]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/kernel_stat.h> | |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
22 | #include <linux/file.h> | |
23 | #include <linux/writeback.h> | |
24 | #include <linux/blkdev.h> | |
25 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
26 | buffer_heads_over_limit */ | |
27 | #include <linux/mm_inline.h> | |
28 | #include <linux/pagevec.h> | |
29 | #include <linux/backing-dev.h> | |
30 | #include <linux/rmap.h> | |
31 | #include <linux/topology.h> | |
32 | #include <linux/cpu.h> | |
33 | #include <linux/cpuset.h> | |
34 | #include <linux/notifier.h> | |
35 | #include <linux/rwsem.h> | |
248a0301 | 36 | #include <linux/delay.h> |
1da177e4 LT |
37 | |
38 | #include <asm/tlbflush.h> | |
39 | #include <asm/div64.h> | |
40 | ||
41 | #include <linux/swapops.h> | |
42 | ||
0f8053a5 NP |
43 | #include "internal.h" |
44 | ||
1da177e4 | 45 | struct scan_control { |
1da177e4 LT |
46 | /* Incremented by the number of inactive pages that were scanned */ |
47 | unsigned long nr_scanned; | |
48 | ||
1da177e4 LT |
49 | unsigned long nr_mapped; /* From page_state */ |
50 | ||
1da177e4 | 51 | /* This context's GFP mask */ |
6daa0e28 | 52 | gfp_t gfp_mask; |
1da177e4 LT |
53 | |
54 | int may_writepage; | |
55 | ||
f1fd1067 CL |
56 | /* Can pages be swapped as part of reclaim? */ |
57 | int may_swap; | |
58 | ||
1da177e4 LT |
59 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for |
60 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | |
61 | * In this context, it doesn't matter that we scan the | |
62 | * whole list at once. */ | |
63 | int swap_cluster_max; | |
64 | }; | |
65 | ||
66 | /* | |
67 | * The list of shrinker callbacks used by to apply pressure to | |
68 | * ageable caches. | |
69 | */ | |
70 | struct shrinker { | |
71 | shrinker_t shrinker; | |
72 | struct list_head list; | |
73 | int seeks; /* seeks to recreate an obj */ | |
74 | long nr; /* objs pending delete */ | |
75 | }; | |
76 | ||
77 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | |
78 | ||
79 | #ifdef ARCH_HAS_PREFETCH | |
80 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
81 | do { \ | |
82 | if ((_page)->lru.prev != _base) { \ | |
83 | struct page *prev; \ | |
84 | \ | |
85 | prev = lru_to_page(&(_page->lru)); \ | |
86 | prefetch(&prev->_field); \ | |
87 | } \ | |
88 | } while (0) | |
89 | #else | |
90 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
91 | #endif | |
92 | ||
93 | #ifdef ARCH_HAS_PREFETCHW | |
94 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
95 | do { \ | |
96 | if ((_page)->lru.prev != _base) { \ | |
97 | struct page *prev; \ | |
98 | \ | |
99 | prev = lru_to_page(&(_page->lru)); \ | |
100 | prefetchw(&prev->_field); \ | |
101 | } \ | |
102 | } while (0) | |
103 | #else | |
104 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
105 | #endif | |
106 | ||
107 | /* | |
108 | * From 0 .. 100. Higher means more swappy. | |
109 | */ | |
110 | int vm_swappiness = 60; | |
111 | static long total_memory; | |
112 | ||
113 | static LIST_HEAD(shrinker_list); | |
114 | static DECLARE_RWSEM(shrinker_rwsem); | |
115 | ||
116 | /* | |
117 | * Add a shrinker callback to be called from the vm | |
118 | */ | |
119 | struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) | |
120 | { | |
121 | struct shrinker *shrinker; | |
122 | ||
123 | shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); | |
124 | if (shrinker) { | |
125 | shrinker->shrinker = theshrinker; | |
126 | shrinker->seeks = seeks; | |
127 | shrinker->nr = 0; | |
128 | down_write(&shrinker_rwsem); | |
129 | list_add_tail(&shrinker->list, &shrinker_list); | |
130 | up_write(&shrinker_rwsem); | |
131 | } | |
132 | return shrinker; | |
133 | } | |
134 | EXPORT_SYMBOL(set_shrinker); | |
135 | ||
136 | /* | |
137 | * Remove one | |
138 | */ | |
139 | void remove_shrinker(struct shrinker *shrinker) | |
140 | { | |
141 | down_write(&shrinker_rwsem); | |
142 | list_del(&shrinker->list); | |
143 | up_write(&shrinker_rwsem); | |
144 | kfree(shrinker); | |
145 | } | |
146 | EXPORT_SYMBOL(remove_shrinker); | |
147 | ||
148 | #define SHRINK_BATCH 128 | |
149 | /* | |
150 | * Call the shrink functions to age shrinkable caches | |
151 | * | |
152 | * Here we assume it costs one seek to replace a lru page and that it also | |
153 | * takes a seek to recreate a cache object. With this in mind we age equal | |
154 | * percentages of the lru and ageable caches. This should balance the seeks | |
155 | * generated by these structures. | |
156 | * | |
157 | * If the vm encounted mapped pages on the LRU it increase the pressure on | |
158 | * slab to avoid swapping. | |
159 | * | |
160 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
161 | * | |
162 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
163 | * are eligible for the caller's allocation attempt. It is used for balancing | |
164 | * slab reclaim versus page reclaim. | |
b15e0905 | 165 | * |
166 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 167 | */ |
69e05944 AM |
168 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
169 | unsigned long lru_pages) | |
1da177e4 LT |
170 | { |
171 | struct shrinker *shrinker; | |
69e05944 | 172 | unsigned long ret = 0; |
1da177e4 LT |
173 | |
174 | if (scanned == 0) | |
175 | scanned = SWAP_CLUSTER_MAX; | |
176 | ||
177 | if (!down_read_trylock(&shrinker_rwsem)) | |
b15e0905 | 178 | return 1; /* Assume we'll be able to shrink next time */ |
1da177e4 LT |
179 | |
180 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
181 | unsigned long long delta; | |
182 | unsigned long total_scan; | |
ea164d73 | 183 | unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask); |
1da177e4 LT |
184 | |
185 | delta = (4 * scanned) / shrinker->seeks; | |
ea164d73 | 186 | delta *= max_pass; |
1da177e4 LT |
187 | do_div(delta, lru_pages + 1); |
188 | shrinker->nr += delta; | |
ea164d73 AA |
189 | if (shrinker->nr < 0) { |
190 | printk(KERN_ERR "%s: nr=%ld\n", | |
191 | __FUNCTION__, shrinker->nr); | |
192 | shrinker->nr = max_pass; | |
193 | } | |
194 | ||
195 | /* | |
196 | * Avoid risking looping forever due to too large nr value: | |
197 | * never try to free more than twice the estimate number of | |
198 | * freeable entries. | |
199 | */ | |
200 | if (shrinker->nr > max_pass * 2) | |
201 | shrinker->nr = max_pass * 2; | |
1da177e4 LT |
202 | |
203 | total_scan = shrinker->nr; | |
204 | shrinker->nr = 0; | |
205 | ||
206 | while (total_scan >= SHRINK_BATCH) { | |
207 | long this_scan = SHRINK_BATCH; | |
208 | int shrink_ret; | |
b15e0905 | 209 | int nr_before; |
1da177e4 | 210 | |
b15e0905 | 211 | nr_before = (*shrinker->shrinker)(0, gfp_mask); |
1da177e4 LT |
212 | shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); |
213 | if (shrink_ret == -1) | |
214 | break; | |
b15e0905 | 215 | if (shrink_ret < nr_before) |
216 | ret += nr_before - shrink_ret; | |
1da177e4 LT |
217 | mod_page_state(slabs_scanned, this_scan); |
218 | total_scan -= this_scan; | |
219 | ||
220 | cond_resched(); | |
221 | } | |
222 | ||
223 | shrinker->nr += total_scan; | |
224 | } | |
225 | up_read(&shrinker_rwsem); | |
b15e0905 | 226 | return ret; |
1da177e4 LT |
227 | } |
228 | ||
229 | /* Called without lock on whether page is mapped, so answer is unstable */ | |
230 | static inline int page_mapping_inuse(struct page *page) | |
231 | { | |
232 | struct address_space *mapping; | |
233 | ||
234 | /* Page is in somebody's page tables. */ | |
235 | if (page_mapped(page)) | |
236 | return 1; | |
237 | ||
238 | /* Be more reluctant to reclaim swapcache than pagecache */ | |
239 | if (PageSwapCache(page)) | |
240 | return 1; | |
241 | ||
242 | mapping = page_mapping(page); | |
243 | if (!mapping) | |
244 | return 0; | |
245 | ||
246 | /* File is mmap'd by somebody? */ | |
247 | return mapping_mapped(mapping); | |
248 | } | |
249 | ||
250 | static inline int is_page_cache_freeable(struct page *page) | |
251 | { | |
252 | return page_count(page) - !!PagePrivate(page) == 2; | |
253 | } | |
254 | ||
255 | static int may_write_to_queue(struct backing_dev_info *bdi) | |
256 | { | |
930d9152 | 257 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
258 | return 1; |
259 | if (!bdi_write_congested(bdi)) | |
260 | return 1; | |
261 | if (bdi == current->backing_dev_info) | |
262 | return 1; | |
263 | return 0; | |
264 | } | |
265 | ||
266 | /* | |
267 | * We detected a synchronous write error writing a page out. Probably | |
268 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
269 | * fsync(), msync() or close(). | |
270 | * | |
271 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
272 | * prevents it from being freed up. But we have a ref on the page and once | |
273 | * that page is locked, the mapping is pinned. | |
274 | * | |
275 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
276 | * __GFP_FS. | |
277 | */ | |
278 | static void handle_write_error(struct address_space *mapping, | |
279 | struct page *page, int error) | |
280 | { | |
281 | lock_page(page); | |
282 | if (page_mapping(page) == mapping) { | |
283 | if (error == -ENOSPC) | |
284 | set_bit(AS_ENOSPC, &mapping->flags); | |
285 | else | |
286 | set_bit(AS_EIO, &mapping->flags); | |
287 | } | |
288 | unlock_page(page); | |
289 | } | |
290 | ||
291 | /* | |
1742f19f AM |
292 | * pageout is called by shrink_page_list() for each dirty page. |
293 | * Calls ->writepage(). | |
1da177e4 | 294 | */ |
b20a3503 | 295 | pageout_t pageout(struct page *page, struct address_space *mapping) |
1da177e4 LT |
296 | { |
297 | /* | |
298 | * If the page is dirty, only perform writeback if that write | |
299 | * will be non-blocking. To prevent this allocation from being | |
300 | * stalled by pagecache activity. But note that there may be | |
301 | * stalls if we need to run get_block(). We could test | |
302 | * PagePrivate for that. | |
303 | * | |
304 | * If this process is currently in generic_file_write() against | |
305 | * this page's queue, we can perform writeback even if that | |
306 | * will block. | |
307 | * | |
308 | * If the page is swapcache, write it back even if that would | |
309 | * block, for some throttling. This happens by accident, because | |
310 | * swap_backing_dev_info is bust: it doesn't reflect the | |
311 | * congestion state of the swapdevs. Easy to fix, if needed. | |
312 | * See swapfile.c:page_queue_congested(). | |
313 | */ | |
314 | if (!is_page_cache_freeable(page)) | |
315 | return PAGE_KEEP; | |
316 | if (!mapping) { | |
317 | /* | |
318 | * Some data journaling orphaned pages can have | |
319 | * page->mapping == NULL while being dirty with clean buffers. | |
320 | */ | |
323aca6c | 321 | if (PagePrivate(page)) { |
1da177e4 LT |
322 | if (try_to_free_buffers(page)) { |
323 | ClearPageDirty(page); | |
324 | printk("%s: orphaned page\n", __FUNCTION__); | |
325 | return PAGE_CLEAN; | |
326 | } | |
327 | } | |
328 | return PAGE_KEEP; | |
329 | } | |
330 | if (mapping->a_ops->writepage == NULL) | |
331 | return PAGE_ACTIVATE; | |
332 | if (!may_write_to_queue(mapping->backing_dev_info)) | |
333 | return PAGE_KEEP; | |
334 | ||
335 | if (clear_page_dirty_for_io(page)) { | |
336 | int res; | |
337 | struct writeback_control wbc = { | |
338 | .sync_mode = WB_SYNC_NONE, | |
339 | .nr_to_write = SWAP_CLUSTER_MAX, | |
340 | .nonblocking = 1, | |
341 | .for_reclaim = 1, | |
342 | }; | |
343 | ||
344 | SetPageReclaim(page); | |
345 | res = mapping->a_ops->writepage(page, &wbc); | |
346 | if (res < 0) | |
347 | handle_write_error(mapping, page, res); | |
994fc28c | 348 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
349 | ClearPageReclaim(page); |
350 | return PAGE_ACTIVATE; | |
351 | } | |
352 | if (!PageWriteback(page)) { | |
353 | /* synchronous write or broken a_ops? */ | |
354 | ClearPageReclaim(page); | |
355 | } | |
356 | ||
357 | return PAGE_SUCCESS; | |
358 | } | |
359 | ||
360 | return PAGE_CLEAN; | |
361 | } | |
362 | ||
b20a3503 | 363 | int remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc CL |
364 | { |
365 | if (!mapping) | |
366 | return 0; /* truncate got there first */ | |
367 | ||
368 | write_lock_irq(&mapping->tree_lock); | |
369 | ||
370 | /* | |
371 | * The non-racy check for busy page. It is critical to check | |
372 | * PageDirty _after_ making sure that the page is freeable and | |
373 | * not in use by anybody. (pagecache + us == 2) | |
374 | */ | |
375 | if (unlikely(page_count(page) != 2)) | |
376 | goto cannot_free; | |
377 | smp_rmb(); | |
378 | if (unlikely(PageDirty(page))) | |
379 | goto cannot_free; | |
380 | ||
381 | if (PageSwapCache(page)) { | |
382 | swp_entry_t swap = { .val = page_private(page) }; | |
383 | __delete_from_swap_cache(page); | |
384 | write_unlock_irq(&mapping->tree_lock); | |
385 | swap_free(swap); | |
386 | __put_page(page); /* The pagecache ref */ | |
387 | return 1; | |
388 | } | |
389 | ||
390 | __remove_from_page_cache(page); | |
391 | write_unlock_irq(&mapping->tree_lock); | |
392 | __put_page(page); | |
393 | return 1; | |
394 | ||
395 | cannot_free: | |
396 | write_unlock_irq(&mapping->tree_lock); | |
397 | return 0; | |
398 | } | |
399 | ||
1da177e4 | 400 | /* |
1742f19f | 401 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 402 | */ |
1742f19f AM |
403 | static unsigned long shrink_page_list(struct list_head *page_list, |
404 | struct scan_control *sc) | |
1da177e4 LT |
405 | { |
406 | LIST_HEAD(ret_pages); | |
407 | struct pagevec freed_pvec; | |
408 | int pgactivate = 0; | |
05ff5137 | 409 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
410 | |
411 | cond_resched(); | |
412 | ||
413 | pagevec_init(&freed_pvec, 1); | |
414 | while (!list_empty(page_list)) { | |
415 | struct address_space *mapping; | |
416 | struct page *page; | |
417 | int may_enter_fs; | |
418 | int referenced; | |
419 | ||
420 | cond_resched(); | |
421 | ||
422 | page = lru_to_page(page_list); | |
423 | list_del(&page->lru); | |
424 | ||
425 | if (TestSetPageLocked(page)) | |
426 | goto keep; | |
427 | ||
428 | BUG_ON(PageActive(page)); | |
429 | ||
430 | sc->nr_scanned++; | |
80e43426 CL |
431 | |
432 | if (!sc->may_swap && page_mapped(page)) | |
433 | goto keep_locked; | |
434 | ||
1da177e4 LT |
435 | /* Double the slab pressure for mapped and swapcache pages */ |
436 | if (page_mapped(page) || PageSwapCache(page)) | |
437 | sc->nr_scanned++; | |
438 | ||
439 | if (PageWriteback(page)) | |
440 | goto keep_locked; | |
441 | ||
f7b7fd8f | 442 | referenced = page_referenced(page, 1); |
1da177e4 LT |
443 | /* In active use or really unfreeable? Activate it. */ |
444 | if (referenced && page_mapping_inuse(page)) | |
445 | goto activate_locked; | |
446 | ||
447 | #ifdef CONFIG_SWAP | |
448 | /* | |
449 | * Anonymous process memory has backing store? | |
450 | * Try to allocate it some swap space here. | |
451 | */ | |
6e5ef1a9 | 452 | if (PageAnon(page) && !PageSwapCache(page)) |
1480a540 | 453 | if (!add_to_swap(page, GFP_ATOMIC)) |
1da177e4 | 454 | goto activate_locked; |
1da177e4 LT |
455 | #endif /* CONFIG_SWAP */ |
456 | ||
457 | mapping = page_mapping(page); | |
458 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | |
459 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
460 | ||
461 | /* | |
462 | * The page is mapped into the page tables of one or more | |
463 | * processes. Try to unmap it here. | |
464 | */ | |
465 | if (page_mapped(page) && mapping) { | |
a48d07af | 466 | switch (try_to_unmap(page, 0)) { |
1da177e4 LT |
467 | case SWAP_FAIL: |
468 | goto activate_locked; | |
469 | case SWAP_AGAIN: | |
470 | goto keep_locked; | |
471 | case SWAP_SUCCESS: | |
472 | ; /* try to free the page below */ | |
473 | } | |
474 | } | |
475 | ||
476 | if (PageDirty(page)) { | |
477 | if (referenced) | |
478 | goto keep_locked; | |
479 | if (!may_enter_fs) | |
480 | goto keep_locked; | |
52a8363e | 481 | if (!sc->may_writepage) |
1da177e4 LT |
482 | goto keep_locked; |
483 | ||
484 | /* Page is dirty, try to write it out here */ | |
485 | switch(pageout(page, mapping)) { | |
486 | case PAGE_KEEP: | |
487 | goto keep_locked; | |
488 | case PAGE_ACTIVATE: | |
489 | goto activate_locked; | |
490 | case PAGE_SUCCESS: | |
491 | if (PageWriteback(page) || PageDirty(page)) | |
492 | goto keep; | |
493 | /* | |
494 | * A synchronous write - probably a ramdisk. Go | |
495 | * ahead and try to reclaim the page. | |
496 | */ | |
497 | if (TestSetPageLocked(page)) | |
498 | goto keep; | |
499 | if (PageDirty(page) || PageWriteback(page)) | |
500 | goto keep_locked; | |
501 | mapping = page_mapping(page); | |
502 | case PAGE_CLEAN: | |
503 | ; /* try to free the page below */ | |
504 | } | |
505 | } | |
506 | ||
507 | /* | |
508 | * If the page has buffers, try to free the buffer mappings | |
509 | * associated with this page. If we succeed we try to free | |
510 | * the page as well. | |
511 | * | |
512 | * We do this even if the page is PageDirty(). | |
513 | * try_to_release_page() does not perform I/O, but it is | |
514 | * possible for a page to have PageDirty set, but it is actually | |
515 | * clean (all its buffers are clean). This happens if the | |
516 | * buffers were written out directly, with submit_bh(). ext3 | |
517 | * will do this, as well as the blockdev mapping. | |
518 | * try_to_release_page() will discover that cleanness and will | |
519 | * drop the buffers and mark the page clean - it can be freed. | |
520 | * | |
521 | * Rarely, pages can have buffers and no ->mapping. These are | |
522 | * the pages which were not successfully invalidated in | |
523 | * truncate_complete_page(). We try to drop those buffers here | |
524 | * and if that worked, and the page is no longer mapped into | |
525 | * process address space (page_count == 1) it can be freed. | |
526 | * Otherwise, leave the page on the LRU so it is swappable. | |
527 | */ | |
528 | if (PagePrivate(page)) { | |
529 | if (!try_to_release_page(page, sc->gfp_mask)) | |
530 | goto activate_locked; | |
531 | if (!mapping && page_count(page) == 1) | |
532 | goto free_it; | |
533 | } | |
534 | ||
49d2e9cc CL |
535 | if (!remove_mapping(mapping, page)) |
536 | goto keep_locked; | |
1da177e4 LT |
537 | |
538 | free_it: | |
539 | unlock_page(page); | |
05ff5137 | 540 | nr_reclaimed++; |
1da177e4 LT |
541 | if (!pagevec_add(&freed_pvec, page)) |
542 | __pagevec_release_nonlru(&freed_pvec); | |
543 | continue; | |
544 | ||
545 | activate_locked: | |
546 | SetPageActive(page); | |
547 | pgactivate++; | |
548 | keep_locked: | |
549 | unlock_page(page); | |
550 | keep: | |
551 | list_add(&page->lru, &ret_pages); | |
552 | BUG_ON(PageLRU(page)); | |
553 | } | |
554 | list_splice(&ret_pages, page_list); | |
555 | if (pagevec_count(&freed_pvec)) | |
556 | __pagevec_release_nonlru(&freed_pvec); | |
557 | mod_page_state(pgactivate, pgactivate); | |
05ff5137 | 558 | return nr_reclaimed; |
1da177e4 LT |
559 | } |
560 | ||
561 | /* | |
562 | * zone->lru_lock is heavily contended. Some of the functions that | |
563 | * shrink the lists perform better by taking out a batch of pages | |
564 | * and working on them outside the LRU lock. | |
565 | * | |
566 | * For pagecache intensive workloads, this function is the hottest | |
567 | * spot in the kernel (apart from copy_*_user functions). | |
568 | * | |
569 | * Appropriate locks must be held before calling this function. | |
570 | * | |
571 | * @nr_to_scan: The number of pages to look through on the list. | |
572 | * @src: The LRU list to pull pages off. | |
573 | * @dst: The temp list to put pages on to. | |
574 | * @scanned: The number of pages that were scanned. | |
575 | * | |
576 | * returns how many pages were moved onto *@dst. | |
577 | */ | |
69e05944 AM |
578 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
579 | struct list_head *src, struct list_head *dst, | |
580 | unsigned long *scanned) | |
1da177e4 | 581 | { |
69e05944 | 582 | unsigned long nr_taken = 0; |
1da177e4 | 583 | struct page *page; |
c9b02d97 | 584 | unsigned long scan; |
1da177e4 | 585 | |
c9b02d97 | 586 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
7c8ee9a8 | 587 | struct list_head *target; |
1da177e4 LT |
588 | page = lru_to_page(src); |
589 | prefetchw_prev_lru_page(page, src, flags); | |
590 | ||
8d438f96 NP |
591 | BUG_ON(!PageLRU(page)); |
592 | ||
053837fc | 593 | list_del(&page->lru); |
7c8ee9a8 NP |
594 | target = src; |
595 | if (likely(get_page_unless_zero(page))) { | |
053837fc | 596 | /* |
7c8ee9a8 NP |
597 | * Be careful not to clear PageLRU until after we're |
598 | * sure the page is not being freed elsewhere -- the | |
599 | * page release code relies on it. | |
053837fc | 600 | */ |
7c8ee9a8 NP |
601 | ClearPageLRU(page); |
602 | target = dst; | |
603 | nr_taken++; | |
604 | } /* else it is being freed elsewhere */ | |
46453a6e | 605 | |
7c8ee9a8 | 606 | list_add(&page->lru, target); |
1da177e4 LT |
607 | } |
608 | ||
609 | *scanned = scan; | |
610 | return nr_taken; | |
611 | } | |
612 | ||
613 | /* | |
1742f19f AM |
614 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
615 | * of reclaimed pages | |
1da177e4 | 616 | */ |
1742f19f AM |
617 | static unsigned long shrink_inactive_list(unsigned long max_scan, |
618 | struct zone *zone, struct scan_control *sc) | |
1da177e4 LT |
619 | { |
620 | LIST_HEAD(page_list); | |
621 | struct pagevec pvec; | |
69e05944 | 622 | unsigned long nr_scanned = 0; |
05ff5137 | 623 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
624 | |
625 | pagevec_init(&pvec, 1); | |
626 | ||
627 | lru_add_drain(); | |
628 | spin_lock_irq(&zone->lru_lock); | |
69e05944 | 629 | do { |
1da177e4 | 630 | struct page *page; |
69e05944 AM |
631 | unsigned long nr_taken; |
632 | unsigned long nr_scan; | |
633 | unsigned long nr_freed; | |
1da177e4 LT |
634 | |
635 | nr_taken = isolate_lru_pages(sc->swap_cluster_max, | |
636 | &zone->inactive_list, | |
637 | &page_list, &nr_scan); | |
638 | zone->nr_inactive -= nr_taken; | |
639 | zone->pages_scanned += nr_scan; | |
640 | spin_unlock_irq(&zone->lru_lock); | |
641 | ||
69e05944 | 642 | nr_scanned += nr_scan; |
1742f19f | 643 | nr_freed = shrink_page_list(&page_list, sc); |
05ff5137 | 644 | nr_reclaimed += nr_freed; |
a74609fa NP |
645 | local_irq_disable(); |
646 | if (current_is_kswapd()) { | |
647 | __mod_page_state_zone(zone, pgscan_kswapd, nr_scan); | |
648 | __mod_page_state(kswapd_steal, nr_freed); | |
649 | } else | |
650 | __mod_page_state_zone(zone, pgscan_direct, nr_scan); | |
651 | __mod_page_state_zone(zone, pgsteal, nr_freed); | |
652 | ||
fb8d14e1 WF |
653 | if (nr_taken == 0) |
654 | goto done; | |
655 | ||
a74609fa | 656 | spin_lock(&zone->lru_lock); |
1da177e4 LT |
657 | /* |
658 | * Put back any unfreeable pages. | |
659 | */ | |
660 | while (!list_empty(&page_list)) { | |
661 | page = lru_to_page(&page_list); | |
8d438f96 NP |
662 | BUG_ON(PageLRU(page)); |
663 | SetPageLRU(page); | |
1da177e4 LT |
664 | list_del(&page->lru); |
665 | if (PageActive(page)) | |
666 | add_page_to_active_list(zone, page); | |
667 | else | |
668 | add_page_to_inactive_list(zone, page); | |
669 | if (!pagevec_add(&pvec, page)) { | |
670 | spin_unlock_irq(&zone->lru_lock); | |
671 | __pagevec_release(&pvec); | |
672 | spin_lock_irq(&zone->lru_lock); | |
673 | } | |
674 | } | |
69e05944 | 675 | } while (nr_scanned < max_scan); |
fb8d14e1 | 676 | spin_unlock(&zone->lru_lock); |
1da177e4 | 677 | done: |
fb8d14e1 | 678 | local_irq_enable(); |
1da177e4 | 679 | pagevec_release(&pvec); |
05ff5137 | 680 | return nr_reclaimed; |
1da177e4 LT |
681 | } |
682 | ||
683 | /* | |
684 | * This moves pages from the active list to the inactive list. | |
685 | * | |
686 | * We move them the other way if the page is referenced by one or more | |
687 | * processes, from rmap. | |
688 | * | |
689 | * If the pages are mostly unmapped, the processing is fast and it is | |
690 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
691 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
692 | * should drop zone->lru_lock around each page. It's impossible to balance | |
693 | * this, so instead we remove the pages from the LRU while processing them. | |
694 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
695 | * nobody will play with that bit on a non-LRU page. | |
696 | * | |
697 | * The downside is that we have to touch page->_count against each page. | |
698 | * But we had to alter page->flags anyway. | |
699 | */ | |
1742f19f AM |
700 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, |
701 | struct scan_control *sc) | |
1da177e4 | 702 | { |
69e05944 | 703 | unsigned long pgmoved; |
1da177e4 | 704 | int pgdeactivate = 0; |
69e05944 | 705 | unsigned long pgscanned; |
1da177e4 LT |
706 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
707 | LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ | |
708 | LIST_HEAD(l_active); /* Pages to go onto the active_list */ | |
709 | struct page *page; | |
710 | struct pagevec pvec; | |
711 | int reclaim_mapped = 0; | |
2903fb16 | 712 | |
6e5ef1a9 | 713 | if (sc->may_swap) { |
2903fb16 CL |
714 | long mapped_ratio; |
715 | long distress; | |
716 | long swap_tendency; | |
717 | ||
718 | /* | |
719 | * `distress' is a measure of how much trouble we're having | |
720 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | |
721 | */ | |
722 | distress = 100 >> zone->prev_priority; | |
723 | ||
724 | /* | |
725 | * The point of this algorithm is to decide when to start | |
726 | * reclaiming mapped memory instead of just pagecache. Work out | |
727 | * how much memory | |
728 | * is mapped. | |
729 | */ | |
730 | mapped_ratio = (sc->nr_mapped * 100) / total_memory; | |
731 | ||
732 | /* | |
733 | * Now decide how much we really want to unmap some pages. The | |
734 | * mapped ratio is downgraded - just because there's a lot of | |
735 | * mapped memory doesn't necessarily mean that page reclaim | |
736 | * isn't succeeding. | |
737 | * | |
738 | * The distress ratio is important - we don't want to start | |
739 | * going oom. | |
740 | * | |
741 | * A 100% value of vm_swappiness overrides this algorithm | |
742 | * altogether. | |
743 | */ | |
744 | swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; | |
745 | ||
746 | /* | |
747 | * Now use this metric to decide whether to start moving mapped | |
748 | * memory onto the inactive list. | |
749 | */ | |
750 | if (swap_tendency >= 100) | |
751 | reclaim_mapped = 1; | |
752 | } | |
1da177e4 LT |
753 | |
754 | lru_add_drain(); | |
755 | spin_lock_irq(&zone->lru_lock); | |
756 | pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, | |
757 | &l_hold, &pgscanned); | |
758 | zone->pages_scanned += pgscanned; | |
759 | zone->nr_active -= pgmoved; | |
760 | spin_unlock_irq(&zone->lru_lock); | |
761 | ||
1da177e4 LT |
762 | while (!list_empty(&l_hold)) { |
763 | cond_resched(); | |
764 | page = lru_to_page(&l_hold); | |
765 | list_del(&page->lru); | |
766 | if (page_mapped(page)) { | |
767 | if (!reclaim_mapped || | |
768 | (total_swap_pages == 0 && PageAnon(page)) || | |
f7b7fd8f | 769 | page_referenced(page, 0)) { |
1da177e4 LT |
770 | list_add(&page->lru, &l_active); |
771 | continue; | |
772 | } | |
773 | } | |
774 | list_add(&page->lru, &l_inactive); | |
775 | } | |
776 | ||
777 | pagevec_init(&pvec, 1); | |
778 | pgmoved = 0; | |
779 | spin_lock_irq(&zone->lru_lock); | |
780 | while (!list_empty(&l_inactive)) { | |
781 | page = lru_to_page(&l_inactive); | |
782 | prefetchw_prev_lru_page(page, &l_inactive, flags); | |
8d438f96 NP |
783 | BUG_ON(PageLRU(page)); |
784 | SetPageLRU(page); | |
4c84cacf NP |
785 | BUG_ON(!PageActive(page)); |
786 | ClearPageActive(page); | |
787 | ||
1da177e4 LT |
788 | list_move(&page->lru, &zone->inactive_list); |
789 | pgmoved++; | |
790 | if (!pagevec_add(&pvec, page)) { | |
791 | zone->nr_inactive += pgmoved; | |
792 | spin_unlock_irq(&zone->lru_lock); | |
793 | pgdeactivate += pgmoved; | |
794 | pgmoved = 0; | |
795 | if (buffer_heads_over_limit) | |
796 | pagevec_strip(&pvec); | |
797 | __pagevec_release(&pvec); | |
798 | spin_lock_irq(&zone->lru_lock); | |
799 | } | |
800 | } | |
801 | zone->nr_inactive += pgmoved; | |
802 | pgdeactivate += pgmoved; | |
803 | if (buffer_heads_over_limit) { | |
804 | spin_unlock_irq(&zone->lru_lock); | |
805 | pagevec_strip(&pvec); | |
806 | spin_lock_irq(&zone->lru_lock); | |
807 | } | |
808 | ||
809 | pgmoved = 0; | |
810 | while (!list_empty(&l_active)) { | |
811 | page = lru_to_page(&l_active); | |
812 | prefetchw_prev_lru_page(page, &l_active, flags); | |
8d438f96 NP |
813 | BUG_ON(PageLRU(page)); |
814 | SetPageLRU(page); | |
1da177e4 LT |
815 | BUG_ON(!PageActive(page)); |
816 | list_move(&page->lru, &zone->active_list); | |
817 | pgmoved++; | |
818 | if (!pagevec_add(&pvec, page)) { | |
819 | zone->nr_active += pgmoved; | |
820 | pgmoved = 0; | |
821 | spin_unlock_irq(&zone->lru_lock); | |
822 | __pagevec_release(&pvec); | |
823 | spin_lock_irq(&zone->lru_lock); | |
824 | } | |
825 | } | |
826 | zone->nr_active += pgmoved; | |
a74609fa NP |
827 | spin_unlock(&zone->lru_lock); |
828 | ||
829 | __mod_page_state_zone(zone, pgrefill, pgscanned); | |
830 | __mod_page_state(pgdeactivate, pgdeactivate); | |
831 | local_irq_enable(); | |
1da177e4 | 832 | |
a74609fa | 833 | pagevec_release(&pvec); |
1da177e4 LT |
834 | } |
835 | ||
836 | /* | |
837 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
838 | */ | |
05ff5137 AM |
839 | static unsigned long shrink_zone(int priority, struct zone *zone, |
840 | struct scan_control *sc) | |
1da177e4 LT |
841 | { |
842 | unsigned long nr_active; | |
843 | unsigned long nr_inactive; | |
8695949a | 844 | unsigned long nr_to_scan; |
05ff5137 | 845 | unsigned long nr_reclaimed = 0; |
1da177e4 | 846 | |
53e9a615 MH |
847 | atomic_inc(&zone->reclaim_in_progress); |
848 | ||
1da177e4 LT |
849 | /* |
850 | * Add one to `nr_to_scan' just to make sure that the kernel will | |
851 | * slowly sift through the active list. | |
852 | */ | |
8695949a | 853 | zone->nr_scan_active += (zone->nr_active >> priority) + 1; |
1da177e4 LT |
854 | nr_active = zone->nr_scan_active; |
855 | if (nr_active >= sc->swap_cluster_max) | |
856 | zone->nr_scan_active = 0; | |
857 | else | |
858 | nr_active = 0; | |
859 | ||
8695949a | 860 | zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1; |
1da177e4 LT |
861 | nr_inactive = zone->nr_scan_inactive; |
862 | if (nr_inactive >= sc->swap_cluster_max) | |
863 | zone->nr_scan_inactive = 0; | |
864 | else | |
865 | nr_inactive = 0; | |
866 | ||
1da177e4 LT |
867 | while (nr_active || nr_inactive) { |
868 | if (nr_active) { | |
8695949a | 869 | nr_to_scan = min(nr_active, |
1da177e4 | 870 | (unsigned long)sc->swap_cluster_max); |
8695949a | 871 | nr_active -= nr_to_scan; |
1742f19f | 872 | shrink_active_list(nr_to_scan, zone, sc); |
1da177e4 LT |
873 | } |
874 | ||
875 | if (nr_inactive) { | |
8695949a | 876 | nr_to_scan = min(nr_inactive, |
1da177e4 | 877 | (unsigned long)sc->swap_cluster_max); |
8695949a | 878 | nr_inactive -= nr_to_scan; |
1742f19f AM |
879 | nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, |
880 | sc); | |
1da177e4 LT |
881 | } |
882 | } | |
883 | ||
884 | throttle_vm_writeout(); | |
53e9a615 MH |
885 | |
886 | atomic_dec(&zone->reclaim_in_progress); | |
05ff5137 | 887 | return nr_reclaimed; |
1da177e4 LT |
888 | } |
889 | ||
890 | /* | |
891 | * This is the direct reclaim path, for page-allocating processes. We only | |
892 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
893 | * request. | |
894 | * | |
895 | * We reclaim from a zone even if that zone is over pages_high. Because: | |
896 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | |
897 | * allocation or | |
898 | * b) The zones may be over pages_high but they must go *over* pages_high to | |
899 | * satisfy the `incremental min' zone defense algorithm. | |
900 | * | |
901 | * Returns the number of reclaimed pages. | |
902 | * | |
903 | * If a zone is deemed to be full of pinned pages then just give it a light | |
904 | * scan then give up on it. | |
905 | */ | |
1742f19f | 906 | static unsigned long shrink_zones(int priority, struct zone **zones, |
05ff5137 | 907 | struct scan_control *sc) |
1da177e4 | 908 | { |
05ff5137 | 909 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
910 | int i; |
911 | ||
912 | for (i = 0; zones[i] != NULL; i++) { | |
913 | struct zone *zone = zones[i]; | |
914 | ||
f3fe6512 | 915 | if (!populated_zone(zone)) |
1da177e4 LT |
916 | continue; |
917 | ||
9bf2229f | 918 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
919 | continue; |
920 | ||
8695949a CL |
921 | zone->temp_priority = priority; |
922 | if (zone->prev_priority > priority) | |
923 | zone->prev_priority = priority; | |
1da177e4 | 924 | |
8695949a | 925 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
1da177e4 LT |
926 | continue; /* Let kswapd poll it */ |
927 | ||
05ff5137 | 928 | nr_reclaimed += shrink_zone(priority, zone, sc); |
1da177e4 | 929 | } |
05ff5137 | 930 | return nr_reclaimed; |
1da177e4 LT |
931 | } |
932 | ||
933 | /* | |
934 | * This is the main entry point to direct page reclaim. | |
935 | * | |
936 | * If a full scan of the inactive list fails to free enough memory then we | |
937 | * are "out of memory" and something needs to be killed. | |
938 | * | |
939 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
940 | * high - the zone may be full of dirty or under-writeback pages, which this | |
941 | * caller can't do much about. We kick pdflush and take explicit naps in the | |
942 | * hope that some of these pages can be written. But if the allocating task | |
943 | * holds filesystem locks which prevent writeout this might not work, and the | |
944 | * allocation attempt will fail. | |
945 | */ | |
69e05944 | 946 | unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask) |
1da177e4 LT |
947 | { |
948 | int priority; | |
949 | int ret = 0; | |
69e05944 | 950 | unsigned long total_scanned = 0; |
05ff5137 | 951 | unsigned long nr_reclaimed = 0; |
1da177e4 | 952 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1da177e4 LT |
953 | unsigned long lru_pages = 0; |
954 | int i; | |
179e9639 AM |
955 | struct scan_control sc = { |
956 | .gfp_mask = gfp_mask, | |
957 | .may_writepage = !laptop_mode, | |
958 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
959 | .may_swap = 1, | |
960 | }; | |
1da177e4 LT |
961 | |
962 | inc_page_state(allocstall); | |
963 | ||
964 | for (i = 0; zones[i] != NULL; i++) { | |
965 | struct zone *zone = zones[i]; | |
966 | ||
9bf2229f | 967 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
968 | continue; |
969 | ||
970 | zone->temp_priority = DEF_PRIORITY; | |
971 | lru_pages += zone->nr_active + zone->nr_inactive; | |
972 | } | |
973 | ||
974 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
975 | sc.nr_mapped = read_page_state(nr_mapped); | |
976 | sc.nr_scanned = 0; | |
f7b7fd8f RR |
977 | if (!priority) |
978 | disable_swap_token(); | |
1742f19f | 979 | nr_reclaimed += shrink_zones(priority, zones, &sc); |
1da177e4 LT |
980 | shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); |
981 | if (reclaim_state) { | |
05ff5137 | 982 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 LT |
983 | reclaim_state->reclaimed_slab = 0; |
984 | } | |
985 | total_scanned += sc.nr_scanned; | |
05ff5137 | 986 | if (nr_reclaimed >= sc.swap_cluster_max) { |
1da177e4 LT |
987 | ret = 1; |
988 | goto out; | |
989 | } | |
990 | ||
991 | /* | |
992 | * Try to write back as many pages as we just scanned. This | |
993 | * tends to cause slow streaming writers to write data to the | |
994 | * disk smoothly, at the dirtying rate, which is nice. But | |
995 | * that's undesirable in laptop mode, where we *want* lumpy | |
996 | * writeout. So in laptop mode, write out the whole world. | |
997 | */ | |
179e9639 AM |
998 | if (total_scanned > sc.swap_cluster_max + |
999 | sc.swap_cluster_max / 2) { | |
687a21ce | 1000 | wakeup_pdflush(laptop_mode ? 0 : total_scanned); |
1da177e4 LT |
1001 | sc.may_writepage = 1; |
1002 | } | |
1003 | ||
1004 | /* Take a nap, wait for some writeback to complete */ | |
1005 | if (sc.nr_scanned && priority < DEF_PRIORITY - 2) | |
1006 | blk_congestion_wait(WRITE, HZ/10); | |
1007 | } | |
1008 | out: | |
1009 | for (i = 0; zones[i] != 0; i++) { | |
1010 | struct zone *zone = zones[i]; | |
1011 | ||
9bf2229f | 1012 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
1013 | continue; |
1014 | ||
1015 | zone->prev_priority = zone->temp_priority; | |
1016 | } | |
1017 | return ret; | |
1018 | } | |
1019 | ||
1020 | /* | |
1021 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
1022 | * they are all at pages_high. | |
1023 | * | |
1024 | * If `nr_pages' is non-zero then it is the number of pages which are to be | |
1025 | * reclaimed, regardless of the zone occupancies. This is a software suspend | |
1026 | * special. | |
1027 | * | |
1028 | * Returns the number of pages which were actually freed. | |
1029 | * | |
1030 | * There is special handling here for zones which are full of pinned pages. | |
1031 | * This can happen if the pages are all mlocked, or if they are all used by | |
1032 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
1033 | * What we do is to detect the case where all pages in the zone have been | |
1034 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
1035 | * dead and from now on, only perform a short scan. Basically we're polling | |
1036 | * the zone for when the problem goes away. | |
1037 | * | |
1038 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
1039 | * zones which have free_pages > pages_high, but once a zone is found to have | |
1040 | * free_pages <= pages_high, we scan that zone and the lower zones regardless | |
1041 | * of the number of free pages in the lower zones. This interoperates with | |
1042 | * the page allocator fallback scheme to ensure that aging of pages is balanced | |
1043 | * across the zones. | |
1044 | */ | |
69e05944 AM |
1045 | static unsigned long balance_pgdat(pg_data_t *pgdat, unsigned long nr_pages, |
1046 | int order) | |
1da177e4 | 1047 | { |
69e05944 | 1048 | unsigned long to_free = nr_pages; |
1da177e4 LT |
1049 | int all_zones_ok; |
1050 | int priority; | |
1051 | int i; | |
69e05944 | 1052 | unsigned long total_scanned; |
05ff5137 | 1053 | unsigned long nr_reclaimed; |
1da177e4 | 1054 | struct reclaim_state *reclaim_state = current->reclaim_state; |
179e9639 AM |
1055 | struct scan_control sc = { |
1056 | .gfp_mask = GFP_KERNEL, | |
1057 | .may_swap = 1, | |
1058 | .swap_cluster_max = nr_pages ? nr_pages : SWAP_CLUSTER_MAX, | |
1059 | }; | |
1da177e4 LT |
1060 | |
1061 | loop_again: | |
1062 | total_scanned = 0; | |
05ff5137 | 1063 | nr_reclaimed = 0; |
179e9639 | 1064 | sc.may_writepage = !laptop_mode, |
1da177e4 LT |
1065 | sc.nr_mapped = read_page_state(nr_mapped); |
1066 | ||
1067 | inc_page_state(pageoutrun); | |
1068 | ||
1069 | for (i = 0; i < pgdat->nr_zones; i++) { | |
1070 | struct zone *zone = pgdat->node_zones + i; | |
1071 | ||
1072 | zone->temp_priority = DEF_PRIORITY; | |
1073 | } | |
1074 | ||
1075 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
1076 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | |
1077 | unsigned long lru_pages = 0; | |
1078 | ||
f7b7fd8f RR |
1079 | /* The swap token gets in the way of swapout... */ |
1080 | if (!priority) | |
1081 | disable_swap_token(); | |
1082 | ||
1da177e4 LT |
1083 | all_zones_ok = 1; |
1084 | ||
1085 | if (nr_pages == 0) { | |
1086 | /* | |
1087 | * Scan in the highmem->dma direction for the highest | |
1088 | * zone which needs scanning | |
1089 | */ | |
1090 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
1091 | struct zone *zone = pgdat->node_zones + i; | |
1092 | ||
f3fe6512 | 1093 | if (!populated_zone(zone)) |
1da177e4 LT |
1094 | continue; |
1095 | ||
1096 | if (zone->all_unreclaimable && | |
1097 | priority != DEF_PRIORITY) | |
1098 | continue; | |
1099 | ||
1100 | if (!zone_watermark_ok(zone, order, | |
7fb1d9fc | 1101 | zone->pages_high, 0, 0)) { |
1da177e4 LT |
1102 | end_zone = i; |
1103 | goto scan; | |
1104 | } | |
1105 | } | |
1106 | goto out; | |
1107 | } else { | |
1108 | end_zone = pgdat->nr_zones - 1; | |
1109 | } | |
1110 | scan: | |
1111 | for (i = 0; i <= end_zone; i++) { | |
1112 | struct zone *zone = pgdat->node_zones + i; | |
1113 | ||
1114 | lru_pages += zone->nr_active + zone->nr_inactive; | |
1115 | } | |
1116 | ||
1117 | /* | |
1118 | * Now scan the zone in the dma->highmem direction, stopping | |
1119 | * at the last zone which needs scanning. | |
1120 | * | |
1121 | * We do this because the page allocator works in the opposite | |
1122 | * direction. This prevents the page allocator from allocating | |
1123 | * pages behind kswapd's direction of progress, which would | |
1124 | * cause too much scanning of the lower zones. | |
1125 | */ | |
1126 | for (i = 0; i <= end_zone; i++) { | |
1127 | struct zone *zone = pgdat->node_zones + i; | |
b15e0905 | 1128 | int nr_slab; |
1da177e4 | 1129 | |
f3fe6512 | 1130 | if (!populated_zone(zone)) |
1da177e4 LT |
1131 | continue; |
1132 | ||
1133 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | |
1134 | continue; | |
1135 | ||
1136 | if (nr_pages == 0) { /* Not software suspend */ | |
1137 | if (!zone_watermark_ok(zone, order, | |
7fb1d9fc | 1138 | zone->pages_high, end_zone, 0)) |
1da177e4 LT |
1139 | all_zones_ok = 0; |
1140 | } | |
1141 | zone->temp_priority = priority; | |
1142 | if (zone->prev_priority > priority) | |
1143 | zone->prev_priority = priority; | |
1144 | sc.nr_scanned = 0; | |
05ff5137 | 1145 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
1da177e4 | 1146 | reclaim_state->reclaimed_slab = 0; |
b15e0905 | 1147 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1148 | lru_pages); | |
05ff5137 | 1149 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 LT |
1150 | total_scanned += sc.nr_scanned; |
1151 | if (zone->all_unreclaimable) | |
1152 | continue; | |
b15e0905 | 1153 | if (nr_slab == 0 && zone->pages_scanned >= |
1154 | (zone->nr_active + zone->nr_inactive) * 4) | |
1da177e4 LT |
1155 | zone->all_unreclaimable = 1; |
1156 | /* | |
1157 | * If we've done a decent amount of scanning and | |
1158 | * the reclaim ratio is low, start doing writepage | |
1159 | * even in laptop mode | |
1160 | */ | |
1161 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | |
05ff5137 | 1162 | total_scanned > nr_reclaimed + nr_reclaimed / 2) |
1da177e4 LT |
1163 | sc.may_writepage = 1; |
1164 | } | |
05ff5137 | 1165 | if (nr_pages && to_free > nr_reclaimed) |
1da177e4 LT |
1166 | continue; /* swsusp: need to do more work */ |
1167 | if (all_zones_ok) | |
1168 | break; /* kswapd: all done */ | |
1169 | /* | |
1170 | * OK, kswapd is getting into trouble. Take a nap, then take | |
1171 | * another pass across the zones. | |
1172 | */ | |
1173 | if (total_scanned && priority < DEF_PRIORITY - 2) | |
1174 | blk_congestion_wait(WRITE, HZ/10); | |
1175 | ||
1176 | /* | |
1177 | * We do this so kswapd doesn't build up large priorities for | |
1178 | * example when it is freeing in parallel with allocators. It | |
1179 | * matches the direct reclaim path behaviour in terms of impact | |
1180 | * on zone->*_priority. | |
1181 | */ | |
05ff5137 | 1182 | if ((nr_reclaimed >= SWAP_CLUSTER_MAX) && !nr_pages) |
1da177e4 LT |
1183 | break; |
1184 | } | |
1185 | out: | |
1186 | for (i = 0; i < pgdat->nr_zones; i++) { | |
1187 | struct zone *zone = pgdat->node_zones + i; | |
1188 | ||
1189 | zone->prev_priority = zone->temp_priority; | |
1190 | } | |
1191 | if (!all_zones_ok) { | |
1192 | cond_resched(); | |
1193 | goto loop_again; | |
1194 | } | |
1195 | ||
05ff5137 | 1196 | return nr_reclaimed; |
1da177e4 LT |
1197 | } |
1198 | ||
1199 | /* | |
1200 | * The background pageout daemon, started as a kernel thread | |
1201 | * from the init process. | |
1202 | * | |
1203 | * This basically trickles out pages so that we have _some_ | |
1204 | * free memory available even if there is no other activity | |
1205 | * that frees anything up. This is needed for things like routing | |
1206 | * etc, where we otherwise might have all activity going on in | |
1207 | * asynchronous contexts that cannot page things out. | |
1208 | * | |
1209 | * If there are applications that are active memory-allocators | |
1210 | * (most normal use), this basically shouldn't matter. | |
1211 | */ | |
1212 | static int kswapd(void *p) | |
1213 | { | |
1214 | unsigned long order; | |
1215 | pg_data_t *pgdat = (pg_data_t*)p; | |
1216 | struct task_struct *tsk = current; | |
1217 | DEFINE_WAIT(wait); | |
1218 | struct reclaim_state reclaim_state = { | |
1219 | .reclaimed_slab = 0, | |
1220 | }; | |
1221 | cpumask_t cpumask; | |
1222 | ||
1223 | daemonize("kswapd%d", pgdat->node_id); | |
1224 | cpumask = node_to_cpumask(pgdat->node_id); | |
1225 | if (!cpus_empty(cpumask)) | |
1226 | set_cpus_allowed(tsk, cpumask); | |
1227 | current->reclaim_state = &reclaim_state; | |
1228 | ||
1229 | /* | |
1230 | * Tell the memory management that we're a "memory allocator", | |
1231 | * and that if we need more memory we should get access to it | |
1232 | * regardless (see "__alloc_pages()"). "kswapd" should | |
1233 | * never get caught in the normal page freeing logic. | |
1234 | * | |
1235 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
1236 | * you need a small amount of memory in order to be able to | |
1237 | * page out something else, and this flag essentially protects | |
1238 | * us from recursively trying to free more memory as we're | |
1239 | * trying to free the first piece of memory in the first place). | |
1240 | */ | |
930d9152 | 1241 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
1da177e4 LT |
1242 | |
1243 | order = 0; | |
1244 | for ( ; ; ) { | |
1245 | unsigned long new_order; | |
3e1d1d28 CL |
1246 | |
1247 | try_to_freeze(); | |
1da177e4 LT |
1248 | |
1249 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
1250 | new_order = pgdat->kswapd_max_order; | |
1251 | pgdat->kswapd_max_order = 0; | |
1252 | if (order < new_order) { | |
1253 | /* | |
1254 | * Don't sleep if someone wants a larger 'order' | |
1255 | * allocation | |
1256 | */ | |
1257 | order = new_order; | |
1258 | } else { | |
1259 | schedule(); | |
1260 | order = pgdat->kswapd_max_order; | |
1261 | } | |
1262 | finish_wait(&pgdat->kswapd_wait, &wait); | |
1263 | ||
1264 | balance_pgdat(pgdat, 0, order); | |
1265 | } | |
1266 | return 0; | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * A zone is low on free memory, so wake its kswapd task to service it. | |
1271 | */ | |
1272 | void wakeup_kswapd(struct zone *zone, int order) | |
1273 | { | |
1274 | pg_data_t *pgdat; | |
1275 | ||
f3fe6512 | 1276 | if (!populated_zone(zone)) |
1da177e4 LT |
1277 | return; |
1278 | ||
1279 | pgdat = zone->zone_pgdat; | |
7fb1d9fc | 1280 | if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) |
1da177e4 LT |
1281 | return; |
1282 | if (pgdat->kswapd_max_order < order) | |
1283 | pgdat->kswapd_max_order = order; | |
9bf2229f | 1284 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 | 1285 | return; |
8d0986e2 | 1286 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 1287 | return; |
8d0986e2 | 1288 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
1289 | } |
1290 | ||
1291 | #ifdef CONFIG_PM | |
1292 | /* | |
1293 | * Try to free `nr_pages' of memory, system-wide. Returns the number of freed | |
1294 | * pages. | |
1295 | */ | |
69e05944 | 1296 | unsigned long shrink_all_memory(unsigned long nr_pages) |
1da177e4 LT |
1297 | { |
1298 | pg_data_t *pgdat; | |
69e05944 AM |
1299 | unsigned long nr_to_free = nr_pages; |
1300 | unsigned long ret = 0; | |
248a0301 | 1301 | unsigned retry = 2; |
1da177e4 LT |
1302 | struct reclaim_state reclaim_state = { |
1303 | .reclaimed_slab = 0, | |
1304 | }; | |
1305 | ||
1306 | current->reclaim_state = &reclaim_state; | |
248a0301 | 1307 | repeat: |
ec936fc5 | 1308 | for_each_online_pgdat(pgdat) { |
69e05944 AM |
1309 | unsigned long freed; |
1310 | ||
1da177e4 LT |
1311 | freed = balance_pgdat(pgdat, nr_to_free, 0); |
1312 | ret += freed; | |
1313 | nr_to_free -= freed; | |
69e05944 | 1314 | if ((long)nr_to_free <= 0) |
1da177e4 LT |
1315 | break; |
1316 | } | |
248a0301 RW |
1317 | if (retry-- && ret < nr_pages) { |
1318 | blk_congestion_wait(WRITE, HZ/5); | |
1319 | goto repeat; | |
1320 | } | |
1da177e4 LT |
1321 | current->reclaim_state = NULL; |
1322 | return ret; | |
1323 | } | |
1324 | #endif | |
1325 | ||
1326 | #ifdef CONFIG_HOTPLUG_CPU | |
1327 | /* It's optimal to keep kswapds on the same CPUs as their memory, but | |
1328 | not required for correctness. So if the last cpu in a node goes | |
1329 | away, we get changed to run anywhere: as the first one comes back, | |
1330 | restore their cpu bindings. */ | |
83d722f7 | 1331 | static int cpu_callback(struct notifier_block *nfb, |
69e05944 | 1332 | unsigned long action, void *hcpu) |
1da177e4 LT |
1333 | { |
1334 | pg_data_t *pgdat; | |
1335 | cpumask_t mask; | |
1336 | ||
1337 | if (action == CPU_ONLINE) { | |
ec936fc5 | 1338 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
1339 | mask = node_to_cpumask(pgdat->node_id); |
1340 | if (any_online_cpu(mask) != NR_CPUS) | |
1341 | /* One of our CPUs online: restore mask */ | |
1342 | set_cpus_allowed(pgdat->kswapd, mask); | |
1343 | } | |
1344 | } | |
1345 | return NOTIFY_OK; | |
1346 | } | |
1347 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1348 | ||
1349 | static int __init kswapd_init(void) | |
1350 | { | |
1351 | pg_data_t *pgdat; | |
69e05944 | 1352 | |
1da177e4 | 1353 | swap_setup(); |
ec936fc5 | 1354 | for_each_online_pgdat(pgdat) { |
69e05944 AM |
1355 | pid_t pid; |
1356 | ||
1357 | pid = kernel_thread(kswapd, pgdat, CLONE_KERNEL); | |
1358 | BUG_ON(pid < 0); | |
05eeae20 | 1359 | read_lock(&tasklist_lock); |
69e05944 | 1360 | pgdat->kswapd = find_task_by_pid(pid); |
05eeae20 | 1361 | read_unlock(&tasklist_lock); |
69e05944 | 1362 | } |
1da177e4 LT |
1363 | total_memory = nr_free_pagecache_pages(); |
1364 | hotcpu_notifier(cpu_callback, 0); | |
1365 | return 0; | |
1366 | } | |
1367 | ||
1368 | module_init(kswapd_init) | |
9eeff239 CL |
1369 | |
1370 | #ifdef CONFIG_NUMA | |
1371 | /* | |
1372 | * Zone reclaim mode | |
1373 | * | |
1374 | * If non-zero call zone_reclaim when the number of free pages falls below | |
1375 | * the watermarks. | |
1376 | * | |
1377 | * In the future we may add flags to the mode. However, the page allocator | |
1378 | * should only have to check that zone_reclaim_mode != 0 before calling | |
1379 | * zone_reclaim(). | |
1380 | */ | |
1381 | int zone_reclaim_mode __read_mostly; | |
1382 | ||
1b2ffb78 CL |
1383 | #define RECLAIM_OFF 0 |
1384 | #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ | |
1385 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | |
1386 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
2a16e3f4 | 1387 | #define RECLAIM_SLAB (1<<3) /* Do a global slab shrink if the zone is out of memory */ |
1b2ffb78 | 1388 | |
9eeff239 CL |
1389 | /* |
1390 | * Mininum time between zone reclaim scans | |
1391 | */ | |
2a11ff06 | 1392 | int zone_reclaim_interval __read_mostly = 30*HZ; |
a92f7126 CL |
1393 | |
1394 | /* | |
1395 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
1396 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
1397 | * a zone. | |
1398 | */ | |
1399 | #define ZONE_RECLAIM_PRIORITY 4 | |
1400 | ||
9eeff239 CL |
1401 | /* |
1402 | * Try to free up some pages from this zone through reclaim. | |
1403 | */ | |
179e9639 | 1404 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 1405 | { |
7fb2d46d | 1406 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 1407 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
1408 | struct task_struct *p = current; |
1409 | struct reclaim_state reclaim_state; | |
8695949a | 1410 | int priority; |
05ff5137 | 1411 | unsigned long nr_reclaimed = 0; |
179e9639 AM |
1412 | struct scan_control sc = { |
1413 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
1414 | .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), | |
1415 | .nr_mapped = read_page_state(nr_mapped), | |
69e05944 AM |
1416 | .swap_cluster_max = max_t(unsigned long, nr_pages, |
1417 | SWAP_CLUSTER_MAX), | |
179e9639 AM |
1418 | .gfp_mask = gfp_mask, |
1419 | }; | |
9eeff239 CL |
1420 | |
1421 | disable_swap_token(); | |
9eeff239 | 1422 | cond_resched(); |
d4f7796e CL |
1423 | /* |
1424 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
1425 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
1426 | * and RECLAIM_SWAP. | |
1427 | */ | |
1428 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
9eeff239 CL |
1429 | reclaim_state.reclaimed_slab = 0; |
1430 | p->reclaim_state = &reclaim_state; | |
c84db23c | 1431 | |
a92f7126 CL |
1432 | /* |
1433 | * Free memory by calling shrink zone with increasing priorities | |
1434 | * until we have enough memory freed. | |
1435 | */ | |
8695949a | 1436 | priority = ZONE_RECLAIM_PRIORITY; |
a92f7126 | 1437 | do { |
05ff5137 | 1438 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
8695949a | 1439 | priority--; |
05ff5137 | 1440 | } while (priority >= 0 && nr_reclaimed < nr_pages); |
c84db23c | 1441 | |
05ff5137 | 1442 | if (nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) { |
2a16e3f4 | 1443 | /* |
7fb2d46d CL |
1444 | * shrink_slab() does not currently allow us to determine how |
1445 | * many pages were freed in this zone. So we just shake the slab | |
1446 | * a bit and then go off node for this particular allocation | |
1447 | * despite possibly having freed enough memory to allocate in | |
1448 | * this zone. If we freed local memory then the next | |
1449 | * allocations will be local again. | |
2a16e3f4 CL |
1450 | * |
1451 | * shrink_slab will free memory on all zones and may take | |
1452 | * a long time. | |
1453 | */ | |
1454 | shrink_slab(sc.nr_scanned, gfp_mask, order); | |
2a16e3f4 CL |
1455 | } |
1456 | ||
9eeff239 | 1457 | p->reclaim_state = NULL; |
d4f7796e | 1458 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
9eeff239 | 1459 | |
7fb2d46d CL |
1460 | if (nr_reclaimed == 0) { |
1461 | /* | |
1462 | * We were unable to reclaim enough pages to stay on node. We | |
1463 | * now allow off node accesses for a certain time period before | |
1464 | * trying again to reclaim pages from the local zone. | |
1465 | */ | |
9eeff239 | 1466 | zone->last_unsuccessful_zone_reclaim = jiffies; |
7fb2d46d | 1467 | } |
9eeff239 | 1468 | |
05ff5137 | 1469 | return nr_reclaimed >= nr_pages; |
9eeff239 | 1470 | } |
179e9639 AM |
1471 | |
1472 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
1473 | { | |
1474 | cpumask_t mask; | |
1475 | int node_id; | |
1476 | ||
1477 | /* | |
1478 | * Do not reclaim if there was a recent unsuccessful attempt at zone | |
1479 | * reclaim. In that case we let allocations go off node for the | |
1480 | * zone_reclaim_interval. Otherwise we would scan for each off-node | |
1481 | * page allocation. | |
1482 | */ | |
1483 | if (time_before(jiffies, | |
1484 | zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval)) | |
1485 | return 0; | |
1486 | ||
1487 | /* | |
1488 | * Avoid concurrent zone reclaims, do not reclaim in a zone that does | |
1489 | * not have reclaimable pages and if we should not delay the allocation | |
1490 | * then do not scan. | |
1491 | */ | |
1492 | if (!(gfp_mask & __GFP_WAIT) || | |
1493 | zone->all_unreclaimable || | |
1494 | atomic_read(&zone->reclaim_in_progress) > 0 || | |
1495 | (current->flags & PF_MEMALLOC)) | |
1496 | return 0; | |
1497 | ||
1498 | /* | |
1499 | * Only run zone reclaim on the local zone or on zones that do not | |
1500 | * have associated processors. This will favor the local processor | |
1501 | * over remote processors and spread off node memory allocations | |
1502 | * as wide as possible. | |
1503 | */ | |
1504 | node_id = zone->zone_pgdat->node_id; | |
1505 | mask = node_to_cpumask(node_id); | |
1506 | if (!cpus_empty(mask) && node_id != numa_node_id()) | |
1507 | return 0; | |
1508 | return __zone_reclaim(zone, gfp_mask, order); | |
1509 | } | |
9eeff239 | 1510 | #endif |