]>
Commit | Line | Data |
---|---|---|
bb44e5d1 IM |
1 | /* |
2 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
3 | * policies) | |
4 | */ | |
5 | ||
8f48894f PZ |
6 | #ifdef CONFIG_RT_GROUP_SCHED |
7 | ||
8 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | |
9 | ||
398a153b GH |
10 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
11 | { | |
8f48894f PZ |
12 | #ifdef CONFIG_SCHED_DEBUG |
13 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | |
14 | #endif | |
398a153b GH |
15 | return container_of(rt_se, struct task_struct, rt); |
16 | } | |
17 | ||
398a153b GH |
18 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
19 | { | |
20 | return rt_rq->rq; | |
21 | } | |
22 | ||
23 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
24 | { | |
25 | return rt_se->rt_rq; | |
26 | } | |
27 | ||
28 | #else /* CONFIG_RT_GROUP_SCHED */ | |
29 | ||
a1ba4d8b PZ |
30 | #define rt_entity_is_task(rt_se) (1) |
31 | ||
8f48894f PZ |
32 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
33 | { | |
34 | return container_of(rt_se, struct task_struct, rt); | |
35 | } | |
36 | ||
398a153b GH |
37 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
38 | { | |
39 | return container_of(rt_rq, struct rq, rt); | |
40 | } | |
41 | ||
42 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
43 | { | |
44 | struct task_struct *p = rt_task_of(rt_se); | |
45 | struct rq *rq = task_rq(p); | |
46 | ||
47 | return &rq->rt; | |
48 | } | |
49 | ||
50 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
51 | ||
4fd29176 | 52 | #ifdef CONFIG_SMP |
84de4274 | 53 | |
637f5085 | 54 | static inline int rt_overloaded(struct rq *rq) |
4fd29176 | 55 | { |
637f5085 | 56 | return atomic_read(&rq->rd->rto_count); |
4fd29176 | 57 | } |
84de4274 | 58 | |
4fd29176 SR |
59 | static inline void rt_set_overload(struct rq *rq) |
60 | { | |
1f11eb6a GH |
61 | if (!rq->online) |
62 | return; | |
63 | ||
c6c4927b | 64 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 SR |
65 | /* |
66 | * Make sure the mask is visible before we set | |
67 | * the overload count. That is checked to determine | |
68 | * if we should look at the mask. It would be a shame | |
69 | * if we looked at the mask, but the mask was not | |
70 | * updated yet. | |
71 | */ | |
72 | wmb(); | |
637f5085 | 73 | atomic_inc(&rq->rd->rto_count); |
4fd29176 | 74 | } |
84de4274 | 75 | |
4fd29176 SR |
76 | static inline void rt_clear_overload(struct rq *rq) |
77 | { | |
1f11eb6a GH |
78 | if (!rq->online) |
79 | return; | |
80 | ||
4fd29176 | 81 | /* the order here really doesn't matter */ |
637f5085 | 82 | atomic_dec(&rq->rd->rto_count); |
c6c4927b | 83 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 | 84 | } |
73fe6aae | 85 | |
398a153b | 86 | static void update_rt_migration(struct rt_rq *rt_rq) |
73fe6aae | 87 | { |
a1ba4d8b | 88 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
398a153b GH |
89 | if (!rt_rq->overloaded) { |
90 | rt_set_overload(rq_of_rt_rq(rt_rq)); | |
91 | rt_rq->overloaded = 1; | |
cdc8eb98 | 92 | } |
398a153b GH |
93 | } else if (rt_rq->overloaded) { |
94 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | |
95 | rt_rq->overloaded = 0; | |
637f5085 | 96 | } |
73fe6aae | 97 | } |
4fd29176 | 98 | |
398a153b GH |
99 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
100 | { | |
a1ba4d8b PZ |
101 | if (!rt_entity_is_task(rt_se)) |
102 | return; | |
103 | ||
104 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
105 | ||
106 | rt_rq->rt_nr_total++; | |
398a153b GH |
107 | if (rt_se->nr_cpus_allowed > 1) |
108 | rt_rq->rt_nr_migratory++; | |
109 | ||
110 | update_rt_migration(rt_rq); | |
111 | } | |
112 | ||
113 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
114 | { | |
a1ba4d8b PZ |
115 | if (!rt_entity_is_task(rt_se)) |
116 | return; | |
117 | ||
118 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; | |
119 | ||
120 | rt_rq->rt_nr_total--; | |
398a153b GH |
121 | if (rt_se->nr_cpus_allowed > 1) |
122 | rt_rq->rt_nr_migratory--; | |
123 | ||
124 | update_rt_migration(rt_rq); | |
125 | } | |
126 | ||
917b627d GH |
127 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
128 | { | |
129 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
130 | plist_node_init(&p->pushable_tasks, p->prio); | |
131 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
132 | } | |
133 | ||
134 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
135 | { | |
136 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
137 | } | |
138 | ||
bcf08df3 IM |
139 | static inline int has_pushable_tasks(struct rq *rq) |
140 | { | |
141 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
142 | } | |
143 | ||
917b627d GH |
144 | #else |
145 | ||
ceacc2c1 | 146 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
fa85ae24 | 147 | { |
6f505b16 PZ |
148 | } |
149 | ||
ceacc2c1 PZ |
150 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
151 | { | |
152 | } | |
153 | ||
b07430ac | 154 | static inline |
ceacc2c1 PZ |
155 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
156 | { | |
157 | } | |
158 | ||
398a153b | 159 | static inline |
ceacc2c1 PZ |
160 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
161 | { | |
162 | } | |
917b627d | 163 | |
4fd29176 SR |
164 | #endif /* CONFIG_SMP */ |
165 | ||
6f505b16 PZ |
166 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
167 | { | |
168 | return !list_empty(&rt_se->run_list); | |
169 | } | |
170 | ||
052f1dc7 | 171 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 172 | |
9f0c1e56 | 173 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
6f505b16 PZ |
174 | { |
175 | if (!rt_rq->tg) | |
9f0c1e56 | 176 | return RUNTIME_INF; |
6f505b16 | 177 | |
ac086bc2 PZ |
178 | return rt_rq->rt_runtime; |
179 | } | |
180 | ||
181 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
182 | { | |
183 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
6f505b16 PZ |
184 | } |
185 | ||
3d4b47b4 PZ |
186 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) |
187 | { | |
188 | list_add_rcu(&rt_rq->leaf_rt_rq_list, | |
189 | &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); | |
190 | } | |
191 | ||
192 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | |
193 | { | |
194 | list_del_rcu(&rt_rq->leaf_rt_rq_list); | |
195 | } | |
196 | ||
6f505b16 | 197 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
80f40ee4 | 198 | list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) |
6f505b16 | 199 | |
6f505b16 PZ |
200 | #define for_each_sched_rt_entity(rt_se) \ |
201 | for (; rt_se; rt_se = rt_se->parent) | |
202 | ||
203 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
204 | { | |
205 | return rt_se->my_q; | |
206 | } | |
207 | ||
37dad3fc | 208 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); |
6f505b16 PZ |
209 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se); |
210 | ||
9f0c1e56 | 211 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 212 | { |
74b7eb58 | 213 | int this_cpu = smp_processor_id(); |
f6121f4f | 214 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
74b7eb58 YZ |
215 | struct sched_rt_entity *rt_se; |
216 | ||
217 | rt_se = rt_rq->tg->rt_se[this_cpu]; | |
6f505b16 | 218 | |
f6121f4f DF |
219 | if (rt_rq->rt_nr_running) { |
220 | if (rt_se && !on_rt_rq(rt_se)) | |
37dad3fc | 221 | enqueue_rt_entity(rt_se, false); |
e864c499 | 222 | if (rt_rq->highest_prio.curr < curr->prio) |
1020387f | 223 | resched_task(curr); |
6f505b16 PZ |
224 | } |
225 | } | |
226 | ||
9f0c1e56 | 227 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 | 228 | { |
74b7eb58 YZ |
229 | int this_cpu = smp_processor_id(); |
230 | struct sched_rt_entity *rt_se; | |
231 | ||
232 | rt_se = rt_rq->tg->rt_se[this_cpu]; | |
6f505b16 PZ |
233 | |
234 | if (rt_se && on_rt_rq(rt_se)) | |
235 | dequeue_rt_entity(rt_se); | |
236 | } | |
237 | ||
23b0fdfc PZ |
238 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
239 | { | |
240 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
241 | } | |
242 | ||
243 | static int rt_se_boosted(struct sched_rt_entity *rt_se) | |
244 | { | |
245 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
246 | struct task_struct *p; | |
247 | ||
248 | if (rt_rq) | |
249 | return !!rt_rq->rt_nr_boosted; | |
250 | ||
251 | p = rt_task_of(rt_se); | |
252 | return p->prio != p->normal_prio; | |
253 | } | |
254 | ||
d0b27fa7 | 255 | #ifdef CONFIG_SMP |
c6c4927b | 256 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 PZ |
257 | { |
258 | return cpu_rq(smp_processor_id())->rd->span; | |
259 | } | |
6f505b16 | 260 | #else |
c6c4927b | 261 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 262 | { |
c6c4927b | 263 | return cpu_online_mask; |
d0b27fa7 PZ |
264 | } |
265 | #endif | |
6f505b16 | 266 | |
d0b27fa7 PZ |
267 | static inline |
268 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
6f505b16 | 269 | { |
d0b27fa7 PZ |
270 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
271 | } | |
9f0c1e56 | 272 | |
ac086bc2 PZ |
273 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
274 | { | |
275 | return &rt_rq->tg->rt_bandwidth; | |
276 | } | |
277 | ||
55e12e5e | 278 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
279 | |
280 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
281 | { | |
ac086bc2 PZ |
282 | return rt_rq->rt_runtime; |
283 | } | |
284 | ||
285 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
286 | { | |
287 | return ktime_to_ns(def_rt_bandwidth.rt_period); | |
6f505b16 PZ |
288 | } |
289 | ||
3d4b47b4 PZ |
290 | static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) |
291 | { | |
292 | } | |
293 | ||
294 | static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) | |
295 | { | |
296 | } | |
297 | ||
6f505b16 PZ |
298 | #define for_each_leaf_rt_rq(rt_rq, rq) \ |
299 | for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
300 | ||
6f505b16 PZ |
301 | #define for_each_sched_rt_entity(rt_se) \ |
302 | for (; rt_se; rt_se = NULL) | |
303 | ||
304 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
305 | { | |
306 | return NULL; | |
307 | } | |
308 | ||
9f0c1e56 | 309 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 310 | { |
f3ade837 JB |
311 | if (rt_rq->rt_nr_running) |
312 | resched_task(rq_of_rt_rq(rt_rq)->curr); | |
6f505b16 PZ |
313 | } |
314 | ||
9f0c1e56 | 315 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 PZ |
316 | { |
317 | } | |
318 | ||
23b0fdfc PZ |
319 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
320 | { | |
321 | return rt_rq->rt_throttled; | |
322 | } | |
d0b27fa7 | 323 | |
c6c4927b | 324 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 325 | { |
c6c4927b | 326 | return cpu_online_mask; |
d0b27fa7 PZ |
327 | } |
328 | ||
329 | static inline | |
330 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
331 | { | |
332 | return &cpu_rq(cpu)->rt; | |
333 | } | |
334 | ||
ac086bc2 PZ |
335 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
336 | { | |
337 | return &def_rt_bandwidth; | |
338 | } | |
339 | ||
55e12e5e | 340 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 341 | |
ac086bc2 | 342 | #ifdef CONFIG_SMP |
78333cdd PZ |
343 | /* |
344 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
345 | */ | |
b79f3833 | 346 | static int do_balance_runtime(struct rt_rq *rt_rq) |
ac086bc2 PZ |
347 | { |
348 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
349 | struct root_domain *rd = cpu_rq(smp_processor_id())->rd; | |
350 | int i, weight, more = 0; | |
351 | u64 rt_period; | |
352 | ||
c6c4927b | 353 | weight = cpumask_weight(rd->span); |
ac086bc2 | 354 | |
0986b11b | 355 | raw_spin_lock(&rt_b->rt_runtime_lock); |
ac086bc2 | 356 | rt_period = ktime_to_ns(rt_b->rt_period); |
c6c4927b | 357 | for_each_cpu(i, rd->span) { |
ac086bc2 PZ |
358 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
359 | s64 diff; | |
360 | ||
361 | if (iter == rt_rq) | |
362 | continue; | |
363 | ||
0986b11b | 364 | raw_spin_lock(&iter->rt_runtime_lock); |
78333cdd PZ |
365 | /* |
366 | * Either all rqs have inf runtime and there's nothing to steal | |
367 | * or __disable_runtime() below sets a specific rq to inf to | |
368 | * indicate its been disabled and disalow stealing. | |
369 | */ | |
7def2be1 PZ |
370 | if (iter->rt_runtime == RUNTIME_INF) |
371 | goto next; | |
372 | ||
78333cdd PZ |
373 | /* |
374 | * From runqueues with spare time, take 1/n part of their | |
375 | * spare time, but no more than our period. | |
376 | */ | |
ac086bc2 PZ |
377 | diff = iter->rt_runtime - iter->rt_time; |
378 | if (diff > 0) { | |
58838cf3 | 379 | diff = div_u64((u64)diff, weight); |
ac086bc2 PZ |
380 | if (rt_rq->rt_runtime + diff > rt_period) |
381 | diff = rt_period - rt_rq->rt_runtime; | |
382 | iter->rt_runtime -= diff; | |
383 | rt_rq->rt_runtime += diff; | |
384 | more = 1; | |
385 | if (rt_rq->rt_runtime == rt_period) { | |
0986b11b | 386 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 PZ |
387 | break; |
388 | } | |
389 | } | |
7def2be1 | 390 | next: |
0986b11b | 391 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 | 392 | } |
0986b11b | 393 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
ac086bc2 PZ |
394 | |
395 | return more; | |
396 | } | |
7def2be1 | 397 | |
78333cdd PZ |
398 | /* |
399 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
400 | */ | |
7def2be1 PZ |
401 | static void __disable_runtime(struct rq *rq) |
402 | { | |
403 | struct root_domain *rd = rq->rd; | |
404 | struct rt_rq *rt_rq; | |
405 | ||
406 | if (unlikely(!scheduler_running)) | |
407 | return; | |
408 | ||
409 | for_each_leaf_rt_rq(rt_rq, rq) { | |
410 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
411 | s64 want; | |
412 | int i; | |
413 | ||
0986b11b TG |
414 | raw_spin_lock(&rt_b->rt_runtime_lock); |
415 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
416 | /* |
417 | * Either we're all inf and nobody needs to borrow, or we're | |
418 | * already disabled and thus have nothing to do, or we have | |
419 | * exactly the right amount of runtime to take out. | |
420 | */ | |
7def2be1 PZ |
421 | if (rt_rq->rt_runtime == RUNTIME_INF || |
422 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
423 | goto balanced; | |
0986b11b | 424 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7def2be1 | 425 | |
78333cdd PZ |
426 | /* |
427 | * Calculate the difference between what we started out with | |
428 | * and what we current have, that's the amount of runtime | |
429 | * we lend and now have to reclaim. | |
430 | */ | |
7def2be1 PZ |
431 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
432 | ||
78333cdd PZ |
433 | /* |
434 | * Greedy reclaim, take back as much as we can. | |
435 | */ | |
c6c4927b | 436 | for_each_cpu(i, rd->span) { |
7def2be1 PZ |
437 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
438 | s64 diff; | |
439 | ||
78333cdd PZ |
440 | /* |
441 | * Can't reclaim from ourselves or disabled runqueues. | |
442 | */ | |
f1679d08 | 443 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
7def2be1 PZ |
444 | continue; |
445 | ||
0986b11b | 446 | raw_spin_lock(&iter->rt_runtime_lock); |
7def2be1 PZ |
447 | if (want > 0) { |
448 | diff = min_t(s64, iter->rt_runtime, want); | |
449 | iter->rt_runtime -= diff; | |
450 | want -= diff; | |
451 | } else { | |
452 | iter->rt_runtime -= want; | |
453 | want -= want; | |
454 | } | |
0986b11b | 455 | raw_spin_unlock(&iter->rt_runtime_lock); |
7def2be1 PZ |
456 | |
457 | if (!want) | |
458 | break; | |
459 | } | |
460 | ||
0986b11b | 461 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
78333cdd PZ |
462 | /* |
463 | * We cannot be left wanting - that would mean some runtime | |
464 | * leaked out of the system. | |
465 | */ | |
7def2be1 PZ |
466 | BUG_ON(want); |
467 | balanced: | |
78333cdd PZ |
468 | /* |
469 | * Disable all the borrow logic by pretending we have inf | |
470 | * runtime - in which case borrowing doesn't make sense. | |
471 | */ | |
7def2be1 | 472 | rt_rq->rt_runtime = RUNTIME_INF; |
0986b11b TG |
473 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
474 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
475 | } |
476 | } | |
477 | ||
478 | static void disable_runtime(struct rq *rq) | |
479 | { | |
480 | unsigned long flags; | |
481 | ||
05fa785c | 482 | raw_spin_lock_irqsave(&rq->lock, flags); |
7def2be1 | 483 | __disable_runtime(rq); |
05fa785c | 484 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7def2be1 PZ |
485 | } |
486 | ||
487 | static void __enable_runtime(struct rq *rq) | |
488 | { | |
7def2be1 PZ |
489 | struct rt_rq *rt_rq; |
490 | ||
491 | if (unlikely(!scheduler_running)) | |
492 | return; | |
493 | ||
78333cdd PZ |
494 | /* |
495 | * Reset each runqueue's bandwidth settings | |
496 | */ | |
7def2be1 PZ |
497 | for_each_leaf_rt_rq(rt_rq, rq) { |
498 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
499 | ||
0986b11b TG |
500 | raw_spin_lock(&rt_b->rt_runtime_lock); |
501 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
7def2be1 PZ |
502 | rt_rq->rt_runtime = rt_b->rt_runtime; |
503 | rt_rq->rt_time = 0; | |
baf25731 | 504 | rt_rq->rt_throttled = 0; |
0986b11b TG |
505 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
506 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
507 | } |
508 | } | |
509 | ||
510 | static void enable_runtime(struct rq *rq) | |
511 | { | |
512 | unsigned long flags; | |
513 | ||
05fa785c | 514 | raw_spin_lock_irqsave(&rq->lock, flags); |
7def2be1 | 515 | __enable_runtime(rq); |
05fa785c | 516 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
7def2be1 PZ |
517 | } |
518 | ||
eff6549b PZ |
519 | static int balance_runtime(struct rt_rq *rt_rq) |
520 | { | |
521 | int more = 0; | |
522 | ||
523 | if (rt_rq->rt_time > rt_rq->rt_runtime) { | |
0986b11b | 524 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
eff6549b | 525 | more = do_balance_runtime(rt_rq); |
0986b11b | 526 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
527 | } |
528 | ||
529 | return more; | |
530 | } | |
55e12e5e | 531 | #else /* !CONFIG_SMP */ |
eff6549b PZ |
532 | static inline int balance_runtime(struct rt_rq *rt_rq) |
533 | { | |
534 | return 0; | |
535 | } | |
55e12e5e | 536 | #endif /* CONFIG_SMP */ |
ac086bc2 | 537 | |
eff6549b PZ |
538 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
539 | { | |
540 | int i, idle = 1; | |
c6c4927b | 541 | const struct cpumask *span; |
eff6549b | 542 | |
0b148fa0 | 543 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
eff6549b PZ |
544 | return 1; |
545 | ||
546 | span = sched_rt_period_mask(); | |
c6c4927b | 547 | for_each_cpu(i, span) { |
eff6549b PZ |
548 | int enqueue = 0; |
549 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
550 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
551 | ||
05fa785c | 552 | raw_spin_lock(&rq->lock); |
eff6549b PZ |
553 | if (rt_rq->rt_time) { |
554 | u64 runtime; | |
555 | ||
0986b11b | 556 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
557 | if (rt_rq->rt_throttled) |
558 | balance_runtime(rt_rq); | |
559 | runtime = rt_rq->rt_runtime; | |
560 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
561 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
562 | rt_rq->rt_throttled = 0; | |
563 | enqueue = 1; | |
564 | } | |
565 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
566 | idle = 0; | |
0986b11b | 567 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
6c3df255 PZ |
568 | } else if (rt_rq->rt_nr_running) |
569 | idle = 0; | |
eff6549b PZ |
570 | |
571 | if (enqueue) | |
572 | sched_rt_rq_enqueue(rt_rq); | |
05fa785c | 573 | raw_spin_unlock(&rq->lock); |
eff6549b PZ |
574 | } |
575 | ||
576 | return idle; | |
577 | } | |
ac086bc2 | 578 | |
6f505b16 PZ |
579 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
580 | { | |
052f1dc7 | 581 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
582 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
583 | ||
584 | if (rt_rq) | |
e864c499 | 585 | return rt_rq->highest_prio.curr; |
6f505b16 PZ |
586 | #endif |
587 | ||
588 | return rt_task_of(rt_se)->prio; | |
589 | } | |
590 | ||
9f0c1e56 | 591 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
6f505b16 | 592 | { |
9f0c1e56 | 593 | u64 runtime = sched_rt_runtime(rt_rq); |
fa85ae24 | 594 | |
fa85ae24 | 595 | if (rt_rq->rt_throttled) |
23b0fdfc | 596 | return rt_rq_throttled(rt_rq); |
fa85ae24 | 597 | |
ac086bc2 PZ |
598 | if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) |
599 | return 0; | |
600 | ||
b79f3833 PZ |
601 | balance_runtime(rt_rq); |
602 | runtime = sched_rt_runtime(rt_rq); | |
603 | if (runtime == RUNTIME_INF) | |
604 | return 0; | |
ac086bc2 | 605 | |
9f0c1e56 | 606 | if (rt_rq->rt_time > runtime) { |
6f505b16 | 607 | rt_rq->rt_throttled = 1; |
23b0fdfc | 608 | if (rt_rq_throttled(rt_rq)) { |
9f0c1e56 | 609 | sched_rt_rq_dequeue(rt_rq); |
23b0fdfc PZ |
610 | return 1; |
611 | } | |
fa85ae24 PZ |
612 | } |
613 | ||
614 | return 0; | |
615 | } | |
616 | ||
bb44e5d1 IM |
617 | /* |
618 | * Update the current task's runtime statistics. Skip current tasks that | |
619 | * are not in our scheduling class. | |
620 | */ | |
a9957449 | 621 | static void update_curr_rt(struct rq *rq) |
bb44e5d1 IM |
622 | { |
623 | struct task_struct *curr = rq->curr; | |
6f505b16 PZ |
624 | struct sched_rt_entity *rt_se = &curr->rt; |
625 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
bb44e5d1 IM |
626 | u64 delta_exec; |
627 | ||
06c3bc65 | 628 | if (curr->sched_class != &rt_sched_class) |
bb44e5d1 IM |
629 | return; |
630 | ||
305e6835 | 631 | delta_exec = rq->clock_task - curr->se.exec_start; |
bb44e5d1 IM |
632 | if (unlikely((s64)delta_exec < 0)) |
633 | delta_exec = 0; | |
6cfb0d5d | 634 | |
41acab88 | 635 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); |
bb44e5d1 IM |
636 | |
637 | curr->se.sum_exec_runtime += delta_exec; | |
f06febc9 FM |
638 | account_group_exec_runtime(curr, delta_exec); |
639 | ||
305e6835 | 640 | curr->se.exec_start = rq->clock_task; |
d842de87 | 641 | cpuacct_charge(curr, delta_exec); |
fa85ae24 | 642 | |
e9e9250b PZ |
643 | sched_rt_avg_update(rq, delta_exec); |
644 | ||
0b148fa0 PZ |
645 | if (!rt_bandwidth_enabled()) |
646 | return; | |
647 | ||
354d60c2 DG |
648 | for_each_sched_rt_entity(rt_se) { |
649 | rt_rq = rt_rq_of_se(rt_se); | |
650 | ||
cc2991cf | 651 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
0986b11b | 652 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
cc2991cf PZ |
653 | rt_rq->rt_time += delta_exec; |
654 | if (sched_rt_runtime_exceeded(rt_rq)) | |
655 | resched_task(curr); | |
0986b11b | 656 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
cc2991cf | 657 | } |
354d60c2 | 658 | } |
bb44e5d1 IM |
659 | } |
660 | ||
398a153b | 661 | #if defined CONFIG_SMP |
e864c499 GH |
662 | |
663 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); | |
664 | ||
665 | static inline int next_prio(struct rq *rq) | |
63489e45 | 666 | { |
e864c499 GH |
667 | struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); |
668 | ||
669 | if (next && rt_prio(next->prio)) | |
670 | return next->prio; | |
671 | else | |
672 | return MAX_RT_PRIO; | |
673 | } | |
e864c499 | 674 | |
398a153b GH |
675 | static void |
676 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
63489e45 | 677 | { |
4d984277 | 678 | struct rq *rq = rq_of_rt_rq(rt_rq); |
1f11eb6a | 679 | |
398a153b | 680 | if (prio < prev_prio) { |
4d984277 | 681 | |
e864c499 GH |
682 | /* |
683 | * If the new task is higher in priority than anything on the | |
398a153b GH |
684 | * run-queue, we know that the previous high becomes our |
685 | * next-highest. | |
e864c499 | 686 | */ |
398a153b | 687 | rt_rq->highest_prio.next = prev_prio; |
1f11eb6a GH |
688 | |
689 | if (rq->online) | |
4d984277 | 690 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); |
1100ac91 | 691 | |
e864c499 GH |
692 | } else if (prio == rt_rq->highest_prio.curr) |
693 | /* | |
694 | * If the next task is equal in priority to the highest on | |
695 | * the run-queue, then we implicitly know that the next highest | |
696 | * task cannot be any lower than current | |
697 | */ | |
698 | rt_rq->highest_prio.next = prio; | |
699 | else if (prio < rt_rq->highest_prio.next) | |
700 | /* | |
701 | * Otherwise, we need to recompute next-highest | |
702 | */ | |
703 | rt_rq->highest_prio.next = next_prio(rq); | |
398a153b | 704 | } |
73fe6aae | 705 | |
398a153b GH |
706 | static void |
707 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
708 | { | |
709 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
d0b27fa7 | 710 | |
398a153b GH |
711 | if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) |
712 | rt_rq->highest_prio.next = next_prio(rq); | |
713 | ||
714 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) | |
715 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
63489e45 SR |
716 | } |
717 | ||
398a153b GH |
718 | #else /* CONFIG_SMP */ |
719 | ||
6f505b16 | 720 | static inline |
398a153b GH |
721 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
722 | static inline | |
723 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
724 | ||
725 | #endif /* CONFIG_SMP */ | |
6e0534f2 | 726 | |
052f1dc7 | 727 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
398a153b GH |
728 | static void |
729 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
730 | { | |
731 | int prev_prio = rt_rq->highest_prio.curr; | |
732 | ||
733 | if (prio < prev_prio) | |
734 | rt_rq->highest_prio.curr = prio; | |
735 | ||
736 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
737 | } | |
738 | ||
739 | static void | |
740 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
741 | { | |
742 | int prev_prio = rt_rq->highest_prio.curr; | |
743 | ||
6f505b16 | 744 | if (rt_rq->rt_nr_running) { |
764a9d6f | 745 | |
398a153b | 746 | WARN_ON(prio < prev_prio); |
764a9d6f | 747 | |
e864c499 | 748 | /* |
398a153b GH |
749 | * This may have been our highest task, and therefore |
750 | * we may have some recomputation to do | |
e864c499 | 751 | */ |
398a153b | 752 | if (prio == prev_prio) { |
e864c499 GH |
753 | struct rt_prio_array *array = &rt_rq->active; |
754 | ||
755 | rt_rq->highest_prio.curr = | |
764a9d6f | 756 | sched_find_first_bit(array->bitmap); |
e864c499 GH |
757 | } |
758 | ||
764a9d6f | 759 | } else |
e864c499 | 760 | rt_rq->highest_prio.curr = MAX_RT_PRIO; |
73fe6aae | 761 | |
398a153b GH |
762 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
763 | } | |
1f11eb6a | 764 | |
398a153b GH |
765 | #else |
766 | ||
767 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
768 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
769 | ||
770 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | |
6e0534f2 | 771 | |
052f1dc7 | 772 | #ifdef CONFIG_RT_GROUP_SCHED |
398a153b GH |
773 | |
774 | static void | |
775 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
776 | { | |
777 | if (rt_se_boosted(rt_se)) | |
778 | rt_rq->rt_nr_boosted++; | |
779 | ||
780 | if (rt_rq->tg) | |
781 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | |
782 | } | |
783 | ||
784 | static void | |
785 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
786 | { | |
23b0fdfc PZ |
787 | if (rt_se_boosted(rt_se)) |
788 | rt_rq->rt_nr_boosted--; | |
789 | ||
790 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
398a153b GH |
791 | } |
792 | ||
793 | #else /* CONFIG_RT_GROUP_SCHED */ | |
794 | ||
795 | static void | |
796 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
797 | { | |
798 | start_rt_bandwidth(&def_rt_bandwidth); | |
799 | } | |
800 | ||
801 | static inline | |
802 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
803 | ||
804 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
805 | ||
806 | static inline | |
807 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
808 | { | |
809 | int prio = rt_se_prio(rt_se); | |
810 | ||
811 | WARN_ON(!rt_prio(prio)); | |
812 | rt_rq->rt_nr_running++; | |
813 | ||
814 | inc_rt_prio(rt_rq, prio); | |
815 | inc_rt_migration(rt_se, rt_rq); | |
816 | inc_rt_group(rt_se, rt_rq); | |
817 | } | |
818 | ||
819 | static inline | |
820 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
821 | { | |
822 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
823 | WARN_ON(!rt_rq->rt_nr_running); | |
824 | rt_rq->rt_nr_running--; | |
825 | ||
826 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
827 | dec_rt_migration(rt_se, rt_rq); | |
828 | dec_rt_group(rt_se, rt_rq); | |
63489e45 SR |
829 | } |
830 | ||
37dad3fc | 831 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
bb44e5d1 | 832 | { |
6f505b16 PZ |
833 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
834 | struct rt_prio_array *array = &rt_rq->active; | |
835 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
20b6331b | 836 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
bb44e5d1 | 837 | |
ad2a3f13 PZ |
838 | /* |
839 | * Don't enqueue the group if its throttled, or when empty. | |
840 | * The latter is a consequence of the former when a child group | |
841 | * get throttled and the current group doesn't have any other | |
842 | * active members. | |
843 | */ | |
844 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) | |
6f505b16 | 845 | return; |
63489e45 | 846 | |
3d4b47b4 PZ |
847 | if (!rt_rq->rt_nr_running) |
848 | list_add_leaf_rt_rq(rt_rq); | |
849 | ||
37dad3fc TG |
850 | if (head) |
851 | list_add(&rt_se->run_list, queue); | |
852 | else | |
853 | list_add_tail(&rt_se->run_list, queue); | |
6f505b16 | 854 | __set_bit(rt_se_prio(rt_se), array->bitmap); |
78f2c7db | 855 | |
6f505b16 PZ |
856 | inc_rt_tasks(rt_se, rt_rq); |
857 | } | |
858 | ||
ad2a3f13 | 859 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) |
6f505b16 PZ |
860 | { |
861 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
862 | struct rt_prio_array *array = &rt_rq->active; | |
863 | ||
864 | list_del_init(&rt_se->run_list); | |
865 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
866 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
867 | ||
868 | dec_rt_tasks(rt_se, rt_rq); | |
3d4b47b4 PZ |
869 | if (!rt_rq->rt_nr_running) |
870 | list_del_leaf_rt_rq(rt_rq); | |
6f505b16 PZ |
871 | } |
872 | ||
873 | /* | |
874 | * Because the prio of an upper entry depends on the lower | |
875 | * entries, we must remove entries top - down. | |
6f505b16 | 876 | */ |
ad2a3f13 | 877 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se) |
6f505b16 | 878 | { |
ad2a3f13 | 879 | struct sched_rt_entity *back = NULL; |
6f505b16 | 880 | |
58d6c2d7 PZ |
881 | for_each_sched_rt_entity(rt_se) { |
882 | rt_se->back = back; | |
883 | back = rt_se; | |
884 | } | |
885 | ||
886 | for (rt_se = back; rt_se; rt_se = rt_se->back) { | |
887 | if (on_rt_rq(rt_se)) | |
ad2a3f13 PZ |
888 | __dequeue_rt_entity(rt_se); |
889 | } | |
890 | } | |
891 | ||
37dad3fc | 892 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) |
ad2a3f13 PZ |
893 | { |
894 | dequeue_rt_stack(rt_se); | |
895 | for_each_sched_rt_entity(rt_se) | |
37dad3fc | 896 | __enqueue_rt_entity(rt_se, head); |
ad2a3f13 PZ |
897 | } |
898 | ||
899 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |
900 | { | |
901 | dequeue_rt_stack(rt_se); | |
902 | ||
903 | for_each_sched_rt_entity(rt_se) { | |
904 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
905 | ||
906 | if (rt_rq && rt_rq->rt_nr_running) | |
37dad3fc | 907 | __enqueue_rt_entity(rt_se, false); |
58d6c2d7 | 908 | } |
bb44e5d1 IM |
909 | } |
910 | ||
911 | /* | |
912 | * Adding/removing a task to/from a priority array: | |
913 | */ | |
ea87bb78 | 914 | static void |
371fd7e7 | 915 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
6f505b16 PZ |
916 | { |
917 | struct sched_rt_entity *rt_se = &p->rt; | |
918 | ||
371fd7e7 | 919 | if (flags & ENQUEUE_WAKEUP) |
6f505b16 PZ |
920 | rt_se->timeout = 0; |
921 | ||
371fd7e7 | 922 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); |
c09595f6 | 923 | |
917b627d GH |
924 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
925 | enqueue_pushable_task(rq, p); | |
6f505b16 PZ |
926 | } |
927 | ||
371fd7e7 | 928 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 929 | { |
6f505b16 | 930 | struct sched_rt_entity *rt_se = &p->rt; |
bb44e5d1 | 931 | |
f1e14ef6 | 932 | update_curr_rt(rq); |
ad2a3f13 | 933 | dequeue_rt_entity(rt_se); |
c09595f6 | 934 | |
917b627d | 935 | dequeue_pushable_task(rq, p); |
bb44e5d1 IM |
936 | } |
937 | ||
938 | /* | |
939 | * Put task to the end of the run list without the overhead of dequeue | |
940 | * followed by enqueue. | |
941 | */ | |
7ebefa8c DA |
942 | static void |
943 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
6f505b16 | 944 | { |
1cdad715 | 945 | if (on_rt_rq(rt_se)) { |
7ebefa8c DA |
946 | struct rt_prio_array *array = &rt_rq->active; |
947 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
948 | ||
949 | if (head) | |
950 | list_move(&rt_se->run_list, queue); | |
951 | else | |
952 | list_move_tail(&rt_se->run_list, queue); | |
1cdad715 | 953 | } |
6f505b16 PZ |
954 | } |
955 | ||
7ebefa8c | 956 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
bb44e5d1 | 957 | { |
6f505b16 PZ |
958 | struct sched_rt_entity *rt_se = &p->rt; |
959 | struct rt_rq *rt_rq; | |
bb44e5d1 | 960 | |
6f505b16 PZ |
961 | for_each_sched_rt_entity(rt_se) { |
962 | rt_rq = rt_rq_of_se(rt_se); | |
7ebefa8c | 963 | requeue_rt_entity(rt_rq, rt_se, head); |
6f505b16 | 964 | } |
bb44e5d1 IM |
965 | } |
966 | ||
6f505b16 | 967 | static void yield_task_rt(struct rq *rq) |
bb44e5d1 | 968 | { |
7ebefa8c | 969 | requeue_task_rt(rq, rq->curr, 0); |
bb44e5d1 IM |
970 | } |
971 | ||
e7693a36 | 972 | #ifdef CONFIG_SMP |
318e0893 GH |
973 | static int find_lowest_rq(struct task_struct *task); |
974 | ||
0017d735 PZ |
975 | static int |
976 | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | |
e7693a36 | 977 | { |
0763a660 | 978 | if (sd_flag != SD_BALANCE_WAKE) |
5f3edc1b PZ |
979 | return smp_processor_id(); |
980 | ||
318e0893 | 981 | /* |
e1f47d89 SR |
982 | * If the current task is an RT task, then |
983 | * try to see if we can wake this RT task up on another | |
984 | * runqueue. Otherwise simply start this RT task | |
985 | * on its current runqueue. | |
986 | * | |
43fa5460 SR |
987 | * We want to avoid overloading runqueues. If the woken |
988 | * task is a higher priority, then it will stay on this CPU | |
989 | * and the lower prio task should be moved to another CPU. | |
990 | * Even though this will probably make the lower prio task | |
991 | * lose its cache, we do not want to bounce a higher task | |
992 | * around just because it gave up its CPU, perhaps for a | |
993 | * lock? | |
994 | * | |
995 | * For equal prio tasks, we just let the scheduler sort it out. | |
318e0893 | 996 | */ |
17b3279b | 997 | if (unlikely(rt_task(rq->curr)) && |
b3bc211c SR |
998 | (rq->curr->rt.nr_cpus_allowed < 2 || |
999 | rq->curr->prio < p->prio) && | |
6f505b16 | 1000 | (p->rt.nr_cpus_allowed > 1)) { |
318e0893 GH |
1001 | int cpu = find_lowest_rq(p); |
1002 | ||
1003 | return (cpu == -1) ? task_cpu(p) : cpu; | |
1004 | } | |
1005 | ||
1006 | /* | |
1007 | * Otherwise, just let it ride on the affined RQ and the | |
1008 | * post-schedule router will push the preempted task away | |
1009 | */ | |
e7693a36 GH |
1010 | return task_cpu(p); |
1011 | } | |
7ebefa8c DA |
1012 | |
1013 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
1014 | { | |
7ebefa8c DA |
1015 | if (rq->curr->rt.nr_cpus_allowed == 1) |
1016 | return; | |
1017 | ||
24600ce8 | 1018 | if (p->rt.nr_cpus_allowed != 1 |
13b8bd0a RR |
1019 | && cpupri_find(&rq->rd->cpupri, p, NULL)) |
1020 | return; | |
24600ce8 | 1021 | |
13b8bd0a RR |
1022 | if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) |
1023 | return; | |
7ebefa8c DA |
1024 | |
1025 | /* | |
1026 | * There appears to be other cpus that can accept | |
1027 | * current and none to run 'p', so lets reschedule | |
1028 | * to try and push current away: | |
1029 | */ | |
1030 | requeue_task_rt(rq, p, 1); | |
1031 | resched_task(rq->curr); | |
1032 | } | |
1033 | ||
e7693a36 GH |
1034 | #endif /* CONFIG_SMP */ |
1035 | ||
bb44e5d1 IM |
1036 | /* |
1037 | * Preempt the current task with a newly woken task if needed: | |
1038 | */ | |
7d478721 | 1039 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1040 | { |
45c01e82 | 1041 | if (p->prio < rq->curr->prio) { |
bb44e5d1 | 1042 | resched_task(rq->curr); |
45c01e82 GH |
1043 | return; |
1044 | } | |
1045 | ||
1046 | #ifdef CONFIG_SMP | |
1047 | /* | |
1048 | * If: | |
1049 | * | |
1050 | * - the newly woken task is of equal priority to the current task | |
1051 | * - the newly woken task is non-migratable while current is migratable | |
1052 | * - current will be preempted on the next reschedule | |
1053 | * | |
1054 | * we should check to see if current can readily move to a different | |
1055 | * cpu. If so, we will reschedule to allow the push logic to try | |
1056 | * to move current somewhere else, making room for our non-migratable | |
1057 | * task. | |
1058 | */ | |
7ebefa8c DA |
1059 | if (p->prio == rq->curr->prio && !need_resched()) |
1060 | check_preempt_equal_prio(rq, p); | |
45c01e82 | 1061 | #endif |
bb44e5d1 IM |
1062 | } |
1063 | ||
6f505b16 PZ |
1064 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
1065 | struct rt_rq *rt_rq) | |
bb44e5d1 | 1066 | { |
6f505b16 PZ |
1067 | struct rt_prio_array *array = &rt_rq->active; |
1068 | struct sched_rt_entity *next = NULL; | |
bb44e5d1 IM |
1069 | struct list_head *queue; |
1070 | int idx; | |
1071 | ||
1072 | idx = sched_find_first_bit(array->bitmap); | |
6f505b16 | 1073 | BUG_ON(idx >= MAX_RT_PRIO); |
bb44e5d1 IM |
1074 | |
1075 | queue = array->queue + idx; | |
6f505b16 | 1076 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
326587b8 | 1077 | |
6f505b16 PZ |
1078 | return next; |
1079 | } | |
bb44e5d1 | 1080 | |
917b627d | 1081 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
6f505b16 PZ |
1082 | { |
1083 | struct sched_rt_entity *rt_se; | |
1084 | struct task_struct *p; | |
1085 | struct rt_rq *rt_rq; | |
bb44e5d1 | 1086 | |
6f505b16 PZ |
1087 | rt_rq = &rq->rt; |
1088 | ||
1089 | if (unlikely(!rt_rq->rt_nr_running)) | |
1090 | return NULL; | |
1091 | ||
23b0fdfc | 1092 | if (rt_rq_throttled(rt_rq)) |
6f505b16 PZ |
1093 | return NULL; |
1094 | ||
1095 | do { | |
1096 | rt_se = pick_next_rt_entity(rq, rt_rq); | |
326587b8 | 1097 | BUG_ON(!rt_se); |
6f505b16 PZ |
1098 | rt_rq = group_rt_rq(rt_se); |
1099 | } while (rt_rq); | |
1100 | ||
1101 | p = rt_task_of(rt_se); | |
305e6835 | 1102 | p->se.exec_start = rq->clock_task; |
917b627d GH |
1103 | |
1104 | return p; | |
1105 | } | |
1106 | ||
1107 | static struct task_struct *pick_next_task_rt(struct rq *rq) | |
1108 | { | |
1109 | struct task_struct *p = _pick_next_task_rt(rq); | |
1110 | ||
1111 | /* The running task is never eligible for pushing */ | |
1112 | if (p) | |
1113 | dequeue_pushable_task(rq, p); | |
1114 | ||
bcf08df3 | 1115 | #ifdef CONFIG_SMP |
3f029d3c GH |
1116 | /* |
1117 | * We detect this state here so that we can avoid taking the RQ | |
1118 | * lock again later if there is no need to push | |
1119 | */ | |
1120 | rq->post_schedule = has_pushable_tasks(rq); | |
bcf08df3 | 1121 | #endif |
3f029d3c | 1122 | |
6f505b16 | 1123 | return p; |
bb44e5d1 IM |
1124 | } |
1125 | ||
31ee529c | 1126 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
bb44e5d1 | 1127 | { |
f1e14ef6 | 1128 | update_curr_rt(rq); |
bb44e5d1 | 1129 | p->se.exec_start = 0; |
917b627d GH |
1130 | |
1131 | /* | |
1132 | * The previous task needs to be made eligible for pushing | |
1133 | * if it is still active | |
1134 | */ | |
1135 | if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) | |
1136 | enqueue_pushable_task(rq, p); | |
bb44e5d1 IM |
1137 | } |
1138 | ||
681f3e68 | 1139 | #ifdef CONFIG_SMP |
6f505b16 | 1140 | |
e8fa1362 SR |
1141 | /* Only try algorithms three times */ |
1142 | #define RT_MAX_TRIES 3 | |
1143 | ||
e8fa1362 SR |
1144 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); |
1145 | ||
f65eda4f SR |
1146 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1147 | { | |
1148 | if (!task_running(rq, p) && | |
96f874e2 | 1149 | (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && |
6f505b16 | 1150 | (p->rt.nr_cpus_allowed > 1)) |
f65eda4f SR |
1151 | return 1; |
1152 | return 0; | |
1153 | } | |
1154 | ||
e8fa1362 | 1155 | /* Return the second highest RT task, NULL otherwise */ |
79064fbf | 1156 | static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) |
e8fa1362 | 1157 | { |
6f505b16 PZ |
1158 | struct task_struct *next = NULL; |
1159 | struct sched_rt_entity *rt_se; | |
1160 | struct rt_prio_array *array; | |
1161 | struct rt_rq *rt_rq; | |
e8fa1362 SR |
1162 | int idx; |
1163 | ||
6f505b16 PZ |
1164 | for_each_leaf_rt_rq(rt_rq, rq) { |
1165 | array = &rt_rq->active; | |
1166 | idx = sched_find_first_bit(array->bitmap); | |
49246274 | 1167 | next_idx: |
6f505b16 PZ |
1168 | if (idx >= MAX_RT_PRIO) |
1169 | continue; | |
1170 | if (next && next->prio < idx) | |
1171 | continue; | |
1172 | list_for_each_entry(rt_se, array->queue + idx, run_list) { | |
3d07467b PZ |
1173 | struct task_struct *p; |
1174 | ||
1175 | if (!rt_entity_is_task(rt_se)) | |
1176 | continue; | |
1177 | ||
1178 | p = rt_task_of(rt_se); | |
6f505b16 PZ |
1179 | if (pick_rt_task(rq, p, cpu)) { |
1180 | next = p; | |
1181 | break; | |
1182 | } | |
1183 | } | |
1184 | if (!next) { | |
1185 | idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); | |
1186 | goto next_idx; | |
1187 | } | |
f65eda4f SR |
1188 | } |
1189 | ||
e8fa1362 SR |
1190 | return next; |
1191 | } | |
1192 | ||
0e3900e6 | 1193 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
e8fa1362 | 1194 | |
6e1254d2 GH |
1195 | static int find_lowest_rq(struct task_struct *task) |
1196 | { | |
1197 | struct sched_domain *sd; | |
96f874e2 | 1198 | struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); |
6e1254d2 GH |
1199 | int this_cpu = smp_processor_id(); |
1200 | int cpu = task_cpu(task); | |
06f90dbd | 1201 | |
6e0534f2 GH |
1202 | if (task->rt.nr_cpus_allowed == 1) |
1203 | return -1; /* No other targets possible */ | |
6e1254d2 | 1204 | |
6e0534f2 GH |
1205 | if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) |
1206 | return -1; /* No targets found */ | |
6e1254d2 GH |
1207 | |
1208 | /* | |
1209 | * At this point we have built a mask of cpus representing the | |
1210 | * lowest priority tasks in the system. Now we want to elect | |
1211 | * the best one based on our affinity and topology. | |
1212 | * | |
1213 | * We prioritize the last cpu that the task executed on since | |
1214 | * it is most likely cache-hot in that location. | |
1215 | */ | |
96f874e2 | 1216 | if (cpumask_test_cpu(cpu, lowest_mask)) |
6e1254d2 GH |
1217 | return cpu; |
1218 | ||
1219 | /* | |
1220 | * Otherwise, we consult the sched_domains span maps to figure | |
1221 | * out which cpu is logically closest to our hot cache data. | |
1222 | */ | |
e2c88063 RR |
1223 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
1224 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | |
6e1254d2 | 1225 | |
e2c88063 RR |
1226 | for_each_domain(cpu, sd) { |
1227 | if (sd->flags & SD_WAKE_AFFINE) { | |
1228 | int best_cpu; | |
6e1254d2 | 1229 | |
e2c88063 RR |
1230 | /* |
1231 | * "this_cpu" is cheaper to preempt than a | |
1232 | * remote processor. | |
1233 | */ | |
1234 | if (this_cpu != -1 && | |
1235 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) | |
1236 | return this_cpu; | |
1237 | ||
1238 | best_cpu = cpumask_first_and(lowest_mask, | |
1239 | sched_domain_span(sd)); | |
1240 | if (best_cpu < nr_cpu_ids) | |
1241 | return best_cpu; | |
6e1254d2 GH |
1242 | } |
1243 | } | |
1244 | ||
1245 | /* | |
1246 | * And finally, if there were no matches within the domains | |
1247 | * just give the caller *something* to work with from the compatible | |
1248 | * locations. | |
1249 | */ | |
e2c88063 RR |
1250 | if (this_cpu != -1) |
1251 | return this_cpu; | |
1252 | ||
1253 | cpu = cpumask_any(lowest_mask); | |
1254 | if (cpu < nr_cpu_ids) | |
1255 | return cpu; | |
1256 | return -1; | |
07b4032c GH |
1257 | } |
1258 | ||
1259 | /* Will lock the rq it finds */ | |
4df64c0b | 1260 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
07b4032c GH |
1261 | { |
1262 | struct rq *lowest_rq = NULL; | |
07b4032c | 1263 | int tries; |
4df64c0b | 1264 | int cpu; |
e8fa1362 | 1265 | |
07b4032c GH |
1266 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1267 | cpu = find_lowest_rq(task); | |
1268 | ||
2de0b463 | 1269 | if ((cpu == -1) || (cpu == rq->cpu)) |
e8fa1362 SR |
1270 | break; |
1271 | ||
07b4032c GH |
1272 | lowest_rq = cpu_rq(cpu); |
1273 | ||
e8fa1362 | 1274 | /* if the prio of this runqueue changed, try again */ |
07b4032c | 1275 | if (double_lock_balance(rq, lowest_rq)) { |
e8fa1362 SR |
1276 | /* |
1277 | * We had to unlock the run queue. In | |
1278 | * the mean time, task could have | |
1279 | * migrated already or had its affinity changed. | |
1280 | * Also make sure that it wasn't scheduled on its rq. | |
1281 | */ | |
07b4032c | 1282 | if (unlikely(task_rq(task) != rq || |
96f874e2 RR |
1283 | !cpumask_test_cpu(lowest_rq->cpu, |
1284 | &task->cpus_allowed) || | |
07b4032c | 1285 | task_running(rq, task) || |
e8fa1362 | 1286 | !task->se.on_rq)) { |
4df64c0b | 1287 | |
05fa785c | 1288 | raw_spin_unlock(&lowest_rq->lock); |
e8fa1362 SR |
1289 | lowest_rq = NULL; |
1290 | break; | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | /* If this rq is still suitable use it. */ | |
e864c499 | 1295 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
e8fa1362 SR |
1296 | break; |
1297 | ||
1298 | /* try again */ | |
1b12bbc7 | 1299 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1300 | lowest_rq = NULL; |
1301 | } | |
1302 | ||
1303 | return lowest_rq; | |
1304 | } | |
1305 | ||
917b627d GH |
1306 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1307 | { | |
1308 | struct task_struct *p; | |
1309 | ||
1310 | if (!has_pushable_tasks(rq)) | |
1311 | return NULL; | |
1312 | ||
1313 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1314 | struct task_struct, pushable_tasks); | |
1315 | ||
1316 | BUG_ON(rq->cpu != task_cpu(p)); | |
1317 | BUG_ON(task_current(rq, p)); | |
1318 | BUG_ON(p->rt.nr_cpus_allowed <= 1); | |
1319 | ||
1320 | BUG_ON(!p->se.on_rq); | |
1321 | BUG_ON(!rt_task(p)); | |
1322 | ||
1323 | return p; | |
1324 | } | |
1325 | ||
e8fa1362 SR |
1326 | /* |
1327 | * If the current CPU has more than one RT task, see if the non | |
1328 | * running task can migrate over to a CPU that is running a task | |
1329 | * of lesser priority. | |
1330 | */ | |
697f0a48 | 1331 | static int push_rt_task(struct rq *rq) |
e8fa1362 SR |
1332 | { |
1333 | struct task_struct *next_task; | |
1334 | struct rq *lowest_rq; | |
e8fa1362 | 1335 | |
a22d7fc1 GH |
1336 | if (!rq->rt.overloaded) |
1337 | return 0; | |
1338 | ||
917b627d | 1339 | next_task = pick_next_pushable_task(rq); |
e8fa1362 SR |
1340 | if (!next_task) |
1341 | return 0; | |
1342 | ||
49246274 | 1343 | retry: |
697f0a48 | 1344 | if (unlikely(next_task == rq->curr)) { |
f65eda4f | 1345 | WARN_ON(1); |
e8fa1362 | 1346 | return 0; |
f65eda4f | 1347 | } |
e8fa1362 SR |
1348 | |
1349 | /* | |
1350 | * It's possible that the next_task slipped in of | |
1351 | * higher priority than current. If that's the case | |
1352 | * just reschedule current. | |
1353 | */ | |
697f0a48 GH |
1354 | if (unlikely(next_task->prio < rq->curr->prio)) { |
1355 | resched_task(rq->curr); | |
e8fa1362 SR |
1356 | return 0; |
1357 | } | |
1358 | ||
697f0a48 | 1359 | /* We might release rq lock */ |
e8fa1362 SR |
1360 | get_task_struct(next_task); |
1361 | ||
1362 | /* find_lock_lowest_rq locks the rq if found */ | |
697f0a48 | 1363 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
e8fa1362 SR |
1364 | if (!lowest_rq) { |
1365 | struct task_struct *task; | |
1366 | /* | |
697f0a48 | 1367 | * find lock_lowest_rq releases rq->lock |
1563513d GH |
1368 | * so it is possible that next_task has migrated. |
1369 | * | |
1370 | * We need to make sure that the task is still on the same | |
1371 | * run-queue and is also still the next task eligible for | |
1372 | * pushing. | |
e8fa1362 | 1373 | */ |
917b627d | 1374 | task = pick_next_pushable_task(rq); |
1563513d GH |
1375 | if (task_cpu(next_task) == rq->cpu && task == next_task) { |
1376 | /* | |
1377 | * If we get here, the task hasnt moved at all, but | |
1378 | * it has failed to push. We will not try again, | |
1379 | * since the other cpus will pull from us when they | |
1380 | * are ready. | |
1381 | */ | |
1382 | dequeue_pushable_task(rq, next_task); | |
1383 | goto out; | |
e8fa1362 | 1384 | } |
917b627d | 1385 | |
1563513d GH |
1386 | if (!task) |
1387 | /* No more tasks, just exit */ | |
1388 | goto out; | |
1389 | ||
917b627d | 1390 | /* |
1563513d | 1391 | * Something has shifted, try again. |
917b627d | 1392 | */ |
1563513d GH |
1393 | put_task_struct(next_task); |
1394 | next_task = task; | |
1395 | goto retry; | |
e8fa1362 SR |
1396 | } |
1397 | ||
697f0a48 | 1398 | deactivate_task(rq, next_task, 0); |
e8fa1362 SR |
1399 | set_task_cpu(next_task, lowest_rq->cpu); |
1400 | activate_task(lowest_rq, next_task, 0); | |
1401 | ||
1402 | resched_task(lowest_rq->curr); | |
1403 | ||
1b12bbc7 | 1404 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 | 1405 | |
e8fa1362 SR |
1406 | out: |
1407 | put_task_struct(next_task); | |
1408 | ||
917b627d | 1409 | return 1; |
e8fa1362 SR |
1410 | } |
1411 | ||
e8fa1362 SR |
1412 | static void push_rt_tasks(struct rq *rq) |
1413 | { | |
1414 | /* push_rt_task will return true if it moved an RT */ | |
1415 | while (push_rt_task(rq)) | |
1416 | ; | |
1417 | } | |
1418 | ||
f65eda4f SR |
1419 | static int pull_rt_task(struct rq *this_rq) |
1420 | { | |
80bf3171 | 1421 | int this_cpu = this_rq->cpu, ret = 0, cpu; |
a8728944 | 1422 | struct task_struct *p; |
f65eda4f | 1423 | struct rq *src_rq; |
f65eda4f | 1424 | |
637f5085 | 1425 | if (likely(!rt_overloaded(this_rq))) |
f65eda4f SR |
1426 | return 0; |
1427 | ||
c6c4927b | 1428 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
f65eda4f SR |
1429 | if (this_cpu == cpu) |
1430 | continue; | |
1431 | ||
1432 | src_rq = cpu_rq(cpu); | |
74ab8e4f GH |
1433 | |
1434 | /* | |
1435 | * Don't bother taking the src_rq->lock if the next highest | |
1436 | * task is known to be lower-priority than our current task. | |
1437 | * This may look racy, but if this value is about to go | |
1438 | * logically higher, the src_rq will push this task away. | |
1439 | * And if its going logically lower, we do not care | |
1440 | */ | |
1441 | if (src_rq->rt.highest_prio.next >= | |
1442 | this_rq->rt.highest_prio.curr) | |
1443 | continue; | |
1444 | ||
f65eda4f SR |
1445 | /* |
1446 | * We can potentially drop this_rq's lock in | |
1447 | * double_lock_balance, and another CPU could | |
a8728944 | 1448 | * alter this_rq |
f65eda4f | 1449 | */ |
a8728944 | 1450 | double_lock_balance(this_rq, src_rq); |
f65eda4f SR |
1451 | |
1452 | /* | |
1453 | * Are there still pullable RT tasks? | |
1454 | */ | |
614ee1f6 MG |
1455 | if (src_rq->rt.rt_nr_running <= 1) |
1456 | goto skip; | |
f65eda4f | 1457 | |
f65eda4f SR |
1458 | p = pick_next_highest_task_rt(src_rq, this_cpu); |
1459 | ||
1460 | /* | |
1461 | * Do we have an RT task that preempts | |
1462 | * the to-be-scheduled task? | |
1463 | */ | |
a8728944 | 1464 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
f65eda4f SR |
1465 | WARN_ON(p == src_rq->curr); |
1466 | WARN_ON(!p->se.on_rq); | |
1467 | ||
1468 | /* | |
1469 | * There's a chance that p is higher in priority | |
1470 | * than what's currently running on its cpu. | |
1471 | * This is just that p is wakeing up and hasn't | |
1472 | * had a chance to schedule. We only pull | |
1473 | * p if it is lower in priority than the | |
a8728944 | 1474 | * current task on the run queue |
f65eda4f | 1475 | */ |
a8728944 | 1476 | if (p->prio < src_rq->curr->prio) |
614ee1f6 | 1477 | goto skip; |
f65eda4f SR |
1478 | |
1479 | ret = 1; | |
1480 | ||
1481 | deactivate_task(src_rq, p, 0); | |
1482 | set_task_cpu(p, this_cpu); | |
1483 | activate_task(this_rq, p, 0); | |
1484 | /* | |
1485 | * We continue with the search, just in | |
1486 | * case there's an even higher prio task | |
1487 | * in another runqueue. (low likelyhood | |
1488 | * but possible) | |
f65eda4f | 1489 | */ |
f65eda4f | 1490 | } |
49246274 | 1491 | skip: |
1b12bbc7 | 1492 | double_unlock_balance(this_rq, src_rq); |
f65eda4f SR |
1493 | } |
1494 | ||
1495 | return ret; | |
1496 | } | |
1497 | ||
9a897c5a | 1498 | static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) |
f65eda4f SR |
1499 | { |
1500 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
e864c499 | 1501 | if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) |
f65eda4f SR |
1502 | pull_rt_task(rq); |
1503 | } | |
1504 | ||
9a897c5a | 1505 | static void post_schedule_rt(struct rq *rq) |
e8fa1362 | 1506 | { |
967fc046 | 1507 | push_rt_tasks(rq); |
e8fa1362 SR |
1508 | } |
1509 | ||
8ae121ac GH |
1510 | /* |
1511 | * If we are not running and we are not going to reschedule soon, we should | |
1512 | * try to push tasks away now | |
1513 | */ | |
efbbd05a | 1514 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
4642dafd | 1515 | { |
9a897c5a | 1516 | if (!task_running(rq, p) && |
8ae121ac | 1517 | !test_tsk_need_resched(rq->curr) && |
917b627d | 1518 | has_pushable_tasks(rq) && |
b3bc211c | 1519 | p->rt.nr_cpus_allowed > 1 && |
43fa5460 | 1520 | rt_task(rq->curr) && |
b3bc211c SR |
1521 | (rq->curr->rt.nr_cpus_allowed < 2 || |
1522 | rq->curr->prio < p->prio)) | |
4642dafd SR |
1523 | push_rt_tasks(rq); |
1524 | } | |
1525 | ||
cd8ba7cd | 1526 | static void set_cpus_allowed_rt(struct task_struct *p, |
96f874e2 | 1527 | const struct cpumask *new_mask) |
73fe6aae | 1528 | { |
96f874e2 | 1529 | int weight = cpumask_weight(new_mask); |
73fe6aae GH |
1530 | |
1531 | BUG_ON(!rt_task(p)); | |
1532 | ||
1533 | /* | |
1534 | * Update the migration status of the RQ if we have an RT task | |
1535 | * which is running AND changing its weight value. | |
1536 | */ | |
6f505b16 | 1537 | if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { |
73fe6aae GH |
1538 | struct rq *rq = task_rq(p); |
1539 | ||
917b627d GH |
1540 | if (!task_current(rq, p)) { |
1541 | /* | |
1542 | * Make sure we dequeue this task from the pushable list | |
1543 | * before going further. It will either remain off of | |
1544 | * the list because we are no longer pushable, or it | |
1545 | * will be requeued. | |
1546 | */ | |
1547 | if (p->rt.nr_cpus_allowed > 1) | |
1548 | dequeue_pushable_task(rq, p); | |
1549 | ||
1550 | /* | |
1551 | * Requeue if our weight is changing and still > 1 | |
1552 | */ | |
1553 | if (weight > 1) | |
1554 | enqueue_pushable_task(rq, p); | |
1555 | ||
1556 | } | |
1557 | ||
6f505b16 | 1558 | if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { |
73fe6aae | 1559 | rq->rt.rt_nr_migratory++; |
6f505b16 | 1560 | } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { |
73fe6aae GH |
1561 | BUG_ON(!rq->rt.rt_nr_migratory); |
1562 | rq->rt.rt_nr_migratory--; | |
1563 | } | |
1564 | ||
398a153b | 1565 | update_rt_migration(&rq->rt); |
73fe6aae GH |
1566 | } |
1567 | ||
96f874e2 | 1568 | cpumask_copy(&p->cpus_allowed, new_mask); |
6f505b16 | 1569 | p->rt.nr_cpus_allowed = weight; |
73fe6aae | 1570 | } |
deeeccd4 | 1571 | |
bdd7c81b | 1572 | /* Assumes rq->lock is held */ |
1f11eb6a | 1573 | static void rq_online_rt(struct rq *rq) |
bdd7c81b IM |
1574 | { |
1575 | if (rq->rt.overloaded) | |
1576 | rt_set_overload(rq); | |
6e0534f2 | 1577 | |
7def2be1 PZ |
1578 | __enable_runtime(rq); |
1579 | ||
e864c499 | 1580 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
bdd7c81b IM |
1581 | } |
1582 | ||
1583 | /* Assumes rq->lock is held */ | |
1f11eb6a | 1584 | static void rq_offline_rt(struct rq *rq) |
bdd7c81b IM |
1585 | { |
1586 | if (rq->rt.overloaded) | |
1587 | rt_clear_overload(rq); | |
6e0534f2 | 1588 | |
7def2be1 PZ |
1589 | __disable_runtime(rq); |
1590 | ||
6e0534f2 | 1591 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
bdd7c81b | 1592 | } |
cb469845 SR |
1593 | |
1594 | /* | |
1595 | * When switch from the rt queue, we bring ourselves to a position | |
1596 | * that we might want to pull RT tasks from other runqueues. | |
1597 | */ | |
1598 | static void switched_from_rt(struct rq *rq, struct task_struct *p, | |
1599 | int running) | |
1600 | { | |
1601 | /* | |
1602 | * If there are other RT tasks then we will reschedule | |
1603 | * and the scheduling of the other RT tasks will handle | |
1604 | * the balancing. But if we are the last RT task | |
1605 | * we may need to handle the pulling of RT tasks | |
1606 | * now. | |
1607 | */ | |
1608 | if (!rq->rt.rt_nr_running) | |
1609 | pull_rt_task(rq); | |
1610 | } | |
3d8cbdf8 RR |
1611 | |
1612 | static inline void init_sched_rt_class(void) | |
1613 | { | |
1614 | unsigned int i; | |
1615 | ||
1616 | for_each_possible_cpu(i) | |
eaa95840 | 1617 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
6ca09dfc | 1618 | GFP_KERNEL, cpu_to_node(i)); |
3d8cbdf8 | 1619 | } |
cb469845 SR |
1620 | #endif /* CONFIG_SMP */ |
1621 | ||
1622 | /* | |
1623 | * When switching a task to RT, we may overload the runqueue | |
1624 | * with RT tasks. In this case we try to push them off to | |
1625 | * other runqueues. | |
1626 | */ | |
1627 | static void switched_to_rt(struct rq *rq, struct task_struct *p, | |
1628 | int running) | |
1629 | { | |
1630 | int check_resched = 1; | |
1631 | ||
1632 | /* | |
1633 | * If we are already running, then there's nothing | |
1634 | * that needs to be done. But if we are not running | |
1635 | * we may need to preempt the current running task. | |
1636 | * If that current running task is also an RT task | |
1637 | * then see if we can move to another run queue. | |
1638 | */ | |
1639 | if (!running) { | |
1640 | #ifdef CONFIG_SMP | |
1641 | if (rq->rt.overloaded && push_rt_task(rq) && | |
1642 | /* Don't resched if we changed runqueues */ | |
1643 | rq != task_rq(p)) | |
1644 | check_resched = 0; | |
1645 | #endif /* CONFIG_SMP */ | |
1646 | if (check_resched && p->prio < rq->curr->prio) | |
1647 | resched_task(rq->curr); | |
1648 | } | |
1649 | } | |
1650 | ||
1651 | /* | |
1652 | * Priority of the task has changed. This may cause | |
1653 | * us to initiate a push or pull. | |
1654 | */ | |
1655 | static void prio_changed_rt(struct rq *rq, struct task_struct *p, | |
1656 | int oldprio, int running) | |
1657 | { | |
1658 | if (running) { | |
1659 | #ifdef CONFIG_SMP | |
1660 | /* | |
1661 | * If our priority decreases while running, we | |
1662 | * may need to pull tasks to this runqueue. | |
1663 | */ | |
1664 | if (oldprio < p->prio) | |
1665 | pull_rt_task(rq); | |
1666 | /* | |
1667 | * If there's a higher priority task waiting to run | |
6fa46fa5 SR |
1668 | * then reschedule. Note, the above pull_rt_task |
1669 | * can release the rq lock and p could migrate. | |
1670 | * Only reschedule if p is still on the same runqueue. | |
cb469845 | 1671 | */ |
e864c499 | 1672 | if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) |
cb469845 SR |
1673 | resched_task(p); |
1674 | #else | |
1675 | /* For UP simply resched on drop of prio */ | |
1676 | if (oldprio < p->prio) | |
1677 | resched_task(p); | |
e8fa1362 | 1678 | #endif /* CONFIG_SMP */ |
cb469845 SR |
1679 | } else { |
1680 | /* | |
1681 | * This task is not running, but if it is | |
1682 | * greater than the current running task | |
1683 | * then reschedule. | |
1684 | */ | |
1685 | if (p->prio < rq->curr->prio) | |
1686 | resched_task(rq->curr); | |
1687 | } | |
1688 | } | |
1689 | ||
78f2c7db PZ |
1690 | static void watchdog(struct rq *rq, struct task_struct *p) |
1691 | { | |
1692 | unsigned long soft, hard; | |
1693 | ||
78d7d407 JS |
1694 | /* max may change after cur was read, this will be fixed next tick */ |
1695 | soft = task_rlimit(p, RLIMIT_RTTIME); | |
1696 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | |
78f2c7db PZ |
1697 | |
1698 | if (soft != RLIM_INFINITY) { | |
1699 | unsigned long next; | |
1700 | ||
1701 | p->rt.timeout++; | |
1702 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); | |
5a52dd50 | 1703 | if (p->rt.timeout > next) |
f06febc9 | 1704 | p->cputime_expires.sched_exp = p->se.sum_exec_runtime; |
78f2c7db PZ |
1705 | } |
1706 | } | |
bb44e5d1 | 1707 | |
8f4d37ec | 1708 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
bb44e5d1 | 1709 | { |
67e2be02 PZ |
1710 | update_curr_rt(rq); |
1711 | ||
78f2c7db PZ |
1712 | watchdog(rq, p); |
1713 | ||
bb44e5d1 IM |
1714 | /* |
1715 | * RR tasks need a special form of timeslice management. | |
1716 | * FIFO tasks have no timeslices. | |
1717 | */ | |
1718 | if (p->policy != SCHED_RR) | |
1719 | return; | |
1720 | ||
fa717060 | 1721 | if (--p->rt.time_slice) |
bb44e5d1 IM |
1722 | return; |
1723 | ||
fa717060 | 1724 | p->rt.time_slice = DEF_TIMESLICE; |
bb44e5d1 | 1725 | |
98fbc798 DA |
1726 | /* |
1727 | * Requeue to the end of queue if we are not the only element | |
1728 | * on the queue: | |
1729 | */ | |
fa717060 | 1730 | if (p->rt.run_list.prev != p->rt.run_list.next) { |
7ebefa8c | 1731 | requeue_task_rt(rq, p, 0); |
98fbc798 DA |
1732 | set_tsk_need_resched(p); |
1733 | } | |
bb44e5d1 IM |
1734 | } |
1735 | ||
83b699ed SV |
1736 | static void set_curr_task_rt(struct rq *rq) |
1737 | { | |
1738 | struct task_struct *p = rq->curr; | |
1739 | ||
305e6835 | 1740 | p->se.exec_start = rq->clock_task; |
917b627d GH |
1741 | |
1742 | /* The running task is never eligible for pushing */ | |
1743 | dequeue_pushable_task(rq, p); | |
83b699ed SV |
1744 | } |
1745 | ||
6d686f45 | 1746 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
0d721cea PW |
1747 | { |
1748 | /* | |
1749 | * Time slice is 0 for SCHED_FIFO tasks | |
1750 | */ | |
1751 | if (task->policy == SCHED_RR) | |
1752 | return DEF_TIMESLICE; | |
1753 | else | |
1754 | return 0; | |
1755 | } | |
1756 | ||
2abdad0a | 1757 | static const struct sched_class rt_sched_class = { |
5522d5d5 | 1758 | .next = &fair_sched_class, |
bb44e5d1 IM |
1759 | .enqueue_task = enqueue_task_rt, |
1760 | .dequeue_task = dequeue_task_rt, | |
1761 | .yield_task = yield_task_rt, | |
1762 | ||
1763 | .check_preempt_curr = check_preempt_curr_rt, | |
1764 | ||
1765 | .pick_next_task = pick_next_task_rt, | |
1766 | .put_prev_task = put_prev_task_rt, | |
1767 | ||
681f3e68 | 1768 | #ifdef CONFIG_SMP |
4ce72a2c LZ |
1769 | .select_task_rq = select_task_rq_rt, |
1770 | ||
73fe6aae | 1771 | .set_cpus_allowed = set_cpus_allowed_rt, |
1f11eb6a GH |
1772 | .rq_online = rq_online_rt, |
1773 | .rq_offline = rq_offline_rt, | |
9a897c5a SR |
1774 | .pre_schedule = pre_schedule_rt, |
1775 | .post_schedule = post_schedule_rt, | |
efbbd05a | 1776 | .task_woken = task_woken_rt, |
cb469845 | 1777 | .switched_from = switched_from_rt, |
681f3e68 | 1778 | #endif |
bb44e5d1 | 1779 | |
83b699ed | 1780 | .set_curr_task = set_curr_task_rt, |
bb44e5d1 | 1781 | .task_tick = task_tick_rt, |
cb469845 | 1782 | |
0d721cea PW |
1783 | .get_rr_interval = get_rr_interval_rt, |
1784 | ||
cb469845 SR |
1785 | .prio_changed = prio_changed_rt, |
1786 | .switched_to = switched_to_rt, | |
bb44e5d1 | 1787 | }; |
ada18de2 PZ |
1788 | |
1789 | #ifdef CONFIG_SCHED_DEBUG | |
1790 | extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); | |
1791 | ||
1792 | static void print_rt_stats(struct seq_file *m, int cpu) | |
1793 | { | |
1794 | struct rt_rq *rt_rq; | |
1795 | ||
1796 | rcu_read_lock(); | |
1797 | for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) | |
1798 | print_rt_rq(m, cpu, rt_rq); | |
1799 | rcu_read_unlock(); | |
1800 | } | |
55e12e5e | 1801 | #endif /* CONFIG_SCHED_DEBUG */ |
0e3900e6 | 1802 |