]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/profile.c | |
3 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
4 | * with configurable resolution, support for restricting the cpus on | |
5 | * which profiling is done, and switching between cpu time and | |
6 | * schedule() calls via kernel command line parameters passed at boot. | |
7 | * | |
8 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
9 | * Red Hat, July 2004 | |
10 | * Consolidation of architecture support code for profiling, | |
11 | * William Irwin, Oracle, July 2004 | |
12 | * Amortized hit count accounting via per-cpu open-addressed hashtables | |
13 | * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 | |
14 | */ | |
15 | ||
1da177e4 LT |
16 | #include <linux/module.h> |
17 | #include <linux/profile.h> | |
18 | #include <linux/bootmem.h> | |
19 | #include <linux/notifier.h> | |
20 | #include <linux/mm.h> | |
21 | #include <linux/cpumask.h> | |
22 | #include <linux/cpu.h> | |
1da177e4 | 23 | #include <linux/highmem.h> |
97d1f15b | 24 | #include <linux/mutex.h> |
22b8ce94 DH |
25 | #include <linux/slab.h> |
26 | #include <linux/vmalloc.h> | |
1da177e4 | 27 | #include <asm/sections.h> |
7d12e780 | 28 | #include <asm/irq_regs.h> |
e8edc6e0 | 29 | #include <asm/ptrace.h> |
1da177e4 LT |
30 | |
31 | struct profile_hit { | |
32 | u32 pc, hits; | |
33 | }; | |
34 | #define PROFILE_GRPSHIFT 3 | |
35 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
36 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
37 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
38 | ||
39 | /* Oprofile timer tick hook */ | |
b012d346 | 40 | static int (*timer_hook)(struct pt_regs *) __read_mostly; |
1da177e4 LT |
41 | |
42 | static atomic_t *prof_buffer; | |
43 | static unsigned long prof_len, prof_shift; | |
07031e14 | 44 | |
ece8a684 | 45 | int prof_on __read_mostly; |
07031e14 IM |
46 | EXPORT_SYMBOL_GPL(prof_on); |
47 | ||
c309b917 | 48 | static cpumask_var_t prof_cpu_mask; |
1da177e4 LT |
49 | #ifdef CONFIG_SMP |
50 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | |
51 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 52 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
53 | #endif /* CONFIG_SMP */ |
54 | ||
22b8ce94 | 55 | int profile_setup(char *str) |
1da177e4 | 56 | { |
22b8ce94 DH |
57 | static char schedstr[] = "schedule"; |
58 | static char sleepstr[] = "sleep"; | |
59 | static char kvmstr[] = "kvm"; | |
1da177e4 LT |
60 | int par; |
61 | ||
ece8a684 | 62 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 63 | #ifdef CONFIG_SCHEDSTATS |
ece8a684 IM |
64 | prof_on = SLEEP_PROFILING; |
65 | if (str[strlen(sleepstr)] == ',') | |
66 | str += strlen(sleepstr) + 1; | |
67 | if (get_option(&str, &par)) | |
68 | prof_shift = par; | |
69 | printk(KERN_INFO | |
70 | "kernel sleep profiling enabled (shift: %ld)\n", | |
71 | prof_shift); | |
b3da2a73 MG |
72 | #else |
73 | printk(KERN_WARNING | |
74 | "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); | |
75 | #endif /* CONFIG_SCHEDSTATS */ | |
a75acf85 | 76 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 77 | prof_on = SCHED_PROFILING; |
dfaa9c94 NYC |
78 | if (str[strlen(schedstr)] == ',') |
79 | str += strlen(schedstr) + 1; | |
80 | if (get_option(&str, &par)) | |
81 | prof_shift = par; | |
82 | printk(KERN_INFO | |
83 | "kernel schedule profiling enabled (shift: %ld)\n", | |
84 | prof_shift); | |
07031e14 IM |
85 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
86 | prof_on = KVM_PROFILING; | |
87 | if (str[strlen(kvmstr)] == ',') | |
88 | str += strlen(kvmstr) + 1; | |
89 | if (get_option(&str, &par)) | |
90 | prof_shift = par; | |
91 | printk(KERN_INFO | |
92 | "kernel KVM profiling enabled (shift: %ld)\n", | |
93 | prof_shift); | |
dfaa9c94 | 94 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
95 | prof_shift = par; |
96 | prof_on = CPU_PROFILING; | |
97 | printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", | |
98 | prof_shift); | |
99 | } | |
100 | return 1; | |
101 | } | |
102 | __setup("profile=", profile_setup); | |
103 | ||
104 | ||
ce05fcc3 | 105 | int __ref profile_init(void) |
1da177e4 | 106 | { |
22b8ce94 | 107 | int buffer_bytes; |
1ad82fd5 | 108 | if (!prof_on) |
22b8ce94 | 109 | return 0; |
1ad82fd5 | 110 | |
1da177e4 LT |
111 | /* only text is profiled */ |
112 | prof_len = (_etext - _stext) >> prof_shift; | |
22b8ce94 | 113 | buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce94 | 114 | |
c309b917 RR |
115 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
116 | return -ENOMEM; | |
117 | ||
acd89579 HD |
118 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
119 | ||
b62f495d | 120 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce94 DH |
121 | if (prof_buffer) |
122 | return 0; | |
123 | ||
b62f495d MG |
124 | prof_buffer = alloc_pages_exact(buffer_bytes, |
125 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | |
22b8ce94 DH |
126 | if (prof_buffer) |
127 | return 0; | |
128 | ||
559fa6e7 JJ |
129 | prof_buffer = vzalloc(buffer_bytes); |
130 | if (prof_buffer) | |
22b8ce94 DH |
131 | return 0; |
132 | ||
c309b917 | 133 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 134 | return -ENOMEM; |
1da177e4 LT |
135 | } |
136 | ||
137 | /* Profile event notifications */ | |
1ad82fd5 | 138 | |
e041c683 AS |
139 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
140 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
141 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1ad82fd5 PC |
142 | |
143 | void profile_task_exit(struct task_struct *task) | |
1da177e4 | 144 | { |
e041c683 | 145 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 | 146 | } |
1ad82fd5 PC |
147 | |
148 | int profile_handoff_task(struct task_struct *task) | |
1da177e4 LT |
149 | { |
150 | int ret; | |
e041c683 | 151 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
152 | return (ret == NOTIFY_OK) ? 1 : 0; |
153 | } | |
154 | ||
155 | void profile_munmap(unsigned long addr) | |
156 | { | |
e041c683 | 157 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
158 | } |
159 | ||
1ad82fd5 | 160 | int task_handoff_register(struct notifier_block *n) |
1da177e4 | 161 | { |
e041c683 | 162 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 | 163 | } |
1ad82fd5 | 164 | EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4 | 165 | |
1ad82fd5 | 166 | int task_handoff_unregister(struct notifier_block *n) |
1da177e4 | 167 | { |
e041c683 | 168 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 | 169 | } |
1ad82fd5 | 170 | EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4 | 171 | |
1ad82fd5 | 172 | int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
173 | { |
174 | int err = -EINVAL; | |
1ad82fd5 | 175 | |
1da177e4 | 176 | switch (type) { |
1ad82fd5 PC |
177 | case PROFILE_TASK_EXIT: |
178 | err = blocking_notifier_chain_register( | |
179 | &task_exit_notifier, n); | |
180 | break; | |
181 | case PROFILE_MUNMAP: | |
182 | err = blocking_notifier_chain_register( | |
183 | &munmap_notifier, n); | |
184 | break; | |
1da177e4 | 185 | } |
1ad82fd5 | 186 | |
1da177e4 LT |
187 | return err; |
188 | } | |
1ad82fd5 | 189 | EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4 | 190 | |
1ad82fd5 | 191 | int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
192 | { |
193 | int err = -EINVAL; | |
1ad82fd5 | 194 | |
1da177e4 | 195 | switch (type) { |
1ad82fd5 PC |
196 | case PROFILE_TASK_EXIT: |
197 | err = blocking_notifier_chain_unregister( | |
198 | &task_exit_notifier, n); | |
199 | break; | |
200 | case PROFILE_MUNMAP: | |
201 | err = blocking_notifier_chain_unregister( | |
202 | &munmap_notifier, n); | |
203 | break; | |
1da177e4 LT |
204 | } |
205 | ||
1da177e4 LT |
206 | return err; |
207 | } | |
1ad82fd5 | 208 | EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4 LT |
209 | |
210 | int register_timer_hook(int (*hook)(struct pt_regs *)) | |
211 | { | |
212 | if (timer_hook) | |
213 | return -EBUSY; | |
214 | timer_hook = hook; | |
215 | return 0; | |
216 | } | |
1ad82fd5 | 217 | EXPORT_SYMBOL_GPL(register_timer_hook); |
1da177e4 LT |
218 | |
219 | void unregister_timer_hook(int (*hook)(struct pt_regs *)) | |
220 | { | |
221 | WARN_ON(hook != timer_hook); | |
222 | timer_hook = NULL; | |
223 | /* make sure all CPUs see the NULL hook */ | |
fbd568a3 | 224 | synchronize_sched(); /* Allow ongoing interrupts to complete. */ |
1da177e4 | 225 | } |
1da177e4 | 226 | EXPORT_SYMBOL_GPL(unregister_timer_hook); |
1da177e4 | 227 | |
1da177e4 LT |
228 | |
229 | #ifdef CONFIG_SMP | |
230 | /* | |
231 | * Each cpu has a pair of open-addressed hashtables for pending | |
232 | * profile hits. read_profile() IPI's all cpus to request them | |
233 | * to flip buffers and flushes their contents to prof_buffer itself. | |
234 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
235 | * use of having a second hashtable is for avoiding cacheline | |
236 | * contention that would otherwise happen during flushes of pending | |
237 | * profile hits required for the accuracy of reported profile hits | |
238 | * and so resurrect the interrupt livelock issue. | |
239 | * | |
240 | * The open-addressed hashtables are indexed by profile buffer slot | |
241 | * and hold the number of pending hits to that profile buffer slot on | |
242 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
243 | * are accounted to their corresponding profile buffer slots with | |
244 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
245 | * may be accounted to a profile buffer slot in a hashtable entry, | |
246 | * this amortizes a number of atomic profile buffer increments likely | |
247 | * to be far larger than the number of entries in the hashtable, | |
248 | * particularly given that the number of distinct profile buffer | |
249 | * positions to which hits are accounted during short intervals (e.g. | |
250 | * several seconds) is usually very small. Exclusion from buffer | |
251 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
252 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
253 | * process context). | |
1da177e4 LT |
254 | * The hash function is meant to be lightweight as opposed to strong, |
255 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
256 | * pagetable hash functions, but uses a full hashtable full of finite | |
257 | * collision chains, not just pairs of them. | |
258 | * | |
259 | * -- wli | |
260 | */ | |
261 | static void __profile_flip_buffers(void *unused) | |
262 | { | |
263 | int cpu = smp_processor_id(); | |
264 | ||
265 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
266 | } | |
267 | ||
268 | static void profile_flip_buffers(void) | |
269 | { | |
270 | int i, j, cpu; | |
271 | ||
97d1f15b | 272 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
273 | j = per_cpu(cpu_profile_flip, get_cpu()); |
274 | put_cpu(); | |
15c8b6c1 | 275 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
276 | for_each_online_cpu(cpu) { |
277 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
278 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
279 | if (!hits[i].hits) { | |
280 | if (hits[i].pc) | |
281 | hits[i].pc = 0; | |
282 | continue; | |
283 | } | |
284 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
285 | hits[i].hits = hits[i].pc = 0; | |
286 | } | |
287 | } | |
97d1f15b | 288 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
289 | } |
290 | ||
291 | static void profile_discard_flip_buffers(void) | |
292 | { | |
293 | int i, cpu; | |
294 | ||
97d1f15b | 295 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
296 | i = per_cpu(cpu_profile_flip, get_cpu()); |
297 | put_cpu(); | |
15c8b6c1 | 298 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
299 | for_each_online_cpu(cpu) { |
300 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
301 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
302 | } | |
97d1f15b | 303 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
304 | } |
305 | ||
6f7bd76f | 306 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
307 | { |
308 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
309 | int i, j, cpu; | |
310 | struct profile_hit *hits; | |
311 | ||
1da177e4 LT |
312 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
313 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
314 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
315 | cpu = get_cpu(); | |
316 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
317 | if (!hits) { | |
318 | put_cpu(); | |
319 | return; | |
320 | } | |
ece8a684 IM |
321 | /* |
322 | * We buffer the global profiler buffer into a per-CPU | |
323 | * queue and thus reduce the number of global (and possibly | |
324 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
325 | */ | |
1da177e4 LT |
326 | local_irq_save(flags); |
327 | do { | |
328 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
329 | if (hits[i + j].pc == pc) { | |
ece8a684 | 330 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
331 | goto out; |
332 | } else if (!hits[i + j].hits) { | |
333 | hits[i + j].pc = pc; | |
ece8a684 | 334 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
335 | goto out; |
336 | } | |
337 | } | |
338 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
339 | } while (i != primary); | |
ece8a684 IM |
340 | |
341 | /* | |
342 | * Add the current hit(s) and flush the write-queue out | |
343 | * to the global buffer: | |
344 | */ | |
345 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
346 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
347 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
348 | hits[i].pc = hits[i].hits = 0; | |
349 | } | |
350 | out: | |
351 | local_irq_restore(flags); | |
352 | put_cpu(); | |
353 | } | |
354 | ||
84196414 | 355 | static int __cpuinit profile_cpu_callback(struct notifier_block *info, |
1da177e4 LT |
356 | unsigned long action, void *__cpu) |
357 | { | |
358 | int node, cpu = (unsigned long)__cpu; | |
359 | struct page *page; | |
360 | ||
361 | switch (action) { | |
362 | case CPU_UP_PREPARE: | |
8bb78442 | 363 | case CPU_UP_PREPARE_FROZEN: |
3dd6b5fb | 364 | node = cpu_to_mem(cpu); |
1da177e4 LT |
365 | per_cpu(cpu_profile_flip, cpu) = 0; |
366 | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | |
6484eb3e | 367 | page = alloc_pages_exact_node(node, |
4199cfa0 | 368 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 369 | 0); |
1da177e4 | 370 | if (!page) |
80b5184c | 371 | return notifier_from_errno(-ENOMEM); |
1da177e4 LT |
372 | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); |
373 | } | |
374 | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | |
6484eb3e | 375 | page = alloc_pages_exact_node(node, |
4199cfa0 | 376 | GFP_KERNEL | __GFP_ZERO, |
fbd98167 | 377 | 0); |
1da177e4 LT |
378 | if (!page) |
379 | goto out_free; | |
380 | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | |
381 | } | |
382 | break; | |
1ad82fd5 | 383 | out_free: |
1da177e4 LT |
384 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
385 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
386 | __free_page(page); | |
80b5184c | 387 | return notifier_from_errno(-ENOMEM); |
1da177e4 | 388 | case CPU_ONLINE: |
8bb78442 | 389 | case CPU_ONLINE_FROZEN: |
c309b917 RR |
390 | if (prof_cpu_mask != NULL) |
391 | cpumask_set_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
392 | break; |
393 | case CPU_UP_CANCELED: | |
8bb78442 | 394 | case CPU_UP_CANCELED_FROZEN: |
1da177e4 | 395 | case CPU_DEAD: |
8bb78442 | 396 | case CPU_DEAD_FROZEN: |
c309b917 RR |
397 | if (prof_cpu_mask != NULL) |
398 | cpumask_clear_cpu(cpu, prof_cpu_mask); | |
1da177e4 LT |
399 | if (per_cpu(cpu_profile_hits, cpu)[0]) { |
400 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
401 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
402 | __free_page(page); | |
403 | } | |
404 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
405 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
406 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
407 | __free_page(page); | |
408 | } | |
409 | break; | |
410 | } | |
411 | return NOTIFY_OK; | |
412 | } | |
1da177e4 LT |
413 | #else /* !CONFIG_SMP */ |
414 | #define profile_flip_buffers() do { } while (0) | |
415 | #define profile_discard_flip_buffers() do { } while (0) | |
02316067 | 416 | #define profile_cpu_callback NULL |
1da177e4 | 417 | |
6f7bd76f | 418 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
419 | { |
420 | unsigned long pc; | |
1da177e4 | 421 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684 | 422 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
423 | } |
424 | #endif /* !CONFIG_SMP */ | |
6f7bd76f RM |
425 | |
426 | void profile_hits(int type, void *__pc, unsigned int nr_hits) | |
427 | { | |
428 | if (prof_on != type || !prof_buffer) | |
429 | return; | |
430 | do_profile_hits(type, __pc, nr_hits); | |
431 | } | |
bbe1a59b AM |
432 | EXPORT_SYMBOL_GPL(profile_hits); |
433 | ||
7d12e780 | 434 | void profile_tick(int type) |
1da177e4 | 435 | { |
7d12e780 DH |
436 | struct pt_regs *regs = get_irq_regs(); |
437 | ||
1da177e4 LT |
438 | if (type == CPU_PROFILING && timer_hook) |
439 | timer_hook(regs); | |
c309b917 RR |
440 | if (!user_mode(regs) && prof_cpu_mask != NULL && |
441 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) | |
1da177e4 LT |
442 | profile_hit(type, (void *)profile_pc(regs)); |
443 | } | |
444 | ||
445 | #ifdef CONFIG_PROC_FS | |
446 | #include <linux/proc_fs.h> | |
583a22e7 | 447 | #include <linux/seq_file.h> |
1da177e4 | 448 | #include <asm/uaccess.h> |
1da177e4 | 449 | |
583a22e7 | 450 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4 | 451 | { |
583a22e7 AD |
452 | seq_cpumask(m, prof_cpu_mask); |
453 | seq_putc(m, '\n'); | |
454 | return 0; | |
455 | } | |
456 | ||
457 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | |
458 | { | |
459 | return single_open(file, prof_cpu_mask_proc_show, NULL); | |
1da177e4 LT |
460 | } |
461 | ||
583a22e7 AD |
462 | static ssize_t prof_cpu_mask_proc_write(struct file *file, |
463 | const char __user *buffer, size_t count, loff_t *pos) | |
1da177e4 | 464 | { |
c309b917 | 465 | cpumask_var_t new_value; |
583a22e7 | 466 | int err; |
1da177e4 | 467 | |
c309b917 RR |
468 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
469 | return -ENOMEM; | |
1da177e4 | 470 | |
c309b917 RR |
471 | err = cpumask_parse_user(buffer, count, new_value); |
472 | if (!err) { | |
583a22e7 AD |
473 | cpumask_copy(prof_cpu_mask, new_value); |
474 | err = count; | |
c309b917 RR |
475 | } |
476 | free_cpumask_var(new_value); | |
477 | return err; | |
1da177e4 LT |
478 | } |
479 | ||
583a22e7 AD |
480 | static const struct file_operations prof_cpu_mask_proc_fops = { |
481 | .open = prof_cpu_mask_proc_open, | |
482 | .read = seq_read, | |
483 | .llseek = seq_lseek, | |
484 | .release = single_release, | |
485 | .write = prof_cpu_mask_proc_write, | |
486 | }; | |
487 | ||
1da177e4 LT |
488 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
489 | { | |
1da177e4 | 490 | /* create /proc/irq/prof_cpu_mask */ |
583a22e7 | 491 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
1da177e4 LT |
492 | } |
493 | ||
494 | /* | |
495 | * This function accesses profiling information. The returned data is | |
496 | * binary: the sampling step and the actual contents of the profile | |
497 | * buffer. Use of the program readprofile is recommended in order to | |
498 | * get meaningful info out of these data. | |
499 | */ | |
500 | static ssize_t | |
501 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
502 | { | |
503 | unsigned long p = *ppos; | |
504 | ssize_t read; | |
1ad82fd5 | 505 | char *pnt; |
1da177e4 LT |
506 | unsigned int sample_step = 1 << prof_shift; |
507 | ||
508 | profile_flip_buffers(); | |
509 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
510 | return 0; | |
511 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
512 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
513 | read = 0; | |
514 | ||
515 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 516 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 517 | return -EFAULT; |
1da177e4 LT |
518 | buf++; p++; count--; read++; |
519 | } | |
520 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 521 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
522 | return -EFAULT; |
523 | read += count; | |
524 | *ppos += read; | |
525 | return read; | |
526 | } | |
527 | ||
528 | /* | |
529 | * Writing to /proc/profile resets the counters | |
530 | * | |
531 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
532 | * interrupt frequency, on architectures that support this. | |
533 | */ | |
534 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
535 | size_t count, loff_t *ppos) | |
536 | { | |
537 | #ifdef CONFIG_SMP | |
1ad82fd5 | 538 | extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4 LT |
539 | |
540 | if (count == sizeof(int)) { | |
541 | unsigned int multiplier; | |
542 | ||
543 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
544 | return -EFAULT; | |
545 | ||
546 | if (setup_profiling_timer(multiplier)) | |
547 | return -EINVAL; | |
548 | } | |
549 | #endif | |
550 | profile_discard_flip_buffers(); | |
551 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
552 | return count; | |
553 | } | |
554 | ||
15ad7cdc | 555 | static const struct file_operations proc_profile_operations = { |
1da177e4 LT |
556 | .read = read_profile, |
557 | .write = write_profile, | |
6038f373 | 558 | .llseek = default_llseek, |
1da177e4 LT |
559 | }; |
560 | ||
561 | #ifdef CONFIG_SMP | |
60a51513 | 562 | static void profile_nop(void *unused) |
1da177e4 LT |
563 | { |
564 | } | |
565 | ||
22b8ce94 | 566 | static int create_hash_tables(void) |
1da177e4 LT |
567 | { |
568 | int cpu; | |
569 | ||
570 | for_each_online_cpu(cpu) { | |
3dd6b5fb | 571 | int node = cpu_to_mem(cpu); |
1da177e4 LT |
572 | struct page *page; |
573 | ||
6484eb3e | 574 | page = alloc_pages_exact_node(node, |
fbd98167 CL |
575 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, |
576 | 0); | |
1da177e4 LT |
577 | if (!page) |
578 | goto out_cleanup; | |
579 | per_cpu(cpu_profile_hits, cpu)[1] | |
580 | = (struct profile_hit *)page_address(page); | |
6484eb3e | 581 | page = alloc_pages_exact_node(node, |
fbd98167 CL |
582 | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, |
583 | 0); | |
1da177e4 LT |
584 | if (!page) |
585 | goto out_cleanup; | |
586 | per_cpu(cpu_profile_hits, cpu)[0] | |
587 | = (struct profile_hit *)page_address(page); | |
588 | } | |
589 | return 0; | |
590 | out_cleanup: | |
591 | prof_on = 0; | |
d59dd462 | 592 | smp_mb(); |
15c8b6c1 | 593 | on_each_cpu(profile_nop, NULL, 1); |
1da177e4 LT |
594 | for_each_online_cpu(cpu) { |
595 | struct page *page; | |
596 | ||
597 | if (per_cpu(cpu_profile_hits, cpu)[0]) { | |
598 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | |
599 | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | |
600 | __free_page(page); | |
601 | } | |
602 | if (per_cpu(cpu_profile_hits, cpu)[1]) { | |
603 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | |
604 | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | |
605 | __free_page(page); | |
606 | } | |
607 | } | |
608 | return -1; | |
609 | } | |
610 | #else | |
611 | #define create_hash_tables() ({ 0; }) | |
612 | #endif | |
613 | ||
84196414 | 614 | int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ |
1da177e4 LT |
615 | { |
616 | struct proc_dir_entry *entry; | |
617 | ||
618 | if (!prof_on) | |
619 | return 0; | |
620 | if (create_hash_tables()) | |
22b8ce94 | 621 | return -ENOMEM; |
c33fff0a DL |
622 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
623 | NULL, &proc_profile_operations); | |
1ad82fd5 | 624 | if (!entry) |
1da177e4 | 625 | return 0; |
1da177e4 LT |
626 | entry->size = (1+prof_len) * sizeof(atomic_t); |
627 | hotcpu_notifier(profile_cpu_callback, 0); | |
628 | return 0; | |
629 | } | |
630 | module_init(create_proc_profile); | |
631 | #endif /* CONFIG_PROC_FS */ |