]> Git Repo - linux.git/blame - fs/btrfs/file.c
Merge tag 'audit-pr-20190305' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
39279cc3 29
9247f317 30static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
31/*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54};
55
762f2263
MX
56static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58{
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69}
70
4cb5300b
CM
71/* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
6158e1ce 80static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
81 struct inode_defrag *defrag)
82{
3ffbd68c 83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
762f2263 87 int ret;
4cb5300b 88
0b246afa 89 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
762f2263
MX
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
4cb5300b 96 p = &parent->rb_left;
762f2263 97 else if (ret > 0)
4cb5300b
CM
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
8ddc4734 108 return -EEXIST;
4cb5300b
CM
109 }
110 }
6158e1ce 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 112 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
114 return 0;
115}
4cb5300b 116
2ff7e61e 117static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 118{
0b246afa 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
120 return 0;
121
0b246afa 122 if (btrfs_fs_closing(fs_info))
8ddc4734 123 return 0;
4cb5300b 124
8ddc4734 125 return 1;
4cb5300b
CM
126}
127
128/*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 133 struct btrfs_inode *inode)
4cb5300b 134{
6158e1ce 135 struct btrfs_root *root = inode->root;
3ffbd68c 136 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 137 struct inode_defrag *defrag;
4cb5300b 138 u64 transid;
8ddc4734 139 int ret;
4cb5300b 140
2ff7e61e 141 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
142 return 0;
143
6158e1ce 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
6158e1ce 150 transid = inode->root->last_trans;
4cb5300b 151
9247f317 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
153 if (!defrag)
154 return -ENOMEM;
155
6158e1ce 156 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
0b246afa 160 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
9247f317 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 172 }
0b246afa 173 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 174 return 0;
4cb5300b
CM
175}
176
177/*
8ddc4734
MX
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 181 */
46e59791 182static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 183 struct inode_defrag *defrag)
8ddc4734 184{
3ffbd68c 185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
186 int ret;
187
2ff7e61e 188 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
0b246afa 195 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 196 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 197 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
198 if (ret)
199 goto out;
200 return;
201out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203}
204
4cb5300b 205/*
26176e7c
MX
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
4cb5300b 208 */
26176e7c
MX
209static struct inode_defrag *
210btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
211{
212 struct inode_defrag *entry = NULL;
762f2263 213 struct inode_defrag tmp;
4cb5300b
CM
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
762f2263
MX
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
4cb5300b 220
26176e7c
MX
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
762f2263
MX
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
4cb5300b 229 p = parent->rb_left;
762f2263 230 else if (ret > 0)
4cb5300b
CM
231 p = parent->rb_right;
232 else
26176e7c 233 goto out;
4cb5300b
CM
234 }
235
26176e7c
MX
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
4cb5300b 239 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
240 else
241 entry = NULL;
4cb5300b 242 }
26176e7c
MX
243out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
4cb5300b
CM
248}
249
26176e7c 250void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
251{
252 struct inode_defrag *defrag;
26176e7c
MX
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
351810c1 262 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267}
268
269#define BTRFS_DEFRAG_BATCH 1024
270
271static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273{
4cb5300b
CM
274 struct btrfs_root *inode_root;
275 struct inode *inode;
4cb5300b
CM
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 278 int num_defrag;
6f1c3605
LB
279 int index;
280 int ret;
4cb5300b 281
26176e7c
MX
282 /* get the inode */
283 key.objectid = defrag->root;
962a298f 284 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 285 key.offset = (u64)-1;
6f1c3605
LB
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
26176e7c
MX
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
6f1c3605
LB
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
26176e7c
MX
294
295 key.objectid = defrag->ino;
962a298f 296 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
6f1c3605
LB
300 ret = PTR_ERR(inode);
301 goto cleanup;
26176e7c 302 }
6f1c3605 303 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
26176e7c 309 range.start = defrag->last_offset;
b66f00da
MX
310
311 sb_start_write(fs_info->sb);
26176e7c
MX
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
b66f00da 314 sb_end_write(fs_info->sb);
26176e7c
MX
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
46e59791 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
46e59791 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
6f1c3605
LB
338cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
26176e7c
MX
342}
343
344/*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349{
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
4cb5300b
CM
353
354 atomic_inc(&fs_info->defrag_running);
67871254 355 while (1) {
dc81cdc5
MX
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
2ff7e61e 361 if (!__need_auto_defrag(fs_info))
26176e7c 362 break;
4cb5300b
CM
363
364 /* find an inode to defrag */
26176e7c
MX
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
4cb5300b 367 if (!defrag) {
26176e7c 368 if (root_objectid || first_ino) {
762f2263 369 root_objectid = 0;
4cb5300b
CM
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
4cb5300b 377 first_ino = defrag->ino + 1;
762f2263 378 root_objectid = defrag->root;
4cb5300b 379
26176e7c 380 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 381 }
4cb5300b
CM
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390}
39279cc3 391
d352ac68
CM
392/* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
ee22f0c4 395static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 396 struct page **prepared_pages,
11c65dcc 397 struct iov_iter *i)
39279cc3 398{
914ee295 399 size_t copied = 0;
d0215f3e 400 size_t total_copied = 0;
11c65dcc 401 int pg = 0;
7073017a 402 int offset = offset_in_page(pos);
39279cc3 403
11c65dcc 404 while (write_bytes > 0) {
39279cc3 405 size_t count = min_t(size_t,
09cbfeaf 406 PAGE_SIZE - offset, write_bytes);
11c65dcc 407 struct page *page = prepared_pages[pg];
914ee295
XZ
408 /*
409 * Copy data from userspace to the current page
914ee295 410 */
914ee295 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 412
39279cc3
CM
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
31339acd
CM
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
11c65dcc
JB
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
914ee295 430 total_copied += copied;
39279cc3 431
b30ac0fc 432 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 433 if (unlikely(copied == 0))
914ee295 434 break;
11c65dcc 435
09cbfeaf 436 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
39279cc3 442 }
914ee295 443 return total_copied;
39279cc3
CM
444}
445
d352ac68
CM
446/*
447 * unlocks pages after btrfs_file_write is done with them
448 */
48a3b636 449static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
450{
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
d352ac68
CM
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
d352ac68 458 */
4a096752 459 ClearPageChecked(pages[i]);
39279cc3 460 unlock_page(pages[i]);
09cbfeaf 461 put_page(pages[i]);
39279cc3
CM
462 }
463}
464
f48bf66b
FM
465static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469{
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504}
505
d352ac68
CM
506/*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
2ff7e61e
JM
514int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
39279cc3 517{
0b246afa 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 519 int err = 0;
a52d9a80 520 int i;
db94535d 521 u64 num_bytes;
a52d9a80
CM
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
e3b8a485 526 unsigned int extra_bits = 0;
39279cc3 527
0b246afa 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 529 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 530 fs_info->sectorsize);
39279cc3 531
db94535d 532 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 533
7703bdd8
CM
534 /*
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
537 */
538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 EXTENT_DIRTY | EXTENT_DELALLOC |
540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541
e3b8a485
FM
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 if (start_pos >= isize &&
544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 /*
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
548 * directly.
549 */
550 extra_bits |= EXTENT_DELALLOC_NEW;
551 } else {
552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 start_pos,
554 num_bytes, cached);
555 if (err)
556 return err;
557 }
558 }
559
2ac55d41 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
e3b8a485 561 extra_bits, cached, 0);
d0215f3e
JB
562 if (err)
563 return err;
9ed74f2d 564
c8b97818
CM
565 for (i = 0; i < num_pages; i++) {
566 struct page *p = pages[i];
567 SetPageUptodate(p);
568 ClearPageChecked(p);
569 set_page_dirty(p);
a52d9a80 570 }
9f570b8d
JB
571
572 /*
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
575 * at this time.
576 */
577 if (end_pos > isize)
a52d9a80 578 i_size_write(inode, end_pos);
a22285a6 579 return 0;
39279cc3
CM
580}
581
d352ac68
CM
582/*
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
585 */
dcdbc059 586void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 587 int skip_pinned)
a52d9a80
CM
588{
589 struct extent_map *em;
3b951516
CM
590 struct extent_map *split = NULL;
591 struct extent_map *split2 = NULL;
dcdbc059 592 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 593 u64 len = end - start + 1;
5dc562c5 594 u64 gen;
3b951516
CM
595 int ret;
596 int testend = 1;
5b21f2ed 597 unsigned long flags;
c8b97818 598 int compressed = 0;
09a2a8f9 599 bool modified;
a52d9a80 600
e6dcd2dc 601 WARN_ON(end < start);
3b951516 602 if (end == (u64)-1) {
39b5637f 603 len = (u64)-1;
3b951516
CM
604 testend = 0;
605 }
d397712b 606 while (1) {
7014cdb4
JB
607 int no_splits = 0;
608
09a2a8f9 609 modified = false;
3b951516 610 if (!split)
172ddd60 611 split = alloc_extent_map();
3b951516 612 if (!split2)
172ddd60 613 split2 = alloc_extent_map();
7014cdb4
JB
614 if (!split || !split2)
615 no_splits = 1;
3b951516 616
890871be 617 write_lock(&em_tree->lock);
39b5637f 618 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 619 if (!em) {
890871be 620 write_unlock(&em_tree->lock);
a52d9a80 621 break;
d1310b2e 622 }
5b21f2ed 623 flags = em->flags;
5dc562c5 624 gen = em->generation;
5b21f2ed 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 626 if (testend && em->start + em->len >= start + len) {
5b21f2ed 627 free_extent_map(em);
a1ed835e 628 write_unlock(&em_tree->lock);
5b21f2ed
ZY
629 break;
630 }
55ef6899
YZ
631 start = em->start + em->len;
632 if (testend)
5b21f2ed 633 len = start + len - (em->start + em->len);
5b21f2ed 634 free_extent_map(em);
a1ed835e 635 write_unlock(&em_tree->lock);
5b21f2ed
ZY
636 continue;
637 }
c8b97818 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 640 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 641 modified = !list_empty(&em->list);
7014cdb4
JB
642 if (no_splits)
643 goto next;
3b951516 644
ee20a983 645 if (em->start < start) {
3b951516
CM
646 split->start = em->start;
647 split->len = start - em->start;
ee20a983
JB
648
649 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 split->orig_start = em->orig_start;
651 split->block_start = em->block_start;
652
653 if (compressed)
654 split->block_len = em->block_len;
655 else
656 split->block_len = split->len;
657 split->orig_block_len = max(split->block_len,
658 em->orig_block_len);
659 split->ram_bytes = em->ram_bytes;
660 } else {
661 split->orig_start = split->start;
662 split->block_len = 0;
663 split->block_start = em->block_start;
664 split->orig_block_len = 0;
665 split->ram_bytes = split->len;
666 }
667
5dc562c5 668 split->generation = gen;
3b951516 669 split->bdev = em->bdev;
5b21f2ed 670 split->flags = flags;
261507a0 671 split->compress_type = em->compress_type;
176840b3 672 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
673 free_extent_map(split);
674 split = split2;
675 split2 = NULL;
676 }
ee20a983 677 if (testend && em->start + em->len > start + len) {
3b951516
CM
678 u64 diff = start + len - em->start;
679
680 split->start = start + len;
681 split->len = em->start + em->len - (start + len);
682 split->bdev = em->bdev;
5b21f2ed 683 split->flags = flags;
261507a0 684 split->compress_type = em->compress_type;
5dc562c5 685 split->generation = gen;
ee20a983
JB
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
b4939680 689 em->orig_block_len);
3b951516 690
ee20a983
JB
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
c8b97818 702 } else {
ee20a983
JB
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
c8b97818 708 }
3b951516 709
176840b3
FM
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
3b951516
CM
718 free_extent_map(split);
719 split = NULL;
720 }
7014cdb4 721next:
176840b3
FM
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
890871be 724 write_unlock(&em_tree->lock);
d1310b2e 725
a52d9a80
CM
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
3b951516
CM
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
a52d9a80
CM
735}
736
39279cc3
CM
737/*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
5dc562c5
JB
746int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
39279cc3 753{
0b246afa 754 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 755 struct extent_buffer *leaf;
920bbbfb 756 struct btrfs_file_extent_item *fi;
00f5c795 757 struct btrfs_key key;
920bbbfb 758 struct btrfs_key new_key;
4a0cc7ca 759 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
760 u64 search_start = start;
761 u64 disk_bytenr = 0;
762 u64 num_bytes = 0;
763 u64 extent_offset = 0;
764 u64 extent_end = 0;
62fe51c1 765 u64 last_end = start;
920bbbfb
YZ
766 int del_nr = 0;
767 int del_slot = 0;
768 int extent_type;
ccd467d6 769 int recow;
00f5c795 770 int ret;
dc7fdde3 771 int modify_tree = -1;
27cdeb70 772 int update_refs;
c3308f84 773 int found = 0;
1acae57b 774 int leafs_visited = 0;
39279cc3 775
a1ed835e 776 if (drop_cache)
dcdbc059 777 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 778
d5f37527 779 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
780 modify_tree = 0;
781
27cdeb70 782 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 783 root == fs_info->tree_root);
d397712b 784 while (1) {
ccd467d6 785 recow = 0;
33345d01 786 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 787 search_start, modify_tree);
39279cc3 788 if (ret < 0)
920bbbfb
YZ
789 break;
790 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
791 leaf = path->nodes[0];
792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 793 if (key.objectid == ino &&
920bbbfb
YZ
794 key.type == BTRFS_EXTENT_DATA_KEY)
795 path->slots[0]--;
39279cc3 796 }
920bbbfb 797 ret = 0;
1acae57b 798 leafs_visited++;
8c2383c3 799next_slot:
5f39d397 800 leaf = path->nodes[0];
920bbbfb
YZ
801 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
802 BUG_ON(del_nr > 0);
803 ret = btrfs_next_leaf(root, path);
804 if (ret < 0)
805 break;
806 if (ret > 0) {
807 ret = 0;
808 break;
8c2383c3 809 }
1acae57b 810 leafs_visited++;
920bbbfb
YZ
811 leaf = path->nodes[0];
812 recow = 1;
813 }
814
815 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
816
817 if (key.objectid > ino)
818 break;
819 if (WARN_ON_ONCE(key.objectid < ino) ||
820 key.type < BTRFS_EXTENT_DATA_KEY) {
821 ASSERT(del_nr == 0);
822 path->slots[0]++;
823 goto next_slot;
824 }
825 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
826 break;
827
828 fi = btrfs_item_ptr(leaf, path->slots[0],
829 struct btrfs_file_extent_item);
830 extent_type = btrfs_file_extent_type(leaf, fi);
831
832 if (extent_type == BTRFS_FILE_EXTENT_REG ||
833 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
834 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
835 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
836 extent_offset = btrfs_file_extent_offset(leaf, fi);
837 extent_end = key.offset +
838 btrfs_file_extent_num_bytes(leaf, fi);
839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
840 extent_end = key.offset +
e41ca589 841 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 842 } else {
aeafbf84
FM
843 /* can't happen */
844 BUG();
39279cc3
CM
845 }
846
fc19c5e7
FM
847 /*
848 * Don't skip extent items representing 0 byte lengths. They
849 * used to be created (bug) if while punching holes we hit
850 * -ENOSPC condition. So if we find one here, just ensure we
851 * delete it, otherwise we would insert a new file extent item
852 * with the same key (offset) as that 0 bytes length file
853 * extent item in the call to setup_items_for_insert() later
854 * in this function.
855 */
62fe51c1
JB
856 if (extent_end == key.offset && extent_end >= search_start) {
857 last_end = extent_end;
fc19c5e7 858 goto delete_extent_item;
62fe51c1 859 }
fc19c5e7 860
920bbbfb
YZ
861 if (extent_end <= search_start) {
862 path->slots[0]++;
8c2383c3 863 goto next_slot;
39279cc3
CM
864 }
865
c3308f84 866 found = 1;
920bbbfb 867 search_start = max(key.offset, start);
dc7fdde3
CM
868 if (recow || !modify_tree) {
869 modify_tree = -1;
b3b4aa74 870 btrfs_release_path(path);
920bbbfb 871 continue;
39279cc3 872 }
6643558d 873
920bbbfb
YZ
874 /*
875 * | - range to drop - |
876 * | -------- extent -------- |
877 */
878 if (start > key.offset && end < extent_end) {
879 BUG_ON(del_nr > 0);
00fdf13a 880 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 881 ret = -EOPNOTSUPP;
00fdf13a
LB
882 break;
883 }
920bbbfb
YZ
884
885 memcpy(&new_key, &key, sizeof(new_key));
886 new_key.offset = start;
887 ret = btrfs_duplicate_item(trans, root, path,
888 &new_key);
889 if (ret == -EAGAIN) {
b3b4aa74 890 btrfs_release_path(path);
920bbbfb 891 continue;
6643558d 892 }
920bbbfb
YZ
893 if (ret < 0)
894 break;
895
896 leaf = path->nodes[0];
897 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
898 struct btrfs_file_extent_item);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901
902 fi = btrfs_item_ptr(leaf, path->slots[0],
903 struct btrfs_file_extent_item);
904
905 extent_offset += start - key.offset;
906 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 extent_end - start);
909 btrfs_mark_buffer_dirty(leaf);
910
5dc562c5 911 if (update_refs && disk_bytenr > 0) {
84f7d8e6 912 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
913 disk_bytenr, num_bytes, 0,
914 root->root_key.objectid,
915 new_key.objectid,
b06c4bf5 916 start - extent_offset);
79787eaa 917 BUG_ON(ret); /* -ENOMEM */
771ed689 918 }
920bbbfb 919 key.offset = start;
6643558d 920 }
62fe51c1
JB
921 /*
922 * From here on out we will have actually dropped something, so
923 * last_end can be updated.
924 */
925 last_end = extent_end;
926
920bbbfb
YZ
927 /*
928 * | ---- range to drop ----- |
929 * | -------- extent -------- |
930 */
931 if (start <= key.offset && end < extent_end) {
00fdf13a 932 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 933 ret = -EOPNOTSUPP;
00fdf13a
LB
934 break;
935 }
6643558d 936
920bbbfb
YZ
937 memcpy(&new_key, &key, sizeof(new_key));
938 new_key.offset = end;
0b246afa 939 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 940
920bbbfb
YZ
941 extent_offset += end - key.offset;
942 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
943 btrfs_set_file_extent_num_bytes(leaf, fi,
944 extent_end - end);
945 btrfs_mark_buffer_dirty(leaf);
2671485d 946 if (update_refs && disk_bytenr > 0)
920bbbfb 947 inode_sub_bytes(inode, end - key.offset);
920bbbfb 948 break;
39279cc3 949 }
771ed689 950
920bbbfb
YZ
951 search_start = extent_end;
952 /*
953 * | ---- range to drop ----- |
954 * | -------- extent -------- |
955 */
956 if (start > key.offset && end >= extent_end) {
957 BUG_ON(del_nr > 0);
00fdf13a 958 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 959 ret = -EOPNOTSUPP;
00fdf13a
LB
960 break;
961 }
8c2383c3 962
920bbbfb
YZ
963 btrfs_set_file_extent_num_bytes(leaf, fi,
964 start - key.offset);
965 btrfs_mark_buffer_dirty(leaf);
2671485d 966 if (update_refs && disk_bytenr > 0)
920bbbfb 967 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
968 if (end == extent_end)
969 break;
c8b97818 970
920bbbfb
YZ
971 path->slots[0]++;
972 goto next_slot;
31840ae1
ZY
973 }
974
920bbbfb
YZ
975 /*
976 * | ---- range to drop ----- |
977 * | ------ extent ------ |
978 */
979 if (start <= key.offset && end >= extent_end) {
fc19c5e7 980delete_extent_item:
920bbbfb
YZ
981 if (del_nr == 0) {
982 del_slot = path->slots[0];
983 del_nr = 1;
984 } else {
985 BUG_ON(del_slot + del_nr != path->slots[0]);
986 del_nr++;
987 }
31840ae1 988
5dc562c5
JB
989 if (update_refs &&
990 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 991 inode_sub_bytes(inode,
920bbbfb
YZ
992 extent_end - key.offset);
993 extent_end = ALIGN(extent_end,
0b246afa 994 fs_info->sectorsize);
5dc562c5 995 } else if (update_refs && disk_bytenr > 0) {
84f7d8e6 996 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
997 disk_bytenr, num_bytes, 0,
998 root->root_key.objectid,
5d4f98a2 999 key.objectid, key.offset -
b06c4bf5 1000 extent_offset);
79787eaa 1001 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1002 inode_sub_bytes(inode,
1003 extent_end - key.offset);
31840ae1 1004 }
31840ae1 1005
920bbbfb
YZ
1006 if (end == extent_end)
1007 break;
1008
1009 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1010 path->slots[0]++;
1011 goto next_slot;
1012 }
1013
1014 ret = btrfs_del_items(trans, root, path, del_slot,
1015 del_nr);
79787eaa 1016 if (ret) {
66642832 1017 btrfs_abort_transaction(trans, ret);
5dc562c5 1018 break;
79787eaa 1019 }
920bbbfb
YZ
1020
1021 del_nr = 0;
1022 del_slot = 0;
1023
b3b4aa74 1024 btrfs_release_path(path);
920bbbfb 1025 continue;
39279cc3 1026 }
920bbbfb
YZ
1027
1028 BUG_ON(1);
39279cc3 1029 }
920bbbfb 1030
79787eaa 1031 if (!ret && del_nr > 0) {
1acae57b
FDBM
1032 /*
1033 * Set path->slots[0] to first slot, so that after the delete
1034 * if items are move off from our leaf to its immediate left or
1035 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1036 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1037 */
1038 path->slots[0] = del_slot;
920bbbfb 1039 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1040 if (ret)
66642832 1041 btrfs_abort_transaction(trans, ret);
d5f37527 1042 }
1acae57b 1043
d5f37527
FDBM
1044 leaf = path->nodes[0];
1045 /*
1046 * If btrfs_del_items() was called, it might have deleted a leaf, in
1047 * which case it unlocked our path, so check path->locks[0] matches a
1048 * write lock.
1049 */
1050 if (!ret && replace_extent && leafs_visited == 1 &&
1051 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1052 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1053 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1054 sizeof(struct btrfs_item) + extent_item_size) {
1055
1056 key.objectid = ino;
1057 key.type = BTRFS_EXTENT_DATA_KEY;
1058 key.offset = start;
1059 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1060 struct btrfs_key slot_key;
1061
1062 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1063 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1064 path->slots[0]++;
1acae57b 1065 }
d5f37527
FDBM
1066 setup_items_for_insert(root, path, &key,
1067 &extent_item_size,
1068 extent_item_size,
1069 sizeof(struct btrfs_item) +
1070 extent_item_size, 1);
1071 *key_inserted = 1;
6643558d 1072 }
920bbbfb 1073
1acae57b
FDBM
1074 if (!replace_extent || !(*key_inserted))
1075 btrfs_release_path(path);
2aaa6655 1076 if (drop_end)
62fe51c1 1077 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1078 return ret;
1079}
1080
1081int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1083 u64 end, int drop_cache)
5dc562c5
JB
1084{
1085 struct btrfs_path *path;
1086 int ret;
1087
1088 path = btrfs_alloc_path();
1089 if (!path)
1090 return -ENOMEM;
2aaa6655 1091 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1092 drop_cache, 0, 0, NULL);
920bbbfb 1093 btrfs_free_path(path);
39279cc3
CM
1094 return ret;
1095}
1096
d899e052 1097static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1098 u64 objectid, u64 bytenr, u64 orig_offset,
1099 u64 *start, u64 *end)
d899e052
YZ
1100{
1101 struct btrfs_file_extent_item *fi;
1102 struct btrfs_key key;
1103 u64 extent_end;
1104
1105 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1106 return 0;
1107
1108 btrfs_item_key_to_cpu(leaf, &key, slot);
1109 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1110 return 0;
1111
1112 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1113 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1114 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1115 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1116 btrfs_file_extent_compression(leaf, fi) ||
1117 btrfs_file_extent_encryption(leaf, fi) ||
1118 btrfs_file_extent_other_encoding(leaf, fi))
1119 return 0;
1120
1121 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1122 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1123 return 0;
1124
1125 *start = key.offset;
1126 *end = extent_end;
1127 return 1;
1128}
1129
1130/*
1131 * Mark extent in the range start - end as written.
1132 *
1133 * This changes extent type from 'pre-allocated' to 'regular'. If only
1134 * part of extent is marked as written, the extent will be split into
1135 * two or three.
1136 */
1137int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1138 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1139{
3ffbd68c 1140 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1141 struct btrfs_root *root = inode->root;
d899e052
YZ
1142 struct extent_buffer *leaf;
1143 struct btrfs_path *path;
1144 struct btrfs_file_extent_item *fi;
1145 struct btrfs_key key;
920bbbfb 1146 struct btrfs_key new_key;
d899e052
YZ
1147 u64 bytenr;
1148 u64 num_bytes;
1149 u64 extent_end;
5d4f98a2 1150 u64 orig_offset;
d899e052
YZ
1151 u64 other_start;
1152 u64 other_end;
920bbbfb
YZ
1153 u64 split;
1154 int del_nr = 0;
1155 int del_slot = 0;
6c7d54ac 1156 int recow;
d899e052 1157 int ret;
7a6d7067 1158 u64 ino = btrfs_ino(inode);
d899e052 1159
d899e052 1160 path = btrfs_alloc_path();
d8926bb3
MF
1161 if (!path)
1162 return -ENOMEM;
d899e052 1163again:
6c7d54ac 1164 recow = 0;
920bbbfb 1165 split = start;
33345d01 1166 key.objectid = ino;
d899e052 1167 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1168 key.offset = split;
d899e052
YZ
1169
1170 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1171 if (ret < 0)
1172 goto out;
d899e052
YZ
1173 if (ret > 0 && path->slots[0] > 0)
1174 path->slots[0]--;
1175
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1178 if (key.objectid != ino ||
1179 key.type != BTRFS_EXTENT_DATA_KEY) {
1180 ret = -EINVAL;
1181 btrfs_abort_transaction(trans, ret);
1182 goto out;
1183 }
d899e052
YZ
1184 fi = btrfs_item_ptr(leaf, path->slots[0],
1185 struct btrfs_file_extent_item);
9c8e63db
JB
1186 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1187 ret = -EINVAL;
1188 btrfs_abort_transaction(trans, ret);
1189 goto out;
1190 }
d899e052 1191 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1192 if (key.offset > start || extent_end < end) {
1193 ret = -EINVAL;
1194 btrfs_abort_transaction(trans, ret);
1195 goto out;
1196 }
d899e052
YZ
1197
1198 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1199 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1200 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1201 memcpy(&new_key, &key, sizeof(new_key));
1202
1203 if (start == key.offset && end < extent_end) {
1204 other_start = 0;
1205 other_end = start;
1206 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1207 ino, bytenr, orig_offset,
6c7d54ac
YZ
1208 &other_start, &other_end)) {
1209 new_key.offset = end;
0b246afa 1210 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1211 fi = btrfs_item_ptr(leaf, path->slots[0],
1212 struct btrfs_file_extent_item);
224ecce5
JB
1213 btrfs_set_file_extent_generation(leaf, fi,
1214 trans->transid);
6c7d54ac
YZ
1215 btrfs_set_file_extent_num_bytes(leaf, fi,
1216 extent_end - end);
1217 btrfs_set_file_extent_offset(leaf, fi,
1218 end - orig_offset);
1219 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1220 struct btrfs_file_extent_item);
224ecce5
JB
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
6c7d54ac
YZ
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 end - other_start);
1225 btrfs_mark_buffer_dirty(leaf);
1226 goto out;
1227 }
1228 }
1229
1230 if (start > key.offset && end == extent_end) {
1231 other_start = end;
1232 other_end = 0;
1233 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1234 ino, bytenr, orig_offset,
6c7d54ac
YZ
1235 &other_start, &other_end)) {
1236 fi = btrfs_item_ptr(leaf, path->slots[0],
1237 struct btrfs_file_extent_item);
1238 btrfs_set_file_extent_num_bytes(leaf, fi,
1239 start - key.offset);
224ecce5
JB
1240 btrfs_set_file_extent_generation(leaf, fi,
1241 trans->transid);
6c7d54ac
YZ
1242 path->slots[0]++;
1243 new_key.offset = start;
0b246afa 1244 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1245
1246 fi = btrfs_item_ptr(leaf, path->slots[0],
1247 struct btrfs_file_extent_item);
224ecce5
JB
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
6c7d54ac
YZ
1250 btrfs_set_file_extent_num_bytes(leaf, fi,
1251 other_end - start);
1252 btrfs_set_file_extent_offset(leaf, fi,
1253 start - orig_offset);
1254 btrfs_mark_buffer_dirty(leaf);
1255 goto out;
1256 }
1257 }
d899e052 1258
920bbbfb
YZ
1259 while (start > key.offset || end < extent_end) {
1260 if (key.offset == start)
1261 split = end;
1262
920bbbfb
YZ
1263 new_key.offset = split;
1264 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1265 if (ret == -EAGAIN) {
b3b4aa74 1266 btrfs_release_path(path);
920bbbfb 1267 goto again;
d899e052 1268 }
79787eaa 1269 if (ret < 0) {
66642832 1270 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1271 goto out;
1272 }
d899e052 1273
920bbbfb
YZ
1274 leaf = path->nodes[0];
1275 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1276 struct btrfs_file_extent_item);
224ecce5 1277 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1278 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1279 split - key.offset);
1280
1281 fi = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_file_extent_item);
1283
224ecce5 1284 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1285 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1286 btrfs_set_file_extent_num_bytes(leaf, fi,
1287 extent_end - split);
d899e052
YZ
1288 btrfs_mark_buffer_dirty(leaf);
1289
84f7d8e6 1290 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
2ff7e61e 1291 0, root->root_key.objectid,
b06c4bf5 1292 ino, orig_offset);
9c8e63db
JB
1293 if (ret) {
1294 btrfs_abort_transaction(trans, ret);
1295 goto out;
1296 }
d899e052 1297
920bbbfb
YZ
1298 if (split == start) {
1299 key.offset = start;
1300 } else {
9c8e63db
JB
1301 if (start != key.offset) {
1302 ret = -EINVAL;
1303 btrfs_abort_transaction(trans, ret);
1304 goto out;
1305 }
d899e052 1306 path->slots[0]--;
920bbbfb 1307 extent_end = end;
d899e052 1308 }
6c7d54ac 1309 recow = 1;
d899e052
YZ
1310 }
1311
920bbbfb
YZ
1312 other_start = end;
1313 other_end = 0;
6c7d54ac 1314 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1315 ino, bytenr, orig_offset,
6c7d54ac
YZ
1316 &other_start, &other_end)) {
1317 if (recow) {
b3b4aa74 1318 btrfs_release_path(path);
6c7d54ac
YZ
1319 goto again;
1320 }
920bbbfb
YZ
1321 extent_end = other_end;
1322 del_slot = path->slots[0] + 1;
1323 del_nr++;
84f7d8e6 1324 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1325 0, root->root_key.objectid,
b06c4bf5 1326 ino, orig_offset);
9c8e63db
JB
1327 if (ret) {
1328 btrfs_abort_transaction(trans, ret);
1329 goto out;
1330 }
d899e052 1331 }
920bbbfb
YZ
1332 other_start = 0;
1333 other_end = start;
6c7d54ac 1334 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1335 ino, bytenr, orig_offset,
6c7d54ac
YZ
1336 &other_start, &other_end)) {
1337 if (recow) {
b3b4aa74 1338 btrfs_release_path(path);
6c7d54ac
YZ
1339 goto again;
1340 }
920bbbfb
YZ
1341 key.offset = other_start;
1342 del_slot = path->slots[0];
1343 del_nr++;
84f7d8e6 1344 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1345 0, root->root_key.objectid,
b06c4bf5 1346 ino, orig_offset);
9c8e63db
JB
1347 if (ret) {
1348 btrfs_abort_transaction(trans, ret);
1349 goto out;
1350 }
920bbbfb
YZ
1351 }
1352 if (del_nr == 0) {
3f6fae95
SL
1353 fi = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_file_extent_item);
920bbbfb
YZ
1355 btrfs_set_file_extent_type(leaf, fi,
1356 BTRFS_FILE_EXTENT_REG);
224ecce5 1357 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1358 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1359 } else {
3f6fae95
SL
1360 fi = btrfs_item_ptr(leaf, del_slot - 1,
1361 struct btrfs_file_extent_item);
6c7d54ac
YZ
1362 btrfs_set_file_extent_type(leaf, fi,
1363 BTRFS_FILE_EXTENT_REG);
224ecce5 1364 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1365 btrfs_set_file_extent_num_bytes(leaf, fi,
1366 extent_end - key.offset);
1367 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1368
6c7d54ac 1369 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1370 if (ret < 0) {
66642832 1371 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1372 goto out;
1373 }
6c7d54ac 1374 }
920bbbfb 1375out:
d899e052
YZ
1376 btrfs_free_path(path);
1377 return 0;
1378}
1379
b1bf862e
CM
1380/*
1381 * on error we return an unlocked page and the error value
1382 * on success we return a locked page and 0
1383 */
bb1591b4
CM
1384static int prepare_uptodate_page(struct inode *inode,
1385 struct page *page, u64 pos,
b6316429 1386 bool force_uptodate)
b1bf862e
CM
1387{
1388 int ret = 0;
1389
09cbfeaf 1390 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1391 !PageUptodate(page)) {
b1bf862e
CM
1392 ret = btrfs_readpage(NULL, page);
1393 if (ret)
1394 return ret;
1395 lock_page(page);
1396 if (!PageUptodate(page)) {
1397 unlock_page(page);
1398 return -EIO;
1399 }
bb1591b4
CM
1400 if (page->mapping != inode->i_mapping) {
1401 unlock_page(page);
1402 return -EAGAIN;
1403 }
b1bf862e
CM
1404 }
1405 return 0;
1406}
1407
39279cc3 1408/*
376cc685 1409 * this just gets pages into the page cache and locks them down.
39279cc3 1410 */
b37392ea
MX
1411static noinline int prepare_pages(struct inode *inode, struct page **pages,
1412 size_t num_pages, loff_t pos,
1413 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1414{
1415 int i;
09cbfeaf 1416 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1417 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1418 int err = 0;
376cc685 1419 int faili;
8c2383c3 1420
39279cc3 1421 for (i = 0; i < num_pages; i++) {
bb1591b4 1422again:
a94733d0 1423 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1424 mask | __GFP_WRITE);
39279cc3 1425 if (!pages[i]) {
b1bf862e
CM
1426 faili = i - 1;
1427 err = -ENOMEM;
1428 goto fail;
1429 }
1430
1431 if (i == 0)
bb1591b4 1432 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1433 force_uptodate);
bb1591b4
CM
1434 if (!err && i == num_pages - 1)
1435 err = prepare_uptodate_page(inode, pages[i],
b6316429 1436 pos + write_bytes, false);
b1bf862e 1437 if (err) {
09cbfeaf 1438 put_page(pages[i]);
bb1591b4
CM
1439 if (err == -EAGAIN) {
1440 err = 0;
1441 goto again;
1442 }
b1bf862e
CM
1443 faili = i - 1;
1444 goto fail;
39279cc3 1445 }
ccd467d6 1446 wait_on_page_writeback(pages[i]);
39279cc3 1447 }
376cc685
MX
1448
1449 return 0;
1450fail:
1451 while (faili >= 0) {
1452 unlock_page(pages[faili]);
09cbfeaf 1453 put_page(pages[faili]);
376cc685
MX
1454 faili--;
1455 }
1456 return err;
1457
1458}
1459
1460/*
1461 * This function locks the extent and properly waits for data=ordered extents
1462 * to finish before allowing the pages to be modified if need.
1463 *
1464 * The return value:
1465 * 1 - the extent is locked
1466 * 0 - the extent is not locked, and everything is OK
1467 * -EAGAIN - need re-prepare the pages
1468 * the other < 0 number - Something wrong happens
1469 */
1470static noinline int
2cff578c 1471lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1472 size_t num_pages, loff_t pos,
2e78c927 1473 size_t write_bytes,
376cc685
MX
1474 u64 *lockstart, u64 *lockend,
1475 struct extent_state **cached_state)
1476{
3ffbd68c 1477 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1478 u64 start_pos;
1479 u64 last_pos;
1480 int i;
1481 int ret = 0;
1482
0b246afa 1483 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1484 last_pos = start_pos
da17066c 1485 + round_up(pos + write_bytes - start_pos,
0b246afa 1486 fs_info->sectorsize) - 1;
376cc685 1487
e3b8a485 1488 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1489 struct btrfs_ordered_extent *ordered;
a7e3b975 1490
2cff578c
NB
1491 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1492 cached_state);
b88935bf
MX
1493 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1494 last_pos - start_pos + 1);
e6dcd2dc
CM
1495 if (ordered &&
1496 ordered->file_offset + ordered->len > start_pos &&
376cc685 1497 ordered->file_offset <= last_pos) {
2cff578c 1498 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1499 last_pos, cached_state);
e6dcd2dc
CM
1500 for (i = 0; i < num_pages; i++) {
1501 unlock_page(pages[i]);
09cbfeaf 1502 put_page(pages[i]);
e6dcd2dc 1503 }
2cff578c
NB
1504 btrfs_start_ordered_extent(&inode->vfs_inode,
1505 ordered, 1);
b88935bf
MX
1506 btrfs_put_ordered_extent(ordered);
1507 return -EAGAIN;
e6dcd2dc
CM
1508 }
1509 if (ordered)
1510 btrfs_put_ordered_extent(ordered);
7703bdd8 1511
376cc685
MX
1512 *lockstart = start_pos;
1513 *lockend = last_pos;
1514 ret = 1;
0762704b 1515 }
376cc685 1516
7703bdd8
CM
1517 /*
1518 * It's possible the pages are dirty right now, but we don't want
1519 * to clean them yet because copy_from_user may catch a page fault
1520 * and we might have to fall back to one page at a time. If that
1521 * happens, we'll unlock these pages and we'd have a window where
1522 * reclaim could sneak in and drop the once-dirty page on the floor
1523 * without writing it.
1524 *
1525 * We have the pages locked and the extent range locked, so there's
1526 * no way someone can start IO on any dirty pages in this range.
1527 *
1528 * We'll call btrfs_dirty_pages() later on, and that will flip around
1529 * delalloc bits and dirty the pages as required.
1530 */
e6dcd2dc 1531 for (i = 0; i < num_pages; i++) {
e6dcd2dc
CM
1532 set_page_extent_mapped(pages[i]);
1533 WARN_ON(!PageLocked(pages[i]));
1534 }
b1bf862e 1535
376cc685 1536 return ret;
39279cc3
CM
1537}
1538
85b7ab67 1539static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1540 size_t *write_bytes)
1541{
3ffbd68c 1542 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1543 struct btrfs_root *root = inode->root;
7ee9e440
JB
1544 struct btrfs_ordered_extent *ordered;
1545 u64 lockstart, lockend;
1546 u64 num_bytes;
1547 int ret;
1548
ea14b57f 1549 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc
MX
1550 if (!ret)
1551 return -ENOSPC;
1552
0b246afa 1553 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1554 lockend = round_up(pos + *write_bytes,
0b246afa 1555 fs_info->sectorsize) - 1;
7ee9e440
JB
1556
1557 while (1) {
85b7ab67 1558 lock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1559 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 lockend - lockstart + 1);
1561 if (!ordered) {
1562 break;
1563 }
85b7ab67
NB
1564 unlock_extent(&inode->io_tree, lockstart, lockend);
1565 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
7ee9e440
JB
1566 btrfs_put_ordered_extent(ordered);
1567 }
1568
7ee9e440 1569 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
7ee9e440
JB
1572 if (ret <= 0) {
1573 ret = 0;
ea14b57f 1574 btrfs_end_write_no_snapshotting(root);
7ee9e440 1575 } else {
c933956d
MX
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
7ee9e440
JB
1578 }
1579
85b7ab67 1580 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1581
1582 return ret;
1583}
1584
e4af400a
GR
1585static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
4b46fce2 1587{
e4af400a
GR
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
496ad9aa 1590 struct inode *inode = file_inode(file);
0b246afa 1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1592 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1593 struct page **pages = NULL;
376cc685 1594 struct extent_state *cached_state = NULL;
364ecf36 1595 struct extent_changeset *data_reserved = NULL;
7ee9e440 1596 u64 release_bytes = 0;
376cc685
MX
1597 u64 lockstart;
1598 u64 lockend;
d0215f3e
JB
1599 size_t num_written = 0;
1600 int nrptrs;
c9149235 1601 int ret = 0;
7ee9e440 1602 bool only_release_metadata = false;
b6316429 1603 bool force_page_uptodate = false;
4b46fce2 1604
09cbfeaf
KS
1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608 nrptrs = max(nrptrs, 8);
31e818fe 1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1610 if (!pages)
1611 return -ENOMEM;
ab93dbec 1612
d0215f3e 1613 while (iov_iter_count(i) > 0) {
7073017a 1614 size_t offset = offset_in_page(pos);
2e78c927 1615 size_t sector_offset;
d0215f3e 1616 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1617 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1618 offset);
ed6078f7 1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1620 PAGE_SIZE);
7ee9e440 1621 size_t reserve_bytes;
d0215f3e
JB
1622 size_t dirty_pages;
1623 size_t copied;
2e78c927
CR
1624 size_t dirty_sectors;
1625 size_t num_sectors;
79f015f2 1626 int extents_locked;
39279cc3 1627
8c2383c3 1628 WARN_ON(num_pages > nrptrs);
1832a6d5 1629
914ee295
XZ
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
d0215f3e 1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1635 ret = -EFAULT;
d0215f3e 1636 break;
914ee295
XZ
1637 }
1638
da17066c 1639 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1640 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1641 fs_info->sectorsize);
d9d8b2a5 1642
364ecf36
QW
1643 extent_changeset_release(data_reserved);
1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645 write_bytes);
c6887cd1
JB
1646 if (ret < 0) {
1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1649 check_can_nocow(BTRFS_I(inode), pos,
1650 &write_bytes) > 0) {
c6887cd1
JB
1651 /*
1652 * For nodata cow case, no need to reserve
1653 * data space.
1654 */
1655 only_release_metadata = true;
1656 /*
1657 * our prealloc extent may be smaller than
1658 * write_bytes, so scale down.
1659 */
1660 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 PAGE_SIZE);
1662 reserve_bytes = round_up(write_bytes +
1663 sector_offset,
da17066c 1664 fs_info->sectorsize);
c6887cd1
JB
1665 } else {
1666 break;
1667 }
1668 }
1832a6d5 1669
8b62f87b 1670 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672 reserve_bytes);
7ee9e440
JB
1673 if (ret) {
1674 if (!only_release_metadata)
bc42bda2
QW
1675 btrfs_free_reserved_data_space(inode,
1676 data_reserved, pos,
1677 write_bytes);
8257b2dc 1678 else
ea14b57f 1679 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1680 break;
1681 }
1682
1683 release_bytes = reserve_bytes;
376cc685 1684again:
4a64001f
JB
1685 /*
1686 * This is going to setup the pages array with the number of
1687 * pages we want, so we don't really need to worry about the
1688 * contents of pages from loop to loop
1689 */
b37392ea
MX
1690 ret = prepare_pages(inode, pages, num_pages,
1691 pos, write_bytes,
b6316429 1692 force_page_uptodate);
8b62f87b
JB
1693 if (ret) {
1694 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1695 reserve_bytes, true);
d0215f3e 1696 break;
8b62f87b 1697 }
39279cc3 1698
79f015f2
GR
1699 extents_locked = lock_and_cleanup_extent_if_need(
1700 BTRFS_I(inode), pages,
2cff578c
NB
1701 num_pages, pos, write_bytes, &lockstart,
1702 &lockend, &cached_state);
79f015f2
GR
1703 if (extents_locked < 0) {
1704 if (extents_locked == -EAGAIN)
376cc685 1705 goto again;
8b62f87b 1706 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1707 reserve_bytes, true);
79f015f2 1708 ret = extents_locked;
376cc685 1709 break;
376cc685
MX
1710 }
1711
ee22f0c4 1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1713
0b246afa 1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1715 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1716 fs_info->sectorsize);
1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1718
b1bf862e
CM
1719 /*
1720 * if we have trouble faulting in the pages, fall
1721 * back to one page at a time
1722 */
1723 if (copied < write_bytes)
1724 nrptrs = 1;
1725
b6316429
JB
1726 if (copied == 0) {
1727 force_page_uptodate = true;
56244ef1 1728 dirty_sectors = 0;
b1bf862e 1729 dirty_pages = 0;
b6316429
JB
1730 } else {
1731 force_page_uptodate = false;
ed6078f7 1732 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1733 PAGE_SIZE);
b6316429 1734 }
914ee295 1735
2e78c927 1736 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1737 /* release everything except the sectors we dirtied */
1738 release_bytes -= dirty_sectors <<
0b246afa 1739 fs_info->sb->s_blocksize_bits;
485290a7 1740 if (only_release_metadata) {
691fa059 1741 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1742 release_bytes, true);
485290a7
QW
1743 } else {
1744 u64 __pos;
1745
da17066c 1746 __pos = round_down(pos,
0b246afa 1747 fs_info->sectorsize) +
09cbfeaf 1748 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1749 btrfs_delalloc_release_space(inode,
1750 data_reserved, __pos,
43b18595 1751 release_bytes, true);
485290a7 1752 }
914ee295
XZ
1753 }
1754
2e78c927 1755 release_bytes = round_up(copied + sector_offset,
0b246afa 1756 fs_info->sectorsize);
376cc685
MX
1757
1758 if (copied > 0)
2ff7e61e 1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
94f45071 1760 pos, copied, &cached_state);
79f015f2 1761 if (extents_locked)
376cc685 1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1763 lockstart, lockend, &cached_state);
43b18595 1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
336a8bb8 1765 true);
f1de9683
MX
1766 if (ret) {
1767 btrfs_drop_pages(pages, num_pages);
376cc685 1768 break;
f1de9683 1769 }
39279cc3 1770
376cc685 1771 release_bytes = 0;
8257b2dc 1772 if (only_release_metadata)
ea14b57f 1773 btrfs_end_write_no_snapshotting(root);
8257b2dc 1774
7ee9e440 1775 if (only_release_metadata && copied > 0) {
da17066c 1776 lockstart = round_down(pos,
0b246afa 1777 fs_info->sectorsize);
da17066c 1778 lockend = round_up(pos + copied,
0b246afa 1779 fs_info->sectorsize) - 1;
7ee9e440
JB
1780
1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782 lockend, EXTENT_NORESERVE, NULL,
1783 NULL, GFP_NOFS);
1784 only_release_metadata = false;
1785 }
1786
f1de9683
MX
1787 btrfs_drop_pages(pages, num_pages);
1788
d0215f3e
JB
1789 cond_resched();
1790
d0e1d66b 1791 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1793 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1794
914ee295
XZ
1795 pos += copied;
1796 num_written += copied;
d0215f3e 1797 }
39279cc3 1798
d0215f3e
JB
1799 kfree(pages);
1800
7ee9e440 1801 if (release_bytes) {
8257b2dc 1802 if (only_release_metadata) {
ea14b57f 1803 btrfs_end_write_no_snapshotting(root);
691fa059 1804 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1805 release_bytes, true);
8257b2dc 1806 } else {
bc42bda2
QW
1807 btrfs_delalloc_release_space(inode, data_reserved,
1808 round_down(pos, fs_info->sectorsize),
43b18595 1809 release_bytes, true);
8257b2dc 1810 }
7ee9e440
JB
1811 }
1812
364ecf36 1813 extent_changeset_free(data_reserved);
d0215f3e
JB
1814 return num_written ? num_written : ret;
1815}
1816
1af5bb49 1817static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1818{
1819 struct file *file = iocb->ki_filp;
728404da 1820 struct inode *inode = file_inode(file);
e4af400a 1821 loff_t pos;
d0215f3e
JB
1822 ssize_t written;
1823 ssize_t written_buffered;
1824 loff_t endbyte;
1825 int err;
1826
1af5bb49 1827 written = generic_file_direct_write(iocb, from);
d0215f3e 1828
0c949334 1829 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1830 return written;
1831
e4af400a
GR
1832 pos = iocb->ki_pos;
1833 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1834 if (written_buffered < 0) {
1835 err = written_buffered;
1836 goto out;
39279cc3 1837 }
075bdbdb
FM
1838 /*
1839 * Ensure all data is persisted. We want the next direct IO read to be
1840 * able to read what was just written.
1841 */
d0215f3e 1842 endbyte = pos + written_buffered - 1;
728404da 1843 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1844 if (err)
1845 goto out;
728404da 1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1847 if (err)
1848 goto out;
1849 written += written_buffered;
867c4f93 1850 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852 endbyte >> PAGE_SHIFT);
39279cc3 1853out:
d0215f3e
JB
1854 return written ? written : err;
1855}
5b92ee72 1856
6c760c07
JB
1857static void update_time_for_write(struct inode *inode)
1858{
95582b00 1859 struct timespec64 now;
6c760c07
JB
1860
1861 if (IS_NOCMTIME(inode))
1862 return;
1863
c2050a45 1864 now = current_time(inode);
95582b00 1865 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1866 inode->i_mtime = now;
1867
95582b00 1868 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1869 inode->i_ctime = now;
1870
1871 if (IS_I_VERSION(inode))
1872 inode_inc_iversion(inode);
1873}
1874
b30ac0fc
AV
1875static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876 struct iov_iter *from)
d0215f3e
JB
1877{
1878 struct file *file = iocb->ki_filp;
496ad9aa 1879 struct inode *inode = file_inode(file);
0b246afa 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1881 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1882 u64 start_pos;
3ac0d7b9 1883 u64 end_pos;
d0215f3e 1884 ssize_t num_written = 0;
b812ce28 1885 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1886 ssize_t err;
ff0fa732 1887 loff_t pos;
edf064e7 1888 size_t count = iov_iter_count(from);
27772b68
CR
1889 loff_t oldsize;
1890 int clean_page = 0;
d0215f3e 1891
91f9943e
CH
1892 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893 (iocb->ki_flags & IOCB_NOWAIT))
1894 return -EOPNOTSUPP;
1895
ff0fa732
GR
1896 if (!inode_trylock(inode)) {
1897 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1898 return -EAGAIN;
ff0fa732
GR
1899 inode_lock(inode);
1900 }
1901
1902 err = generic_write_checks(iocb, from);
1903 if (err <= 0) {
1904 inode_unlock(inode);
1905 return err;
1906 }
1907
1908 pos = iocb->ki_pos;
1909 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1910 /*
1911 * We will allocate space in case nodatacow is not set,
1912 * so bail
1913 */
1914 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1915 BTRFS_INODE_PREALLOC)) ||
1916 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1917 inode_unlock(inode);
1918 return -EAGAIN;
1919 }
d0215f3e
JB
1920 }
1921
3309dd04 1922 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1923 err = file_remove_privs(file);
d0215f3e 1924 if (err) {
5955102c 1925 inode_unlock(inode);
d0215f3e
JB
1926 goto out;
1927 }
1928
1929 /*
1930 * If BTRFS flips readonly due to some impossible error
1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932 * although we have opened a file as writable, we have
1933 * to stop this write operation to ensure FS consistency.
1934 */
0b246afa 1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1936 inode_unlock(inode);
d0215f3e
JB
1937 err = -EROFS;
1938 goto out;
1939 }
1940
6c760c07
JB
1941 /*
1942 * We reserve space for updating the inode when we reserve space for the
1943 * extent we are going to write, so we will enospc out there. We don't
1944 * need to start yet another transaction to update the inode as we will
1945 * update the inode when we finish writing whatever data we write.
1946 */
1947 update_time_for_write(inode);
d0215f3e 1948
0b246afa 1949 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1950 oldsize = i_size_read(inode);
1951 if (start_pos > oldsize) {
3ac0d7b9 1952 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1953 end_pos = round_up(pos + count,
0b246afa 1954 fs_info->sectorsize);
27772b68 1955 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1956 if (err) {
5955102c 1957 inode_unlock(inode);
0c1a98c8
MX
1958 goto out;
1959 }
0b246afa 1960 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1961 clean_page = 1;
0c1a98c8
MX
1962 }
1963
b812ce28
JB
1964 if (sync)
1965 atomic_inc(&BTRFS_I(inode)->sync_writers);
1966
2ba48ce5 1967 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1968 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1969 } else {
e4af400a 1970 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 1971 if (num_written > 0)
867c4f93 1972 iocb->ki_pos = pos + num_written;
27772b68
CR
1973 if (clean_page)
1974 pagecache_isize_extended(inode, oldsize,
1975 i_size_read(inode));
d0215f3e
JB
1976 }
1977
5955102c 1978 inode_unlock(inode);
2ff3e9b6 1979
5a3f23d5 1980 /*
6c760c07
JB
1981 * We also have to set last_sub_trans to the current log transid,
1982 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1983 * transaction will appear to have already occurred.
5a3f23d5 1984 */
2f2ff0ee 1985 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1986 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1987 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1988 if (num_written > 0)
1989 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1990
b812ce28
JB
1991 if (sync)
1992 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1993out:
39279cc3 1994 current->backing_dev_info = NULL;
39279cc3
CM
1995 return num_written ? num_written : err;
1996}
1997
d397712b 1998int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1999{
23b5ec74
JB
2000 struct btrfs_file_private *private = filp->private_data;
2001
23b5ec74
JB
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2004 kfree(private);
2005 filp->private_data = NULL;
2006
f6dc45c7 2007 /*
52042d8e 2008 * ordered_data_close is set by setattr when we are about to truncate
f6dc45c7
CM
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2012 */
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
e1b81e67
M
2016 return 0;
2017}
2018
669249ee
FM
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021 int ret;
343e4fc1 2022 struct blk_plug plug;
669249ee 2023
343e4fc1
LB
2024 /*
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2029 */
2030 blk_start_plug(&plug);
669249ee 2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2032 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2034 blk_finish_plug(&plug);
669249ee
FM
2035
2036 return ret;
2037}
2038
d352ac68
CM
2039/*
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
02c24a82 2050int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2051{
de17e793 2052 struct dentry *dentry = file_dentry(file);
2b0143b5 2053 struct inode *inode = d_inode(dentry);
0b246afa 2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2055 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2056 struct btrfs_trans_handle *trans;
8b050d35 2057 struct btrfs_log_ctx ctx;
333427a5 2058 int ret = 0, err;
9dcbeed4 2059 u64 len;
39279cc3 2060
9dcbeed4
DS
2061 /*
2062 * The range length can be represented by u64, we have to do the typecasts
2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2064 */
2065 len = (u64)end - (u64)start + 1;
1abe9b8a 2066 trace_btrfs_sync_file(file, datasync);
257c62e1 2067
ebb70442
LB
2068 btrfs_init_log_ctx(&ctx, inode);
2069
90abccf2
MX
2070 /*
2071 * We write the dirty pages in the range and wait until they complete
2072 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2073 * multi-task, and make the performance up. See
2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2075 */
669249ee 2076 ret = start_ordered_ops(inode, start, end);
90abccf2 2077 if (ret)
333427a5 2078 goto out;
90abccf2 2079
5955102c 2080 inode_lock(inode);
c495144b
JB
2081
2082 /*
2083 * We take the dio_sem here because the tree log stuff can race with
2084 * lockless dio writes and get an extent map logged for an extent we
2085 * never waited on. We need it this high up for lockdep reasons.
2086 */
2087 down_write(&BTRFS_I(inode)->dio_sem);
2088
2ecb7923 2089 atomic_inc(&root->log_batch);
b5e6c3e1 2090
aab15e8e
FM
2091 /*
2092 * Before we acquired the inode's lock, someone may have dirtied more
2093 * pages in the target range. We need to make sure that writeback for
2094 * any such pages does not start while we are logging the inode, because
2095 * if it does, any of the following might happen when we are not doing a
2096 * full inode sync:
2097 *
2098 * 1) We log an extent after its writeback finishes but before its
2099 * checksums are added to the csum tree, leading to -EIO errors
2100 * when attempting to read the extent after a log replay.
2101 *
2102 * 2) We can end up logging an extent before its writeback finishes.
2103 * Therefore after the log replay we will have a file extent item
2104 * pointing to an unwritten extent (and no data checksums as well).
2105 *
2106 * So trigger writeback for any eventual new dirty pages and then we
2107 * wait for all ordered extents to complete below.
2108 */
2109 ret = start_ordered_ops(inode, start, end);
2110 if (ret) {
2111 inode_unlock(inode);
2112 goto out;
2113 }
2114
669249ee 2115 /*
b5e6c3e1 2116 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2117 * IO of a lower priority task while holding a transaction open.
669249ee 2118 */
b5e6c3e1 2119 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee 2120 if (ret) {
c495144b 2121 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2122 inode_unlock(inode);
669249ee 2123 goto out;
0ef8b726 2124 }
2ecb7923 2125 atomic_inc(&root->log_batch);
257c62e1 2126
a4abeea4 2127 smp_mb();
0f8939b8 2128 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
ca5788ab 2129 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
5dc562c5 2130 /*
01327610 2131 * We've had everything committed since the last time we were
5dc562c5
JB
2132 * modified so clear this flag in case it was set for whatever
2133 * reason, it's no longer relevant.
2134 */
2135 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2136 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2137 /*
2138 * An ordered extent might have started before and completed
2139 * already with io errors, in which case the inode was not
2140 * updated and we end up here. So check the inode's mapping
333427a5
JL
2141 * for any errors that might have happened since we last
2142 * checked called fsync.
0596a904 2143 */
333427a5 2144 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
c495144b 2145 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2146 inode_unlock(inode);
15ee9bc7
JB
2147 goto out;
2148 }
15ee9bc7 2149
5039eddc
JB
2150 /*
2151 * We use start here because we will need to wait on the IO to complete
2152 * in btrfs_sync_log, which could require joining a transaction (for
2153 * example checking cross references in the nocow path). If we use join
2154 * here we could get into a situation where we're waiting on IO to
2155 * happen that is blocked on a transaction trying to commit. With start
2156 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2157 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2158 * from thinking they are super smart and changing this to
2159 * btrfs_join_transaction *cough*Josef*cough*.
2160 */
a22285a6
YZ
2161 trans = btrfs_start_transaction(root, 0);
2162 if (IS_ERR(trans)) {
2163 ret = PTR_ERR(trans);
c495144b 2164 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2165 inode_unlock(inode);
39279cc3
CM
2166 goto out;
2167 }
5039eddc 2168 trans->sync = true;
e02119d5 2169
e5b84f7a 2170 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
02c24a82 2171 if (ret < 0) {
a0634be5
FDBM
2172 /* Fallthrough and commit/free transaction. */
2173 ret = 1;
02c24a82 2174 }
49eb7e46
CM
2175
2176 /* we've logged all the items and now have a consistent
2177 * version of the file in the log. It is possible that
2178 * someone will come in and modify the file, but that's
2179 * fine because the log is consistent on disk, and we
2180 * have references to all of the file's extents
2181 *
2182 * It is possible that someone will come in and log the
2183 * file again, but that will end up using the synchronization
2184 * inside btrfs_sync_log to keep things safe.
2185 */
c495144b 2186 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2187 inode_unlock(inode);
49eb7e46 2188
257c62e1 2189 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2190 if (!ret) {
8b050d35 2191 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2192 if (!ret) {
3a45bb20 2193 ret = btrfs_end_transaction(trans);
0ef8b726 2194 goto out;
2ab28f32 2195 }
257c62e1 2196 }
3a45bb20 2197 ret = btrfs_commit_transaction(trans);
257c62e1 2198 } else {
3a45bb20 2199 ret = btrfs_end_transaction(trans);
e02119d5 2200 }
39279cc3 2201out:
ebb70442 2202 ASSERT(list_empty(&ctx.list));
333427a5
JL
2203 err = file_check_and_advance_wb_err(file);
2204 if (!ret)
2205 ret = err;
014e4ac4 2206 return ret > 0 ? -EIO : ret;
39279cc3
CM
2207}
2208
f0f37e2f 2209static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2210 .fault = filemap_fault,
f1820361 2211 .map_pages = filemap_map_pages,
9ebefb18
CM
2212 .page_mkwrite = btrfs_page_mkwrite,
2213};
2214
2215static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2216{
058a457e
MX
2217 struct address_space *mapping = filp->f_mapping;
2218
2219 if (!mapping->a_ops->readpage)
2220 return -ENOEXEC;
2221
9ebefb18 2222 file_accessed(filp);
058a457e 2223 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2224
9ebefb18
CM
2225 return 0;
2226}
2227
35339c24 2228static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2229 int slot, u64 start, u64 end)
2230{
2231 struct btrfs_file_extent_item *fi;
2232 struct btrfs_key key;
2233
2234 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2235 return 0;
2236
2237 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2238 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2239 key.type != BTRFS_EXTENT_DATA_KEY)
2240 return 0;
2241
2242 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2243
2244 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2245 return 0;
2246
2247 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2248 return 0;
2249
2250 if (key.offset == end)
2251 return 1;
2252 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2253 return 1;
2254 return 0;
2255}
2256
a012a74e
NB
2257static int fill_holes(struct btrfs_trans_handle *trans,
2258 struct btrfs_inode *inode,
2259 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2260{
3ffbd68c 2261 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2262 struct btrfs_root *root = inode->root;
2aaa6655
JB
2263 struct extent_buffer *leaf;
2264 struct btrfs_file_extent_item *fi;
2265 struct extent_map *hole_em;
a012a74e 2266 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2267 struct btrfs_key key;
2268 int ret;
2269
0b246afa 2270 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2271 goto out;
2272
a012a74e 2273 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2274 key.type = BTRFS_EXTENT_DATA_KEY;
2275 key.offset = offset;
2276
2aaa6655 2277 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2278 if (ret <= 0) {
2279 /*
2280 * We should have dropped this offset, so if we find it then
2281 * something has gone horribly wrong.
2282 */
2283 if (ret == 0)
2284 ret = -EINVAL;
2aaa6655 2285 return ret;
f94480bd 2286 }
2aaa6655
JB
2287
2288 leaf = path->nodes[0];
a012a74e 2289 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2290 u64 num_bytes;
2291
2292 path->slots[0]--;
2293 fi = btrfs_item_ptr(leaf, path->slots[0],
2294 struct btrfs_file_extent_item);
2295 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2296 end - offset;
2297 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2298 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2299 btrfs_set_file_extent_offset(leaf, fi, 0);
2300 btrfs_mark_buffer_dirty(leaf);
2301 goto out;
2302 }
2303
1707e26d 2304 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2305 u64 num_bytes;
2306
2aaa6655 2307 key.offset = offset;
0b246afa 2308 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2309 fi = btrfs_item_ptr(leaf, path->slots[0],
2310 struct btrfs_file_extent_item);
2311 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2312 offset;
2313 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2314 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2315 btrfs_set_file_extent_offset(leaf, fi, 0);
2316 btrfs_mark_buffer_dirty(leaf);
2317 goto out;
2318 }
2319 btrfs_release_path(path);
2320
a012a74e 2321 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2322 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2323 if (ret)
2324 return ret;
2325
2326out:
2327 btrfs_release_path(path);
2328
2329 hole_em = alloc_extent_map();
2330 if (!hole_em) {
2331 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2333 } else {
2334 hole_em->start = offset;
2335 hole_em->len = end - offset;
cc95bef6 2336 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2337 hole_em->orig_start = offset;
2338
2339 hole_em->block_start = EXTENT_MAP_HOLE;
2340 hole_em->block_len = 0;
b4939680 2341 hole_em->orig_block_len = 0;
0b246afa 2342 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2343 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2344 hole_em->generation = trans->transid;
2345
2346 do {
2347 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2348 write_lock(&em_tree->lock);
09a2a8f9 2349 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2350 write_unlock(&em_tree->lock);
2351 } while (ret == -EEXIST);
2352 free_extent_map(hole_em);
2353 if (ret)
2354 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2355 &inode->runtime_flags);
2aaa6655
JB
2356 }
2357
2358 return 0;
2359}
2360
d7781546
QW
2361/*
2362 * Find a hole extent on given inode and change start/len to the end of hole
2363 * extent.(hole/vacuum extent whose em->start <= start &&
2364 * em->start + em->len > start)
2365 * When a hole extent is found, return 1 and modify start/len.
2366 */
2367static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2368{
609805d8 2369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2370 struct extent_map *em;
2371 int ret = 0;
2372
609805d8
FM
2373 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2374 round_down(*start, fs_info->sectorsize),
2375 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2376 if (IS_ERR(em))
2377 return PTR_ERR(em);
d7781546
QW
2378
2379 /* Hole or vacuum extent(only exists in no-hole mode) */
2380 if (em->block_start == EXTENT_MAP_HOLE) {
2381 ret = 1;
2382 *len = em->start + em->len > *start + *len ?
2383 0 : *start + *len - em->start - em->len;
2384 *start = em->start + em->len;
2385 }
2386 free_extent_map(em);
2387 return ret;
2388}
2389
f27451f2
FM
2390static int btrfs_punch_hole_lock_range(struct inode *inode,
2391 const u64 lockstart,
2392 const u64 lockend,
2393 struct extent_state **cached_state)
2394{
2395 while (1) {
2396 struct btrfs_ordered_extent *ordered;
2397 int ret;
2398
2399 truncate_pagecache_range(inode, lockstart, lockend);
2400
2401 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2402 cached_state);
2403 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2404
2405 /*
2406 * We need to make sure we have no ordered extents in this range
2407 * and nobody raced in and read a page in this range, if we did
2408 * we need to try again.
2409 */
2410 if ((!ordered ||
2411 (ordered->file_offset + ordered->len <= lockstart ||
2412 ordered->file_offset > lockend)) &&
051c98eb
DS
2413 !filemap_range_has_page(inode->i_mapping,
2414 lockstart, lockend)) {
f27451f2
FM
2415 if (ordered)
2416 btrfs_put_ordered_extent(ordered);
2417 break;
2418 }
2419 if (ordered)
2420 btrfs_put_ordered_extent(ordered);
2421 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2422 lockend, cached_state);
2423 ret = btrfs_wait_ordered_range(inode, lockstart,
2424 lockend - lockstart + 1);
2425 if (ret)
2426 return ret;
2427 }
2428 return 0;
2429}
2430
2aaa6655
JB
2431static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2432{
0b246afa 2433 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2434 struct btrfs_root *root = BTRFS_I(inode)->root;
2435 struct extent_state *cached_state = NULL;
2436 struct btrfs_path *path;
2437 struct btrfs_block_rsv *rsv;
2438 struct btrfs_trans_handle *trans;
d7781546
QW
2439 u64 lockstart;
2440 u64 lockend;
2441 u64 tail_start;
2442 u64 tail_len;
2443 u64 orig_start = offset;
2444 u64 cur_offset;
5f52a2c5 2445 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2446 u64 drop_end;
2aaa6655
JB
2447 int ret = 0;
2448 int err = 0;
6e4d6fa1 2449 unsigned int rsv_count;
9703fefe 2450 bool same_block;
0b246afa 2451 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2452 u64 ino_size;
9703fefe 2453 bool truncated_block = false;
e8c1c76e 2454 bool updated_inode = false;
2aaa6655 2455
0ef8b726
JB
2456 ret = btrfs_wait_ordered_range(inode, offset, len);
2457 if (ret)
2458 return ret;
2aaa6655 2459
5955102c 2460 inode_lock(inode);
0b246afa 2461 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2462 ret = find_first_non_hole(inode, &offset, &len);
2463 if (ret < 0)
2464 goto out_only_mutex;
2465 if (ret && !len) {
2466 /* Already in a large hole */
2467 ret = 0;
2468 goto out_only_mutex;
2469 }
2470
da17066c 2471 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2472 lockend = round_down(offset + len,
da17066c 2473 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2474 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2475 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2476 /*
9703fefe 2477 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2478 * because we are sure there is no data there.
2479 */
2aaa6655 2480 /*
9703fefe
CR
2481 * Only do this if we are in the same block and we aren't doing the
2482 * entire block.
2aaa6655 2483 */
0b246afa 2484 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2485 if (offset < ino_size) {
9703fefe
CR
2486 truncated_block = true;
2487 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2488 } else {
2489 ret = 0;
2490 }
d7781546 2491 goto out_only_mutex;
2aaa6655
JB
2492 }
2493
9703fefe 2494 /* zero back part of the first block */
12870f1c 2495 if (offset < ino_size) {
9703fefe
CR
2496 truncated_block = true;
2497 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2498 if (ret) {
5955102c 2499 inode_unlock(inode);
7426cc04
MX
2500 return ret;
2501 }
2aaa6655
JB
2502 }
2503
d7781546
QW
2504 /* Check the aligned pages after the first unaligned page,
2505 * if offset != orig_start, which means the first unaligned page
01327610 2506 * including several following pages are already in holes,
d7781546
QW
2507 * the extra check can be skipped */
2508 if (offset == orig_start) {
2509 /* after truncate page, check hole again */
2510 len = offset + len - lockstart;
2511 offset = lockstart;
2512 ret = find_first_non_hole(inode, &offset, &len);
2513 if (ret < 0)
2514 goto out_only_mutex;
2515 if (ret && !len) {
2516 ret = 0;
2517 goto out_only_mutex;
2518 }
2519 lockstart = offset;
2520 }
2521
2522 /* Check the tail unaligned part is in a hole */
2523 tail_start = lockend + 1;
2524 tail_len = offset + len - tail_start;
2525 if (tail_len) {
2526 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2527 if (unlikely(ret < 0))
2528 goto out_only_mutex;
2529 if (!ret) {
2530 /* zero the front end of the last page */
2531 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2532 truncated_block = true;
2533 ret = btrfs_truncate_block(inode,
2534 tail_start + tail_len,
2535 0, 1);
d7781546
QW
2536 if (ret)
2537 goto out_only_mutex;
51f395ad 2538 }
0061280d 2539 }
2aaa6655
JB
2540 }
2541
2542 if (lockend < lockstart) {
e8c1c76e
FM
2543 ret = 0;
2544 goto out_only_mutex;
2aaa6655
JB
2545 }
2546
f27451f2
FM
2547 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2548 &cached_state);
2549 if (ret) {
2550 inode_unlock(inode);
2551 goto out_only_mutex;
2aaa6655
JB
2552 }
2553
2554 path = btrfs_alloc_path();
2555 if (!path) {
2556 ret = -ENOMEM;
2557 goto out;
2558 }
2559
2ff7e61e 2560 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2561 if (!rsv) {
2562 ret = -ENOMEM;
2563 goto out_free;
2564 }
5f52a2c5 2565 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2566 rsv->failfast = 1;
2567
2568 /*
2569 * 1 - update the inode
2570 * 1 - removing the extents in the range
16e7549f 2571 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2572 */
16e7549f
JB
2573 rsv_count = no_holes ? 2 : 3;
2574 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2575 if (IS_ERR(trans)) {
2576 err = PTR_ERR(trans);
2577 goto out_free;
2578 }
2579
0b246afa 2580 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 2581 min_size, false);
2aaa6655
JB
2582 BUG_ON(ret);
2583 trans->block_rsv = rsv;
2584
d7781546
QW
2585 cur_offset = lockstart;
2586 len = lockend - cur_offset;
2aaa6655
JB
2587 while (cur_offset < lockend) {
2588 ret = __btrfs_drop_extents(trans, root, inode, path,
2589 cur_offset, lockend + 1,
1acae57b 2590 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2591 if (ret != -ENOSPC)
2592 break;
2593
0b246afa 2594 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2595
62fe51c1 2596 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2597 ret = fill_holes(trans, BTRFS_I(inode), path,
2598 cur_offset, drop_end);
12870f1c 2599 if (ret) {
f94480bd
JB
2600 /*
2601 * If we failed then we didn't insert our hole
2602 * entries for the area we dropped, so now the
2603 * fs is corrupted, so we must abort the
2604 * transaction.
2605 */
2606 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2607 err = ret;
2608 break;
2609 }
2aaa6655
JB
2610 }
2611
2612 cur_offset = drop_end;
2613
2614 ret = btrfs_update_inode(trans, root, inode);
2615 if (ret) {
2616 err = ret;
2617 break;
2618 }
2619
3a45bb20 2620 btrfs_end_transaction(trans);
2ff7e61e 2621 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2622
16e7549f 2623 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2624 if (IS_ERR(trans)) {
2625 ret = PTR_ERR(trans);
2626 trans = NULL;
2627 break;
2628 }
2629
0b246afa 2630 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 2631 rsv, min_size, false);
2aaa6655
JB
2632 BUG_ON(ret); /* shouldn't happen */
2633 trans->block_rsv = rsv;
d7781546
QW
2634
2635 ret = find_first_non_hole(inode, &cur_offset, &len);
2636 if (unlikely(ret < 0))
2637 break;
2638 if (ret && !len) {
2639 ret = 0;
2640 break;
2641 }
2aaa6655
JB
2642 }
2643
2644 if (ret) {
2645 err = ret;
2646 goto out_trans;
2647 }
2648
0b246afa 2649 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2650 /*
2651 * If we are using the NO_HOLES feature we might have had already an
2652 * hole that overlaps a part of the region [lockstart, lockend] and
2653 * ends at (or beyond) lockend. Since we have no file extent items to
2654 * represent holes, drop_end can be less than lockend and so we must
2655 * make sure we have an extent map representing the existing hole (the
2656 * call to __btrfs_drop_extents() might have dropped the existing extent
2657 * map representing the existing hole), otherwise the fast fsync path
2658 * will not record the existence of the hole region
2659 * [existing_hole_start, lockend].
2660 */
2661 if (drop_end <= lockend)
2662 drop_end = lockend + 1;
fc19c5e7
FM
2663 /*
2664 * Don't insert file hole extent item if it's for a range beyond eof
2665 * (because it's useless) or if it represents a 0 bytes range (when
2666 * cur_offset == drop_end).
2667 */
2668 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2669 ret = fill_holes(trans, BTRFS_I(inode), path,
2670 cur_offset, drop_end);
12870f1c 2671 if (ret) {
f94480bd
JB
2672 /* Same comment as above. */
2673 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2674 err = ret;
2675 goto out_trans;
2676 }
2aaa6655
JB
2677 }
2678
2679out_trans:
2680 if (!trans)
2681 goto out_free;
2682
e1f5790e 2683 inode_inc_iversion(inode);
c2050a45 2684 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2685
0b246afa 2686 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2687 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2688 updated_inode = true;
3a45bb20 2689 btrfs_end_transaction(trans);
2ff7e61e 2690 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2691out_free:
2692 btrfs_free_path(path);
2ff7e61e 2693 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2694out:
2695 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2696 &cached_state);
d7781546 2697out_only_mutex:
9703fefe 2698 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2699 /*
2700 * If we only end up zeroing part of a page, we still need to
2701 * update the inode item, so that all the time fields are
2702 * updated as well as the necessary btrfs inode in memory fields
2703 * for detecting, at fsync time, if the inode isn't yet in the
2704 * log tree or it's there but not up to date.
2705 */
2706 trans = btrfs_start_transaction(root, 1);
2707 if (IS_ERR(trans)) {
2708 err = PTR_ERR(trans);
2709 } else {
2710 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2711 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2712 }
2713 }
5955102c 2714 inode_unlock(inode);
2aaa6655
JB
2715 if (ret && !err)
2716 err = ret;
2717 return err;
2718}
2719
14524a84
QW
2720/* Helper structure to record which range is already reserved */
2721struct falloc_range {
2722 struct list_head list;
2723 u64 start;
2724 u64 len;
2725};
2726
2727/*
2728 * Helper function to add falloc range
2729 *
2730 * Caller should have locked the larger range of extent containing
2731 * [start, len)
2732 */
2733static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2734{
2735 struct falloc_range *prev = NULL;
2736 struct falloc_range *range = NULL;
2737
2738 if (list_empty(head))
2739 goto insert;
2740
2741 /*
2742 * As fallocate iterate by bytenr order, we only need to check
2743 * the last range.
2744 */
2745 prev = list_entry(head->prev, struct falloc_range, list);
2746 if (prev->start + prev->len == start) {
2747 prev->len += len;
2748 return 0;
2749 }
2750insert:
32fc932e 2751 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2752 if (!range)
2753 return -ENOMEM;
2754 range->start = start;
2755 range->len = len;
2756 list_add_tail(&range->list, head);
2757 return 0;
2758}
2759
f27451f2
FM
2760static int btrfs_fallocate_update_isize(struct inode *inode,
2761 const u64 end,
2762 const int mode)
2763{
2764 struct btrfs_trans_handle *trans;
2765 struct btrfs_root *root = BTRFS_I(inode)->root;
2766 int ret;
2767 int ret2;
2768
2769 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2770 return 0;
2771
2772 trans = btrfs_start_transaction(root, 1);
2773 if (IS_ERR(trans))
2774 return PTR_ERR(trans);
2775
2776 inode->i_ctime = current_time(inode);
2777 i_size_write(inode, end);
2778 btrfs_ordered_update_i_size(inode, end, NULL);
2779 ret = btrfs_update_inode(trans, root, inode);
2780 ret2 = btrfs_end_transaction(trans);
2781
2782 return ret ? ret : ret2;
2783}
2784
81fdf638
FM
2785enum {
2786 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2787 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2788 RANGE_BOUNDARY_HOLE = 2,
2789};
2790
f27451f2
FM
2791static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2792 u64 offset)
2793{
2794 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2795 struct extent_map *em;
81fdf638 2796 int ret;
f27451f2
FM
2797
2798 offset = round_down(offset, sectorsize);
2799 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2800 if (IS_ERR(em))
2801 return PTR_ERR(em);
2802
2803 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2804 ret = RANGE_BOUNDARY_HOLE;
2805 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2806 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2807 else
2808 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2809
2810 free_extent_map(em);
2811 return ret;
2812}
2813
2814static int btrfs_zero_range(struct inode *inode,
2815 loff_t offset,
2816 loff_t len,
2817 const int mode)
2818{
2819 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2820 struct extent_map *em;
2821 struct extent_changeset *data_reserved = NULL;
2822 int ret;
2823 u64 alloc_hint = 0;
2824 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2825 u64 alloc_start = round_down(offset, sectorsize);
2826 u64 alloc_end = round_up(offset + len, sectorsize);
2827 u64 bytes_to_reserve = 0;
2828 bool space_reserved = false;
2829
2830 inode_dio_wait(inode);
2831
2832 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2833 alloc_start, alloc_end - alloc_start, 0);
2834 if (IS_ERR(em)) {
2835 ret = PTR_ERR(em);
2836 goto out;
2837 }
2838
2839 /*
2840 * Avoid hole punching and extent allocation for some cases. More cases
2841 * could be considered, but these are unlikely common and we keep things
2842 * as simple as possible for now. Also, intentionally, if the target
2843 * range contains one or more prealloc extents together with regular
2844 * extents and holes, we drop all the existing extents and allocate a
2845 * new prealloc extent, so that we get a larger contiguous disk extent.
2846 */
2847 if (em->start <= alloc_start &&
2848 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2849 const u64 em_end = em->start + em->len;
2850
2851 if (em_end >= offset + len) {
2852 /*
2853 * The whole range is already a prealloc extent,
2854 * do nothing except updating the inode's i_size if
2855 * needed.
2856 */
2857 free_extent_map(em);
2858 ret = btrfs_fallocate_update_isize(inode, offset + len,
2859 mode);
2860 goto out;
2861 }
2862 /*
2863 * Part of the range is already a prealloc extent, so operate
2864 * only on the remaining part of the range.
2865 */
2866 alloc_start = em_end;
2867 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2868 len = offset + len - alloc_start;
2869 offset = alloc_start;
2870 alloc_hint = em->block_start + em->len;
2871 }
2872 free_extent_map(em);
2873
2874 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2875 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2876 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2877 alloc_start, sectorsize, 0);
2878 if (IS_ERR(em)) {
2879 ret = PTR_ERR(em);
2880 goto out;
2881 }
2882
2883 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2884 free_extent_map(em);
2885 ret = btrfs_fallocate_update_isize(inode, offset + len,
2886 mode);
2887 goto out;
2888 }
2889 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2890 free_extent_map(em);
2891 ret = btrfs_truncate_block(inode, offset, len, 0);
2892 if (!ret)
2893 ret = btrfs_fallocate_update_isize(inode,
2894 offset + len,
2895 mode);
2896 return ret;
2897 }
2898 free_extent_map(em);
2899 alloc_start = round_down(offset, sectorsize);
2900 alloc_end = alloc_start + sectorsize;
2901 goto reserve_space;
2902 }
2903
2904 alloc_start = round_up(offset, sectorsize);
2905 alloc_end = round_down(offset + len, sectorsize);
2906
2907 /*
2908 * For unaligned ranges, check the pages at the boundaries, they might
2909 * map to an extent, in which case we need to partially zero them, or
2910 * they might map to a hole, in which case we need our allocation range
2911 * to cover them.
2912 */
2913 if (!IS_ALIGNED(offset, sectorsize)) {
2914 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2915 if (ret < 0)
2916 goto out;
81fdf638 2917 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2918 alloc_start = round_down(offset, sectorsize);
2919 ret = 0;
81fdf638 2920 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2921 ret = btrfs_truncate_block(inode, offset, 0, 0);
2922 if (ret)
2923 goto out;
81fdf638
FM
2924 } else {
2925 ret = 0;
f27451f2
FM
2926 }
2927 }
2928
2929 if (!IS_ALIGNED(offset + len, sectorsize)) {
2930 ret = btrfs_zero_range_check_range_boundary(inode,
2931 offset + len);
2932 if (ret < 0)
2933 goto out;
81fdf638 2934 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2935 alloc_end = round_up(offset + len, sectorsize);
2936 ret = 0;
81fdf638 2937 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2938 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2939 if (ret)
2940 goto out;
81fdf638
FM
2941 } else {
2942 ret = 0;
f27451f2
FM
2943 }
2944 }
2945
2946reserve_space:
2947 if (alloc_start < alloc_end) {
2948 struct extent_state *cached_state = NULL;
2949 const u64 lockstart = alloc_start;
2950 const u64 lockend = alloc_end - 1;
2951
2952 bytes_to_reserve = alloc_end - alloc_start;
2953 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2954 bytes_to_reserve);
2955 if (ret < 0)
2956 goto out;
2957 space_reserved = true;
2958 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2959 alloc_start, bytes_to_reserve);
2960 if (ret)
2961 goto out;
2962 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2963 &cached_state);
2964 if (ret)
2965 goto out;
2966 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2967 alloc_end - alloc_start,
2968 i_blocksize(inode),
2969 offset + len, &alloc_hint);
2970 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2971 lockend, &cached_state);
2972 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 2973 if (ret) {
f27451f2 2974 space_reserved = false;
9f13ce74
FM
2975 goto out;
2976 }
f27451f2 2977 }
9f13ce74 2978 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
2979 out:
2980 if (ret && space_reserved)
2981 btrfs_free_reserved_data_space(inode, data_reserved,
2982 alloc_start, bytes_to_reserve);
2983 extent_changeset_free(data_reserved);
2984
2985 return ret;
2986}
2987
2fe17c10
CH
2988static long btrfs_fallocate(struct file *file, int mode,
2989 loff_t offset, loff_t len)
2990{
496ad9aa 2991 struct inode *inode = file_inode(file);
2fe17c10 2992 struct extent_state *cached_state = NULL;
364ecf36 2993 struct extent_changeset *data_reserved = NULL;
14524a84
QW
2994 struct falloc_range *range;
2995 struct falloc_range *tmp;
2996 struct list_head reserve_list;
2fe17c10
CH
2997 u64 cur_offset;
2998 u64 last_byte;
2999 u64 alloc_start;
3000 u64 alloc_end;
3001 u64 alloc_hint = 0;
3002 u64 locked_end;
14524a84 3003 u64 actual_end = 0;
2fe17c10 3004 struct extent_map *em;
da17066c 3005 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
3006 int ret;
3007
797f4277
MX
3008 alloc_start = round_down(offset, blocksize);
3009 alloc_end = round_up(offset + len, blocksize);
18513091 3010 cur_offset = alloc_start;
2fe17c10 3011
2aaa6655 3012 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3013 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3014 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3015 return -EOPNOTSUPP;
3016
2aaa6655
JB
3017 if (mode & FALLOC_FL_PUNCH_HOLE)
3018 return btrfs_punch_hole(inode, offset, len);
3019
d98456fc 3020 /*
14524a84
QW
3021 * Only trigger disk allocation, don't trigger qgroup reserve
3022 *
3023 * For qgroup space, it will be checked later.
d98456fc 3024 */
f27451f2
FM
3025 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3026 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3027 alloc_end - alloc_start);
3028 if (ret < 0)
3029 return ret;
3030 }
d98456fc 3031
5955102c 3032 inode_lock(inode);
2a162ce9
DI
3033
3034 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3035 ret = inode_newsize_ok(inode, offset + len);
3036 if (ret)
3037 goto out;
3038 }
2fe17c10 3039
14524a84
QW
3040 /*
3041 * TODO: Move these two operations after we have checked
3042 * accurate reserved space, or fallocate can still fail but
3043 * with page truncated or size expanded.
3044 *
3045 * But that's a minor problem and won't do much harm BTW.
3046 */
2fe17c10 3047 if (alloc_start > inode->i_size) {
a41ad394
JB
3048 ret = btrfs_cont_expand(inode, i_size_read(inode),
3049 alloc_start);
2fe17c10
CH
3050 if (ret)
3051 goto out;
0f6925fa 3052 } else if (offset + len > inode->i_size) {
a71754fc
JB
3053 /*
3054 * If we are fallocating from the end of the file onward we
9703fefe
CR
3055 * need to zero out the end of the block if i_size lands in the
3056 * middle of a block.
a71754fc 3057 */
9703fefe 3058 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3059 if (ret)
3060 goto out;
2fe17c10
CH
3061 }
3062
a71754fc
JB
3063 /*
3064 * wait for ordered IO before we have any locks. We'll loop again
3065 * below with the locks held.
3066 */
0ef8b726
JB
3067 ret = btrfs_wait_ordered_range(inode, alloc_start,
3068 alloc_end - alloc_start);
3069 if (ret)
3070 goto out;
a71754fc 3071
f27451f2
FM
3072 if (mode & FALLOC_FL_ZERO_RANGE) {
3073 ret = btrfs_zero_range(inode, offset, len, mode);
3074 inode_unlock(inode);
3075 return ret;
3076 }
3077
2fe17c10
CH
3078 locked_end = alloc_end - 1;
3079 while (1) {
3080 struct btrfs_ordered_extent *ordered;
3081
3082 /* the extent lock is ordered inside the running
3083 * transaction
3084 */
3085 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3086 locked_end, &cached_state);
96b09dde
NB
3087 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3088
2fe17c10
CH
3089 if (ordered &&
3090 ordered->file_offset + ordered->len > alloc_start &&
3091 ordered->file_offset < alloc_end) {
3092 btrfs_put_ordered_extent(ordered);
3093 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3094 alloc_start, locked_end,
e43bbe5e 3095 &cached_state);
2fe17c10
CH
3096 /*
3097 * we can't wait on the range with the transaction
3098 * running or with the extent lock held
3099 */
0ef8b726
JB
3100 ret = btrfs_wait_ordered_range(inode, alloc_start,
3101 alloc_end - alloc_start);
3102 if (ret)
3103 goto out;
2fe17c10
CH
3104 } else {
3105 if (ordered)
3106 btrfs_put_ordered_extent(ordered);
3107 break;
3108 }
3109 }
3110
14524a84
QW
3111 /* First, check if we exceed the qgroup limit */
3112 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3113 while (cur_offset < alloc_end) {
fc4f21b1 3114 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 3115 alloc_end - cur_offset, 0);
9986277e
DC
3116 if (IS_ERR(em)) {
3117 ret = PTR_ERR(em);
79787eaa
JM
3118 break;
3119 }
2fe17c10 3120 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3121 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3122 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3123 if (em->block_start == EXTENT_MAP_HOLE ||
3124 (cur_offset >= inode->i_size &&
3125 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3126 ret = add_falloc_range(&reserve_list, cur_offset,
3127 last_byte - cur_offset);
3128 if (ret < 0) {
3129 free_extent_map(em);
3130 break;
3d850dd4 3131 }
364ecf36
QW
3132 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3133 cur_offset, last_byte - cur_offset);
be2d253c
FM
3134 if (ret < 0) {
3135 free_extent_map(em);
14524a84 3136 break;
be2d253c 3137 }
18513091
WX
3138 } else {
3139 /*
3140 * Do not need to reserve unwritten extent for this
3141 * range, free reserved data space first, otherwise
3142 * it'll result in false ENOSPC error.
3143 */
bc42bda2
QW
3144 btrfs_free_reserved_data_space(inode, data_reserved,
3145 cur_offset, last_byte - cur_offset);
2fe17c10
CH
3146 }
3147 free_extent_map(em);
2fe17c10 3148 cur_offset = last_byte;
14524a84
QW
3149 }
3150
3151 /*
3152 * If ret is still 0, means we're OK to fallocate.
3153 * Or just cleanup the list and exit.
3154 */
3155 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3156 if (!ret)
3157 ret = btrfs_prealloc_file_range(inode, mode,
3158 range->start,
93407472 3159 range->len, i_blocksize(inode),
14524a84 3160 offset + len, &alloc_hint);
18513091 3161 else
bc42bda2
QW
3162 btrfs_free_reserved_data_space(inode,
3163 data_reserved, range->start,
3164 range->len);
14524a84
QW
3165 list_del(&range->list);
3166 kfree(range);
3167 }
3168 if (ret < 0)
3169 goto out_unlock;
3170
f27451f2
FM
3171 /*
3172 * We didn't need to allocate any more space, but we still extended the
3173 * size of the file so we need to update i_size and the inode item.
3174 */
3175 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3176out_unlock:
2fe17c10 3177 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3178 &cached_state);
2fe17c10 3179out:
5955102c 3180 inode_unlock(inode);
d98456fc 3181 /* Let go of our reservation. */
f27451f2 3182 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
bc42bda2
QW
3183 btrfs_free_reserved_data_space(inode, data_reserved,
3184 alloc_start, alloc_end - cur_offset);
364ecf36 3185 extent_changeset_free(data_reserved);
2fe17c10
CH
3186 return ret;
3187}
3188
965c8e59 3189static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3190{
0b246afa 3191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3192 struct extent_map *em = NULL;
b2675157 3193 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3194 u64 lockstart;
3195 u64 lockend;
3196 u64 start;
3197 u64 len;
b2675157
JB
3198 int ret = 0;
3199
4d1a40c6
LB
3200 if (inode->i_size == 0)
3201 return -ENXIO;
3202
3203 /*
3204 * *offset can be negative, in this case we start finding DATA/HOLE from
3205 * the very start of the file.
3206 */
3207 start = max_t(loff_t, 0, *offset);
3208
0b246afa 3209 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3210 lockend = round_up(i_size_read(inode),
0b246afa 3211 fs_info->sectorsize);
b2675157 3212 if (lockend <= lockstart)
0b246afa 3213 lockend = lockstart + fs_info->sectorsize;
1214b53f 3214 lockend--;
b2675157
JB
3215 len = lockend - lockstart + 1;
3216
ff13db41 3217 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3218 &cached_state);
b2675157 3219
7f4ca37c 3220 while (start < inode->i_size) {
4ab47a8d 3221 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
b2675157 3222 if (IS_ERR(em)) {
6af021d8 3223 ret = PTR_ERR(em);
7f4ca37c 3224 em = NULL;
b2675157
JB
3225 break;
3226 }
3227
7f4ca37c
JB
3228 if (whence == SEEK_HOLE &&
3229 (em->block_start == EXTENT_MAP_HOLE ||
3230 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3231 break;
3232 else if (whence == SEEK_DATA &&
3233 (em->block_start != EXTENT_MAP_HOLE &&
3234 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3235 break;
b2675157
JB
3236
3237 start = em->start + em->len;
b2675157 3238 free_extent_map(em);
7f4ca37c 3239 em = NULL;
b2675157
JB
3240 cond_resched();
3241 }
7f4ca37c
JB
3242 free_extent_map(em);
3243 if (!ret) {
3244 if (whence == SEEK_DATA && start >= inode->i_size)
3245 ret = -ENXIO;
3246 else
3247 *offset = min_t(loff_t, start, inode->i_size);
3248 }
b2675157 3249 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3250 &cached_state);
b2675157
JB
3251 return ret;
3252}
3253
965c8e59 3254static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3255{
3256 struct inode *inode = file->f_mapping->host;
3257 int ret;
3258
5955102c 3259 inode_lock(inode);
965c8e59 3260 switch (whence) {
b2675157
JB
3261 case SEEK_END:
3262 case SEEK_CUR:
965c8e59 3263 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3264 goto out;
3265 case SEEK_DATA:
3266 case SEEK_HOLE:
48802c8a 3267 if (offset >= i_size_read(inode)) {
5955102c 3268 inode_unlock(inode);
48802c8a
JL
3269 return -ENXIO;
3270 }
3271
965c8e59 3272 ret = find_desired_extent(inode, &offset, whence);
b2675157 3273 if (ret) {
5955102c 3274 inode_unlock(inode);
b2675157
JB
3275 return ret;
3276 }
3277 }
3278
46a1c2c7 3279 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3280out:
5955102c 3281 inode_unlock(inode);
b2675157
JB
3282 return offset;
3283}
3284
edf064e7
GR
3285static int btrfs_file_open(struct inode *inode, struct file *filp)
3286{
91f9943e 3287 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3288 return generic_file_open(inode, filp);
3289}
3290
828c0950 3291const struct file_operations btrfs_file_operations = {
b2675157 3292 .llseek = btrfs_file_llseek,
aad4f8bb 3293 .read_iter = generic_file_read_iter,
e9906a98 3294 .splice_read = generic_file_splice_read,
b30ac0fc 3295 .write_iter = btrfs_file_write_iter,
9ebefb18 3296 .mmap = btrfs_file_mmap,
edf064e7 3297 .open = btrfs_file_open,
e1b81e67 3298 .release = btrfs_release_file,
39279cc3 3299 .fsync = btrfs_sync_file,
2fe17c10 3300 .fallocate = btrfs_fallocate,
34287aa3 3301 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3302#ifdef CONFIG_COMPAT
4c63c245 3303 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3304#endif
2e5dfc99 3305 .remap_file_range = btrfs_remap_file_range,
39279cc3 3306};
9247f317 3307
e67c718b 3308void __cold btrfs_auto_defrag_exit(void)
9247f317 3309{
5598e900 3310 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3311}
3312
f5c29bd9 3313int __init btrfs_auto_defrag_init(void)
9247f317
MX
3314{
3315 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3316 sizeof(struct inode_defrag), 0,
fba4b697 3317 SLAB_MEM_SPREAD,
9247f317
MX
3318 NULL);
3319 if (!btrfs_inode_defrag_cachep)
3320 return -ENOMEM;
3321
3322 return 0;
3323}
728404da
FM
3324
3325int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3326{
3327 int ret;
3328
3329 /*
3330 * So with compression we will find and lock a dirty page and clear the
3331 * first one as dirty, setup an async extent, and immediately return
3332 * with the entire range locked but with nobody actually marked with
3333 * writeback. So we can't just filemap_write_and_wait_range() and
3334 * expect it to work since it will just kick off a thread to do the
3335 * actual work. So we need to call filemap_fdatawrite_range _again_
3336 * since it will wait on the page lock, which won't be unlocked until
3337 * after the pages have been marked as writeback and so we're good to go
3338 * from there. We have to do this otherwise we'll miss the ordered
3339 * extents and that results in badness. Please Josef, do not think you
3340 * know better and pull this out at some point in the future, it is
3341 * right and you are wrong.
3342 */
3343 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3344 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3345 &BTRFS_I(inode)->runtime_flags))
3346 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3347
3348 return ret;
3349}
This page took 1.277837 seconds and 4 git commands to generate.