ``record_size`` chunks (also rounded down to |
35 | power of two) and each oops/panic writes a ``record_size`` chunk of | |
4126dacb SI |
36 | information. |
37 | ||
b2777b65 | 38 | Dumping both oopses and panics can be done by setting 1 in the ``dump_oops`` |
4126dacb SI |
39 | variable while setting 0 in that variable dumps only the panics. |
40 | ||
41 | The module uses a counter to record multiple dumps but the counter gets reset | |
42 | on restart (i.e. new dumps after the restart will overwrite old ones). | |
43 | ||
39eb7e97 AV |
44 | Ramoops also supports software ECC protection of persistent memory regions. |
45 | This might be useful when a hardware reset was used to bring the machine back | |
46 | to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat | |
47 | corrupt, but usually it is restorable. | |
48 | ||
b2777b65 MCC |
49 | Setting the parameters |
50 | ---------------------- | |
4126dacb | 51 | |
529182e2 KC |
52 | Setting the ramoops parameters can be done in several different manners: |
53 | ||
54 | A. Use the module parameters (which have the names of the variables described | |
55 | as before). For quick debugging, you can also reserve parts of memory during | |
56 | boot and then use the reserved memory for ramoops. For example, assuming a | |
57 | machine with > 128 MB of memory, the following kernel command line will tell | |
58 | the kernel to use only the first 128 MB of memory, and place ECC-protected | |
b2777b65 MCC |
59 | ramoops region at 128 MB boundary:: |
60 | ||
61 | mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1 | |
529182e2 KC |
62 | |
63 | B. Use Device Tree bindings, as described in | |
8c27ceff | 64 | ``Documentation/device-tree/bindings/reserved-memory/admin-guide/ramoops.rst``. |
b2777b65 | 65 | For example:: |
529182e2 KC |
66 | |
67 | reserved-memory { | |
68 | #address-cells = <2>; | |
69 | #size-cells = <2>; | |
70 | ranges; | |
71 | ||
72 | ramoops@8f000000 { | |
73 | compatible = "ramoops"; | |
74 | reg = <0 0x8f000000 0 0x100000>; | |
75 | record-size = <0x4000>; | |
76 | console-size = <0x4000>; | |
77 | }; | |
78 | }; | |
79 | ||
80 | C. Use a platform device and set the platform data. The parameters can then | |
07a37ba5 JN |
81 | be set through that platform data. An example of doing that is: |
82 | ||
83 | .. code-block:: c | |
4126dacb | 84 | |
b2777b65 MCC |
85 | #include <linux/pstore_ram.h> |
86 | [...] | |
4126dacb | 87 | |
b2777b65 | 88 | static struct ramoops_platform_data ramoops_data = { |
4126dacb SI |
89 | .mem_size = <...>, |
90 | .mem_address = <...>, | |
027bc8b0 | 91 | .mem_type = <...>, |
4126dacb SI |
92 | .record_size = <...>, |
93 | .dump_oops = <...>, | |
39eb7e97 | 94 | .ecc = <...>, |
b2777b65 | 95 | }; |
4126dacb | 96 | |
b2777b65 | 97 | static struct platform_device ramoops_dev = { |
4126dacb SI |
98 | .name = "ramoops", |
99 | .dev = { | |
100 | .platform_data = &ramoops_data, | |
101 | }, | |
b2777b65 | 102 | }; |
4126dacb | 103 | |
b2777b65 MCC |
104 | [... inside a function ...] |
105 | int ret; | |
4126dacb | 106 | |
b2777b65 MCC |
107 | ret = platform_device_register(&ramoops_dev); |
108 | if (ret) { | |
4126dacb SI |
109 | printk(KERN_ERR "unable to register platform device\n"); |
110 | return ret; | |
b2777b65 | 111 | } |
4126dacb | 112 | |
958502d8 AV |
113 | You can specify either RAM memory or peripheral devices' memory. However, when |
114 | specifying RAM, be sure to reserve the memory by issuing memblock_reserve() | |
b2777b65 | 115 | very early in the architecture code, e.g.:: |
958502d8 | 116 | |
b2777b65 | 117 | #include <linux/memblock.h> |
958502d8 | 118 | |
b2777b65 | 119 | memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size); |
958502d8 | 120 | |
b2777b65 MCC |
121 | Dump format |
122 | ----------- | |
4126dacb | 123 | |
b2777b65 | 124 | The data dump begins with a header, currently defined as ``====`` followed by a |
4126dacb SI |
125 | timestamp and a new line. The dump then continues with the actual data. |
126 | ||
b2777b65 MCC |
127 | Reading the data |
128 | ---------------- | |
4126dacb | 129 | |
9ba80d99 | 130 | The dump data can be read from the pstore filesystem. The format for these |
b2777b65 | 131 | files is ``dmesg-ramoops-N``, where N is the record number in memory. To delete |
9ba80d99 | 132 | a stored record from RAM, simply unlink the respective pstore file. |
a694d1b5 | 133 | |
b2777b65 MCC |
134 | Persistent function tracing |
135 | --------------------------- | |
a694d1b5 AV |
136 | |
137 | Persistent function tracing might be useful for debugging software or hardware | |
b2777b65 MCC |
138 | related hangs. The functions call chain log is stored in a ``ftrace-ramoops`` |
139 | file. Here is an example of usage:: | |
a694d1b5 AV |
140 | |
141 | # mount -t debugfs debugfs /sys/kernel/debug/ | |
65f8c95e | 142 | # echo 1 > /sys/kernel/debug/pstore/record_ftrace |
a694d1b5 AV |
143 | # reboot -f |
144 | [...] | |
145 | # mount -t pstore pstore /mnt/ | |
146 | # tail /mnt/ftrace-ramoops | |
147 | 0 ffffffff8101ea64 ffffffff8101bcda native_apic_mem_read <- disconnect_bsp_APIC+0x6a/0xc0 | |
148 | 0 ffffffff8101ea44 ffffffff8101bcf6 native_apic_mem_write <- disconnect_bsp_APIC+0x86/0xc0 | |
149 | 0 ffffffff81020084 ffffffff8101a4b5 hpet_disable <- native_machine_shutdown+0x75/0x90 | |
150 | 0 ffffffff81005f94 ffffffff8101a4bb iommu_shutdown_noop <- native_machine_shutdown+0x7b/0x90 | |
151 | 0 ffffffff8101a6a1 ffffffff8101a437 native_machine_emergency_restart <- native_machine_restart+0x37/0x40 | |
152 | 0 ffffffff811f9876 ffffffff8101a73a acpi_reboot <- native_machine_emergency_restart+0xaa/0x1e0 | |
153 | 0 ffffffff8101a514 ffffffff8101a772 mach_reboot_fixups <- native_machine_emergency_restart+0xe2/0x1e0 | |
154 | 0 ffffffff811d9c54 ffffffff8101a7a0 __const_udelay <- native_machine_emergency_restart+0x110/0x1e0 | |
155 | 0 ffffffff811d9c34 ffffffff811d9c80 __delay <- __const_udelay+0x30/0x40 | |
156 | 0 ffffffff811d9d14 ffffffff811d9c3f delay_tsc <- __delay+0xf/0x20 |