]>
Commit | Line | Data |
---|---|---|
043405e1 CO |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * derived from drivers/kvm/kvm_main.c | |
5 | * | |
6 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
7 | * Copyright (C) 2008 Qumranet, Inc. |
8 | * Copyright IBM Corporation, 2008 | |
9611c187 | 9 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
10 | * |
11 | * Authors: | |
12 | * Avi Kivity <[email protected]> | |
13 | * Yaniv Kamay <[email protected]> | |
4d5c5d0f BAY |
14 | * Amit Shah <[email protected]> |
15 | * Ben-Ami Yassour <[email protected]> | |
043405e1 CO |
16 | * |
17 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
18 | * the COPYING file in the top-level directory. | |
19 | * | |
20 | */ | |
21 | ||
edf88417 | 22 | #include <linux/kvm_host.h> |
313a3dc7 | 23 | #include "irq.h" |
1d737c8a | 24 | #include "mmu.h" |
7837699f | 25 | #include "i8254.h" |
37817f29 | 26 | #include "tss.h" |
5fdbf976 | 27 | #include "kvm_cache_regs.h" |
26eef70c | 28 | #include "x86.h" |
00b27a3e | 29 | #include "cpuid.h" |
474a5bb9 | 30 | #include "pmu.h" |
e83d5887 | 31 | #include "hyperv.h" |
313a3dc7 | 32 | |
18068523 | 33 | #include <linux/clocksource.h> |
4d5c5d0f | 34 | #include <linux/interrupt.h> |
313a3dc7 CO |
35 | #include <linux/kvm.h> |
36 | #include <linux/fs.h> | |
37 | #include <linux/vmalloc.h> | |
1767e931 PG |
38 | #include <linux/export.h> |
39 | #include <linux/moduleparam.h> | |
0de10343 | 40 | #include <linux/mman.h> |
2bacc55c | 41 | #include <linux/highmem.h> |
19de40a8 | 42 | #include <linux/iommu.h> |
62c476c7 | 43 | #include <linux/intel-iommu.h> |
c8076604 | 44 | #include <linux/cpufreq.h> |
18863bdd | 45 | #include <linux/user-return-notifier.h> |
a983fb23 | 46 | #include <linux/srcu.h> |
5a0e3ad6 | 47 | #include <linux/slab.h> |
ff9d07a0 | 48 | #include <linux/perf_event.h> |
7bee342a | 49 | #include <linux/uaccess.h> |
af585b92 | 50 | #include <linux/hash.h> |
a1b60c1c | 51 | #include <linux/pci.h> |
16e8d74d MT |
52 | #include <linux/timekeeper_internal.h> |
53 | #include <linux/pvclock_gtod.h> | |
87276880 FW |
54 | #include <linux/kvm_irqfd.h> |
55 | #include <linux/irqbypass.h> | |
3905f9ad | 56 | #include <linux/sched/stat.h> |
d0ec49d4 | 57 | #include <linux/mem_encrypt.h> |
3905f9ad | 58 | |
aec51dc4 | 59 | #include <trace/events/kvm.h> |
2ed152af | 60 | |
24f1e32c | 61 | #include <asm/debugreg.h> |
d825ed0a | 62 | #include <asm/msr.h> |
a5f61300 | 63 | #include <asm/desc.h> |
890ca9ae | 64 | #include <asm/mce.h> |
f89e32e0 | 65 | #include <linux/kernel_stat.h> |
78f7f1e5 | 66 | #include <asm/fpu/internal.h> /* Ugh! */ |
1d5f066e | 67 | #include <asm/pvclock.h> |
217fc9cf | 68 | #include <asm/div64.h> |
efc64404 | 69 | #include <asm/irq_remapping.h> |
b0c39dc6 | 70 | #include <asm/mshyperv.h> |
0092e434 | 71 | #include <asm/hypervisor.h> |
043405e1 | 72 | |
d1898b73 DH |
73 | #define CREATE_TRACE_POINTS |
74 | #include "trace.h" | |
75 | ||
313a3dc7 | 76 | #define MAX_IO_MSRS 256 |
890ca9ae | 77 | #define KVM_MAX_MCE_BANKS 32 |
c45dcc71 AR |
78 | u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; |
79 | EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); | |
890ca9ae | 80 | |
0f65dd70 AK |
81 | #define emul_to_vcpu(ctxt) \ |
82 | container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | |
83 | ||
50a37eb4 JR |
84 | /* EFER defaults: |
85 | * - enable syscall per default because its emulated by KVM | |
86 | * - enable LME and LMA per default on 64 bit KVM | |
87 | */ | |
88 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
89 | static |
90 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 91 | #else |
1260edbe | 92 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 93 | #endif |
313a3dc7 | 94 | |
ba1389b7 AK |
95 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
96 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | |
417bc304 | 97 | |
c519265f RK |
98 | #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
99 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | |
37131313 | 100 | |
cb142eb7 | 101 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 102 | static void process_nmi(struct kvm_vcpu *vcpu); |
ee2cd4b7 | 103 | static void enter_smm(struct kvm_vcpu *vcpu); |
6addfc42 | 104 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
01643c51 KH |
105 | static void store_regs(struct kvm_vcpu *vcpu); |
106 | static int sync_regs(struct kvm_vcpu *vcpu); | |
674eea0f | 107 | |
893590c7 | 108 | struct kvm_x86_ops *kvm_x86_ops __read_mostly; |
5fdbf976 | 109 | EXPORT_SYMBOL_GPL(kvm_x86_ops); |
97896d04 | 110 | |
893590c7 | 111 | static bool __read_mostly ignore_msrs = 0; |
476bc001 | 112 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); |
ed85c068 | 113 | |
fab0aa3b EM |
114 | static bool __read_mostly report_ignored_msrs = true; |
115 | module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); | |
116 | ||
4c27625b | 117 | unsigned int min_timer_period_us = 200; |
9ed96e87 MT |
118 | module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); |
119 | ||
630994b3 MT |
120 | static bool __read_mostly kvmclock_periodic_sync = true; |
121 | module_param(kvmclock_periodic_sync, bool, S_IRUGO); | |
122 | ||
893590c7 | 123 | bool __read_mostly kvm_has_tsc_control; |
92a1f12d | 124 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); |
893590c7 | 125 | u32 __read_mostly kvm_max_guest_tsc_khz; |
92a1f12d | 126 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); |
bc9b961b HZ |
127 | u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; |
128 | EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); | |
129 | u64 __read_mostly kvm_max_tsc_scaling_ratio; | |
130 | EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); | |
64672c95 YJ |
131 | u64 __read_mostly kvm_default_tsc_scaling_ratio; |
132 | EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); | |
92a1f12d | 133 | |
cc578287 | 134 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
893590c7 | 135 | static u32 __read_mostly tsc_tolerance_ppm = 250; |
cc578287 ZA |
136 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); |
137 | ||
d0659d94 | 138 | /* lapic timer advance (tscdeadline mode only) in nanoseconds */ |
3b8a5df6 | 139 | unsigned int __read_mostly lapic_timer_advance_ns = 1000; |
d0659d94 | 140 | module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); |
c5ce8235 | 141 | EXPORT_SYMBOL_GPL(lapic_timer_advance_ns); |
d0659d94 | 142 | |
52004014 FW |
143 | static bool __read_mostly vector_hashing = true; |
144 | module_param(vector_hashing, bool, S_IRUGO); | |
145 | ||
c4ae60e4 LA |
146 | bool __read_mostly enable_vmware_backdoor = false; |
147 | module_param(enable_vmware_backdoor, bool, S_IRUGO); | |
148 | EXPORT_SYMBOL_GPL(enable_vmware_backdoor); | |
149 | ||
6c86eedc WL |
150 | static bool __read_mostly force_emulation_prefix = false; |
151 | module_param(force_emulation_prefix, bool, S_IRUGO); | |
152 | ||
18863bdd AK |
153 | #define KVM_NR_SHARED_MSRS 16 |
154 | ||
155 | struct kvm_shared_msrs_global { | |
156 | int nr; | |
2bf78fa7 | 157 | u32 msrs[KVM_NR_SHARED_MSRS]; |
18863bdd AK |
158 | }; |
159 | ||
160 | struct kvm_shared_msrs { | |
161 | struct user_return_notifier urn; | |
162 | bool registered; | |
2bf78fa7 SY |
163 | struct kvm_shared_msr_values { |
164 | u64 host; | |
165 | u64 curr; | |
166 | } values[KVM_NR_SHARED_MSRS]; | |
18863bdd AK |
167 | }; |
168 | ||
169 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | |
013f6a5d | 170 | static struct kvm_shared_msrs __percpu *shared_msrs; |
18863bdd | 171 | |
417bc304 | 172 | struct kvm_stats_debugfs_item debugfs_entries[] = { |
ba1389b7 AK |
173 | { "pf_fixed", VCPU_STAT(pf_fixed) }, |
174 | { "pf_guest", VCPU_STAT(pf_guest) }, | |
175 | { "tlb_flush", VCPU_STAT(tlb_flush) }, | |
176 | { "invlpg", VCPU_STAT(invlpg) }, | |
177 | { "exits", VCPU_STAT(exits) }, | |
178 | { "io_exits", VCPU_STAT(io_exits) }, | |
179 | { "mmio_exits", VCPU_STAT(mmio_exits) }, | |
180 | { "signal_exits", VCPU_STAT(signal_exits) }, | |
181 | { "irq_window", VCPU_STAT(irq_window_exits) }, | |
f08864b4 | 182 | { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
ba1389b7 | 183 | { "halt_exits", VCPU_STAT(halt_exits) }, |
f7819512 | 184 | { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, |
62bea5bf | 185 | { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, |
3491caf2 | 186 | { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, |
ba1389b7 | 187 | { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
f11c3a8d | 188 | { "hypercalls", VCPU_STAT(hypercalls) }, |
ba1389b7 AK |
189 | { "request_irq", VCPU_STAT(request_irq_exits) }, |
190 | { "irq_exits", VCPU_STAT(irq_exits) }, | |
191 | { "host_state_reload", VCPU_STAT(host_state_reload) }, | |
ba1389b7 AK |
192 | { "fpu_reload", VCPU_STAT(fpu_reload) }, |
193 | { "insn_emulation", VCPU_STAT(insn_emulation) }, | |
194 | { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | |
fa89a817 | 195 | { "irq_injections", VCPU_STAT(irq_injections) }, |
c4abb7c9 | 196 | { "nmi_injections", VCPU_STAT(nmi_injections) }, |
0f1e261e | 197 | { "req_event", VCPU_STAT(req_event) }, |
c595ceee | 198 | { "l1d_flush", VCPU_STAT(l1d_flush) }, |
4cee5764 AK |
199 | { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
200 | { "mmu_pte_write", VM_STAT(mmu_pte_write) }, | |
201 | { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | |
202 | { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | |
203 | { "mmu_flooded", VM_STAT(mmu_flooded) }, | |
204 | { "mmu_recycled", VM_STAT(mmu_recycled) }, | |
dfc5aa00 | 205 | { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
4731d4c7 | 206 | { "mmu_unsync", VM_STAT(mmu_unsync) }, |
0f74a24c | 207 | { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
05da4558 | 208 | { "largepages", VM_STAT(lpages) }, |
f3414bc7 DM |
209 | { "max_mmu_page_hash_collisions", |
210 | VM_STAT(max_mmu_page_hash_collisions) }, | |
417bc304 HB |
211 | { NULL } |
212 | }; | |
213 | ||
2acf923e DC |
214 | u64 __read_mostly host_xcr0; |
215 | ||
b6785def | 216 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 217 | |
af585b92 GN |
218 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
219 | { | |
220 | int i; | |
221 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | |
222 | vcpu->arch.apf.gfns[i] = ~0; | |
223 | } | |
224 | ||
18863bdd AK |
225 | static void kvm_on_user_return(struct user_return_notifier *urn) |
226 | { | |
227 | unsigned slot; | |
18863bdd AK |
228 | struct kvm_shared_msrs *locals |
229 | = container_of(urn, struct kvm_shared_msrs, urn); | |
2bf78fa7 | 230 | struct kvm_shared_msr_values *values; |
1650b4eb IA |
231 | unsigned long flags; |
232 | ||
233 | /* | |
234 | * Disabling irqs at this point since the following code could be | |
235 | * interrupted and executed through kvm_arch_hardware_disable() | |
236 | */ | |
237 | local_irq_save(flags); | |
238 | if (locals->registered) { | |
239 | locals->registered = false; | |
240 | user_return_notifier_unregister(urn); | |
241 | } | |
242 | local_irq_restore(flags); | |
18863bdd | 243 | for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
2bf78fa7 SY |
244 | values = &locals->values[slot]; |
245 | if (values->host != values->curr) { | |
246 | wrmsrl(shared_msrs_global.msrs[slot], values->host); | |
247 | values->curr = values->host; | |
18863bdd AK |
248 | } |
249 | } | |
18863bdd AK |
250 | } |
251 | ||
2bf78fa7 | 252 | static void shared_msr_update(unsigned slot, u32 msr) |
18863bdd | 253 | { |
18863bdd | 254 | u64 value; |
013f6a5d MT |
255 | unsigned int cpu = smp_processor_id(); |
256 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
18863bdd | 257 | |
2bf78fa7 SY |
258 | /* only read, and nobody should modify it at this time, |
259 | * so don't need lock */ | |
260 | if (slot >= shared_msrs_global.nr) { | |
261 | printk(KERN_ERR "kvm: invalid MSR slot!"); | |
262 | return; | |
263 | } | |
264 | rdmsrl_safe(msr, &value); | |
265 | smsr->values[slot].host = value; | |
266 | smsr->values[slot].curr = value; | |
267 | } | |
268 | ||
269 | void kvm_define_shared_msr(unsigned slot, u32 msr) | |
270 | { | |
0123be42 | 271 | BUG_ON(slot >= KVM_NR_SHARED_MSRS); |
c847fe88 | 272 | shared_msrs_global.msrs[slot] = msr; |
18863bdd AK |
273 | if (slot >= shared_msrs_global.nr) |
274 | shared_msrs_global.nr = slot + 1; | |
18863bdd AK |
275 | } |
276 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | |
277 | ||
278 | static void kvm_shared_msr_cpu_online(void) | |
279 | { | |
280 | unsigned i; | |
18863bdd AK |
281 | |
282 | for (i = 0; i < shared_msrs_global.nr; ++i) | |
2bf78fa7 | 283 | shared_msr_update(i, shared_msrs_global.msrs[i]); |
18863bdd AK |
284 | } |
285 | ||
8b3c3104 | 286 | int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
18863bdd | 287 | { |
013f6a5d MT |
288 | unsigned int cpu = smp_processor_id(); |
289 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
8b3c3104 | 290 | int err; |
18863bdd | 291 | |
2bf78fa7 | 292 | if (((value ^ smsr->values[slot].curr) & mask) == 0) |
8b3c3104 | 293 | return 0; |
2bf78fa7 | 294 | smsr->values[slot].curr = value; |
8b3c3104 AH |
295 | err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); |
296 | if (err) | |
297 | return 1; | |
298 | ||
18863bdd AK |
299 | if (!smsr->registered) { |
300 | smsr->urn.on_user_return = kvm_on_user_return; | |
301 | user_return_notifier_register(&smsr->urn); | |
302 | smsr->registered = true; | |
303 | } | |
8b3c3104 | 304 | return 0; |
18863bdd AK |
305 | } |
306 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | |
307 | ||
13a34e06 | 308 | static void drop_user_return_notifiers(void) |
3548bab5 | 309 | { |
013f6a5d MT |
310 | unsigned int cpu = smp_processor_id(); |
311 | struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | |
3548bab5 AK |
312 | |
313 | if (smsr->registered) | |
314 | kvm_on_user_return(&smsr->urn); | |
315 | } | |
316 | ||
6866b83e CO |
317 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
318 | { | |
8a5a87d9 | 319 | return vcpu->arch.apic_base; |
6866b83e CO |
320 | } |
321 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | |
322 | ||
58871649 JM |
323 | enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) |
324 | { | |
325 | return kvm_apic_mode(kvm_get_apic_base(vcpu)); | |
326 | } | |
327 | EXPORT_SYMBOL_GPL(kvm_get_apic_mode); | |
328 | ||
58cb628d JK |
329 | int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
330 | { | |
58871649 JM |
331 | enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); |
332 | enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); | |
d6321d49 RK |
333 | u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | |
334 | (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); | |
58cb628d | 335 | |
58871649 | 336 | if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) |
58cb628d | 337 | return 1; |
58871649 JM |
338 | if (!msr_info->host_initiated) { |
339 | if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) | |
340 | return 1; | |
341 | if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) | |
342 | return 1; | |
343 | } | |
58cb628d JK |
344 | |
345 | kvm_lapic_set_base(vcpu, msr_info->data); | |
346 | return 0; | |
6866b83e CO |
347 | } |
348 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | |
349 | ||
2605fc21 | 350 | asmlinkage __visible void kvm_spurious_fault(void) |
e3ba45b8 GL |
351 | { |
352 | /* Fault while not rebooting. We want the trace. */ | |
353 | BUG(); | |
354 | } | |
355 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | |
356 | ||
3fd28fce ED |
357 | #define EXCPT_BENIGN 0 |
358 | #define EXCPT_CONTRIBUTORY 1 | |
359 | #define EXCPT_PF 2 | |
360 | ||
361 | static int exception_class(int vector) | |
362 | { | |
363 | switch (vector) { | |
364 | case PF_VECTOR: | |
365 | return EXCPT_PF; | |
366 | case DE_VECTOR: | |
367 | case TS_VECTOR: | |
368 | case NP_VECTOR: | |
369 | case SS_VECTOR: | |
370 | case GP_VECTOR: | |
371 | return EXCPT_CONTRIBUTORY; | |
372 | default: | |
373 | break; | |
374 | } | |
375 | return EXCPT_BENIGN; | |
376 | } | |
377 | ||
d6e8c854 NA |
378 | #define EXCPT_FAULT 0 |
379 | #define EXCPT_TRAP 1 | |
380 | #define EXCPT_ABORT 2 | |
381 | #define EXCPT_INTERRUPT 3 | |
382 | ||
383 | static int exception_type(int vector) | |
384 | { | |
385 | unsigned int mask; | |
386 | ||
387 | if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) | |
388 | return EXCPT_INTERRUPT; | |
389 | ||
390 | mask = 1 << vector; | |
391 | ||
392 | /* #DB is trap, as instruction watchpoints are handled elsewhere */ | |
393 | if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) | |
394 | return EXCPT_TRAP; | |
395 | ||
396 | if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) | |
397 | return EXCPT_ABORT; | |
398 | ||
399 | /* Reserved exceptions will result in fault */ | |
400 | return EXCPT_FAULT; | |
401 | } | |
402 | ||
3fd28fce | 403 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
ce7ddec4 JR |
404 | unsigned nr, bool has_error, u32 error_code, |
405 | bool reinject) | |
3fd28fce ED |
406 | { |
407 | u32 prev_nr; | |
408 | int class1, class2; | |
409 | ||
3842d135 AK |
410 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
411 | ||
664f8e26 | 412 | if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { |
3fd28fce | 413 | queue: |
3ffb2468 NA |
414 | if (has_error && !is_protmode(vcpu)) |
415 | has_error = false; | |
664f8e26 WL |
416 | if (reinject) { |
417 | /* | |
418 | * On vmentry, vcpu->arch.exception.pending is only | |
419 | * true if an event injection was blocked by | |
420 | * nested_run_pending. In that case, however, | |
421 | * vcpu_enter_guest requests an immediate exit, | |
422 | * and the guest shouldn't proceed far enough to | |
423 | * need reinjection. | |
424 | */ | |
425 | WARN_ON_ONCE(vcpu->arch.exception.pending); | |
426 | vcpu->arch.exception.injected = true; | |
427 | } else { | |
428 | vcpu->arch.exception.pending = true; | |
429 | vcpu->arch.exception.injected = false; | |
430 | } | |
3fd28fce ED |
431 | vcpu->arch.exception.has_error_code = has_error; |
432 | vcpu->arch.exception.nr = nr; | |
433 | vcpu->arch.exception.error_code = error_code; | |
434 | return; | |
435 | } | |
436 | ||
437 | /* to check exception */ | |
438 | prev_nr = vcpu->arch.exception.nr; | |
439 | if (prev_nr == DF_VECTOR) { | |
440 | /* triple fault -> shutdown */ | |
a8eeb04a | 441 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
442 | return; |
443 | } | |
444 | class1 = exception_class(prev_nr); | |
445 | class2 = exception_class(nr); | |
446 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | |
447 | || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
664f8e26 WL |
448 | /* |
449 | * Generate double fault per SDM Table 5-5. Set | |
450 | * exception.pending = true so that the double fault | |
451 | * can trigger a nested vmexit. | |
452 | */ | |
3fd28fce | 453 | vcpu->arch.exception.pending = true; |
664f8e26 | 454 | vcpu->arch.exception.injected = false; |
3fd28fce ED |
455 | vcpu->arch.exception.has_error_code = true; |
456 | vcpu->arch.exception.nr = DF_VECTOR; | |
457 | vcpu->arch.exception.error_code = 0; | |
458 | } else | |
459 | /* replace previous exception with a new one in a hope | |
460 | that instruction re-execution will regenerate lost | |
461 | exception */ | |
462 | goto queue; | |
463 | } | |
464 | ||
298101da AK |
465 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
466 | { | |
ce7ddec4 | 467 | kvm_multiple_exception(vcpu, nr, false, 0, false); |
298101da AK |
468 | } |
469 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
470 | ||
ce7ddec4 JR |
471 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
472 | { | |
473 | kvm_multiple_exception(vcpu, nr, false, 0, true); | |
474 | } | |
475 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
476 | ||
6affcbed | 477 | int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 478 | { |
db8fcefa AP |
479 | if (err) |
480 | kvm_inject_gp(vcpu, 0); | |
481 | else | |
6affcbed KH |
482 | return kvm_skip_emulated_instruction(vcpu); |
483 | ||
484 | return 1; | |
db8fcefa AP |
485 | } |
486 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 487 | |
6389ee94 | 488 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
489 | { |
490 | ++vcpu->stat.pf_guest; | |
adfe20fb WL |
491 | vcpu->arch.exception.nested_apf = |
492 | is_guest_mode(vcpu) && fault->async_page_fault; | |
493 | if (vcpu->arch.exception.nested_apf) | |
494 | vcpu->arch.apf.nested_apf_token = fault->address; | |
495 | else | |
496 | vcpu->arch.cr2 = fault->address; | |
6389ee94 | 497 | kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); |
c3c91fee | 498 | } |
27d6c865 | 499 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); |
c3c91fee | 500 | |
ef54bcfe | 501 | static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
d4f8cf66 | 502 | { |
6389ee94 AK |
503 | if (mmu_is_nested(vcpu) && !fault->nested_page_fault) |
504 | vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | |
d4f8cf66 | 505 | else |
44dd3ffa | 506 | vcpu->arch.mmu->inject_page_fault(vcpu, fault); |
ef54bcfe PB |
507 | |
508 | return fault->nested_page_fault; | |
d4f8cf66 JR |
509 | } |
510 | ||
3419ffc8 SY |
511 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
512 | { | |
7460fb4a AK |
513 | atomic_inc(&vcpu->arch.nmi_queued); |
514 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 SY |
515 | } |
516 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | |
517 | ||
298101da AK |
518 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
519 | { | |
ce7ddec4 | 520 | kvm_multiple_exception(vcpu, nr, true, error_code, false); |
298101da AK |
521 | } |
522 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
523 | ||
ce7ddec4 JR |
524 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
525 | { | |
526 | kvm_multiple_exception(vcpu, nr, true, error_code, true); | |
527 | } | |
528 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | |
529 | ||
0a79b009 AK |
530 | /* |
531 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
532 | * a #GP and return false. | |
533 | */ | |
534 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 535 | { |
0a79b009 AK |
536 | if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
537 | return true; | |
538 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
539 | return false; | |
298101da | 540 | } |
0a79b009 | 541 | EXPORT_SYMBOL_GPL(kvm_require_cpl); |
298101da | 542 | |
16f8a6f9 NA |
543 | bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
544 | { | |
545 | if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | |
546 | return true; | |
547 | ||
548 | kvm_queue_exception(vcpu, UD_VECTOR); | |
549 | return false; | |
550 | } | |
551 | EXPORT_SYMBOL_GPL(kvm_require_dr); | |
552 | ||
ec92fe44 JR |
553 | /* |
554 | * This function will be used to read from the physical memory of the currently | |
54bf36aa | 555 | * running guest. The difference to kvm_vcpu_read_guest_page is that this function |
ec92fe44 JR |
556 | * can read from guest physical or from the guest's guest physical memory. |
557 | */ | |
558 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
559 | gfn_t ngfn, void *data, int offset, int len, | |
560 | u32 access) | |
561 | { | |
54987b7a | 562 | struct x86_exception exception; |
ec92fe44 JR |
563 | gfn_t real_gfn; |
564 | gpa_t ngpa; | |
565 | ||
566 | ngpa = gfn_to_gpa(ngfn); | |
54987b7a | 567 | real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); |
ec92fe44 JR |
568 | if (real_gfn == UNMAPPED_GVA) |
569 | return -EFAULT; | |
570 | ||
571 | real_gfn = gpa_to_gfn(real_gfn); | |
572 | ||
54bf36aa | 573 | return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); |
ec92fe44 JR |
574 | } |
575 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | |
576 | ||
69b0049a | 577 | static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
3d06b8bf JR |
578 | void *data, int offset, int len, u32 access) |
579 | { | |
580 | return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | |
581 | data, offset, len, access); | |
582 | } | |
583 | ||
a03490ed CO |
584 | /* |
585 | * Load the pae pdptrs. Return true is they are all valid. | |
586 | */ | |
ff03a073 | 587 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
a03490ed CO |
588 | { |
589 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | |
590 | unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | |
591 | int i; | |
592 | int ret; | |
ff03a073 | 593 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 594 | |
ff03a073 JR |
595 | ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
596 | offset * sizeof(u64), sizeof(pdpte), | |
597 | PFERR_USER_MASK|PFERR_WRITE_MASK); | |
a03490ed CO |
598 | if (ret < 0) { |
599 | ret = 0; | |
600 | goto out; | |
601 | } | |
602 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | |
812f30b2 | 603 | if ((pdpte[i] & PT_PRESENT_MASK) && |
a0a64f50 | 604 | (pdpte[i] & |
44dd3ffa | 605 | vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) { |
a03490ed CO |
606 | ret = 0; |
607 | goto out; | |
608 | } | |
609 | } | |
610 | ret = 1; | |
611 | ||
ff03a073 | 612 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
6de4f3ad AK |
613 | __set_bit(VCPU_EXREG_PDPTR, |
614 | (unsigned long *)&vcpu->arch.regs_avail); | |
615 | __set_bit(VCPU_EXREG_PDPTR, | |
616 | (unsigned long *)&vcpu->arch.regs_dirty); | |
a03490ed | 617 | out: |
a03490ed CO |
618 | |
619 | return ret; | |
620 | } | |
cc4b6871 | 621 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 622 | |
9ed38ffa | 623 | bool pdptrs_changed(struct kvm_vcpu *vcpu) |
d835dfec | 624 | { |
ff03a073 | 625 | u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
d835dfec | 626 | bool changed = true; |
3d06b8bf JR |
627 | int offset; |
628 | gfn_t gfn; | |
d835dfec AK |
629 | int r; |
630 | ||
d35b34a9 | 631 | if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu)) |
d835dfec AK |
632 | return false; |
633 | ||
6de4f3ad AK |
634 | if (!test_bit(VCPU_EXREG_PDPTR, |
635 | (unsigned long *)&vcpu->arch.regs_avail)) | |
636 | return true; | |
637 | ||
a512177e PB |
638 | gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; |
639 | offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); | |
3d06b8bf JR |
640 | r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
641 | PFERR_USER_MASK | PFERR_WRITE_MASK); | |
d835dfec AK |
642 | if (r < 0) |
643 | goto out; | |
ff03a073 | 644 | changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
d835dfec | 645 | out: |
d835dfec AK |
646 | |
647 | return changed; | |
648 | } | |
9ed38ffa | 649 | EXPORT_SYMBOL_GPL(pdptrs_changed); |
d835dfec | 650 | |
49a9b07e | 651 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 652 | { |
aad82703 | 653 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
d81135a5 | 654 | unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; |
aad82703 | 655 | |
f9a48e6a AK |
656 | cr0 |= X86_CR0_ET; |
657 | ||
ab344828 | 658 | #ifdef CONFIG_X86_64 |
0f12244f GN |
659 | if (cr0 & 0xffffffff00000000UL) |
660 | return 1; | |
ab344828 GN |
661 | #endif |
662 | ||
663 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 664 | |
0f12244f GN |
665 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
666 | return 1; | |
a03490ed | 667 | |
0f12244f GN |
668 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
669 | return 1; | |
a03490ed CO |
670 | |
671 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | |
672 | #ifdef CONFIG_X86_64 | |
f6801dff | 673 | if ((vcpu->arch.efer & EFER_LME)) { |
a03490ed CO |
674 | int cs_db, cs_l; |
675 | ||
0f12244f GN |
676 | if (!is_pae(vcpu)) |
677 | return 1; | |
a03490ed | 678 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
0f12244f GN |
679 | if (cs_l) |
680 | return 1; | |
a03490ed CO |
681 | } else |
682 | #endif | |
ff03a073 | 683 | if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
9f8fe504 | 684 | kvm_read_cr3(vcpu))) |
0f12244f | 685 | return 1; |
a03490ed CO |
686 | } |
687 | ||
ad756a16 MJ |
688 | if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) |
689 | return 1; | |
690 | ||
a03490ed | 691 | kvm_x86_ops->set_cr0(vcpu, cr0); |
a03490ed | 692 | |
d170c419 | 693 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
e5f3f027 | 694 | kvm_clear_async_pf_completion_queue(vcpu); |
d170c419 LJ |
695 | kvm_async_pf_hash_reset(vcpu); |
696 | } | |
e5f3f027 | 697 | |
aad82703 SY |
698 | if ((cr0 ^ old_cr0) & update_bits) |
699 | kvm_mmu_reset_context(vcpu); | |
b18d5431 | 700 | |
879ae188 LE |
701 | if (((cr0 ^ old_cr0) & X86_CR0_CD) && |
702 | kvm_arch_has_noncoherent_dma(vcpu->kvm) && | |
703 | !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | |
b18d5431 XG |
704 | kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); |
705 | ||
0f12244f GN |
706 | return 0; |
707 | } | |
2d3ad1f4 | 708 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 709 | |
2d3ad1f4 | 710 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 711 | { |
49a9b07e | 712 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 713 | } |
2d3ad1f4 | 714 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 715 | |
42bdf991 MT |
716 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
717 | { | |
718 | if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | |
719 | !vcpu->guest_xcr0_loaded) { | |
720 | /* kvm_set_xcr() also depends on this */ | |
476b7ada PB |
721 | if (vcpu->arch.xcr0 != host_xcr0) |
722 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | |
42bdf991 MT |
723 | vcpu->guest_xcr0_loaded = 1; |
724 | } | |
725 | } | |
726 | ||
727 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | |
728 | { | |
729 | if (vcpu->guest_xcr0_loaded) { | |
730 | if (vcpu->arch.xcr0 != host_xcr0) | |
731 | xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | |
732 | vcpu->guest_xcr0_loaded = 0; | |
733 | } | |
734 | } | |
735 | ||
69b0049a | 736 | static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
2acf923e | 737 | { |
56c103ec LJ |
738 | u64 xcr0 = xcr; |
739 | u64 old_xcr0 = vcpu->arch.xcr0; | |
46c34cb0 | 740 | u64 valid_bits; |
2acf923e DC |
741 | |
742 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
743 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
744 | return 1; | |
d91cab78 | 745 | if (!(xcr0 & XFEATURE_MASK_FP)) |
2acf923e | 746 | return 1; |
d91cab78 | 747 | if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
2acf923e | 748 | return 1; |
46c34cb0 PB |
749 | |
750 | /* | |
751 | * Do not allow the guest to set bits that we do not support | |
752 | * saving. However, xcr0 bit 0 is always set, even if the | |
753 | * emulated CPU does not support XSAVE (see fx_init). | |
754 | */ | |
d91cab78 | 755 | valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
46c34cb0 | 756 | if (xcr0 & ~valid_bits) |
2acf923e | 757 | return 1; |
46c34cb0 | 758 | |
d91cab78 DH |
759 | if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
760 | (!(xcr0 & XFEATURE_MASK_BNDCSR))) | |
390bd528 LJ |
761 | return 1; |
762 | ||
d91cab78 DH |
763 | if (xcr0 & XFEATURE_MASK_AVX512) { |
764 | if (!(xcr0 & XFEATURE_MASK_YMM)) | |
612263b3 | 765 | return 1; |
d91cab78 | 766 | if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
612263b3 CP |
767 | return 1; |
768 | } | |
2acf923e | 769 | vcpu->arch.xcr0 = xcr0; |
56c103ec | 770 | |
d91cab78 | 771 | if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
56c103ec | 772 | kvm_update_cpuid(vcpu); |
2acf923e DC |
773 | return 0; |
774 | } | |
775 | ||
776 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | |
777 | { | |
764bcbc5 Z |
778 | if (kvm_x86_ops->get_cpl(vcpu) != 0 || |
779 | __kvm_set_xcr(vcpu, index, xcr)) { | |
2acf923e DC |
780 | kvm_inject_gp(vcpu, 0); |
781 | return 1; | |
782 | } | |
783 | return 0; | |
784 | } | |
785 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | |
786 | ||
a83b29c6 | 787 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
a03490ed | 788 | { |
fc78f519 | 789 | unsigned long old_cr4 = kvm_read_cr4(vcpu); |
0be0226f | 790 | unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | |
b9baba86 | 791 | X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; |
0be0226f | 792 | |
0f12244f GN |
793 | if (cr4 & CR4_RESERVED_BITS) |
794 | return 1; | |
a03490ed | 795 | |
d6321d49 | 796 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) |
2acf923e DC |
797 | return 1; |
798 | ||
d6321d49 | 799 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) |
2acf923e DC |
800 | return 1; |
801 | ||
d6321d49 | 802 | if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) |
c68b734f YW |
803 | return 1; |
804 | ||
d6321d49 | 805 | if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) |
97ec8c06 FW |
806 | return 1; |
807 | ||
d6321d49 | 808 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) |
74dc2b4f YW |
809 | return 1; |
810 | ||
fd8cb433 | 811 | if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) |
b9baba86 HH |
812 | return 1; |
813 | ||
ae3e61e1 PB |
814 | if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP)) |
815 | return 1; | |
816 | ||
a03490ed | 817 | if (is_long_mode(vcpu)) { |
0f12244f GN |
818 | if (!(cr4 & X86_CR4_PAE)) |
819 | return 1; | |
a2edf57f AK |
820 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
821 | && ((cr4 ^ old_cr4) & pdptr_bits) | |
9f8fe504 AK |
822 | && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
823 | kvm_read_cr3(vcpu))) | |
0f12244f GN |
824 | return 1; |
825 | ||
ad756a16 | 826 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
d6321d49 | 827 | if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) |
ad756a16 MJ |
828 | return 1; |
829 | ||
830 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | |
831 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
832 | return 1; | |
833 | } | |
834 | ||
5e1746d6 | 835 | if (kvm_x86_ops->set_cr4(vcpu, cr4)) |
0f12244f | 836 | return 1; |
a03490ed | 837 | |
ad756a16 MJ |
838 | if (((cr4 ^ old_cr4) & pdptr_bits) || |
839 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
aad82703 | 840 | kvm_mmu_reset_context(vcpu); |
0f12244f | 841 | |
b9baba86 | 842 | if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) |
00b27a3e | 843 | kvm_update_cpuid(vcpu); |
2acf923e | 844 | |
0f12244f GN |
845 | return 0; |
846 | } | |
2d3ad1f4 | 847 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 848 | |
2390218b | 849 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 850 | { |
ade61e28 | 851 | bool skip_tlb_flush = false; |
ac146235 | 852 | #ifdef CONFIG_X86_64 |
c19986fe JS |
853 | bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); |
854 | ||
ade61e28 | 855 | if (pcid_enabled) { |
208320ba JS |
856 | skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; |
857 | cr3 &= ~X86_CR3_PCID_NOFLUSH; | |
ade61e28 | 858 | } |
ac146235 | 859 | #endif |
9d88fca7 | 860 | |
9f8fe504 | 861 | if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { |
956bf353 JS |
862 | if (!skip_tlb_flush) { |
863 | kvm_mmu_sync_roots(vcpu); | |
ade61e28 | 864 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
956bf353 | 865 | } |
0f12244f | 866 | return 0; |
d835dfec AK |
867 | } |
868 | ||
d1cd3ce9 | 869 | if (is_long_mode(vcpu) && |
a780a3ea | 870 | (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))) |
d1cd3ce9 YZ |
871 | return 1; |
872 | else if (is_pae(vcpu) && is_paging(vcpu) && | |
d9f89b88 | 873 | !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) |
346874c9 | 874 | return 1; |
a03490ed | 875 | |
ade61e28 | 876 | kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush); |
0f12244f | 877 | vcpu->arch.cr3 = cr3; |
aff48baa | 878 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
7c390d35 | 879 | |
0f12244f GN |
880 | return 0; |
881 | } | |
2d3ad1f4 | 882 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 883 | |
eea1cff9 | 884 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 885 | { |
0f12244f GN |
886 | if (cr8 & CR8_RESERVED_BITS) |
887 | return 1; | |
35754c98 | 888 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
889 | kvm_lapic_set_tpr(vcpu, cr8); |
890 | else | |
ad312c7c | 891 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
892 | return 0; |
893 | } | |
2d3ad1f4 | 894 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 895 | |
2d3ad1f4 | 896 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed | 897 | { |
35754c98 | 898 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
899 | return kvm_lapic_get_cr8(vcpu); |
900 | else | |
ad312c7c | 901 | return vcpu->arch.cr8; |
a03490ed | 902 | } |
2d3ad1f4 | 903 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 904 | |
ae561ede NA |
905 | static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
906 | { | |
907 | int i; | |
908 | ||
909 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { | |
910 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
911 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
912 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; | |
913 | } | |
914 | } | |
915 | ||
73aaf249 JK |
916 | static void kvm_update_dr6(struct kvm_vcpu *vcpu) |
917 | { | |
918 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
919 | kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); | |
920 | } | |
921 | ||
c8639010 JK |
922 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) |
923 | { | |
924 | unsigned long dr7; | |
925 | ||
926 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
927 | dr7 = vcpu->arch.guest_debug_dr7; | |
928 | else | |
929 | dr7 = vcpu->arch.dr7; | |
930 | kvm_x86_ops->set_dr7(vcpu, dr7); | |
360b948d PB |
931 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
932 | if (dr7 & DR7_BP_EN_MASK) | |
933 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; | |
c8639010 JK |
934 | } |
935 | ||
6f43ed01 NA |
936 | static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
937 | { | |
938 | u64 fixed = DR6_FIXED_1; | |
939 | ||
d6321d49 | 940 | if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) |
6f43ed01 NA |
941 | fixed |= DR6_RTM; |
942 | return fixed; | |
943 | } | |
944 | ||
338dbc97 | 945 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 GN |
946 | { |
947 | switch (dr) { | |
948 | case 0 ... 3: | |
949 | vcpu->arch.db[dr] = val; | |
950 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | |
951 | vcpu->arch.eff_db[dr] = val; | |
952 | break; | |
953 | case 4: | |
020df079 GN |
954 | /* fall through */ |
955 | case 6: | |
338dbc97 GN |
956 | if (val & 0xffffffff00000000ULL) |
957 | return -1; /* #GP */ | |
6f43ed01 | 958 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
73aaf249 | 959 | kvm_update_dr6(vcpu); |
020df079 GN |
960 | break; |
961 | case 5: | |
020df079 GN |
962 | /* fall through */ |
963 | default: /* 7 */ | |
338dbc97 GN |
964 | if (val & 0xffffffff00000000ULL) |
965 | return -1; /* #GP */ | |
020df079 | 966 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 967 | kvm_update_dr7(vcpu); |
020df079 GN |
968 | break; |
969 | } | |
970 | ||
971 | return 0; | |
972 | } | |
338dbc97 GN |
973 | |
974 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | |
975 | { | |
16f8a6f9 | 976 | if (__kvm_set_dr(vcpu, dr, val)) { |
338dbc97 | 977 | kvm_inject_gp(vcpu, 0); |
16f8a6f9 NA |
978 | return 1; |
979 | } | |
980 | return 0; | |
338dbc97 | 981 | } |
020df079 GN |
982 | EXPORT_SYMBOL_GPL(kvm_set_dr); |
983 | ||
16f8a6f9 | 984 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
020df079 GN |
985 | { |
986 | switch (dr) { | |
987 | case 0 ... 3: | |
988 | *val = vcpu->arch.db[dr]; | |
989 | break; | |
990 | case 4: | |
020df079 GN |
991 | /* fall through */ |
992 | case 6: | |
73aaf249 JK |
993 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
994 | *val = vcpu->arch.dr6; | |
995 | else | |
996 | *val = kvm_x86_ops->get_dr6(vcpu); | |
020df079 GN |
997 | break; |
998 | case 5: | |
020df079 GN |
999 | /* fall through */ |
1000 | default: /* 7 */ | |
1001 | *val = vcpu->arch.dr7; | |
1002 | break; | |
1003 | } | |
338dbc97 GN |
1004 | return 0; |
1005 | } | |
020df079 GN |
1006 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
1007 | ||
022cd0e8 AK |
1008 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) |
1009 | { | |
1010 | u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
1011 | u64 data; | |
1012 | int err; | |
1013 | ||
c6702c9d | 1014 | err = kvm_pmu_rdpmc(vcpu, ecx, &data); |
022cd0e8 AK |
1015 | if (err) |
1016 | return err; | |
1017 | kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | |
1018 | kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | |
1019 | return err; | |
1020 | } | |
1021 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | |
1022 | ||
043405e1 CO |
1023 | /* |
1024 | * List of msr numbers which we expose to userspace through KVM_GET_MSRS | |
1025 | * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | |
1026 | * | |
1027 | * This list is modified at module load time to reflect the | |
e3267cbb | 1028 | * capabilities of the host cpu. This capabilities test skips MSRs that are |
62ef68bb PB |
1029 | * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs |
1030 | * may depend on host virtualization features rather than host cpu features. | |
043405e1 | 1031 | */ |
e3267cbb | 1032 | |
043405e1 CO |
1033 | static u32 msrs_to_save[] = { |
1034 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | |
8c06585d | 1035 | MSR_STAR, |
043405e1 CO |
1036 | #ifdef CONFIG_X86_64 |
1037 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
1038 | #endif | |
b3897a49 | 1039 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, |
9dbe6cf9 | 1040 | MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, |
d28b387f | 1041 | MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES |
043405e1 CO |
1042 | }; |
1043 | ||
1044 | static unsigned num_msrs_to_save; | |
1045 | ||
62ef68bb PB |
1046 | static u32 emulated_msrs[] = { |
1047 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | |
1048 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | |
1049 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | |
1050 | HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, | |
72c139ba | 1051 | HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, |
e7d9513b AS |
1052 | HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, |
1053 | HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, | |
e516cebb | 1054 | HV_X64_MSR_RESET, |
11c4b1ca | 1055 | HV_X64_MSR_VP_INDEX, |
9eec50b8 | 1056 | HV_X64_MSR_VP_RUNTIME, |
5c919412 | 1057 | HV_X64_MSR_SCONTROL, |
1f4b34f8 | 1058 | HV_X64_MSR_STIMER0_CONFIG, |
d4abc577 | 1059 | HV_X64_MSR_VP_ASSIST_PAGE, |
a2e164e7 VK |
1060 | HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, |
1061 | HV_X64_MSR_TSC_EMULATION_STATUS, | |
1062 | ||
1063 | MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, | |
62ef68bb PB |
1064 | MSR_KVM_PV_EOI_EN, |
1065 | ||
ba904635 | 1066 | MSR_IA32_TSC_ADJUST, |
a3e06bbe | 1067 | MSR_IA32_TSCDEADLINE, |
043405e1 | 1068 | MSR_IA32_MISC_ENABLE, |
908e75f3 AK |
1069 | MSR_IA32_MCG_STATUS, |
1070 | MSR_IA32_MCG_CTL, | |
c45dcc71 | 1071 | MSR_IA32_MCG_EXT_CTL, |
64d60670 | 1072 | MSR_IA32_SMBASE, |
52797bf9 | 1073 | MSR_SMI_COUNT, |
db2336a8 KH |
1074 | MSR_PLATFORM_INFO, |
1075 | MSR_MISC_FEATURES_ENABLES, | |
bc226f07 | 1076 | MSR_AMD64_VIRT_SPEC_CTRL, |
043405e1 CO |
1077 | }; |
1078 | ||
62ef68bb PB |
1079 | static unsigned num_emulated_msrs; |
1080 | ||
801e459a TL |
1081 | /* |
1082 | * List of msr numbers which are used to expose MSR-based features that | |
1083 | * can be used by a hypervisor to validate requested CPU features. | |
1084 | */ | |
1085 | static u32 msr_based_features[] = { | |
1389309c PB |
1086 | MSR_IA32_VMX_BASIC, |
1087 | MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
1088 | MSR_IA32_VMX_PINBASED_CTLS, | |
1089 | MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
1090 | MSR_IA32_VMX_PROCBASED_CTLS, | |
1091 | MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
1092 | MSR_IA32_VMX_EXIT_CTLS, | |
1093 | MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
1094 | MSR_IA32_VMX_ENTRY_CTLS, | |
1095 | MSR_IA32_VMX_MISC, | |
1096 | MSR_IA32_VMX_CR0_FIXED0, | |
1097 | MSR_IA32_VMX_CR0_FIXED1, | |
1098 | MSR_IA32_VMX_CR4_FIXED0, | |
1099 | MSR_IA32_VMX_CR4_FIXED1, | |
1100 | MSR_IA32_VMX_VMCS_ENUM, | |
1101 | MSR_IA32_VMX_PROCBASED_CTLS2, | |
1102 | MSR_IA32_VMX_EPT_VPID_CAP, | |
1103 | MSR_IA32_VMX_VMFUNC, | |
1104 | ||
d1d93fa9 | 1105 | MSR_F10H_DECFG, |
518e7b94 | 1106 | MSR_IA32_UCODE_REV, |
cd283252 | 1107 | MSR_IA32_ARCH_CAPABILITIES, |
801e459a TL |
1108 | }; |
1109 | ||
1110 | static unsigned int num_msr_based_features; | |
1111 | ||
5b76a3cf PB |
1112 | u64 kvm_get_arch_capabilities(void) |
1113 | { | |
1114 | u64 data; | |
1115 | ||
1116 | rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data); | |
1117 | ||
1118 | /* | |
1119 | * If we're doing cache flushes (either "always" or "cond") | |
1120 | * we will do one whenever the guest does a vmlaunch/vmresume. | |
1121 | * If an outer hypervisor is doing the cache flush for us | |
1122 | * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that | |
1123 | * capability to the guest too, and if EPT is disabled we're not | |
1124 | * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will | |
1125 | * require a nested hypervisor to do a flush of its own. | |
1126 | */ | |
1127 | if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) | |
1128 | data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; | |
1129 | ||
1130 | return data; | |
1131 | } | |
1132 | EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities); | |
1133 | ||
66421c1e WL |
1134 | static int kvm_get_msr_feature(struct kvm_msr_entry *msr) |
1135 | { | |
1136 | switch (msr->index) { | |
cd283252 | 1137 | case MSR_IA32_ARCH_CAPABILITIES: |
5b76a3cf PB |
1138 | msr->data = kvm_get_arch_capabilities(); |
1139 | break; | |
1140 | case MSR_IA32_UCODE_REV: | |
cd283252 | 1141 | rdmsrl_safe(msr->index, &msr->data); |
518e7b94 | 1142 | break; |
66421c1e WL |
1143 | default: |
1144 | if (kvm_x86_ops->get_msr_feature(msr)) | |
1145 | return 1; | |
1146 | } | |
1147 | return 0; | |
1148 | } | |
1149 | ||
801e459a TL |
1150 | static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1151 | { | |
1152 | struct kvm_msr_entry msr; | |
66421c1e | 1153 | int r; |
801e459a TL |
1154 | |
1155 | msr.index = index; | |
66421c1e WL |
1156 | r = kvm_get_msr_feature(&msr); |
1157 | if (r) | |
1158 | return r; | |
801e459a TL |
1159 | |
1160 | *data = msr.data; | |
1161 | ||
1162 | return 0; | |
1163 | } | |
1164 | ||
384bb783 | 1165 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 1166 | { |
b69e8cae | 1167 | if (efer & efer_reserved_bits) |
384bb783 | 1168 | return false; |
15c4a640 | 1169 | |
1b4d56b8 | 1170 | if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) |
384bb783 | 1171 | return false; |
1b2fd70c | 1172 | |
1b4d56b8 | 1173 | if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
384bb783 | 1174 | return false; |
d8017474 | 1175 | |
384bb783 JK |
1176 | return true; |
1177 | } | |
1178 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | |
1179 | ||
1180 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) | |
1181 | { | |
1182 | u64 old_efer = vcpu->arch.efer; | |
1183 | ||
1184 | if (!kvm_valid_efer(vcpu, efer)) | |
1185 | return 1; | |
1186 | ||
1187 | if (is_paging(vcpu) | |
1188 | && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | |
1189 | return 1; | |
1190 | ||
15c4a640 | 1191 | efer &= ~EFER_LMA; |
f6801dff | 1192 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 1193 | |
a3d204e2 SY |
1194 | kvm_x86_ops->set_efer(vcpu, efer); |
1195 | ||
aad82703 SY |
1196 | /* Update reserved bits */ |
1197 | if ((efer ^ old_efer) & EFER_NX) | |
1198 | kvm_mmu_reset_context(vcpu); | |
1199 | ||
b69e8cae | 1200 | return 0; |
15c4a640 CO |
1201 | } |
1202 | ||
f2b4b7dd JR |
1203 | void kvm_enable_efer_bits(u64 mask) |
1204 | { | |
1205 | efer_reserved_bits &= ~mask; | |
1206 | } | |
1207 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
1208 | ||
15c4a640 CO |
1209 | /* |
1210 | * Writes msr value into into the appropriate "register". | |
1211 | * Returns 0 on success, non-0 otherwise. | |
1212 | * Assumes vcpu_load() was already called. | |
1213 | */ | |
8fe8ab46 | 1214 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 1215 | { |
854e8bb1 NA |
1216 | switch (msr->index) { |
1217 | case MSR_FS_BASE: | |
1218 | case MSR_GS_BASE: | |
1219 | case MSR_KERNEL_GS_BASE: | |
1220 | case MSR_CSTAR: | |
1221 | case MSR_LSTAR: | |
fd8cb433 | 1222 | if (is_noncanonical_address(msr->data, vcpu)) |
854e8bb1 NA |
1223 | return 1; |
1224 | break; | |
1225 | case MSR_IA32_SYSENTER_EIP: | |
1226 | case MSR_IA32_SYSENTER_ESP: | |
1227 | /* | |
1228 | * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if | |
1229 | * non-canonical address is written on Intel but not on | |
1230 | * AMD (which ignores the top 32-bits, because it does | |
1231 | * not implement 64-bit SYSENTER). | |
1232 | * | |
1233 | * 64-bit code should hence be able to write a non-canonical | |
1234 | * value on AMD. Making the address canonical ensures that | |
1235 | * vmentry does not fail on Intel after writing a non-canonical | |
1236 | * value, and that something deterministic happens if the guest | |
1237 | * invokes 64-bit SYSENTER. | |
1238 | */ | |
fd8cb433 | 1239 | msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); |
854e8bb1 | 1240 | } |
8fe8ab46 | 1241 | return kvm_x86_ops->set_msr(vcpu, msr); |
15c4a640 | 1242 | } |
854e8bb1 | 1243 | EXPORT_SYMBOL_GPL(kvm_set_msr); |
15c4a640 | 1244 | |
313a3dc7 CO |
1245 | /* |
1246 | * Adapt set_msr() to msr_io()'s calling convention | |
1247 | */ | |
609e36d3 PB |
1248 | static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1249 | { | |
1250 | struct msr_data msr; | |
1251 | int r; | |
1252 | ||
1253 | msr.index = index; | |
1254 | msr.host_initiated = true; | |
1255 | r = kvm_get_msr(vcpu, &msr); | |
1256 | if (r) | |
1257 | return r; | |
1258 | ||
1259 | *data = msr.data; | |
1260 | return 0; | |
1261 | } | |
1262 | ||
313a3dc7 CO |
1263 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
1264 | { | |
8fe8ab46 WA |
1265 | struct msr_data msr; |
1266 | ||
1267 | msr.data = *data; | |
1268 | msr.index = index; | |
1269 | msr.host_initiated = true; | |
1270 | return kvm_set_msr(vcpu, &msr); | |
313a3dc7 CO |
1271 | } |
1272 | ||
16e8d74d MT |
1273 | #ifdef CONFIG_X86_64 |
1274 | struct pvclock_gtod_data { | |
1275 | seqcount_t seq; | |
1276 | ||
1277 | struct { /* extract of a clocksource struct */ | |
1278 | int vclock_mode; | |
a5a1d1c2 TG |
1279 | u64 cycle_last; |
1280 | u64 mask; | |
16e8d74d MT |
1281 | u32 mult; |
1282 | u32 shift; | |
1283 | } clock; | |
1284 | ||
cbcf2dd3 TG |
1285 | u64 boot_ns; |
1286 | u64 nsec_base; | |
55dd00a7 | 1287 | u64 wall_time_sec; |
16e8d74d MT |
1288 | }; |
1289 | ||
1290 | static struct pvclock_gtod_data pvclock_gtod_data; | |
1291 | ||
1292 | static void update_pvclock_gtod(struct timekeeper *tk) | |
1293 | { | |
1294 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
cbcf2dd3 TG |
1295 | u64 boot_ns; |
1296 | ||
876e7881 | 1297 | boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); |
16e8d74d MT |
1298 | |
1299 | write_seqcount_begin(&vdata->seq); | |
1300 | ||
1301 | /* copy pvclock gtod data */ | |
876e7881 PZ |
1302 | vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; |
1303 | vdata->clock.cycle_last = tk->tkr_mono.cycle_last; | |
1304 | vdata->clock.mask = tk->tkr_mono.mask; | |
1305 | vdata->clock.mult = tk->tkr_mono.mult; | |
1306 | vdata->clock.shift = tk->tkr_mono.shift; | |
16e8d74d | 1307 | |
cbcf2dd3 | 1308 | vdata->boot_ns = boot_ns; |
876e7881 | 1309 | vdata->nsec_base = tk->tkr_mono.xtime_nsec; |
16e8d74d | 1310 | |
55dd00a7 MT |
1311 | vdata->wall_time_sec = tk->xtime_sec; |
1312 | ||
16e8d74d MT |
1313 | write_seqcount_end(&vdata->seq); |
1314 | } | |
1315 | #endif | |
1316 | ||
bab5bb39 NK |
1317 | void kvm_set_pending_timer(struct kvm_vcpu *vcpu) |
1318 | { | |
1319 | /* | |
1320 | * Note: KVM_REQ_PENDING_TIMER is implicitly checked in | |
1321 | * vcpu_enter_guest. This function is only called from | |
1322 | * the physical CPU that is running vcpu. | |
1323 | */ | |
1324 | kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); | |
1325 | } | |
16e8d74d | 1326 | |
18068523 GOC |
1327 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
1328 | { | |
9ed3c444 AK |
1329 | int version; |
1330 | int r; | |
50d0a0f9 | 1331 | struct pvclock_wall_clock wc; |
87aeb54f | 1332 | struct timespec64 boot; |
18068523 GOC |
1333 | |
1334 | if (!wall_clock) | |
1335 | return; | |
1336 | ||
9ed3c444 AK |
1337 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
1338 | if (r) | |
1339 | return; | |
1340 | ||
1341 | if (version & 1) | |
1342 | ++version; /* first time write, random junk */ | |
1343 | ||
1344 | ++version; | |
18068523 | 1345 | |
1dab1345 NK |
1346 | if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
1347 | return; | |
18068523 | 1348 | |
50d0a0f9 GH |
1349 | /* |
1350 | * The guest calculates current wall clock time by adding | |
34c238a1 | 1351 | * system time (updated by kvm_guest_time_update below) to the |
50d0a0f9 GH |
1352 | * wall clock specified here. guest system time equals host |
1353 | * system time for us, thus we must fill in host boot time here. | |
1354 | */ | |
87aeb54f | 1355 | getboottime64(&boot); |
50d0a0f9 | 1356 | |
4b648665 | 1357 | if (kvm->arch.kvmclock_offset) { |
87aeb54f AB |
1358 | struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); |
1359 | boot = timespec64_sub(boot, ts); | |
4b648665 | 1360 | } |
87aeb54f | 1361 | wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ |
50d0a0f9 GH |
1362 | wc.nsec = boot.tv_nsec; |
1363 | wc.version = version; | |
18068523 GOC |
1364 | |
1365 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
1366 | ||
1367 | version++; | |
1368 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
1369 | } |
1370 | ||
50d0a0f9 GH |
1371 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
1372 | { | |
b51012de PB |
1373 | do_shl32_div32(dividend, divisor); |
1374 | return dividend; | |
50d0a0f9 GH |
1375 | } |
1376 | ||
3ae13faa | 1377 | static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
5f4e3f88 | 1378 | s8 *pshift, u32 *pmultiplier) |
50d0a0f9 | 1379 | { |
5f4e3f88 | 1380 | uint64_t scaled64; |
50d0a0f9 GH |
1381 | int32_t shift = 0; |
1382 | uint64_t tps64; | |
1383 | uint32_t tps32; | |
1384 | ||
3ae13faa PB |
1385 | tps64 = base_hz; |
1386 | scaled64 = scaled_hz; | |
50933623 | 1387 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
1388 | tps64 >>= 1; |
1389 | shift--; | |
1390 | } | |
1391 | ||
1392 | tps32 = (uint32_t)tps64; | |
50933623 JK |
1393 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
1394 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
1395 | scaled64 >>= 1; |
1396 | else | |
1397 | tps32 <<= 1; | |
50d0a0f9 GH |
1398 | shift++; |
1399 | } | |
1400 | ||
5f4e3f88 ZA |
1401 | *pshift = shift; |
1402 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 | 1403 | |
3ae13faa PB |
1404 | pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", |
1405 | __func__, base_hz, scaled_hz, shift, *pmultiplier); | |
50d0a0f9 GH |
1406 | } |
1407 | ||
d828199e | 1408 | #ifdef CONFIG_X86_64 |
16e8d74d | 1409 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 1410 | #endif |
16e8d74d | 1411 | |
c8076604 | 1412 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
69b0049a | 1413 | static unsigned long max_tsc_khz; |
c8076604 | 1414 | |
cc578287 | 1415 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 1416 | { |
cc578287 ZA |
1417 | u64 v = (u64)khz * (1000000 + ppm); |
1418 | do_div(v, 1000000); | |
1419 | return v; | |
1e993611 JR |
1420 | } |
1421 | ||
381d585c HZ |
1422 | static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
1423 | { | |
1424 | u64 ratio; | |
1425 | ||
1426 | /* Guest TSC same frequency as host TSC? */ | |
1427 | if (!scale) { | |
1428 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
1429 | return 0; | |
1430 | } | |
1431 | ||
1432 | /* TSC scaling supported? */ | |
1433 | if (!kvm_has_tsc_control) { | |
1434 | if (user_tsc_khz > tsc_khz) { | |
1435 | vcpu->arch.tsc_catchup = 1; | |
1436 | vcpu->arch.tsc_always_catchup = 1; | |
1437 | return 0; | |
1438 | } else { | |
1439 | WARN(1, "user requested TSC rate below hardware speed\n"); | |
1440 | return -1; | |
1441 | } | |
1442 | } | |
1443 | ||
1444 | /* TSC scaling required - calculate ratio */ | |
1445 | ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, | |
1446 | user_tsc_khz, tsc_khz); | |
1447 | ||
1448 | if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { | |
1449 | WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", | |
1450 | user_tsc_khz); | |
1451 | return -1; | |
1452 | } | |
1453 | ||
1454 | vcpu->arch.tsc_scaling_ratio = ratio; | |
1455 | return 0; | |
1456 | } | |
1457 | ||
4941b8cb | 1458 | static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
759379dd | 1459 | { |
cc578287 ZA |
1460 | u32 thresh_lo, thresh_hi; |
1461 | int use_scaling = 0; | |
217fc9cf | 1462 | |
03ba32ca | 1463 | /* tsc_khz can be zero if TSC calibration fails */ |
4941b8cb | 1464 | if (user_tsc_khz == 0) { |
ad721883 HZ |
1465 | /* set tsc_scaling_ratio to a safe value */ |
1466 | vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; | |
381d585c | 1467 | return -1; |
ad721883 | 1468 | } |
03ba32ca | 1469 | |
c285545f | 1470 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
3ae13faa | 1471 | kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
cc578287 ZA |
1472 | &vcpu->arch.virtual_tsc_shift, |
1473 | &vcpu->arch.virtual_tsc_mult); | |
4941b8cb | 1474 | vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
cc578287 ZA |
1475 | |
1476 | /* | |
1477 | * Compute the variation in TSC rate which is acceptable | |
1478 | * within the range of tolerance and decide if the | |
1479 | * rate being applied is within that bounds of the hardware | |
1480 | * rate. If so, no scaling or compensation need be done. | |
1481 | */ | |
1482 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
1483 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
4941b8cb PB |
1484 | if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
1485 | pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); | |
cc578287 ZA |
1486 | use_scaling = 1; |
1487 | } | |
4941b8cb | 1488 | return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
c285545f ZA |
1489 | } |
1490 | ||
1491 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
1492 | { | |
e26101b1 | 1493 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
1494 | vcpu->arch.virtual_tsc_mult, |
1495 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 1496 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
1497 | return tsc; |
1498 | } | |
1499 | ||
b0c39dc6 VK |
1500 | static inline int gtod_is_based_on_tsc(int mode) |
1501 | { | |
1502 | return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK; | |
1503 | } | |
1504 | ||
69b0049a | 1505 | static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
b48aa97e MT |
1506 | { |
1507 | #ifdef CONFIG_X86_64 | |
1508 | bool vcpus_matched; | |
b48aa97e MT |
1509 | struct kvm_arch *ka = &vcpu->kvm->arch; |
1510 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1511 | ||
1512 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1513 | atomic_read(&vcpu->kvm->online_vcpus)); | |
1514 | ||
7f187922 MT |
1515 | /* |
1516 | * Once the masterclock is enabled, always perform request in | |
1517 | * order to update it. | |
1518 | * | |
1519 | * In order to enable masterclock, the host clocksource must be TSC | |
1520 | * and the vcpus need to have matched TSCs. When that happens, | |
1521 | * perform request to enable masterclock. | |
1522 | */ | |
1523 | if (ka->use_master_clock || | |
b0c39dc6 | 1524 | (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) |
b48aa97e MT |
1525 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
1526 | ||
1527 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
1528 | atomic_read(&vcpu->kvm->online_vcpus), | |
1529 | ka->use_master_clock, gtod->clock.vclock_mode); | |
1530 | #endif | |
1531 | } | |
1532 | ||
ba904635 WA |
1533 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) |
1534 | { | |
e79f245d | 1535 | u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); |
ba904635 WA |
1536 | vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; |
1537 | } | |
1538 | ||
35181e86 HZ |
1539 | /* |
1540 | * Multiply tsc by a fixed point number represented by ratio. | |
1541 | * | |
1542 | * The most significant 64-N bits (mult) of ratio represent the | |
1543 | * integral part of the fixed point number; the remaining N bits | |
1544 | * (frac) represent the fractional part, ie. ratio represents a fixed | |
1545 | * point number (mult + frac * 2^(-N)). | |
1546 | * | |
1547 | * N equals to kvm_tsc_scaling_ratio_frac_bits. | |
1548 | */ | |
1549 | static inline u64 __scale_tsc(u64 ratio, u64 tsc) | |
1550 | { | |
1551 | return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); | |
1552 | } | |
1553 | ||
1554 | u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) | |
1555 | { | |
1556 | u64 _tsc = tsc; | |
1557 | u64 ratio = vcpu->arch.tsc_scaling_ratio; | |
1558 | ||
1559 | if (ratio != kvm_default_tsc_scaling_ratio) | |
1560 | _tsc = __scale_tsc(ratio, tsc); | |
1561 | ||
1562 | return _tsc; | |
1563 | } | |
1564 | EXPORT_SYMBOL_GPL(kvm_scale_tsc); | |
1565 | ||
07c1419a HZ |
1566 | static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
1567 | { | |
1568 | u64 tsc; | |
1569 | ||
1570 | tsc = kvm_scale_tsc(vcpu, rdtsc()); | |
1571 | ||
1572 | return target_tsc - tsc; | |
1573 | } | |
1574 | ||
4ba76538 HZ |
1575 | u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
1576 | { | |
e79f245d KA |
1577 | u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu); |
1578 | ||
1579 | return tsc_offset + kvm_scale_tsc(vcpu, host_tsc); | |
4ba76538 HZ |
1580 | } |
1581 | EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); | |
1582 | ||
a545ab6a LC |
1583 | static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
1584 | { | |
1585 | kvm_x86_ops->write_tsc_offset(vcpu, offset); | |
1586 | vcpu->arch.tsc_offset = offset; | |
1587 | } | |
1588 | ||
b0c39dc6 VK |
1589 | static inline bool kvm_check_tsc_unstable(void) |
1590 | { | |
1591 | #ifdef CONFIG_X86_64 | |
1592 | /* | |
1593 | * TSC is marked unstable when we're running on Hyper-V, | |
1594 | * 'TSC page' clocksource is good. | |
1595 | */ | |
1596 | if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK) | |
1597 | return false; | |
1598 | #endif | |
1599 | return check_tsc_unstable(); | |
1600 | } | |
1601 | ||
8fe8ab46 | 1602 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) |
99e3e30a ZA |
1603 | { |
1604 | struct kvm *kvm = vcpu->kvm; | |
f38e098f | 1605 | u64 offset, ns, elapsed; |
99e3e30a | 1606 | unsigned long flags; |
b48aa97e | 1607 | bool matched; |
0d3da0d2 | 1608 | bool already_matched; |
8fe8ab46 | 1609 | u64 data = msr->data; |
c5e8ec8e | 1610 | bool synchronizing = false; |
99e3e30a | 1611 | |
038f8c11 | 1612 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
07c1419a | 1613 | offset = kvm_compute_tsc_offset(vcpu, data); |
108b249c | 1614 | ns = ktime_get_boot_ns(); |
f38e098f | 1615 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 | 1616 | |
03ba32ca | 1617 | if (vcpu->arch.virtual_tsc_khz) { |
bd8fab39 DP |
1618 | if (data == 0 && msr->host_initiated) { |
1619 | /* | |
1620 | * detection of vcpu initialization -- need to sync | |
1621 | * with other vCPUs. This particularly helps to keep | |
1622 | * kvm_clock stable after CPU hotplug | |
1623 | */ | |
1624 | synchronizing = true; | |
1625 | } else { | |
1626 | u64 tsc_exp = kvm->arch.last_tsc_write + | |
1627 | nsec_to_cycles(vcpu, elapsed); | |
1628 | u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; | |
1629 | /* | |
1630 | * Special case: TSC write with a small delta (1 second) | |
1631 | * of virtual cycle time against real time is | |
1632 | * interpreted as an attempt to synchronize the CPU. | |
1633 | */ | |
1634 | synchronizing = data < tsc_exp + tsc_hz && | |
1635 | data + tsc_hz > tsc_exp; | |
1636 | } | |
c5e8ec8e | 1637 | } |
f38e098f ZA |
1638 | |
1639 | /* | |
5d3cb0f6 ZA |
1640 | * For a reliable TSC, we can match TSC offsets, and for an unstable |
1641 | * TSC, we add elapsed time in this computation. We could let the | |
1642 | * compensation code attempt to catch up if we fall behind, but | |
1643 | * it's better to try to match offsets from the beginning. | |
1644 | */ | |
c5e8ec8e | 1645 | if (synchronizing && |
5d3cb0f6 | 1646 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
b0c39dc6 | 1647 | if (!kvm_check_tsc_unstable()) { |
e26101b1 | 1648 | offset = kvm->arch.cur_tsc_offset; |
f38e098f ZA |
1649 | pr_debug("kvm: matched tsc offset for %llu\n", data); |
1650 | } else { | |
857e4099 | 1651 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 | 1652 | data += delta; |
07c1419a | 1653 | offset = kvm_compute_tsc_offset(vcpu, data); |
759379dd | 1654 | pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
f38e098f | 1655 | } |
b48aa97e | 1656 | matched = true; |
0d3da0d2 | 1657 | already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); |
e26101b1 ZA |
1658 | } else { |
1659 | /* | |
1660 | * We split periods of matched TSC writes into generations. | |
1661 | * For each generation, we track the original measured | |
1662 | * nanosecond time, offset, and write, so if TSCs are in | |
1663 | * sync, we can match exact offset, and if not, we can match | |
4a969980 | 1664 | * exact software computation in compute_guest_tsc() |
e26101b1 ZA |
1665 | * |
1666 | * These values are tracked in kvm->arch.cur_xxx variables. | |
1667 | */ | |
1668 | kvm->arch.cur_tsc_generation++; | |
1669 | kvm->arch.cur_tsc_nsec = ns; | |
1670 | kvm->arch.cur_tsc_write = data; | |
1671 | kvm->arch.cur_tsc_offset = offset; | |
b48aa97e | 1672 | matched = false; |
0d3da0d2 | 1673 | pr_debug("kvm: new tsc generation %llu, clock %llu\n", |
e26101b1 | 1674 | kvm->arch.cur_tsc_generation, data); |
f38e098f | 1675 | } |
e26101b1 ZA |
1676 | |
1677 | /* | |
1678 | * We also track th most recent recorded KHZ, write and time to | |
1679 | * allow the matching interval to be extended at each write. | |
1680 | */ | |
f38e098f ZA |
1681 | kvm->arch.last_tsc_nsec = ns; |
1682 | kvm->arch.last_tsc_write = data; | |
5d3cb0f6 | 1683 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
99e3e30a | 1684 | |
b183aa58 | 1685 | vcpu->arch.last_guest_tsc = data; |
e26101b1 ZA |
1686 | |
1687 | /* Keep track of which generation this VCPU has synchronized to */ | |
1688 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
1689 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
1690 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
1691 | ||
d6321d49 | 1692 | if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) |
ba904635 | 1693 | update_ia32_tsc_adjust_msr(vcpu, offset); |
d6321d49 | 1694 | |
a545ab6a | 1695 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
e26101b1 | 1696 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
b48aa97e MT |
1697 | |
1698 | spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | |
0d3da0d2 | 1699 | if (!matched) { |
b48aa97e | 1700 | kvm->arch.nr_vcpus_matched_tsc = 0; |
0d3da0d2 TG |
1701 | } else if (!already_matched) { |
1702 | kvm->arch.nr_vcpus_matched_tsc++; | |
1703 | } | |
b48aa97e MT |
1704 | |
1705 | kvm_track_tsc_matching(vcpu); | |
1706 | spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | |
99e3e30a | 1707 | } |
e26101b1 | 1708 | |
99e3e30a ZA |
1709 | EXPORT_SYMBOL_GPL(kvm_write_tsc); |
1710 | ||
58ea6767 HZ |
1711 | static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
1712 | s64 adjustment) | |
1713 | { | |
ea26e4ec | 1714 | kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); |
58ea6767 HZ |
1715 | } |
1716 | ||
1717 | static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) | |
1718 | { | |
1719 | if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) | |
1720 | WARN_ON(adjustment < 0); | |
1721 | adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); | |
ea26e4ec | 1722 | adjust_tsc_offset_guest(vcpu, adjustment); |
58ea6767 HZ |
1723 | } |
1724 | ||
d828199e MT |
1725 | #ifdef CONFIG_X86_64 |
1726 | ||
a5a1d1c2 | 1727 | static u64 read_tsc(void) |
d828199e | 1728 | { |
a5a1d1c2 | 1729 | u64 ret = (u64)rdtsc_ordered(); |
03b9730b | 1730 | u64 last = pvclock_gtod_data.clock.cycle_last; |
d828199e MT |
1731 | |
1732 | if (likely(ret >= last)) | |
1733 | return ret; | |
1734 | ||
1735 | /* | |
1736 | * GCC likes to generate cmov here, but this branch is extremely | |
6a6256f9 | 1737 | * predictable (it's just a function of time and the likely is |
d828199e MT |
1738 | * very likely) and there's a data dependence, so force GCC |
1739 | * to generate a branch instead. I don't barrier() because | |
1740 | * we don't actually need a barrier, and if this function | |
1741 | * ever gets inlined it will generate worse code. | |
1742 | */ | |
1743 | asm volatile (""); | |
1744 | return last; | |
1745 | } | |
1746 | ||
b0c39dc6 | 1747 | static inline u64 vgettsc(u64 *tsc_timestamp, int *mode) |
d828199e MT |
1748 | { |
1749 | long v; | |
1750 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
b0c39dc6 VK |
1751 | u64 tsc_pg_val; |
1752 | ||
1753 | switch (gtod->clock.vclock_mode) { | |
1754 | case VCLOCK_HVCLOCK: | |
1755 | tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), | |
1756 | tsc_timestamp); | |
1757 | if (tsc_pg_val != U64_MAX) { | |
1758 | /* TSC page valid */ | |
1759 | *mode = VCLOCK_HVCLOCK; | |
1760 | v = (tsc_pg_val - gtod->clock.cycle_last) & | |
1761 | gtod->clock.mask; | |
1762 | } else { | |
1763 | /* TSC page invalid */ | |
1764 | *mode = VCLOCK_NONE; | |
1765 | } | |
1766 | break; | |
1767 | case VCLOCK_TSC: | |
1768 | *mode = VCLOCK_TSC; | |
1769 | *tsc_timestamp = read_tsc(); | |
1770 | v = (*tsc_timestamp - gtod->clock.cycle_last) & | |
1771 | gtod->clock.mask; | |
1772 | break; | |
1773 | default: | |
1774 | *mode = VCLOCK_NONE; | |
1775 | } | |
d828199e | 1776 | |
b0c39dc6 VK |
1777 | if (*mode == VCLOCK_NONE) |
1778 | *tsc_timestamp = v = 0; | |
d828199e | 1779 | |
d828199e MT |
1780 | return v * gtod->clock.mult; |
1781 | } | |
1782 | ||
b0c39dc6 | 1783 | static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp) |
d828199e | 1784 | { |
cbcf2dd3 | 1785 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
d828199e | 1786 | unsigned long seq; |
d828199e | 1787 | int mode; |
cbcf2dd3 | 1788 | u64 ns; |
d828199e | 1789 | |
d828199e MT |
1790 | do { |
1791 | seq = read_seqcount_begin(>od->seq); | |
cbcf2dd3 | 1792 | ns = gtod->nsec_base; |
b0c39dc6 | 1793 | ns += vgettsc(tsc_timestamp, &mode); |
d828199e | 1794 | ns >>= gtod->clock.shift; |
cbcf2dd3 | 1795 | ns += gtod->boot_ns; |
d828199e | 1796 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
cbcf2dd3 | 1797 | *t = ns; |
d828199e MT |
1798 | |
1799 | return mode; | |
1800 | } | |
1801 | ||
899a31f5 | 1802 | static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) |
55dd00a7 MT |
1803 | { |
1804 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
1805 | unsigned long seq; | |
1806 | int mode; | |
1807 | u64 ns; | |
1808 | ||
1809 | do { | |
1810 | seq = read_seqcount_begin(>od->seq); | |
55dd00a7 MT |
1811 | ts->tv_sec = gtod->wall_time_sec; |
1812 | ns = gtod->nsec_base; | |
b0c39dc6 | 1813 | ns += vgettsc(tsc_timestamp, &mode); |
55dd00a7 MT |
1814 | ns >>= gtod->clock.shift; |
1815 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
1816 | ||
1817 | ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); | |
1818 | ts->tv_nsec = ns; | |
1819 | ||
1820 | return mode; | |
1821 | } | |
1822 | ||
b0c39dc6 VK |
1823 | /* returns true if host is using TSC based clocksource */ |
1824 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) | |
d828199e | 1825 | { |
d828199e | 1826 | /* checked again under seqlock below */ |
b0c39dc6 | 1827 | if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
d828199e MT |
1828 | return false; |
1829 | ||
b0c39dc6 VK |
1830 | return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns, |
1831 | tsc_timestamp)); | |
d828199e | 1832 | } |
55dd00a7 | 1833 | |
b0c39dc6 | 1834 | /* returns true if host is using TSC based clocksource */ |
899a31f5 | 1835 | static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, |
b0c39dc6 | 1836 | u64 *tsc_timestamp) |
55dd00a7 MT |
1837 | { |
1838 | /* checked again under seqlock below */ | |
b0c39dc6 | 1839 | if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
55dd00a7 MT |
1840 | return false; |
1841 | ||
b0c39dc6 | 1842 | return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); |
55dd00a7 | 1843 | } |
d828199e MT |
1844 | #endif |
1845 | ||
1846 | /* | |
1847 | * | |
b48aa97e MT |
1848 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
1849 | * across virtual CPUs, the following condition is possible. | |
1850 | * Each numbered line represents an event visible to both | |
d828199e MT |
1851 | * CPUs at the next numbered event. |
1852 | * | |
1853 | * "timespecX" represents host monotonic time. "tscX" represents | |
1854 | * RDTSC value. | |
1855 | * | |
1856 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
1857 | * | |
1858 | * 1. read timespec0,tsc0 | |
1859 | * 2. | timespec1 = timespec0 + N | |
1860 | * | tsc1 = tsc0 + M | |
1861 | * 3. transition to guest | transition to guest | |
1862 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
1863 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
1864 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
1865 | * | |
1866 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
1867 | * | |
1868 | * - ret0 < ret1 | |
1869 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
1870 | * ... | |
1871 | * - 0 < N - M => M < N | |
1872 | * | |
1873 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
1874 | * always the case (the difference between two distinct xtime instances | |
1875 | * might be smaller then the difference between corresponding TSC reads, | |
1876 | * when updating guest vcpus pvclock areas). | |
1877 | * | |
1878 | * To avoid that problem, do not allow visibility of distinct | |
1879 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
1880 | * copy of host monotonic time values. Update that master copy | |
1881 | * in lockstep. | |
1882 | * | |
b48aa97e | 1883 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
1884 | * |
1885 | */ | |
1886 | ||
1887 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
1888 | { | |
1889 | #ifdef CONFIG_X86_64 | |
1890 | struct kvm_arch *ka = &kvm->arch; | |
1891 | int vclock_mode; | |
b48aa97e MT |
1892 | bool host_tsc_clocksource, vcpus_matched; |
1893 | ||
1894 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | |
1895 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
1896 | |
1897 | /* | |
1898 | * If the host uses TSC clock, then passthrough TSC as stable | |
1899 | * to the guest. | |
1900 | */ | |
b48aa97e | 1901 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
1902 | &ka->master_kernel_ns, |
1903 | &ka->master_cycle_now); | |
1904 | ||
16a96021 | 1905 | ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
a826faf1 | 1906 | && !ka->backwards_tsc_observed |
54750f2c | 1907 | && !ka->boot_vcpu_runs_old_kvmclock; |
b48aa97e | 1908 | |
d828199e MT |
1909 | if (ka->use_master_clock) |
1910 | atomic_set(&kvm_guest_has_master_clock, 1); | |
1911 | ||
1912 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
1913 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
1914 | vcpus_matched); | |
d828199e MT |
1915 | #endif |
1916 | } | |
1917 | ||
2860c4b1 PB |
1918 | void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
1919 | { | |
1920 | kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | |
1921 | } | |
1922 | ||
2e762ff7 MT |
1923 | static void kvm_gen_update_masterclock(struct kvm *kvm) |
1924 | { | |
1925 | #ifdef CONFIG_X86_64 | |
1926 | int i; | |
1927 | struct kvm_vcpu *vcpu; | |
1928 | struct kvm_arch *ka = &kvm->arch; | |
1929 | ||
1930 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
1931 | kvm_make_mclock_inprogress_request(kvm); | |
1932 | /* no guest entries from this point */ | |
1933 | pvclock_update_vm_gtod_copy(kvm); | |
1934 | ||
1935 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 1936 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2e762ff7 MT |
1937 | |
1938 | /* guest entries allowed */ | |
1939 | kvm_for_each_vcpu(i, vcpu, kvm) | |
72875d8a | 1940 | kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
2e762ff7 MT |
1941 | |
1942 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1943 | #endif | |
1944 | } | |
1945 | ||
e891a32e | 1946 | u64 get_kvmclock_ns(struct kvm *kvm) |
108b249c | 1947 | { |
108b249c | 1948 | struct kvm_arch *ka = &kvm->arch; |
8b953440 | 1949 | struct pvclock_vcpu_time_info hv_clock; |
e2c2206a | 1950 | u64 ret; |
108b249c | 1951 | |
8b953440 PB |
1952 | spin_lock(&ka->pvclock_gtod_sync_lock); |
1953 | if (!ka->use_master_clock) { | |
1954 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1955 | return ktime_get_boot_ns() + ka->kvmclock_offset; | |
108b249c PB |
1956 | } |
1957 | ||
8b953440 PB |
1958 | hv_clock.tsc_timestamp = ka->master_cycle_now; |
1959 | hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | |
1960 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
1961 | ||
e2c2206a WL |
1962 | /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
1963 | get_cpu(); | |
1964 | ||
e70b57a6 WL |
1965 | if (__this_cpu_read(cpu_tsc_khz)) { |
1966 | kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, | |
1967 | &hv_clock.tsc_shift, | |
1968 | &hv_clock.tsc_to_system_mul); | |
1969 | ret = __pvclock_read_cycles(&hv_clock, rdtsc()); | |
1970 | } else | |
1971 | ret = ktime_get_boot_ns() + ka->kvmclock_offset; | |
e2c2206a WL |
1972 | |
1973 | put_cpu(); | |
1974 | ||
1975 | return ret; | |
108b249c PB |
1976 | } |
1977 | ||
0d6dd2ff PB |
1978 | static void kvm_setup_pvclock_page(struct kvm_vcpu *v) |
1979 | { | |
1980 | struct kvm_vcpu_arch *vcpu = &v->arch; | |
1981 | struct pvclock_vcpu_time_info guest_hv_clock; | |
1982 | ||
4e335d9e | 1983 | if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, |
0d6dd2ff PB |
1984 | &guest_hv_clock, sizeof(guest_hv_clock)))) |
1985 | return; | |
1986 | ||
1987 | /* This VCPU is paused, but it's legal for a guest to read another | |
1988 | * VCPU's kvmclock, so we really have to follow the specification where | |
1989 | * it says that version is odd if data is being modified, and even after | |
1990 | * it is consistent. | |
1991 | * | |
1992 | * Version field updates must be kept separate. This is because | |
1993 | * kvm_write_guest_cached might use a "rep movs" instruction, and | |
1994 | * writes within a string instruction are weakly ordered. So there | |
1995 | * are three writes overall. | |
1996 | * | |
1997 | * As a small optimization, only write the version field in the first | |
1998 | * and third write. The vcpu->pv_time cache is still valid, because the | |
1999 | * version field is the first in the struct. | |
2000 | */ | |
2001 | BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); | |
2002 | ||
51c4b8bb LA |
2003 | if (guest_hv_clock.version & 1) |
2004 | ++guest_hv_clock.version; /* first time write, random junk */ | |
2005 | ||
0d6dd2ff | 2006 | vcpu->hv_clock.version = guest_hv_clock.version + 1; |
4e335d9e PB |
2007 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
2008 | &vcpu->hv_clock, | |
2009 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
2010 | |
2011 | smp_wmb(); | |
2012 | ||
2013 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
2014 | vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); | |
2015 | ||
2016 | if (vcpu->pvclock_set_guest_stopped_request) { | |
2017 | vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; | |
2018 | vcpu->pvclock_set_guest_stopped_request = false; | |
2019 | } | |
2020 | ||
2021 | trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); | |
2022 | ||
4e335d9e PB |
2023 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
2024 | &vcpu->hv_clock, | |
2025 | sizeof(vcpu->hv_clock)); | |
0d6dd2ff PB |
2026 | |
2027 | smp_wmb(); | |
2028 | ||
2029 | vcpu->hv_clock.version++; | |
4e335d9e PB |
2030 | kvm_write_guest_cached(v->kvm, &vcpu->pv_time, |
2031 | &vcpu->hv_clock, | |
2032 | sizeof(vcpu->hv_clock.version)); | |
0d6dd2ff PB |
2033 | } |
2034 | ||
34c238a1 | 2035 | static int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 2036 | { |
78db6a50 | 2037 | unsigned long flags, tgt_tsc_khz; |
18068523 | 2038 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 2039 | struct kvm_arch *ka = &v->kvm->arch; |
f25e656d | 2040 | s64 kernel_ns; |
d828199e | 2041 | u64 tsc_timestamp, host_tsc; |
51d59c6b | 2042 | u8 pvclock_flags; |
d828199e MT |
2043 | bool use_master_clock; |
2044 | ||
2045 | kernel_ns = 0; | |
2046 | host_tsc = 0; | |
18068523 | 2047 | |
d828199e MT |
2048 | /* |
2049 | * If the host uses TSC clock, then passthrough TSC as stable | |
2050 | * to the guest. | |
2051 | */ | |
2052 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
2053 | use_master_clock = ka->use_master_clock; | |
2054 | if (use_master_clock) { | |
2055 | host_tsc = ka->master_cycle_now; | |
2056 | kernel_ns = ka->master_kernel_ns; | |
2057 | } | |
2058 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
c09664bb MT |
2059 | |
2060 | /* Keep irq disabled to prevent changes to the clock */ | |
2061 | local_irq_save(flags); | |
78db6a50 PB |
2062 | tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); |
2063 | if (unlikely(tgt_tsc_khz == 0)) { | |
c09664bb MT |
2064 | local_irq_restore(flags); |
2065 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | |
2066 | return 1; | |
2067 | } | |
d828199e | 2068 | if (!use_master_clock) { |
4ea1636b | 2069 | host_tsc = rdtsc(); |
108b249c | 2070 | kernel_ns = ktime_get_boot_ns(); |
d828199e MT |
2071 | } |
2072 | ||
4ba76538 | 2073 | tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
d828199e | 2074 | |
c285545f ZA |
2075 | /* |
2076 | * We may have to catch up the TSC to match elapsed wall clock | |
2077 | * time for two reasons, even if kvmclock is used. | |
2078 | * 1) CPU could have been running below the maximum TSC rate | |
2079 | * 2) Broken TSC compensation resets the base at each VCPU | |
2080 | * entry to avoid unknown leaps of TSC even when running | |
2081 | * again on the same CPU. This may cause apparent elapsed | |
2082 | * time to disappear, and the guest to stand still or run | |
2083 | * very slowly. | |
2084 | */ | |
2085 | if (vcpu->tsc_catchup) { | |
2086 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
2087 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 2088 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
2089 | tsc_timestamp = tsc; |
2090 | } | |
50d0a0f9 GH |
2091 | } |
2092 | ||
18068523 GOC |
2093 | local_irq_restore(flags); |
2094 | ||
0d6dd2ff | 2095 | /* With all the info we got, fill in the values */ |
18068523 | 2096 | |
78db6a50 PB |
2097 | if (kvm_has_tsc_control) |
2098 | tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); | |
2099 | ||
2100 | if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { | |
3ae13faa | 2101 | kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
5f4e3f88 ZA |
2102 | &vcpu->hv_clock.tsc_shift, |
2103 | &vcpu->hv_clock.tsc_to_system_mul); | |
78db6a50 | 2104 | vcpu->hw_tsc_khz = tgt_tsc_khz; |
8cfdc000 ZA |
2105 | } |
2106 | ||
1d5f066e | 2107 | vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
759379dd | 2108 | vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
28e4639a | 2109 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 2110 | |
d828199e | 2111 | /* If the host uses TSC clocksource, then it is stable */ |
0d6dd2ff | 2112 | pvclock_flags = 0; |
d828199e MT |
2113 | if (use_master_clock) |
2114 | pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | |
2115 | ||
78c0337a MT |
2116 | vcpu->hv_clock.flags = pvclock_flags; |
2117 | ||
095cf55d PB |
2118 | if (vcpu->pv_time_enabled) |
2119 | kvm_setup_pvclock_page(v); | |
2120 | if (v == kvm_get_vcpu(v->kvm, 0)) | |
2121 | kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); | |
8cfdc000 | 2122 | return 0; |
c8076604 GH |
2123 | } |
2124 | ||
0061d53d MT |
2125 | /* |
2126 | * kvmclock updates which are isolated to a given vcpu, such as | |
2127 | * vcpu->cpu migration, should not allow system_timestamp from | |
2128 | * the rest of the vcpus to remain static. Otherwise ntp frequency | |
2129 | * correction applies to one vcpu's system_timestamp but not | |
2130 | * the others. | |
2131 | * | |
2132 | * So in those cases, request a kvmclock update for all vcpus. | |
7e44e449 AJ |
2133 | * We need to rate-limit these requests though, as they can |
2134 | * considerably slow guests that have a large number of vcpus. | |
2135 | * The time for a remote vcpu to update its kvmclock is bound | |
2136 | * by the delay we use to rate-limit the updates. | |
0061d53d MT |
2137 | */ |
2138 | ||
7e44e449 AJ |
2139 | #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
2140 | ||
2141 | static void kvmclock_update_fn(struct work_struct *work) | |
0061d53d MT |
2142 | { |
2143 | int i; | |
7e44e449 AJ |
2144 | struct delayed_work *dwork = to_delayed_work(work); |
2145 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
2146 | kvmclock_update_work); | |
2147 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
0061d53d MT |
2148 | struct kvm_vcpu *vcpu; |
2149 | ||
2150 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
105b21bb | 2151 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0061d53d MT |
2152 | kvm_vcpu_kick(vcpu); |
2153 | } | |
2154 | } | |
2155 | ||
7e44e449 AJ |
2156 | static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
2157 | { | |
2158 | struct kvm *kvm = v->kvm; | |
2159 | ||
105b21bb | 2160 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
7e44e449 AJ |
2161 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
2162 | KVMCLOCK_UPDATE_DELAY); | |
2163 | } | |
2164 | ||
332967a3 AJ |
2165 | #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
2166 | ||
2167 | static void kvmclock_sync_fn(struct work_struct *work) | |
2168 | { | |
2169 | struct delayed_work *dwork = to_delayed_work(work); | |
2170 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
2171 | kvmclock_sync_work); | |
2172 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
2173 | ||
630994b3 MT |
2174 | if (!kvmclock_periodic_sync) |
2175 | return; | |
2176 | ||
332967a3 AJ |
2177 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); |
2178 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | |
2179 | KVMCLOCK_SYNC_PERIOD); | |
2180 | } | |
2181 | ||
9ffd986c | 2182 | static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 2183 | { |
890ca9ae YH |
2184 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2185 | unsigned bank_num = mcg_cap & 0xff; | |
9ffd986c WL |
2186 | u32 msr = msr_info->index; |
2187 | u64 data = msr_info->data; | |
890ca9ae | 2188 | |
15c4a640 | 2189 | switch (msr) { |
15c4a640 | 2190 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 2191 | vcpu->arch.mcg_status = data; |
15c4a640 | 2192 | break; |
c7ac679c | 2193 | case MSR_IA32_MCG_CTL: |
44883f01 PB |
2194 | if (!(mcg_cap & MCG_CTL_P) && |
2195 | (data || !msr_info->host_initiated)) | |
890ca9ae YH |
2196 | return 1; |
2197 | if (data != 0 && data != ~(u64)0) | |
44883f01 | 2198 | return 1; |
890ca9ae YH |
2199 | vcpu->arch.mcg_ctl = data; |
2200 | break; | |
2201 | default: | |
2202 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2203 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae | 2204 | u32 offset = msr - MSR_IA32_MC0_CTL; |
114be429 AP |
2205 | /* only 0 or all 1s can be written to IA32_MCi_CTL |
2206 | * some Linux kernels though clear bit 10 in bank 4 to | |
2207 | * workaround a BIOS/GART TBL issue on AMD K8s, ignore | |
2208 | * this to avoid an uncatched #GP in the guest | |
2209 | */ | |
890ca9ae | 2210 | if ((offset & 0x3) == 0 && |
114be429 | 2211 | data != 0 && (data | (1 << 10)) != ~(u64)0) |
890ca9ae | 2212 | return -1; |
9ffd986c WL |
2213 | if (!msr_info->host_initiated && |
2214 | (offset & 0x3) == 1 && data != 0) | |
2215 | return -1; | |
890ca9ae YH |
2216 | vcpu->arch.mce_banks[offset] = data; |
2217 | break; | |
2218 | } | |
2219 | return 1; | |
2220 | } | |
2221 | return 0; | |
2222 | } | |
2223 | ||
ffde22ac ES |
2224 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
2225 | { | |
2226 | struct kvm *kvm = vcpu->kvm; | |
2227 | int lm = is_long_mode(vcpu); | |
2228 | u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | |
2229 | : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | |
2230 | u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | |
2231 | : kvm->arch.xen_hvm_config.blob_size_32; | |
2232 | u32 page_num = data & ~PAGE_MASK; | |
2233 | u64 page_addr = data & PAGE_MASK; | |
2234 | u8 *page; | |
2235 | int r; | |
2236 | ||
2237 | r = -E2BIG; | |
2238 | if (page_num >= blob_size) | |
2239 | goto out; | |
2240 | r = -ENOMEM; | |
ff5c2c03 SL |
2241 | page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); |
2242 | if (IS_ERR(page)) { | |
2243 | r = PTR_ERR(page); | |
ffde22ac | 2244 | goto out; |
ff5c2c03 | 2245 | } |
54bf36aa | 2246 | if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) |
ffde22ac ES |
2247 | goto out_free; |
2248 | r = 0; | |
2249 | out_free: | |
2250 | kfree(page); | |
2251 | out: | |
2252 | return r; | |
2253 | } | |
2254 | ||
344d9588 GN |
2255 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
2256 | { | |
2257 | gpa_t gpa = data & ~0x3f; | |
2258 | ||
52a5c155 WL |
2259 | /* Bits 3:5 are reserved, Should be zero */ |
2260 | if (data & 0x38) | |
344d9588 GN |
2261 | return 1; |
2262 | ||
2263 | vcpu->arch.apf.msr_val = data; | |
2264 | ||
2265 | if (!(data & KVM_ASYNC_PF_ENABLED)) { | |
2266 | kvm_clear_async_pf_completion_queue(vcpu); | |
2267 | kvm_async_pf_hash_reset(vcpu); | |
2268 | return 0; | |
2269 | } | |
2270 | ||
4e335d9e | 2271 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
8f964525 | 2272 | sizeof(u32))) |
344d9588 GN |
2273 | return 1; |
2274 | ||
6adba527 | 2275 | vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
52a5c155 | 2276 | vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
344d9588 GN |
2277 | kvm_async_pf_wakeup_all(vcpu); |
2278 | return 0; | |
2279 | } | |
2280 | ||
12f9a48f GC |
2281 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
2282 | { | |
0b79459b | 2283 | vcpu->arch.pv_time_enabled = false; |
12f9a48f GC |
2284 | } |
2285 | ||
f38a7b75 WL |
2286 | static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) |
2287 | { | |
2288 | ++vcpu->stat.tlb_flush; | |
2289 | kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa); | |
2290 | } | |
2291 | ||
c9aaa895 GC |
2292 | static void record_steal_time(struct kvm_vcpu *vcpu) |
2293 | { | |
2294 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
2295 | return; | |
2296 | ||
4e335d9e | 2297 | if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2298 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) |
2299 | return; | |
2300 | ||
f38a7b75 WL |
2301 | /* |
2302 | * Doing a TLB flush here, on the guest's behalf, can avoid | |
2303 | * expensive IPIs. | |
2304 | */ | |
2305 | if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB) | |
2306 | kvm_vcpu_flush_tlb(vcpu, false); | |
0b9f6c46 | 2307 | |
35f3fae1 WL |
2308 | if (vcpu->arch.st.steal.version & 1) |
2309 | vcpu->arch.st.steal.version += 1; /* first time write, random junk */ | |
2310 | ||
2311 | vcpu->arch.st.steal.version += 1; | |
2312 | ||
4e335d9e | 2313 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2314 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2315 | ||
2316 | smp_wmb(); | |
2317 | ||
c54cdf14 LC |
2318 | vcpu->arch.st.steal.steal += current->sched_info.run_delay - |
2319 | vcpu->arch.st.last_steal; | |
2320 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
35f3fae1 | 2321 | |
4e335d9e | 2322 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
35f3fae1 WL |
2323 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2324 | ||
2325 | smp_wmb(); | |
2326 | ||
2327 | vcpu->arch.st.steal.version += 1; | |
c9aaa895 | 2328 | |
4e335d9e | 2329 | kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, |
c9aaa895 GC |
2330 | &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); |
2331 | } | |
2332 | ||
8fe8ab46 | 2333 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 2334 | { |
5753785f | 2335 | bool pr = false; |
8fe8ab46 WA |
2336 | u32 msr = msr_info->index; |
2337 | u64 data = msr_info->data; | |
5753785f | 2338 | |
15c4a640 | 2339 | switch (msr) { |
2e32b719 | 2340 | case MSR_AMD64_NB_CFG: |
2e32b719 BP |
2341 | case MSR_IA32_UCODE_WRITE: |
2342 | case MSR_VM_HSAVE_PA: | |
2343 | case MSR_AMD64_PATCH_LOADER: | |
2344 | case MSR_AMD64_BU_CFG2: | |
405a353a | 2345 | case MSR_AMD64_DC_CFG: |
2e32b719 BP |
2346 | break; |
2347 | ||
518e7b94 WL |
2348 | case MSR_IA32_UCODE_REV: |
2349 | if (msr_info->host_initiated) | |
2350 | vcpu->arch.microcode_version = data; | |
2351 | break; | |
15c4a640 | 2352 | case MSR_EFER: |
b69e8cae | 2353 | return set_efer(vcpu, data); |
8f1589d9 AP |
2354 | case MSR_K7_HWCR: |
2355 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 2356 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 2357 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
22d48b2d | 2358 | data &= ~(u64)0x40000; /* ignore Mc status write enable */ |
8f1589d9 | 2359 | if (data != 0) { |
a737f256 CD |
2360 | vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
2361 | data); | |
8f1589d9 AP |
2362 | return 1; |
2363 | } | |
15c4a640 | 2364 | break; |
f7c6d140 AP |
2365 | case MSR_FAM10H_MMIO_CONF_BASE: |
2366 | if (data != 0) { | |
a737f256 CD |
2367 | vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
2368 | "0x%llx\n", data); | |
f7c6d140 AP |
2369 | return 1; |
2370 | } | |
15c4a640 | 2371 | break; |
b5e2fec0 AG |
2372 | case MSR_IA32_DEBUGCTLMSR: |
2373 | if (!data) { | |
2374 | /* We support the non-activated case already */ | |
2375 | break; | |
2376 | } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | |
2377 | /* Values other than LBR and BTF are vendor-specific, | |
2378 | thus reserved and should throw a #GP */ | |
2379 | return 1; | |
2380 | } | |
a737f256 CD |
2381 | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
2382 | __func__, data); | |
b5e2fec0 | 2383 | break; |
9ba075a6 | 2384 | case 0x200 ... 0x2ff: |
ff53604b | 2385 | return kvm_mtrr_set_msr(vcpu, msr, data); |
15c4a640 | 2386 | case MSR_IA32_APICBASE: |
58cb628d | 2387 | return kvm_set_apic_base(vcpu, msr_info); |
0105d1a5 GN |
2388 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
2389 | return kvm_x2apic_msr_write(vcpu, msr, data); | |
a3e06bbe LJ |
2390 | case MSR_IA32_TSCDEADLINE: |
2391 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
2392 | break; | |
ba904635 | 2393 | case MSR_IA32_TSC_ADJUST: |
d6321d49 | 2394 | if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
ba904635 | 2395 | if (!msr_info->host_initiated) { |
d913b904 | 2396 | s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
d7add054 | 2397 | adjust_tsc_offset_guest(vcpu, adj); |
ba904635 WA |
2398 | } |
2399 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
2400 | } | |
2401 | break; | |
15c4a640 | 2402 | case MSR_IA32_MISC_ENABLE: |
ad312c7c | 2403 | vcpu->arch.ia32_misc_enable_msr = data; |
15c4a640 | 2404 | break; |
64d60670 PB |
2405 | case MSR_IA32_SMBASE: |
2406 | if (!msr_info->host_initiated) | |
2407 | return 1; | |
2408 | vcpu->arch.smbase = data; | |
2409 | break; | |
dd259935 PB |
2410 | case MSR_IA32_TSC: |
2411 | kvm_write_tsc(vcpu, msr_info); | |
2412 | break; | |
52797bf9 LA |
2413 | case MSR_SMI_COUNT: |
2414 | if (!msr_info->host_initiated) | |
2415 | return 1; | |
2416 | vcpu->arch.smi_count = data; | |
2417 | break; | |
11c6bffa | 2418 | case MSR_KVM_WALL_CLOCK_NEW: |
18068523 GOC |
2419 | case MSR_KVM_WALL_CLOCK: |
2420 | vcpu->kvm->arch.wall_clock = data; | |
2421 | kvm_write_wall_clock(vcpu->kvm, data); | |
2422 | break; | |
11c6bffa | 2423 | case MSR_KVM_SYSTEM_TIME_NEW: |
18068523 | 2424 | case MSR_KVM_SYSTEM_TIME: { |
54750f2c MT |
2425 | struct kvm_arch *ka = &vcpu->kvm->arch; |
2426 | ||
12f9a48f | 2427 | kvmclock_reset(vcpu); |
18068523 | 2428 | |
54750f2c MT |
2429 | if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { |
2430 | bool tmp = (msr == MSR_KVM_SYSTEM_TIME); | |
2431 | ||
2432 | if (ka->boot_vcpu_runs_old_kvmclock != tmp) | |
1bd2009e | 2433 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
54750f2c MT |
2434 | |
2435 | ka->boot_vcpu_runs_old_kvmclock = tmp; | |
2436 | } | |
2437 | ||
18068523 | 2438 | vcpu->arch.time = data; |
0061d53d | 2439 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
18068523 GOC |
2440 | |
2441 | /* we verify if the enable bit is set... */ | |
2442 | if (!(data & 1)) | |
2443 | break; | |
2444 | ||
4e335d9e | 2445 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, |
8f964525 AH |
2446 | &vcpu->arch.pv_time, data & ~1ULL, |
2447 | sizeof(struct pvclock_vcpu_time_info))) | |
0b79459b AH |
2448 | vcpu->arch.pv_time_enabled = false; |
2449 | else | |
2450 | vcpu->arch.pv_time_enabled = true; | |
32cad84f | 2451 | |
18068523 GOC |
2452 | break; |
2453 | } | |
344d9588 GN |
2454 | case MSR_KVM_ASYNC_PF_EN: |
2455 | if (kvm_pv_enable_async_pf(vcpu, data)) | |
2456 | return 1; | |
2457 | break; | |
c9aaa895 GC |
2458 | case MSR_KVM_STEAL_TIME: |
2459 | ||
2460 | if (unlikely(!sched_info_on())) | |
2461 | return 1; | |
2462 | ||
2463 | if (data & KVM_STEAL_RESERVED_MASK) | |
2464 | return 1; | |
2465 | ||
4e335d9e | 2466 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, |
8f964525 AH |
2467 | data & KVM_STEAL_VALID_BITS, |
2468 | sizeof(struct kvm_steal_time))) | |
c9aaa895 GC |
2469 | return 1; |
2470 | ||
2471 | vcpu->arch.st.msr_val = data; | |
2472 | ||
2473 | if (!(data & KVM_MSR_ENABLED)) | |
2474 | break; | |
2475 | ||
c9aaa895 GC |
2476 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
2477 | ||
2478 | break; | |
ae7a2a3f | 2479 | case MSR_KVM_PV_EOI_EN: |
72bbf935 | 2480 | if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) |
ae7a2a3f MT |
2481 | return 1; |
2482 | break; | |
c9aaa895 | 2483 | |
890ca9ae YH |
2484 | case MSR_IA32_MCG_CTL: |
2485 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2486 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
9ffd986c | 2487 | return set_msr_mce(vcpu, msr_info); |
71db6023 | 2488 | |
6912ac32 WH |
2489 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
2490 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2491 | pr = true; /* fall through */ | |
2492 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: | |
2493 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2494 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2495 | return kvm_pmu_set_msr(vcpu, msr_info); |
5753785f GN |
2496 | |
2497 | if (pr || data != 0) | |
a737f256 CD |
2498 | vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " |
2499 | "0x%x data 0x%llx\n", msr, data); | |
5753785f | 2500 | break; |
84e0cefa JS |
2501 | case MSR_K7_CLK_CTL: |
2502 | /* | |
2503 | * Ignore all writes to this no longer documented MSR. | |
2504 | * Writes are only relevant for old K7 processors, | |
2505 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 2506 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
2507 | * affected processor models on the command line, hence |
2508 | * the need to ignore the workaround. | |
2509 | */ | |
2510 | break; | |
55cd8e5a | 2511 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2512 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2513 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2514 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
a2e164e7 VK |
2515 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
2516 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
2517 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
e7d9513b AS |
2518 | return kvm_hv_set_msr_common(vcpu, msr, data, |
2519 | msr_info->host_initiated); | |
91c9c3ed | 2520 | case MSR_IA32_BBL_CR_CTL3: |
2521 | /* Drop writes to this legacy MSR -- see rdmsr | |
2522 | * counterpart for further detail. | |
2523 | */ | |
fab0aa3b EM |
2524 | if (report_ignored_msrs) |
2525 | vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", | |
2526 | msr, data); | |
91c9c3ed | 2527 | break; |
2b036c6b | 2528 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2529 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2530 | return 1; |
2531 | vcpu->arch.osvw.length = data; | |
2532 | break; | |
2533 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2534 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
2535 | return 1; |
2536 | vcpu->arch.osvw.status = data; | |
2537 | break; | |
db2336a8 KH |
2538 | case MSR_PLATFORM_INFO: |
2539 | if (!msr_info->host_initiated || | |
db2336a8 KH |
2540 | (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && |
2541 | cpuid_fault_enabled(vcpu))) | |
2542 | return 1; | |
2543 | vcpu->arch.msr_platform_info = data; | |
2544 | break; | |
2545 | case MSR_MISC_FEATURES_ENABLES: | |
2546 | if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || | |
2547 | (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && | |
2548 | !supports_cpuid_fault(vcpu))) | |
2549 | return 1; | |
2550 | vcpu->arch.msr_misc_features_enables = data; | |
2551 | break; | |
15c4a640 | 2552 | default: |
ffde22ac ES |
2553 | if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
2554 | return xen_hvm_config(vcpu, data); | |
c6702c9d | 2555 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 2556 | return kvm_pmu_set_msr(vcpu, msr_info); |
ed85c068 | 2557 | if (!ignore_msrs) { |
ae0f5499 | 2558 | vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", |
a737f256 | 2559 | msr, data); |
ed85c068 AP |
2560 | return 1; |
2561 | } else { | |
fab0aa3b EM |
2562 | if (report_ignored_msrs) |
2563 | vcpu_unimpl(vcpu, | |
2564 | "ignored wrmsr: 0x%x data 0x%llx\n", | |
2565 | msr, data); | |
ed85c068 AP |
2566 | break; |
2567 | } | |
15c4a640 CO |
2568 | } |
2569 | return 0; | |
2570 | } | |
2571 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
2572 | ||
2573 | ||
2574 | /* | |
2575 | * Reads an msr value (of 'msr_index') into 'pdata'. | |
2576 | * Returns 0 on success, non-0 otherwise. | |
2577 | * Assumes vcpu_load() was already called. | |
2578 | */ | |
609e36d3 | 2579 | int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) |
15c4a640 | 2580 | { |
609e36d3 | 2581 | return kvm_x86_ops->get_msr(vcpu, msr); |
15c4a640 | 2582 | } |
ff651cb6 | 2583 | EXPORT_SYMBOL_GPL(kvm_get_msr); |
15c4a640 | 2584 | |
44883f01 | 2585 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) |
15c4a640 CO |
2586 | { |
2587 | u64 data; | |
890ca9ae YH |
2588 | u64 mcg_cap = vcpu->arch.mcg_cap; |
2589 | unsigned bank_num = mcg_cap & 0xff; | |
15c4a640 CO |
2590 | |
2591 | switch (msr) { | |
15c4a640 CO |
2592 | case MSR_IA32_P5_MC_ADDR: |
2593 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae YH |
2594 | data = 0; |
2595 | break; | |
15c4a640 | 2596 | case MSR_IA32_MCG_CAP: |
890ca9ae YH |
2597 | data = vcpu->arch.mcg_cap; |
2598 | break; | |
c7ac679c | 2599 | case MSR_IA32_MCG_CTL: |
44883f01 | 2600 | if (!(mcg_cap & MCG_CTL_P) && !host) |
890ca9ae YH |
2601 | return 1; |
2602 | data = vcpu->arch.mcg_ctl; | |
2603 | break; | |
2604 | case MSR_IA32_MCG_STATUS: | |
2605 | data = vcpu->arch.mcg_status; | |
2606 | break; | |
2607 | default: | |
2608 | if (msr >= MSR_IA32_MC0_CTL && | |
81760dcc | 2609 | msr < MSR_IA32_MCx_CTL(bank_num)) { |
890ca9ae YH |
2610 | u32 offset = msr - MSR_IA32_MC0_CTL; |
2611 | data = vcpu->arch.mce_banks[offset]; | |
2612 | break; | |
2613 | } | |
2614 | return 1; | |
2615 | } | |
2616 | *pdata = data; | |
2617 | return 0; | |
2618 | } | |
2619 | ||
609e36d3 | 2620 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
890ca9ae | 2621 | { |
609e36d3 | 2622 | switch (msr_info->index) { |
890ca9ae | 2623 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 2624 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
2625 | case MSR_IA32_DEBUGCTLMSR: |
2626 | case MSR_IA32_LASTBRANCHFROMIP: | |
2627 | case MSR_IA32_LASTBRANCHTOIP: | |
2628 | case MSR_IA32_LASTINTFROMIP: | |
2629 | case MSR_IA32_LASTINTTOIP: | |
60af2ecd | 2630 | case MSR_K8_SYSCFG: |
3afb1121 PB |
2631 | case MSR_K8_TSEG_ADDR: |
2632 | case MSR_K8_TSEG_MASK: | |
60af2ecd | 2633 | case MSR_K7_HWCR: |
61a6bd67 | 2634 | case MSR_VM_HSAVE_PA: |
1fdbd48c | 2635 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 2636 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 2637 | case MSR_FAM10H_MMIO_CONF_BASE: |
2e32b719 | 2638 | case MSR_AMD64_BU_CFG2: |
0c2df2a1 | 2639 | case MSR_IA32_PERF_CTL: |
405a353a | 2640 | case MSR_AMD64_DC_CFG: |
609e36d3 | 2641 | msr_info->data = 0; |
15c4a640 | 2642 | break; |
c51eb52b | 2643 | case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: |
6912ac32 WH |
2644 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
2645 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | |
2646 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
2647 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 2648 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 PB |
2649 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
2650 | msr_info->data = 0; | |
5753785f | 2651 | break; |
742bc670 | 2652 | case MSR_IA32_UCODE_REV: |
518e7b94 | 2653 | msr_info->data = vcpu->arch.microcode_version; |
742bc670 | 2654 | break; |
dd259935 PB |
2655 | case MSR_IA32_TSC: |
2656 | msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset; | |
2657 | break; | |
9ba075a6 | 2658 | case MSR_MTRRcap: |
9ba075a6 | 2659 | case 0x200 ... 0x2ff: |
ff53604b | 2660 | return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
15c4a640 | 2661 | case 0xcd: /* fsb frequency */ |
609e36d3 | 2662 | msr_info->data = 3; |
15c4a640 | 2663 | break; |
7b914098 JS |
2664 | /* |
2665 | * MSR_EBC_FREQUENCY_ID | |
2666 | * Conservative value valid for even the basic CPU models. | |
2667 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
2668 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
2669 | * and 266MHz for model 3, or 4. Set Core Clock | |
2670 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
2671 | * 31:24) even though these are only valid for CPU | |
2672 | * models > 2, however guests may end up dividing or | |
2673 | * multiplying by zero otherwise. | |
2674 | */ | |
2675 | case MSR_EBC_FREQUENCY_ID: | |
609e36d3 | 2676 | msr_info->data = 1 << 24; |
7b914098 | 2677 | break; |
15c4a640 | 2678 | case MSR_IA32_APICBASE: |
609e36d3 | 2679 | msr_info->data = kvm_get_apic_base(vcpu); |
15c4a640 | 2680 | break; |
0105d1a5 | 2681 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
609e36d3 | 2682 | return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
0105d1a5 | 2683 | break; |
a3e06bbe | 2684 | case MSR_IA32_TSCDEADLINE: |
609e36d3 | 2685 | msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
a3e06bbe | 2686 | break; |
ba904635 | 2687 | case MSR_IA32_TSC_ADJUST: |
609e36d3 | 2688 | msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
ba904635 | 2689 | break; |
15c4a640 | 2690 | case MSR_IA32_MISC_ENABLE: |
609e36d3 | 2691 | msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 2692 | break; |
64d60670 PB |
2693 | case MSR_IA32_SMBASE: |
2694 | if (!msr_info->host_initiated) | |
2695 | return 1; | |
2696 | msr_info->data = vcpu->arch.smbase; | |
15c4a640 | 2697 | break; |
52797bf9 LA |
2698 | case MSR_SMI_COUNT: |
2699 | msr_info->data = vcpu->arch.smi_count; | |
2700 | break; | |
847f0ad8 AG |
2701 | case MSR_IA32_PERF_STATUS: |
2702 | /* TSC increment by tick */ | |
609e36d3 | 2703 | msr_info->data = 1000ULL; |
847f0ad8 | 2704 | /* CPU multiplier */ |
b0996ae4 | 2705 | msr_info->data |= (((uint64_t)4ULL) << 40); |
847f0ad8 | 2706 | break; |
15c4a640 | 2707 | case MSR_EFER: |
609e36d3 | 2708 | msr_info->data = vcpu->arch.efer; |
15c4a640 | 2709 | break; |
18068523 | 2710 | case MSR_KVM_WALL_CLOCK: |
11c6bffa | 2711 | case MSR_KVM_WALL_CLOCK_NEW: |
609e36d3 | 2712 | msr_info->data = vcpu->kvm->arch.wall_clock; |
18068523 GOC |
2713 | break; |
2714 | case MSR_KVM_SYSTEM_TIME: | |
11c6bffa | 2715 | case MSR_KVM_SYSTEM_TIME_NEW: |
609e36d3 | 2716 | msr_info->data = vcpu->arch.time; |
18068523 | 2717 | break; |
344d9588 | 2718 | case MSR_KVM_ASYNC_PF_EN: |
609e36d3 | 2719 | msr_info->data = vcpu->arch.apf.msr_val; |
344d9588 | 2720 | break; |
c9aaa895 | 2721 | case MSR_KVM_STEAL_TIME: |
609e36d3 | 2722 | msr_info->data = vcpu->arch.st.msr_val; |
c9aaa895 | 2723 | break; |
1d92128f | 2724 | case MSR_KVM_PV_EOI_EN: |
609e36d3 | 2725 | msr_info->data = vcpu->arch.pv_eoi.msr_val; |
1d92128f | 2726 | break; |
890ca9ae YH |
2727 | case MSR_IA32_P5_MC_ADDR: |
2728 | case MSR_IA32_P5_MC_TYPE: | |
2729 | case MSR_IA32_MCG_CAP: | |
2730 | case MSR_IA32_MCG_CTL: | |
2731 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 2732 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
44883f01 PB |
2733 | return get_msr_mce(vcpu, msr_info->index, &msr_info->data, |
2734 | msr_info->host_initiated); | |
84e0cefa JS |
2735 | case MSR_K7_CLK_CTL: |
2736 | /* | |
2737 | * Provide expected ramp-up count for K7. All other | |
2738 | * are set to zero, indicating minimum divisors for | |
2739 | * every field. | |
2740 | * | |
2741 | * This prevents guest kernels on AMD host with CPU | |
2742 | * type 6, model 8 and higher from exploding due to | |
2743 | * the rdmsr failing. | |
2744 | */ | |
609e36d3 | 2745 | msr_info->data = 0x20000000; |
84e0cefa | 2746 | break; |
55cd8e5a | 2747 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
e7d9513b AS |
2748 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
2749 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 2750 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
a2e164e7 VK |
2751 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
2752 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
2753 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
e83d5887 | 2754 | return kvm_hv_get_msr_common(vcpu, |
44883f01 PB |
2755 | msr_info->index, &msr_info->data, |
2756 | msr_info->host_initiated); | |
55cd8e5a | 2757 | break; |
91c9c3ed | 2758 | case MSR_IA32_BBL_CR_CTL3: |
2759 | /* This legacy MSR exists but isn't fully documented in current | |
2760 | * silicon. It is however accessed by winxp in very narrow | |
2761 | * scenarios where it sets bit #19, itself documented as | |
2762 | * a "reserved" bit. Best effort attempt to source coherent | |
2763 | * read data here should the balance of the register be | |
2764 | * interpreted by the guest: | |
2765 | * | |
2766 | * L2 cache control register 3: 64GB range, 256KB size, | |
2767 | * enabled, latency 0x1, configured | |
2768 | */ | |
609e36d3 | 2769 | msr_info->data = 0xbe702111; |
91c9c3ed | 2770 | break; |
2b036c6b | 2771 | case MSR_AMD64_OSVW_ID_LENGTH: |
d6321d49 | 2772 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2773 | return 1; |
609e36d3 | 2774 | msr_info->data = vcpu->arch.osvw.length; |
2b036c6b BO |
2775 | break; |
2776 | case MSR_AMD64_OSVW_STATUS: | |
d6321d49 | 2777 | if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 2778 | return 1; |
609e36d3 | 2779 | msr_info->data = vcpu->arch.osvw.status; |
2b036c6b | 2780 | break; |
db2336a8 | 2781 | case MSR_PLATFORM_INFO: |
6fbbde9a DS |
2782 | if (!msr_info->host_initiated && |
2783 | !vcpu->kvm->arch.guest_can_read_msr_platform_info) | |
2784 | return 1; | |
db2336a8 KH |
2785 | msr_info->data = vcpu->arch.msr_platform_info; |
2786 | break; | |
2787 | case MSR_MISC_FEATURES_ENABLES: | |
2788 | msr_info->data = vcpu->arch.msr_misc_features_enables; | |
2789 | break; | |
15c4a640 | 2790 | default: |
c6702c9d | 2791 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
609e36d3 | 2792 | return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); |
ed85c068 | 2793 | if (!ignore_msrs) { |
ae0f5499 BD |
2794 | vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", |
2795 | msr_info->index); | |
ed85c068 AP |
2796 | return 1; |
2797 | } else { | |
fab0aa3b EM |
2798 | if (report_ignored_msrs) |
2799 | vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", | |
2800 | msr_info->index); | |
609e36d3 | 2801 | msr_info->data = 0; |
ed85c068 AP |
2802 | } |
2803 | break; | |
15c4a640 | 2804 | } |
15c4a640 CO |
2805 | return 0; |
2806 | } | |
2807 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
2808 | ||
313a3dc7 CO |
2809 | /* |
2810 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
2811 | * | |
2812 | * @return number of msrs set successfully. | |
2813 | */ | |
2814 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
2815 | struct kvm_msr_entry *entries, | |
2816 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2817 | unsigned index, u64 *data)) | |
2818 | { | |
801e459a | 2819 | int i; |
313a3dc7 | 2820 | |
313a3dc7 CO |
2821 | for (i = 0; i < msrs->nmsrs; ++i) |
2822 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
2823 | break; | |
2824 | ||
313a3dc7 CO |
2825 | return i; |
2826 | } | |
2827 | ||
2828 | /* | |
2829 | * Read or write a bunch of msrs. Parameters are user addresses. | |
2830 | * | |
2831 | * @return number of msrs set successfully. | |
2832 | */ | |
2833 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
2834 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
2835 | unsigned index, u64 *data), | |
2836 | int writeback) | |
2837 | { | |
2838 | struct kvm_msrs msrs; | |
2839 | struct kvm_msr_entry *entries; | |
2840 | int r, n; | |
2841 | unsigned size; | |
2842 | ||
2843 | r = -EFAULT; | |
2844 | if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | |
2845 | goto out; | |
2846 | ||
2847 | r = -E2BIG; | |
2848 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
2849 | goto out; | |
2850 | ||
313a3dc7 | 2851 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
2852 | entries = memdup_user(user_msrs->entries, size); |
2853 | if (IS_ERR(entries)) { | |
2854 | r = PTR_ERR(entries); | |
313a3dc7 | 2855 | goto out; |
ff5c2c03 | 2856 | } |
313a3dc7 CO |
2857 | |
2858 | r = n = __msr_io(vcpu, &msrs, entries, do_msr); | |
2859 | if (r < 0) | |
2860 | goto out_free; | |
2861 | ||
2862 | r = -EFAULT; | |
2863 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) | |
2864 | goto out_free; | |
2865 | ||
2866 | r = n; | |
2867 | ||
2868 | out_free: | |
7a73c028 | 2869 | kfree(entries); |
313a3dc7 CO |
2870 | out: |
2871 | return r; | |
2872 | } | |
2873 | ||
4d5422ce WL |
2874 | static inline bool kvm_can_mwait_in_guest(void) |
2875 | { | |
2876 | return boot_cpu_has(X86_FEATURE_MWAIT) && | |
8e9b29b6 KA |
2877 | !boot_cpu_has_bug(X86_BUG_MONITOR) && |
2878 | boot_cpu_has(X86_FEATURE_ARAT); | |
4d5422ce WL |
2879 | } |
2880 | ||
784aa3d7 | 2881 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
018d00d2 | 2882 | { |
4d5422ce | 2883 | int r = 0; |
018d00d2 ZX |
2884 | |
2885 | switch (ext) { | |
2886 | case KVM_CAP_IRQCHIP: | |
2887 | case KVM_CAP_HLT: | |
2888 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 2889 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 2890 | case KVM_CAP_EXT_CPUID: |
9c15bb1d | 2891 | case KVM_CAP_EXT_EMUL_CPUID: |
c8076604 | 2892 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 2893 | case KVM_CAP_PIT: |
a28e4f5a | 2894 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 2895 | case KVM_CAP_MP_STATE: |
ed848624 | 2896 | case KVM_CAP_SYNC_MMU: |
a355c85c | 2897 | case KVM_CAP_USER_NMI: |
52d939a0 | 2898 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 2899 | case KVM_CAP_IRQ_INJECT_STATUS: |
d34e6b17 | 2900 | case KVM_CAP_IOEVENTFD: |
f848a5a8 | 2901 | case KVM_CAP_IOEVENTFD_NO_LENGTH: |
c5ff41ce | 2902 | case KVM_CAP_PIT2: |
e9f42757 | 2903 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 2904 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
ffde22ac | 2905 | case KVM_CAP_XEN_HVM: |
3cfc3092 | 2906 | case KVM_CAP_VCPU_EVENTS: |
55cd8e5a | 2907 | case KVM_CAP_HYPERV: |
10388a07 | 2908 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 2909 | case KVM_CAP_HYPERV_SPIN: |
5c919412 | 2910 | case KVM_CAP_HYPERV_SYNIC: |
efc479e6 | 2911 | case KVM_CAP_HYPERV_SYNIC2: |
d3457c87 | 2912 | case KVM_CAP_HYPERV_VP_INDEX: |
faeb7833 | 2913 | case KVM_CAP_HYPERV_EVENTFD: |
c1aea919 | 2914 | case KVM_CAP_HYPERV_TLBFLUSH: |
214ff83d | 2915 | case KVM_CAP_HYPERV_SEND_IPI: |
57b119da | 2916 | case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: |
ab9f4ecb | 2917 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 2918 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 2919 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 2920 | case KVM_CAP_XSAVE: |
344d9588 | 2921 | case KVM_CAP_ASYNC_PF: |
92a1f12d | 2922 | case KVM_CAP_GET_TSC_KHZ: |
1c0b28c2 | 2923 | case KVM_CAP_KVMCLOCK_CTRL: |
4d8b81ab | 2924 | case KVM_CAP_READONLY_MEM: |
5f66b620 | 2925 | case KVM_CAP_HYPERV_TIME: |
100943c5 | 2926 | case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
defcf51f | 2927 | case KVM_CAP_TSC_DEADLINE_TIMER: |
90de4a18 NA |
2928 | case KVM_CAP_ENABLE_CAP_VM: |
2929 | case KVM_CAP_DISABLE_QUIRKS: | |
d71ba788 | 2930 | case KVM_CAP_SET_BOOT_CPU_ID: |
49df6397 | 2931 | case KVM_CAP_SPLIT_IRQCHIP: |
460df4c1 | 2932 | case KVM_CAP_IMMEDIATE_EXIT: |
801e459a | 2933 | case KVM_CAP_GET_MSR_FEATURES: |
6fbbde9a | 2934 | case KVM_CAP_MSR_PLATFORM_INFO: |
018d00d2 ZX |
2935 | r = 1; |
2936 | break; | |
01643c51 KH |
2937 | case KVM_CAP_SYNC_REGS: |
2938 | r = KVM_SYNC_X86_VALID_FIELDS; | |
2939 | break; | |
e3fd9a93 PB |
2940 | case KVM_CAP_ADJUST_CLOCK: |
2941 | r = KVM_CLOCK_TSC_STABLE; | |
2942 | break; | |
4d5422ce | 2943 | case KVM_CAP_X86_DISABLE_EXITS: |
766d3571 | 2944 | r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE; |
4d5422ce WL |
2945 | if(kvm_can_mwait_in_guest()) |
2946 | r |= KVM_X86_DISABLE_EXITS_MWAIT; | |
668fffa3 | 2947 | break; |
6d396b55 PB |
2948 | case KVM_CAP_X86_SMM: |
2949 | /* SMBASE is usually relocated above 1M on modern chipsets, | |
2950 | * and SMM handlers might indeed rely on 4G segment limits, | |
2951 | * so do not report SMM to be available if real mode is | |
2952 | * emulated via vm86 mode. Still, do not go to great lengths | |
2953 | * to avoid userspace's usage of the feature, because it is a | |
2954 | * fringe case that is not enabled except via specific settings | |
2955 | * of the module parameters. | |
2956 | */ | |
bc226f07 | 2957 | r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE); |
6d396b55 | 2958 | break; |
774ead3a AK |
2959 | case KVM_CAP_VAPIC: |
2960 | r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | |
2961 | break; | |
f725230a | 2962 | case KVM_CAP_NR_VCPUS: |
8c3ba334 SL |
2963 | r = KVM_SOFT_MAX_VCPUS; |
2964 | break; | |
2965 | case KVM_CAP_MAX_VCPUS: | |
f725230a AK |
2966 | r = KVM_MAX_VCPUS; |
2967 | break; | |
a988b910 | 2968 | case KVM_CAP_NR_MEMSLOTS: |
bbacc0c1 | 2969 | r = KVM_USER_MEM_SLOTS; |
a988b910 | 2970 | break; |
a68a6a72 MT |
2971 | case KVM_CAP_PV_MMU: /* obsolete */ |
2972 | r = 0; | |
2f333bcb | 2973 | break; |
890ca9ae YH |
2974 | case KVM_CAP_MCE: |
2975 | r = KVM_MAX_MCE_BANKS; | |
2976 | break; | |
2d5b5a66 | 2977 | case KVM_CAP_XCRS: |
d366bf7e | 2978 | r = boot_cpu_has(X86_FEATURE_XSAVE); |
2d5b5a66 | 2979 | break; |
92a1f12d JR |
2980 | case KVM_CAP_TSC_CONTROL: |
2981 | r = kvm_has_tsc_control; | |
2982 | break; | |
37131313 RK |
2983 | case KVM_CAP_X2APIC_API: |
2984 | r = KVM_X2APIC_API_VALID_FLAGS; | |
2985 | break; | |
8fcc4b59 JM |
2986 | case KVM_CAP_NESTED_STATE: |
2987 | r = kvm_x86_ops->get_nested_state ? | |
2988 | kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0; | |
2989 | break; | |
018d00d2 | 2990 | default: |
018d00d2 ZX |
2991 | break; |
2992 | } | |
2993 | return r; | |
2994 | ||
2995 | } | |
2996 | ||
043405e1 CO |
2997 | long kvm_arch_dev_ioctl(struct file *filp, |
2998 | unsigned int ioctl, unsigned long arg) | |
2999 | { | |
3000 | void __user *argp = (void __user *)arg; | |
3001 | long r; | |
3002 | ||
3003 | switch (ioctl) { | |
3004 | case KVM_GET_MSR_INDEX_LIST: { | |
3005 | struct kvm_msr_list __user *user_msr_list = argp; | |
3006 | struct kvm_msr_list msr_list; | |
3007 | unsigned n; | |
3008 | ||
3009 | r = -EFAULT; | |
3010 | if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | |
3011 | goto out; | |
3012 | n = msr_list.nmsrs; | |
62ef68bb | 3013 | msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
043405e1 CO |
3014 | if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
3015 | goto out; | |
3016 | r = -E2BIG; | |
e125e7b6 | 3017 | if (n < msr_list.nmsrs) |
043405e1 CO |
3018 | goto out; |
3019 | r = -EFAULT; | |
3020 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
3021 | num_msrs_to_save * sizeof(u32))) | |
3022 | goto out; | |
e125e7b6 | 3023 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 | 3024 | &emulated_msrs, |
62ef68bb | 3025 | num_emulated_msrs * sizeof(u32))) |
043405e1 CO |
3026 | goto out; |
3027 | r = 0; | |
3028 | break; | |
3029 | } | |
9c15bb1d BP |
3030 | case KVM_GET_SUPPORTED_CPUID: |
3031 | case KVM_GET_EMULATED_CPUID: { | |
674eea0f AK |
3032 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
3033 | struct kvm_cpuid2 cpuid; | |
3034 | ||
3035 | r = -EFAULT; | |
3036 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3037 | goto out; | |
9c15bb1d BP |
3038 | |
3039 | r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, | |
3040 | ioctl); | |
674eea0f AK |
3041 | if (r) |
3042 | goto out; | |
3043 | ||
3044 | r = -EFAULT; | |
3045 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3046 | goto out; | |
3047 | r = 0; | |
3048 | break; | |
3049 | } | |
890ca9ae | 3050 | case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
890ca9ae | 3051 | r = -EFAULT; |
c45dcc71 AR |
3052 | if (copy_to_user(argp, &kvm_mce_cap_supported, |
3053 | sizeof(kvm_mce_cap_supported))) | |
890ca9ae YH |
3054 | goto out; |
3055 | r = 0; | |
3056 | break; | |
801e459a TL |
3057 | case KVM_GET_MSR_FEATURE_INDEX_LIST: { |
3058 | struct kvm_msr_list __user *user_msr_list = argp; | |
3059 | struct kvm_msr_list msr_list; | |
3060 | unsigned int n; | |
3061 | ||
3062 | r = -EFAULT; | |
3063 | if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) | |
3064 | goto out; | |
3065 | n = msr_list.nmsrs; | |
3066 | msr_list.nmsrs = num_msr_based_features; | |
3067 | if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) | |
3068 | goto out; | |
3069 | r = -E2BIG; | |
3070 | if (n < msr_list.nmsrs) | |
3071 | goto out; | |
3072 | r = -EFAULT; | |
3073 | if (copy_to_user(user_msr_list->indices, &msr_based_features, | |
3074 | num_msr_based_features * sizeof(u32))) | |
3075 | goto out; | |
3076 | r = 0; | |
3077 | break; | |
3078 | } | |
3079 | case KVM_GET_MSRS: | |
3080 | r = msr_io(NULL, argp, do_get_msr_feature, 1); | |
3081 | break; | |
890ca9ae | 3082 | } |
043405e1 CO |
3083 | default: |
3084 | r = -EINVAL; | |
3085 | } | |
3086 | out: | |
3087 | return r; | |
3088 | } | |
3089 | ||
f5f48ee1 SY |
3090 | static void wbinvd_ipi(void *garbage) |
3091 | { | |
3092 | wbinvd(); | |
3093 | } | |
3094 | ||
3095 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
3096 | { | |
e0f0bbc5 | 3097 | return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
f5f48ee1 SY |
3098 | } |
3099 | ||
313a3dc7 CO |
3100 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
3101 | { | |
f5f48ee1 SY |
3102 | /* Address WBINVD may be executed by guest */ |
3103 | if (need_emulate_wbinvd(vcpu)) { | |
3104 | if (kvm_x86_ops->has_wbinvd_exit()) | |
3105 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
3106 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
3107 | smp_call_function_single(vcpu->cpu, | |
3108 | wbinvd_ipi, NULL, 1); | |
3109 | } | |
3110 | ||
313a3dc7 | 3111 | kvm_x86_ops->vcpu_load(vcpu, cpu); |
8f6055cb | 3112 | |
0dd6a6ed ZA |
3113 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
3114 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
3115 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
3116 | vcpu->arch.tsc_offset_adjustment = 0; | |
105b21bb | 3117 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed | 3118 | } |
8f6055cb | 3119 | |
b0c39dc6 | 3120 | if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { |
6f526ec5 | 3121 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
4ea1636b | 3122 | rdtsc() - vcpu->arch.last_host_tsc; |
e48672fa ZA |
3123 | if (tsc_delta < 0) |
3124 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
ce7a058a | 3125 | |
b0c39dc6 | 3126 | if (kvm_check_tsc_unstable()) { |
07c1419a | 3127 | u64 offset = kvm_compute_tsc_offset(vcpu, |
b183aa58 | 3128 | vcpu->arch.last_guest_tsc); |
a545ab6a | 3129 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
c285545f | 3130 | vcpu->arch.tsc_catchup = 1; |
c285545f | 3131 | } |
a749e247 PB |
3132 | |
3133 | if (kvm_lapic_hv_timer_in_use(vcpu)) | |
3134 | kvm_lapic_restart_hv_timer(vcpu); | |
3135 | ||
d98d07ca MT |
3136 | /* |
3137 | * On a host with synchronized TSC, there is no need to update | |
3138 | * kvmclock on vcpu->cpu migration | |
3139 | */ | |
3140 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
0061d53d | 3141 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
c285545f | 3142 | if (vcpu->cpu != cpu) |
1bd2009e | 3143 | kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
e48672fa | 3144 | vcpu->cpu = cpu; |
6b7d7e76 | 3145 | } |
c9aaa895 | 3146 | |
c9aaa895 | 3147 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
313a3dc7 CO |
3148 | } |
3149 | ||
0b9f6c46 PX |
3150 | static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
3151 | { | |
3152 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | |
3153 | return; | |
3154 | ||
fa55eedd | 3155 | vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED; |
0b9f6c46 | 3156 | |
4e335d9e | 3157 | kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, |
0b9f6c46 PX |
3158 | &vcpu->arch.st.steal.preempted, |
3159 | offsetof(struct kvm_steal_time, preempted), | |
3160 | sizeof(vcpu->arch.st.steal.preempted)); | |
3161 | } | |
3162 | ||
313a3dc7 CO |
3163 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
3164 | { | |
cc0d907c | 3165 | int idx; |
de63ad4c LM |
3166 | |
3167 | if (vcpu->preempted) | |
3168 | vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); | |
3169 | ||
931f261b AA |
3170 | /* |
3171 | * Disable page faults because we're in atomic context here. | |
3172 | * kvm_write_guest_offset_cached() would call might_fault() | |
3173 | * that relies on pagefault_disable() to tell if there's a | |
3174 | * bug. NOTE: the write to guest memory may not go through if | |
3175 | * during postcopy live migration or if there's heavy guest | |
3176 | * paging. | |
3177 | */ | |
3178 | pagefault_disable(); | |
cc0d907c AA |
3179 | /* |
3180 | * kvm_memslots() will be called by | |
3181 | * kvm_write_guest_offset_cached() so take the srcu lock. | |
3182 | */ | |
3183 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
0b9f6c46 | 3184 | kvm_steal_time_set_preempted(vcpu); |
cc0d907c | 3185 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
931f261b | 3186 | pagefault_enable(); |
02daab21 | 3187 | kvm_x86_ops->vcpu_put(vcpu); |
4ea1636b | 3188 | vcpu->arch.last_host_tsc = rdtsc(); |
efdab992 | 3189 | /* |
0e0a53c5 PB |
3190 | * Here dr6 is either zero or, if the guest has run and userspace |
3191 | * has not set any breakpoints or watchpoints, it can be set to | |
3192 | * the guest dr6 (stored in vcpu->arch.dr6). do_debug expects dr6 | |
3193 | * to be cleared after it runs, so clear the host register. However, | |
3194 | * MOV to DR can be expensive when running nested, omit it if | |
3195 | * vcpu->arch.dr6 is already zero: in that case, the host dr6 cannot | |
3196 | * currently be nonzero. | |
efdab992 | 3197 | */ |
0e0a53c5 PB |
3198 | if (vcpu->arch.dr6) |
3199 | set_debugreg(0, 6); | |
313a3dc7 CO |
3200 | } |
3201 | ||
313a3dc7 CO |
3202 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
3203 | struct kvm_lapic_state *s) | |
3204 | { | |
fa59cc00 | 3205 | if (vcpu->arch.apicv_active) |
d62caabb AS |
3206 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
3207 | ||
a92e2543 | 3208 | return kvm_apic_get_state(vcpu, s); |
313a3dc7 CO |
3209 | } |
3210 | ||
3211 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
3212 | struct kvm_lapic_state *s) | |
3213 | { | |
a92e2543 RK |
3214 | int r; |
3215 | ||
3216 | r = kvm_apic_set_state(vcpu, s); | |
3217 | if (r) | |
3218 | return r; | |
cb142eb7 | 3219 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
3220 | |
3221 | return 0; | |
3222 | } | |
3223 | ||
127a457a MG |
3224 | static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
3225 | { | |
3226 | return (!lapic_in_kernel(vcpu) || | |
3227 | kvm_apic_accept_pic_intr(vcpu)); | |
3228 | } | |
3229 | ||
782d422b MG |
3230 | /* |
3231 | * if userspace requested an interrupt window, check that the | |
3232 | * interrupt window is open. | |
3233 | * | |
3234 | * No need to exit to userspace if we already have an interrupt queued. | |
3235 | */ | |
3236 | static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) | |
3237 | { | |
3238 | return kvm_arch_interrupt_allowed(vcpu) && | |
3239 | !kvm_cpu_has_interrupt(vcpu) && | |
3240 | !kvm_event_needs_reinjection(vcpu) && | |
3241 | kvm_cpu_accept_dm_intr(vcpu); | |
3242 | } | |
3243 | ||
f77bc6a4 ZX |
3244 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
3245 | struct kvm_interrupt *irq) | |
3246 | { | |
02cdb50f | 3247 | if (irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 | 3248 | return -EINVAL; |
1c1a9ce9 SR |
3249 | |
3250 | if (!irqchip_in_kernel(vcpu->kvm)) { | |
3251 | kvm_queue_interrupt(vcpu, irq->irq, false); | |
3252 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
3253 | return 0; | |
3254 | } | |
3255 | ||
3256 | /* | |
3257 | * With in-kernel LAPIC, we only use this to inject EXTINT, so | |
3258 | * fail for in-kernel 8259. | |
3259 | */ | |
3260 | if (pic_in_kernel(vcpu->kvm)) | |
f77bc6a4 | 3261 | return -ENXIO; |
f77bc6a4 | 3262 | |
1c1a9ce9 SR |
3263 | if (vcpu->arch.pending_external_vector != -1) |
3264 | return -EEXIST; | |
f77bc6a4 | 3265 | |
1c1a9ce9 | 3266 | vcpu->arch.pending_external_vector = irq->irq; |
934bf653 | 3267 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 ZX |
3268 | return 0; |
3269 | } | |
3270 | ||
c4abb7c9 JK |
3271 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
3272 | { | |
c4abb7c9 | 3273 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
3274 | |
3275 | return 0; | |
3276 | } | |
3277 | ||
f077825a PB |
3278 | static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) |
3279 | { | |
64d60670 PB |
3280 | kvm_make_request(KVM_REQ_SMI, vcpu); |
3281 | ||
f077825a PB |
3282 | return 0; |
3283 | } | |
3284 | ||
b209749f AK |
3285 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
3286 | struct kvm_tpr_access_ctl *tac) | |
3287 | { | |
3288 | if (tac->flags) | |
3289 | return -EINVAL; | |
3290 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
3291 | return 0; | |
3292 | } | |
3293 | ||
890ca9ae YH |
3294 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
3295 | u64 mcg_cap) | |
3296 | { | |
3297 | int r; | |
3298 | unsigned bank_num = mcg_cap & 0xff, bank; | |
3299 | ||
3300 | r = -EINVAL; | |
a9e38c3e | 3301 | if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
890ca9ae | 3302 | goto out; |
c45dcc71 | 3303 | if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) |
890ca9ae YH |
3304 | goto out; |
3305 | r = 0; | |
3306 | vcpu->arch.mcg_cap = mcg_cap; | |
3307 | /* Init IA32_MCG_CTL to all 1s */ | |
3308 | if (mcg_cap & MCG_CTL_P) | |
3309 | vcpu->arch.mcg_ctl = ~(u64)0; | |
3310 | /* Init IA32_MCi_CTL to all 1s */ | |
3311 | for (bank = 0; bank < bank_num; bank++) | |
3312 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; | |
c45dcc71 AR |
3313 | |
3314 | if (kvm_x86_ops->setup_mce) | |
3315 | kvm_x86_ops->setup_mce(vcpu); | |
890ca9ae YH |
3316 | out: |
3317 | return r; | |
3318 | } | |
3319 | ||
3320 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | |
3321 | struct kvm_x86_mce *mce) | |
3322 | { | |
3323 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
3324 | unsigned bank_num = mcg_cap & 0xff; | |
3325 | u64 *banks = vcpu->arch.mce_banks; | |
3326 | ||
3327 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
3328 | return -EINVAL; | |
3329 | /* | |
3330 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
3331 | * reporting is disabled | |
3332 | */ | |
3333 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
3334 | vcpu->arch.mcg_ctl != ~(u64)0) | |
3335 | return 0; | |
3336 | banks += 4 * mce->bank; | |
3337 | /* | |
3338 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
3339 | * reporting is disabled for the bank | |
3340 | */ | |
3341 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
3342 | return 0; | |
3343 | if (mce->status & MCI_STATUS_UC) { | |
3344 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
fc78f519 | 3345 | !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 3346 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae YH |
3347 | return 0; |
3348 | } | |
3349 | if (banks[1] & MCI_STATUS_VAL) | |
3350 | mce->status |= MCI_STATUS_OVER; | |
3351 | banks[2] = mce->addr; | |
3352 | banks[3] = mce->misc; | |
3353 | vcpu->arch.mcg_status = mce->mcg_status; | |
3354 | banks[1] = mce->status; | |
3355 | kvm_queue_exception(vcpu, MC_VECTOR); | |
3356 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
3357 | || !(banks[1] & MCI_STATUS_UC)) { | |
3358 | if (banks[1] & MCI_STATUS_VAL) | |
3359 | mce->status |= MCI_STATUS_OVER; | |
3360 | banks[2] = mce->addr; | |
3361 | banks[3] = mce->misc; | |
3362 | banks[1] = mce->status; | |
3363 | } else | |
3364 | banks[1] |= MCI_STATUS_OVER; | |
3365 | return 0; | |
3366 | } | |
3367 | ||
3cfc3092 JK |
3368 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
3369 | struct kvm_vcpu_events *events) | |
3370 | { | |
7460fb4a | 3371 | process_nmi(vcpu); |
664f8e26 WL |
3372 | /* |
3373 | * FIXME: pass injected and pending separately. This is only | |
3374 | * needed for nested virtualization, whose state cannot be | |
3375 | * migrated yet. For now we can combine them. | |
3376 | */ | |
03b82a30 | 3377 | events->exception.injected = |
664f8e26 WL |
3378 | (vcpu->arch.exception.pending || |
3379 | vcpu->arch.exception.injected) && | |
03b82a30 | 3380 | !kvm_exception_is_soft(vcpu->arch.exception.nr); |
3cfc3092 JK |
3381 | events->exception.nr = vcpu->arch.exception.nr; |
3382 | events->exception.has_error_code = vcpu->arch.exception.has_error_code; | |
97e69aa6 | 3383 | events->exception.pad = 0; |
3cfc3092 JK |
3384 | events->exception.error_code = vcpu->arch.exception.error_code; |
3385 | ||
03b82a30 | 3386 | events->interrupt.injected = |
04140b41 | 3387 | vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; |
3cfc3092 | 3388 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
03b82a30 | 3389 | events->interrupt.soft = 0; |
37ccdcbe | 3390 | events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
3cfc3092 JK |
3391 | |
3392 | events->nmi.injected = vcpu->arch.nmi_injected; | |
7460fb4a | 3393 | events->nmi.pending = vcpu->arch.nmi_pending != 0; |
3cfc3092 | 3394 | events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
97e69aa6 | 3395 | events->nmi.pad = 0; |
3cfc3092 | 3396 | |
66450a21 | 3397 | events->sipi_vector = 0; /* never valid when reporting to user space */ |
3cfc3092 | 3398 | |
f077825a PB |
3399 | events->smi.smm = is_smm(vcpu); |
3400 | events->smi.pending = vcpu->arch.smi_pending; | |
3401 | events->smi.smm_inside_nmi = | |
3402 | !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); | |
3403 | events->smi.latched_init = kvm_lapic_latched_init(vcpu); | |
3404 | ||
dab4b911 | 3405 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
f077825a PB |
3406 | | KVM_VCPUEVENT_VALID_SHADOW |
3407 | | KVM_VCPUEVENT_VALID_SMM); | |
97e69aa6 | 3408 | memset(&events->reserved, 0, sizeof(events->reserved)); |
3cfc3092 JK |
3409 | } |
3410 | ||
6ef4e07e XG |
3411 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); |
3412 | ||
3cfc3092 JK |
3413 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
3414 | struct kvm_vcpu_events *events) | |
3415 | { | |
dab4b911 | 3416 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 | 3417 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
f077825a PB |
3418 | | KVM_VCPUEVENT_VALID_SHADOW |
3419 | | KVM_VCPUEVENT_VALID_SMM)) | |
3cfc3092 JK |
3420 | return -EINVAL; |
3421 | ||
78e546c8 | 3422 | if (events->exception.injected && |
28d06353 JM |
3423 | (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || |
3424 | is_guest_mode(vcpu))) | |
78e546c8 PB |
3425 | return -EINVAL; |
3426 | ||
28bf2888 DH |
3427 | /* INITs are latched while in SMM */ |
3428 | if (events->flags & KVM_VCPUEVENT_VALID_SMM && | |
3429 | (events->smi.smm || events->smi.pending) && | |
3430 | vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) | |
3431 | return -EINVAL; | |
3432 | ||
7460fb4a | 3433 | process_nmi(vcpu); |
664f8e26 | 3434 | vcpu->arch.exception.injected = false; |
3cfc3092 JK |
3435 | vcpu->arch.exception.pending = events->exception.injected; |
3436 | vcpu->arch.exception.nr = events->exception.nr; | |
3437 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; | |
3438 | vcpu->arch.exception.error_code = events->exception.error_code; | |
3439 | ||
04140b41 | 3440 | vcpu->arch.interrupt.injected = events->interrupt.injected; |
3cfc3092 JK |
3441 | vcpu->arch.interrupt.nr = events->interrupt.nr; |
3442 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 JK |
3443 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
3444 | kvm_x86_ops->set_interrupt_shadow(vcpu, | |
3445 | events->interrupt.shadow); | |
3cfc3092 JK |
3446 | |
3447 | vcpu->arch.nmi_injected = events->nmi.injected; | |
dab4b911 JK |
3448 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
3449 | vcpu->arch.nmi_pending = events->nmi.pending; | |
3cfc3092 JK |
3450 | kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
3451 | ||
66450a21 | 3452 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
bce87cce | 3453 | lapic_in_kernel(vcpu)) |
66450a21 | 3454 | vcpu->arch.apic->sipi_vector = events->sipi_vector; |
3cfc3092 | 3455 | |
f077825a | 3456 | if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
6ef4e07e | 3457 | u32 hflags = vcpu->arch.hflags; |
f077825a | 3458 | if (events->smi.smm) |
6ef4e07e | 3459 | hflags |= HF_SMM_MASK; |
f077825a | 3460 | else |
6ef4e07e XG |
3461 | hflags &= ~HF_SMM_MASK; |
3462 | kvm_set_hflags(vcpu, hflags); | |
3463 | ||
f077825a | 3464 | vcpu->arch.smi_pending = events->smi.pending; |
f4ef1910 WL |
3465 | |
3466 | if (events->smi.smm) { | |
3467 | if (events->smi.smm_inside_nmi) | |
3468 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
f077825a | 3469 | else |
f4ef1910 WL |
3470 | vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
3471 | if (lapic_in_kernel(vcpu)) { | |
3472 | if (events->smi.latched_init) | |
3473 | set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3474 | else | |
3475 | clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
3476 | } | |
f077825a PB |
3477 | } |
3478 | } | |
3479 | ||
3842d135 AK |
3480 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
3481 | ||
3cfc3092 JK |
3482 | return 0; |
3483 | } | |
3484 | ||
a1efbe77 JK |
3485 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
3486 | struct kvm_debugregs *dbgregs) | |
3487 | { | |
73aaf249 JK |
3488 | unsigned long val; |
3489 | ||
a1efbe77 | 3490 | memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
16f8a6f9 | 3491 | kvm_get_dr(vcpu, 6, &val); |
73aaf249 | 3492 | dbgregs->dr6 = val; |
a1efbe77 JK |
3493 | dbgregs->dr7 = vcpu->arch.dr7; |
3494 | dbgregs->flags = 0; | |
97e69aa6 | 3495 | memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
a1efbe77 JK |
3496 | } |
3497 | ||
3498 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
3499 | struct kvm_debugregs *dbgregs) | |
3500 | { | |
3501 | if (dbgregs->flags) | |
3502 | return -EINVAL; | |
3503 | ||
d14bdb55 PB |
3504 | if (dbgregs->dr6 & ~0xffffffffull) |
3505 | return -EINVAL; | |
3506 | if (dbgregs->dr7 & ~0xffffffffull) | |
3507 | return -EINVAL; | |
3508 | ||
a1efbe77 | 3509 | memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
ae561ede | 3510 | kvm_update_dr0123(vcpu); |
a1efbe77 | 3511 | vcpu->arch.dr6 = dbgregs->dr6; |
73aaf249 | 3512 | kvm_update_dr6(vcpu); |
a1efbe77 | 3513 | vcpu->arch.dr7 = dbgregs->dr7; |
9926c9fd | 3514 | kvm_update_dr7(vcpu); |
a1efbe77 | 3515 | |
a1efbe77 JK |
3516 | return 0; |
3517 | } | |
3518 | ||
df1daba7 PB |
3519 | #define XSTATE_COMPACTION_ENABLED (1ULL << 63) |
3520 | ||
3521 | static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) | |
3522 | { | |
c47ada30 | 3523 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
400e4b20 | 3524 | u64 xstate_bv = xsave->header.xfeatures; |
df1daba7 PB |
3525 | u64 valid; |
3526 | ||
3527 | /* | |
3528 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3529 | * leaves 0 and 1 in the loop below. | |
3530 | */ | |
3531 | memcpy(dest, xsave, XSAVE_HDR_OFFSET); | |
3532 | ||
3533 | /* Set XSTATE_BV */ | |
00c87e9a | 3534 | xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3535 | *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; |
3536 | ||
3537 | /* | |
3538 | * Copy each region from the possibly compacted offset to the | |
3539 | * non-compacted offset. | |
3540 | */ | |
d91cab78 | 3541 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3542 | while (valid) { |
3543 | u64 feature = valid & -valid; | |
3544 | int index = fls64(feature) - 1; | |
3545 | void *src = get_xsave_addr(xsave, feature); | |
3546 | ||
3547 | if (src) { | |
3548 | u32 size, offset, ecx, edx; | |
3549 | cpuid_count(XSTATE_CPUID, index, | |
3550 | &size, &offset, &ecx, &edx); | |
38cfd5e3 PB |
3551 | if (feature == XFEATURE_MASK_PKRU) |
3552 | memcpy(dest + offset, &vcpu->arch.pkru, | |
3553 | sizeof(vcpu->arch.pkru)); | |
3554 | else | |
3555 | memcpy(dest + offset, src, size); | |
3556 | ||
df1daba7 PB |
3557 | } |
3558 | ||
3559 | valid -= feature; | |
3560 | } | |
3561 | } | |
3562 | ||
3563 | static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) | |
3564 | { | |
c47ada30 | 3565 | struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; |
df1daba7 PB |
3566 | u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); |
3567 | u64 valid; | |
3568 | ||
3569 | /* | |
3570 | * Copy legacy XSAVE area, to avoid complications with CPUID | |
3571 | * leaves 0 and 1 in the loop below. | |
3572 | */ | |
3573 | memcpy(xsave, src, XSAVE_HDR_OFFSET); | |
3574 | ||
3575 | /* Set XSTATE_BV and possibly XCOMP_BV. */ | |
400e4b20 | 3576 | xsave->header.xfeatures = xstate_bv; |
782511b0 | 3577 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
3a54450b | 3578 | xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; |
df1daba7 PB |
3579 | |
3580 | /* | |
3581 | * Copy each region from the non-compacted offset to the | |
3582 | * possibly compacted offset. | |
3583 | */ | |
d91cab78 | 3584 | valid = xstate_bv & ~XFEATURE_MASK_FPSSE; |
df1daba7 PB |
3585 | while (valid) { |
3586 | u64 feature = valid & -valid; | |
3587 | int index = fls64(feature) - 1; | |
3588 | void *dest = get_xsave_addr(xsave, feature); | |
3589 | ||
3590 | if (dest) { | |
3591 | u32 size, offset, ecx, edx; | |
3592 | cpuid_count(XSTATE_CPUID, index, | |
3593 | &size, &offset, &ecx, &edx); | |
38cfd5e3 PB |
3594 | if (feature == XFEATURE_MASK_PKRU) |
3595 | memcpy(&vcpu->arch.pkru, src + offset, | |
3596 | sizeof(vcpu->arch.pkru)); | |
3597 | else | |
3598 | memcpy(dest, src + offset, size); | |
ee4100da | 3599 | } |
df1daba7 PB |
3600 | |
3601 | valid -= feature; | |
3602 | } | |
3603 | } | |
3604 | ||
2d5b5a66 SY |
3605 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
3606 | struct kvm_xsave *guest_xsave) | |
3607 | { | |
d366bf7e | 3608 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
df1daba7 PB |
3609 | memset(guest_xsave, 0, sizeof(struct kvm_xsave)); |
3610 | fill_xsave((u8 *) guest_xsave->region, vcpu); | |
4344ee98 | 3611 | } else { |
2d5b5a66 | 3612 | memcpy(guest_xsave->region, |
7366ed77 | 3613 | &vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3614 | sizeof(struct fxregs_state)); |
2d5b5a66 | 3615 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
d91cab78 | 3616 | XFEATURE_MASK_FPSSE; |
2d5b5a66 SY |
3617 | } |
3618 | } | |
3619 | ||
a575813b WL |
3620 | #define XSAVE_MXCSR_OFFSET 24 |
3621 | ||
2d5b5a66 SY |
3622 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
3623 | struct kvm_xsave *guest_xsave) | |
3624 | { | |
3625 | u64 xstate_bv = | |
3626 | *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | |
a575813b | 3627 | u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; |
2d5b5a66 | 3628 | |
d366bf7e | 3629 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
d7876f1b PB |
3630 | /* |
3631 | * Here we allow setting states that are not present in | |
3632 | * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility | |
3633 | * with old userspace. | |
3634 | */ | |
a575813b WL |
3635 | if (xstate_bv & ~kvm_supported_xcr0() || |
3636 | mxcsr & ~mxcsr_feature_mask) | |
d7876f1b | 3637 | return -EINVAL; |
df1daba7 | 3638 | load_xsave(vcpu, (u8 *)guest_xsave->region); |
d7876f1b | 3639 | } else { |
a575813b WL |
3640 | if (xstate_bv & ~XFEATURE_MASK_FPSSE || |
3641 | mxcsr & ~mxcsr_feature_mask) | |
2d5b5a66 | 3642 | return -EINVAL; |
7366ed77 | 3643 | memcpy(&vcpu->arch.guest_fpu.state.fxsave, |
c47ada30 | 3644 | guest_xsave->region, sizeof(struct fxregs_state)); |
2d5b5a66 SY |
3645 | } |
3646 | return 0; | |
3647 | } | |
3648 | ||
3649 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | |
3650 | struct kvm_xcrs *guest_xcrs) | |
3651 | { | |
d366bf7e | 3652 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
2d5b5a66 SY |
3653 | guest_xcrs->nr_xcrs = 0; |
3654 | return; | |
3655 | } | |
3656 | ||
3657 | guest_xcrs->nr_xcrs = 1; | |
3658 | guest_xcrs->flags = 0; | |
3659 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
3660 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
3661 | } | |
3662 | ||
3663 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
3664 | struct kvm_xcrs *guest_xcrs) | |
3665 | { | |
3666 | int i, r = 0; | |
3667 | ||
d366bf7e | 3668 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
2d5b5a66 SY |
3669 | return -EINVAL; |
3670 | ||
3671 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
3672 | return -EINVAL; | |
3673 | ||
3674 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
3675 | /* Only support XCR0 currently */ | |
c67a04cb | 3676 | if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
2d5b5a66 | 3677 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
c67a04cb | 3678 | guest_xcrs->xcrs[i].value); |
2d5b5a66 SY |
3679 | break; |
3680 | } | |
3681 | if (r) | |
3682 | r = -EINVAL; | |
3683 | return r; | |
3684 | } | |
3685 | ||
1c0b28c2 EM |
3686 | /* |
3687 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
3688 | * stopped by the hypervisor. This function will be called from the host only. | |
3689 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
3690 | * does not support pv clocks. | |
3691 | */ | |
3692 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
3693 | { | |
0b79459b | 3694 | if (!vcpu->arch.pv_time_enabled) |
1c0b28c2 | 3695 | return -EINVAL; |
51d59c6b | 3696 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
3697 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
3698 | return 0; | |
3699 | } | |
3700 | ||
5c919412 AS |
3701 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
3702 | struct kvm_enable_cap *cap) | |
3703 | { | |
57b119da VK |
3704 | int r; |
3705 | uint16_t vmcs_version; | |
3706 | void __user *user_ptr; | |
3707 | ||
5c919412 AS |
3708 | if (cap->flags) |
3709 | return -EINVAL; | |
3710 | ||
3711 | switch (cap->cap) { | |
efc479e6 RK |
3712 | case KVM_CAP_HYPERV_SYNIC2: |
3713 | if (cap->args[0]) | |
3714 | return -EINVAL; | |
5c919412 | 3715 | case KVM_CAP_HYPERV_SYNIC: |
546d87e5 WL |
3716 | if (!irqchip_in_kernel(vcpu->kvm)) |
3717 | return -EINVAL; | |
efc479e6 RK |
3718 | return kvm_hv_activate_synic(vcpu, cap->cap == |
3719 | KVM_CAP_HYPERV_SYNIC2); | |
57b119da VK |
3720 | case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: |
3721 | r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); | |
3722 | if (!r) { | |
3723 | user_ptr = (void __user *)(uintptr_t)cap->args[0]; | |
3724 | if (copy_to_user(user_ptr, &vmcs_version, | |
3725 | sizeof(vmcs_version))) | |
3726 | r = -EFAULT; | |
3727 | } | |
3728 | return r; | |
3729 | ||
5c919412 AS |
3730 | default: |
3731 | return -EINVAL; | |
3732 | } | |
3733 | } | |
3734 | ||
313a3dc7 CO |
3735 | long kvm_arch_vcpu_ioctl(struct file *filp, |
3736 | unsigned int ioctl, unsigned long arg) | |
3737 | { | |
3738 | struct kvm_vcpu *vcpu = filp->private_data; | |
3739 | void __user *argp = (void __user *)arg; | |
3740 | int r; | |
d1ac91d8 AK |
3741 | union { |
3742 | struct kvm_lapic_state *lapic; | |
3743 | struct kvm_xsave *xsave; | |
3744 | struct kvm_xcrs *xcrs; | |
3745 | void *buffer; | |
3746 | } u; | |
3747 | ||
9b062471 CD |
3748 | vcpu_load(vcpu); |
3749 | ||
d1ac91d8 | 3750 | u.buffer = NULL; |
313a3dc7 CO |
3751 | switch (ioctl) { |
3752 | case KVM_GET_LAPIC: { | |
2204ae3c | 3753 | r = -EINVAL; |
bce87cce | 3754 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3755 | goto out; |
d1ac91d8 | 3756 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 3757 | |
b772ff36 | 3758 | r = -ENOMEM; |
d1ac91d8 | 3759 | if (!u.lapic) |
b772ff36 | 3760 | goto out; |
d1ac91d8 | 3761 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3762 | if (r) |
3763 | goto out; | |
3764 | r = -EFAULT; | |
d1ac91d8 | 3765 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
3766 | goto out; |
3767 | r = 0; | |
3768 | break; | |
3769 | } | |
3770 | case KVM_SET_LAPIC: { | |
2204ae3c | 3771 | r = -EINVAL; |
bce87cce | 3772 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 3773 | goto out; |
ff5c2c03 | 3774 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
9b062471 CD |
3775 | if (IS_ERR(u.lapic)) { |
3776 | r = PTR_ERR(u.lapic); | |
3777 | goto out_nofree; | |
3778 | } | |
ff5c2c03 | 3779 | |
d1ac91d8 | 3780 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
3781 | break; |
3782 | } | |
f77bc6a4 ZX |
3783 | case KVM_INTERRUPT: { |
3784 | struct kvm_interrupt irq; | |
3785 | ||
3786 | r = -EFAULT; | |
3787 | if (copy_from_user(&irq, argp, sizeof irq)) | |
3788 | goto out; | |
3789 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
3790 | break; |
3791 | } | |
c4abb7c9 JK |
3792 | case KVM_NMI: { |
3793 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
3794 | break; |
3795 | } | |
f077825a PB |
3796 | case KVM_SMI: { |
3797 | r = kvm_vcpu_ioctl_smi(vcpu); | |
3798 | break; | |
3799 | } | |
313a3dc7 CO |
3800 | case KVM_SET_CPUID: { |
3801 | struct kvm_cpuid __user *cpuid_arg = argp; | |
3802 | struct kvm_cpuid cpuid; | |
3803 | ||
3804 | r = -EFAULT; | |
3805 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3806 | goto out; | |
3807 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
3808 | break; |
3809 | } | |
07716717 DK |
3810 | case KVM_SET_CPUID2: { |
3811 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3812 | struct kvm_cpuid2 cpuid; | |
3813 | ||
3814 | r = -EFAULT; | |
3815 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3816 | goto out; | |
3817 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 3818 | cpuid_arg->entries); |
07716717 DK |
3819 | break; |
3820 | } | |
3821 | case KVM_GET_CPUID2: { | |
3822 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
3823 | struct kvm_cpuid2 cpuid; | |
3824 | ||
3825 | r = -EFAULT; | |
3826 | if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | |
3827 | goto out; | |
3828 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 3829 | cpuid_arg->entries); |
07716717 DK |
3830 | if (r) |
3831 | goto out; | |
3832 | r = -EFAULT; | |
3833 | if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | |
3834 | goto out; | |
3835 | r = 0; | |
3836 | break; | |
3837 | } | |
801e459a TL |
3838 | case KVM_GET_MSRS: { |
3839 | int idx = srcu_read_lock(&vcpu->kvm->srcu); | |
609e36d3 | 3840 | r = msr_io(vcpu, argp, do_get_msr, 1); |
801e459a | 3841 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 3842 | break; |
801e459a TL |
3843 | } |
3844 | case KVM_SET_MSRS: { | |
3845 | int idx = srcu_read_lock(&vcpu->kvm->srcu); | |
313a3dc7 | 3846 | r = msr_io(vcpu, argp, do_set_msr, 0); |
801e459a | 3847 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 3848 | break; |
801e459a | 3849 | } |
b209749f AK |
3850 | case KVM_TPR_ACCESS_REPORTING: { |
3851 | struct kvm_tpr_access_ctl tac; | |
3852 | ||
3853 | r = -EFAULT; | |
3854 | if (copy_from_user(&tac, argp, sizeof tac)) | |
3855 | goto out; | |
3856 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
3857 | if (r) | |
3858 | goto out; | |
3859 | r = -EFAULT; | |
3860 | if (copy_to_user(argp, &tac, sizeof tac)) | |
3861 | goto out; | |
3862 | r = 0; | |
3863 | break; | |
3864 | }; | |
b93463aa AK |
3865 | case KVM_SET_VAPIC_ADDR: { |
3866 | struct kvm_vapic_addr va; | |
7301d6ab | 3867 | int idx; |
b93463aa AK |
3868 | |
3869 | r = -EINVAL; | |
35754c98 | 3870 | if (!lapic_in_kernel(vcpu)) |
b93463aa AK |
3871 | goto out; |
3872 | r = -EFAULT; | |
3873 | if (copy_from_user(&va, argp, sizeof va)) | |
3874 | goto out; | |
7301d6ab | 3875 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
fda4e2e8 | 3876 | r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
7301d6ab | 3877 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
3878 | break; |
3879 | } | |
890ca9ae YH |
3880 | case KVM_X86_SETUP_MCE: { |
3881 | u64 mcg_cap; | |
3882 | ||
3883 | r = -EFAULT; | |
3884 | if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | |
3885 | goto out; | |
3886 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
3887 | break; | |
3888 | } | |
3889 | case KVM_X86_SET_MCE: { | |
3890 | struct kvm_x86_mce mce; | |
3891 | ||
3892 | r = -EFAULT; | |
3893 | if (copy_from_user(&mce, argp, sizeof mce)) | |
3894 | goto out; | |
3895 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
3896 | break; | |
3897 | } | |
3cfc3092 JK |
3898 | case KVM_GET_VCPU_EVENTS: { |
3899 | struct kvm_vcpu_events events; | |
3900 | ||
3901 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
3902 | ||
3903 | r = -EFAULT; | |
3904 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
3905 | break; | |
3906 | r = 0; | |
3907 | break; | |
3908 | } | |
3909 | case KVM_SET_VCPU_EVENTS: { | |
3910 | struct kvm_vcpu_events events; | |
3911 | ||
3912 | r = -EFAULT; | |
3913 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
3914 | break; | |
3915 | ||
3916 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | |
3917 | break; | |
3918 | } | |
a1efbe77 JK |
3919 | case KVM_GET_DEBUGREGS: { |
3920 | struct kvm_debugregs dbgregs; | |
3921 | ||
3922 | kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | |
3923 | ||
3924 | r = -EFAULT; | |
3925 | if (copy_to_user(argp, &dbgregs, | |
3926 | sizeof(struct kvm_debugregs))) | |
3927 | break; | |
3928 | r = 0; | |
3929 | break; | |
3930 | } | |
3931 | case KVM_SET_DEBUGREGS: { | |
3932 | struct kvm_debugregs dbgregs; | |
3933 | ||
3934 | r = -EFAULT; | |
3935 | if (copy_from_user(&dbgregs, argp, | |
3936 | sizeof(struct kvm_debugregs))) | |
3937 | break; | |
3938 | ||
3939 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
3940 | break; | |
3941 | } | |
2d5b5a66 | 3942 | case KVM_GET_XSAVE: { |
d1ac91d8 | 3943 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 3944 | r = -ENOMEM; |
d1ac91d8 | 3945 | if (!u.xsave) |
2d5b5a66 SY |
3946 | break; |
3947 | ||
d1ac91d8 | 3948 | kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3949 | |
3950 | r = -EFAULT; | |
d1ac91d8 | 3951 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
3952 | break; |
3953 | r = 0; | |
3954 | break; | |
3955 | } | |
3956 | case KVM_SET_XSAVE: { | |
ff5c2c03 | 3957 | u.xsave = memdup_user(argp, sizeof(*u.xsave)); |
9b062471 CD |
3958 | if (IS_ERR(u.xsave)) { |
3959 | r = PTR_ERR(u.xsave); | |
3960 | goto out_nofree; | |
3961 | } | |
2d5b5a66 | 3962 | |
d1ac91d8 | 3963 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
3964 | break; |
3965 | } | |
3966 | case KVM_GET_XCRS: { | |
d1ac91d8 | 3967 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 3968 | r = -ENOMEM; |
d1ac91d8 | 3969 | if (!u.xcrs) |
2d5b5a66 SY |
3970 | break; |
3971 | ||
d1ac91d8 | 3972 | kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3973 | |
3974 | r = -EFAULT; | |
d1ac91d8 | 3975 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
3976 | sizeof(struct kvm_xcrs))) |
3977 | break; | |
3978 | r = 0; | |
3979 | break; | |
3980 | } | |
3981 | case KVM_SET_XCRS: { | |
ff5c2c03 | 3982 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
9b062471 CD |
3983 | if (IS_ERR(u.xcrs)) { |
3984 | r = PTR_ERR(u.xcrs); | |
3985 | goto out_nofree; | |
3986 | } | |
2d5b5a66 | 3987 | |
d1ac91d8 | 3988 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
3989 | break; |
3990 | } | |
92a1f12d JR |
3991 | case KVM_SET_TSC_KHZ: { |
3992 | u32 user_tsc_khz; | |
3993 | ||
3994 | r = -EINVAL; | |
92a1f12d JR |
3995 | user_tsc_khz = (u32)arg; |
3996 | ||
3997 | if (user_tsc_khz >= kvm_max_guest_tsc_khz) | |
3998 | goto out; | |
3999 | ||
cc578287 ZA |
4000 | if (user_tsc_khz == 0) |
4001 | user_tsc_khz = tsc_khz; | |
4002 | ||
381d585c HZ |
4003 | if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
4004 | r = 0; | |
92a1f12d | 4005 | |
92a1f12d JR |
4006 | goto out; |
4007 | } | |
4008 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 4009 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
4010 | goto out; |
4011 | } | |
1c0b28c2 EM |
4012 | case KVM_KVMCLOCK_CTRL: { |
4013 | r = kvm_set_guest_paused(vcpu); | |
4014 | goto out; | |
4015 | } | |
5c919412 AS |
4016 | case KVM_ENABLE_CAP: { |
4017 | struct kvm_enable_cap cap; | |
4018 | ||
4019 | r = -EFAULT; | |
4020 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
4021 | goto out; | |
4022 | r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | |
4023 | break; | |
4024 | } | |
8fcc4b59 JM |
4025 | case KVM_GET_NESTED_STATE: { |
4026 | struct kvm_nested_state __user *user_kvm_nested_state = argp; | |
4027 | u32 user_data_size; | |
4028 | ||
4029 | r = -EINVAL; | |
4030 | if (!kvm_x86_ops->get_nested_state) | |
4031 | break; | |
4032 | ||
4033 | BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); | |
26b471c7 | 4034 | r = -EFAULT; |
8fcc4b59 | 4035 | if (get_user(user_data_size, &user_kvm_nested_state->size)) |
26b471c7 | 4036 | break; |
8fcc4b59 JM |
4037 | |
4038 | r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state, | |
4039 | user_data_size); | |
4040 | if (r < 0) | |
26b471c7 | 4041 | break; |
8fcc4b59 JM |
4042 | |
4043 | if (r > user_data_size) { | |
4044 | if (put_user(r, &user_kvm_nested_state->size)) | |
26b471c7 LA |
4045 | r = -EFAULT; |
4046 | else | |
4047 | r = -E2BIG; | |
4048 | break; | |
8fcc4b59 | 4049 | } |
26b471c7 | 4050 | |
8fcc4b59 JM |
4051 | r = 0; |
4052 | break; | |
4053 | } | |
4054 | case KVM_SET_NESTED_STATE: { | |
4055 | struct kvm_nested_state __user *user_kvm_nested_state = argp; | |
4056 | struct kvm_nested_state kvm_state; | |
4057 | ||
4058 | r = -EINVAL; | |
4059 | if (!kvm_x86_ops->set_nested_state) | |
4060 | break; | |
4061 | ||
26b471c7 | 4062 | r = -EFAULT; |
8fcc4b59 | 4063 | if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) |
26b471c7 | 4064 | break; |
8fcc4b59 | 4065 | |
26b471c7 | 4066 | r = -EINVAL; |
8fcc4b59 | 4067 | if (kvm_state.size < sizeof(kvm_state)) |
26b471c7 | 4068 | break; |
8fcc4b59 JM |
4069 | |
4070 | if (kvm_state.flags & | |
8cab6507 VK |
4071 | ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE |
4072 | | KVM_STATE_NESTED_EVMCS)) | |
26b471c7 | 4073 | break; |
8fcc4b59 JM |
4074 | |
4075 | /* nested_run_pending implies guest_mode. */ | |
8cab6507 VK |
4076 | if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) |
4077 | && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) | |
26b471c7 | 4078 | break; |
8fcc4b59 JM |
4079 | |
4080 | r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); | |
4081 | break; | |
4082 | } | |
313a3dc7 CO |
4083 | default: |
4084 | r = -EINVAL; | |
4085 | } | |
4086 | out: | |
d1ac91d8 | 4087 | kfree(u.buffer); |
9b062471 CD |
4088 | out_nofree: |
4089 | vcpu_put(vcpu); | |
313a3dc7 CO |
4090 | return r; |
4091 | } | |
4092 | ||
1499fa80 | 4093 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
5b1c1493 CO |
4094 | { |
4095 | return VM_FAULT_SIGBUS; | |
4096 | } | |
4097 | ||
1fe779f8 CO |
4098 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
4099 | { | |
4100 | int ret; | |
4101 | ||
4102 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 4103 | return -EINVAL; |
1fe779f8 CO |
4104 | ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
4105 | return ret; | |
4106 | } | |
4107 | ||
b927a3ce SY |
4108 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
4109 | u64 ident_addr) | |
4110 | { | |
2ac52ab8 | 4111 | return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr); |
b927a3ce SY |
4112 | } |
4113 | ||
1fe779f8 CO |
4114 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
4115 | u32 kvm_nr_mmu_pages) | |
4116 | { | |
4117 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
4118 | return -EINVAL; | |
4119 | ||
79fac95e | 4120 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
4121 | |
4122 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 4123 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 4124 | |
79fac95e | 4125 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
4126 | return 0; |
4127 | } | |
4128 | ||
4129 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | |
4130 | { | |
39de71ec | 4131 | return kvm->arch.n_max_mmu_pages; |
1fe779f8 CO |
4132 | } |
4133 | ||
1fe779f8 CO |
4134 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
4135 | { | |
90bca052 | 4136 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
4137 | int r; |
4138 | ||
4139 | r = 0; | |
4140 | switch (chip->chip_id) { | |
4141 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 | 4142 | memcpy(&chip->chip.pic, &pic->pics[0], |
1fe779f8 CO |
4143 | sizeof(struct kvm_pic_state)); |
4144 | break; | |
4145 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 | 4146 | memcpy(&chip->chip.pic, &pic->pics[1], |
1fe779f8 CO |
4147 | sizeof(struct kvm_pic_state)); |
4148 | break; | |
4149 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 4150 | kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
4151 | break; |
4152 | default: | |
4153 | r = -EINVAL; | |
4154 | break; | |
4155 | } | |
4156 | return r; | |
4157 | } | |
4158 | ||
4159 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
4160 | { | |
90bca052 | 4161 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
4162 | int r; |
4163 | ||
4164 | r = 0; | |
4165 | switch (chip->chip_id) { | |
4166 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 DH |
4167 | spin_lock(&pic->lock); |
4168 | memcpy(&pic->pics[0], &chip->chip.pic, | |
1fe779f8 | 4169 | sizeof(struct kvm_pic_state)); |
90bca052 | 4170 | spin_unlock(&pic->lock); |
1fe779f8 CO |
4171 | break; |
4172 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 DH |
4173 | spin_lock(&pic->lock); |
4174 | memcpy(&pic->pics[1], &chip->chip.pic, | |
1fe779f8 | 4175 | sizeof(struct kvm_pic_state)); |
90bca052 | 4176 | spin_unlock(&pic->lock); |
1fe779f8 CO |
4177 | break; |
4178 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 4179 | kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
4180 | break; |
4181 | default: | |
4182 | r = -EINVAL; | |
4183 | break; | |
4184 | } | |
90bca052 | 4185 | kvm_pic_update_irq(pic); |
1fe779f8 CO |
4186 | return r; |
4187 | } | |
4188 | ||
e0f63cb9 SY |
4189 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
4190 | { | |
34f3941c RK |
4191 | struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
4192 | ||
4193 | BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); | |
4194 | ||
4195 | mutex_lock(&kps->lock); | |
4196 | memcpy(ps, &kps->channels, sizeof(*ps)); | |
4197 | mutex_unlock(&kps->lock); | |
2da29bcc | 4198 | return 0; |
e0f63cb9 SY |
4199 | } |
4200 | ||
4201 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
4202 | { | |
0185604c | 4203 | int i; |
09edea72 RK |
4204 | struct kvm_pit *pit = kvm->arch.vpit; |
4205 | ||
4206 | mutex_lock(&pit->pit_state.lock); | |
34f3941c | 4207 | memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
0185604c | 4208 | for (i = 0; i < 3; i++) |
09edea72 RK |
4209 | kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
4210 | mutex_unlock(&pit->pit_state.lock); | |
2da29bcc | 4211 | return 0; |
e9f42757 BK |
4212 | } |
4213 | ||
4214 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
4215 | { | |
e9f42757 BK |
4216 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
4217 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
4218 | sizeof(ps->channels)); | |
4219 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
4220 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 4221 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
2da29bcc | 4222 | return 0; |
e9f42757 BK |
4223 | } |
4224 | ||
4225 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
4226 | { | |
2da29bcc | 4227 | int start = 0; |
0185604c | 4228 | int i; |
e9f42757 | 4229 | u32 prev_legacy, cur_legacy; |
09edea72 RK |
4230 | struct kvm_pit *pit = kvm->arch.vpit; |
4231 | ||
4232 | mutex_lock(&pit->pit_state.lock); | |
4233 | prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
e9f42757 BK |
4234 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
4235 | if (!prev_legacy && cur_legacy) | |
4236 | start = 1; | |
09edea72 RK |
4237 | memcpy(&pit->pit_state.channels, &ps->channels, |
4238 | sizeof(pit->pit_state.channels)); | |
4239 | pit->pit_state.flags = ps->flags; | |
0185604c | 4240 | for (i = 0; i < 3; i++) |
09edea72 | 4241 | kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
e5e57e7a | 4242 | start && i == 0); |
09edea72 | 4243 | mutex_unlock(&pit->pit_state.lock); |
2da29bcc | 4244 | return 0; |
e0f63cb9 SY |
4245 | } |
4246 | ||
52d939a0 MT |
4247 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
4248 | struct kvm_reinject_control *control) | |
4249 | { | |
71474e2f RK |
4250 | struct kvm_pit *pit = kvm->arch.vpit; |
4251 | ||
4252 | if (!pit) | |
52d939a0 | 4253 | return -ENXIO; |
b39c90b6 | 4254 | |
71474e2f RK |
4255 | /* pit->pit_state.lock was overloaded to prevent userspace from getting |
4256 | * an inconsistent state after running multiple KVM_REINJECT_CONTROL | |
4257 | * ioctls in parallel. Use a separate lock if that ioctl isn't rare. | |
4258 | */ | |
4259 | mutex_lock(&pit->pit_state.lock); | |
4260 | kvm_pit_set_reinject(pit, control->pit_reinject); | |
4261 | mutex_unlock(&pit->pit_state.lock); | |
b39c90b6 | 4262 | |
52d939a0 MT |
4263 | return 0; |
4264 | } | |
4265 | ||
95d4c16c | 4266 | /** |
60c34612 TY |
4267 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
4268 | * @kvm: kvm instance | |
4269 | * @log: slot id and address to which we copy the log | |
95d4c16c | 4270 | * |
e108ff2f PB |
4271 | * Steps 1-4 below provide general overview of dirty page logging. See |
4272 | * kvm_get_dirty_log_protect() function description for additional details. | |
4273 | * | |
4274 | * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | |
4275 | * always flush the TLB (step 4) even if previous step failed and the dirty | |
4276 | * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | |
4277 | * does not preclude user space subsequent dirty log read. Flushing TLB ensures | |
4278 | * writes will be marked dirty for next log read. | |
95d4c16c | 4279 | * |
60c34612 TY |
4280 | * 1. Take a snapshot of the bit and clear it if needed. |
4281 | * 2. Write protect the corresponding page. | |
e108ff2f PB |
4282 | * 3. Copy the snapshot to the userspace. |
4283 | * 4. Flush TLB's if needed. | |
5bb064dc | 4284 | */ |
60c34612 | 4285 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
5bb064dc | 4286 | { |
60c34612 | 4287 | bool is_dirty = false; |
e108ff2f | 4288 | int r; |
5bb064dc | 4289 | |
79fac95e | 4290 | mutex_lock(&kvm->slots_lock); |
5bb064dc | 4291 | |
88178fd4 KH |
4292 | /* |
4293 | * Flush potentially hardware-cached dirty pages to dirty_bitmap. | |
4294 | */ | |
4295 | if (kvm_x86_ops->flush_log_dirty) | |
4296 | kvm_x86_ops->flush_log_dirty(kvm); | |
4297 | ||
e108ff2f | 4298 | r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
198c74f4 XG |
4299 | |
4300 | /* | |
4301 | * All the TLBs can be flushed out of mmu lock, see the comments in | |
4302 | * kvm_mmu_slot_remove_write_access(). | |
4303 | */ | |
e108ff2f | 4304 | lockdep_assert_held(&kvm->slots_lock); |
198c74f4 XG |
4305 | if (is_dirty) |
4306 | kvm_flush_remote_tlbs(kvm); | |
4307 | ||
79fac95e | 4308 | mutex_unlock(&kvm->slots_lock); |
5bb064dc ZX |
4309 | return r; |
4310 | } | |
4311 | ||
aa2fbe6d YZ |
4312 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
4313 | bool line_status) | |
23d43cf9 CD |
4314 | { |
4315 | if (!irqchip_in_kernel(kvm)) | |
4316 | return -ENXIO; | |
4317 | ||
4318 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
aa2fbe6d YZ |
4319 | irq_event->irq, irq_event->level, |
4320 | line_status); | |
23d43cf9 CD |
4321 | return 0; |
4322 | } | |
4323 | ||
90de4a18 NA |
4324 | static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
4325 | struct kvm_enable_cap *cap) | |
4326 | { | |
4327 | int r; | |
4328 | ||
4329 | if (cap->flags) | |
4330 | return -EINVAL; | |
4331 | ||
4332 | switch (cap->cap) { | |
4333 | case KVM_CAP_DISABLE_QUIRKS: | |
4334 | kvm->arch.disabled_quirks = cap->args[0]; | |
4335 | r = 0; | |
4336 | break; | |
49df6397 SR |
4337 | case KVM_CAP_SPLIT_IRQCHIP: { |
4338 | mutex_lock(&kvm->lock); | |
b053b2ae SR |
4339 | r = -EINVAL; |
4340 | if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) | |
4341 | goto split_irqchip_unlock; | |
49df6397 SR |
4342 | r = -EEXIST; |
4343 | if (irqchip_in_kernel(kvm)) | |
4344 | goto split_irqchip_unlock; | |
557abc40 | 4345 | if (kvm->created_vcpus) |
49df6397 SR |
4346 | goto split_irqchip_unlock; |
4347 | r = kvm_setup_empty_irq_routing(kvm); | |
5c0aea0e | 4348 | if (r) |
49df6397 SR |
4349 | goto split_irqchip_unlock; |
4350 | /* Pairs with irqchip_in_kernel. */ | |
4351 | smp_wmb(); | |
49776faf | 4352 | kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
b053b2ae | 4353 | kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
49df6397 SR |
4354 | r = 0; |
4355 | split_irqchip_unlock: | |
4356 | mutex_unlock(&kvm->lock); | |
4357 | break; | |
4358 | } | |
37131313 RK |
4359 | case KVM_CAP_X2APIC_API: |
4360 | r = -EINVAL; | |
4361 | if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) | |
4362 | break; | |
4363 | ||
4364 | if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) | |
4365 | kvm->arch.x2apic_format = true; | |
c519265f RK |
4366 | if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
4367 | kvm->arch.x2apic_broadcast_quirk_disabled = true; | |
37131313 RK |
4368 | |
4369 | r = 0; | |
4370 | break; | |
4d5422ce WL |
4371 | case KVM_CAP_X86_DISABLE_EXITS: |
4372 | r = -EINVAL; | |
4373 | if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) | |
4374 | break; | |
4375 | ||
4376 | if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && | |
4377 | kvm_can_mwait_in_guest()) | |
4378 | kvm->arch.mwait_in_guest = true; | |
766d3571 | 4379 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) |
caa057a2 | 4380 | kvm->arch.hlt_in_guest = true; |
b31c114b WL |
4381 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) |
4382 | kvm->arch.pause_in_guest = true; | |
4d5422ce WL |
4383 | r = 0; |
4384 | break; | |
6fbbde9a DS |
4385 | case KVM_CAP_MSR_PLATFORM_INFO: |
4386 | kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; | |
4387 | r = 0; | |
4388 | break; | |
90de4a18 NA |
4389 | default: |
4390 | r = -EINVAL; | |
4391 | break; | |
4392 | } | |
4393 | return r; | |
4394 | } | |
4395 | ||
1fe779f8 CO |
4396 | long kvm_arch_vm_ioctl(struct file *filp, |
4397 | unsigned int ioctl, unsigned long arg) | |
4398 | { | |
4399 | struct kvm *kvm = filp->private_data; | |
4400 | void __user *argp = (void __user *)arg; | |
367e1319 | 4401 | int r = -ENOTTY; |
f0d66275 DH |
4402 | /* |
4403 | * This union makes it completely explicit to gcc-3.x | |
4404 | * that these two variables' stack usage should be | |
4405 | * combined, not added together. | |
4406 | */ | |
4407 | union { | |
4408 | struct kvm_pit_state ps; | |
e9f42757 | 4409 | struct kvm_pit_state2 ps2; |
c5ff41ce | 4410 | struct kvm_pit_config pit_config; |
f0d66275 | 4411 | } u; |
1fe779f8 CO |
4412 | |
4413 | switch (ioctl) { | |
4414 | case KVM_SET_TSS_ADDR: | |
4415 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 4416 | break; |
b927a3ce SY |
4417 | case KVM_SET_IDENTITY_MAP_ADDR: { |
4418 | u64 ident_addr; | |
4419 | ||
1af1ac91 DH |
4420 | mutex_lock(&kvm->lock); |
4421 | r = -EINVAL; | |
4422 | if (kvm->created_vcpus) | |
4423 | goto set_identity_unlock; | |
b927a3ce SY |
4424 | r = -EFAULT; |
4425 | if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | |
1af1ac91 | 4426 | goto set_identity_unlock; |
b927a3ce | 4427 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
1af1ac91 DH |
4428 | set_identity_unlock: |
4429 | mutex_unlock(&kvm->lock); | |
b927a3ce SY |
4430 | break; |
4431 | } | |
1fe779f8 CO |
4432 | case KVM_SET_NR_MMU_PAGES: |
4433 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 CO |
4434 | break; |
4435 | case KVM_GET_NR_MMU_PAGES: | |
4436 | r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | |
4437 | break; | |
3ddea128 | 4438 | case KVM_CREATE_IRQCHIP: { |
3ddea128 | 4439 | mutex_lock(&kvm->lock); |
09941366 | 4440 | |
3ddea128 | 4441 | r = -EEXIST; |
35e6eaa3 | 4442 | if (irqchip_in_kernel(kvm)) |
3ddea128 | 4443 | goto create_irqchip_unlock; |
09941366 | 4444 | |
3e515705 | 4445 | r = -EINVAL; |
557abc40 | 4446 | if (kvm->created_vcpus) |
3e515705 | 4447 | goto create_irqchip_unlock; |
09941366 RK |
4448 | |
4449 | r = kvm_pic_init(kvm); | |
4450 | if (r) | |
3ddea128 | 4451 | goto create_irqchip_unlock; |
09941366 RK |
4452 | |
4453 | r = kvm_ioapic_init(kvm); | |
4454 | if (r) { | |
09941366 | 4455 | kvm_pic_destroy(kvm); |
3ddea128 | 4456 | goto create_irqchip_unlock; |
09941366 RK |
4457 | } |
4458 | ||
399ec807 AK |
4459 | r = kvm_setup_default_irq_routing(kvm); |
4460 | if (r) { | |
72bb2fcd | 4461 | kvm_ioapic_destroy(kvm); |
09941366 | 4462 | kvm_pic_destroy(kvm); |
71ba994c | 4463 | goto create_irqchip_unlock; |
399ec807 | 4464 | } |
49776faf | 4465 | /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
71ba994c | 4466 | smp_wmb(); |
49776faf | 4467 | kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
3ddea128 MT |
4468 | create_irqchip_unlock: |
4469 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 4470 | break; |
3ddea128 | 4471 | } |
7837699f | 4472 | case KVM_CREATE_PIT: |
c5ff41ce JK |
4473 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
4474 | goto create_pit; | |
4475 | case KVM_CREATE_PIT2: | |
4476 | r = -EFAULT; | |
4477 | if (copy_from_user(&u.pit_config, argp, | |
4478 | sizeof(struct kvm_pit_config))) | |
4479 | goto out; | |
4480 | create_pit: | |
250715a6 | 4481 | mutex_lock(&kvm->lock); |
269e05e4 AK |
4482 | r = -EEXIST; |
4483 | if (kvm->arch.vpit) | |
4484 | goto create_pit_unlock; | |
7837699f | 4485 | r = -ENOMEM; |
c5ff41ce | 4486 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
4487 | if (kvm->arch.vpit) |
4488 | r = 0; | |
269e05e4 | 4489 | create_pit_unlock: |
250715a6 | 4490 | mutex_unlock(&kvm->lock); |
7837699f | 4491 | break; |
1fe779f8 CO |
4492 | case KVM_GET_IRQCHIP: { |
4493 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4494 | struct kvm_irqchip *chip; |
1fe779f8 | 4495 | |
ff5c2c03 SL |
4496 | chip = memdup_user(argp, sizeof(*chip)); |
4497 | if (IS_ERR(chip)) { | |
4498 | r = PTR_ERR(chip); | |
1fe779f8 | 4499 | goto out; |
ff5c2c03 SL |
4500 | } |
4501 | ||
1fe779f8 | 4502 | r = -ENXIO; |
826da321 | 4503 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4504 | goto get_irqchip_out; |
4505 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 4506 | if (r) |
f0d66275 | 4507 | goto get_irqchip_out; |
1fe779f8 | 4508 | r = -EFAULT; |
f0d66275 DH |
4509 | if (copy_to_user(argp, chip, sizeof *chip)) |
4510 | goto get_irqchip_out; | |
1fe779f8 | 4511 | r = 0; |
f0d66275 DH |
4512 | get_irqchip_out: |
4513 | kfree(chip); | |
1fe779f8 CO |
4514 | break; |
4515 | } | |
4516 | case KVM_SET_IRQCHIP: { | |
4517 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 4518 | struct kvm_irqchip *chip; |
1fe779f8 | 4519 | |
ff5c2c03 SL |
4520 | chip = memdup_user(argp, sizeof(*chip)); |
4521 | if (IS_ERR(chip)) { | |
4522 | r = PTR_ERR(chip); | |
1fe779f8 | 4523 | goto out; |
ff5c2c03 SL |
4524 | } |
4525 | ||
1fe779f8 | 4526 | r = -ENXIO; |
826da321 | 4527 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
4528 | goto set_irqchip_out; |
4529 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
1fe779f8 | 4530 | if (r) |
f0d66275 | 4531 | goto set_irqchip_out; |
1fe779f8 | 4532 | r = 0; |
f0d66275 DH |
4533 | set_irqchip_out: |
4534 | kfree(chip); | |
1fe779f8 CO |
4535 | break; |
4536 | } | |
e0f63cb9 | 4537 | case KVM_GET_PIT: { |
e0f63cb9 | 4538 | r = -EFAULT; |
f0d66275 | 4539 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4540 | goto out; |
4541 | r = -ENXIO; | |
4542 | if (!kvm->arch.vpit) | |
4543 | goto out; | |
f0d66275 | 4544 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
4545 | if (r) |
4546 | goto out; | |
4547 | r = -EFAULT; | |
f0d66275 | 4548 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
4549 | goto out; |
4550 | r = 0; | |
4551 | break; | |
4552 | } | |
4553 | case KVM_SET_PIT: { | |
e0f63cb9 | 4554 | r = -EFAULT; |
f0d66275 | 4555 | if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
e0f63cb9 SY |
4556 | goto out; |
4557 | r = -ENXIO; | |
4558 | if (!kvm->arch.vpit) | |
4559 | goto out; | |
f0d66275 | 4560 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
e0f63cb9 SY |
4561 | break; |
4562 | } | |
e9f42757 BK |
4563 | case KVM_GET_PIT2: { |
4564 | r = -ENXIO; | |
4565 | if (!kvm->arch.vpit) | |
4566 | goto out; | |
4567 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
4568 | if (r) | |
4569 | goto out; | |
4570 | r = -EFAULT; | |
4571 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
4572 | goto out; | |
4573 | r = 0; | |
4574 | break; | |
4575 | } | |
4576 | case KVM_SET_PIT2: { | |
4577 | r = -EFAULT; | |
4578 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
4579 | goto out; | |
4580 | r = -ENXIO; | |
4581 | if (!kvm->arch.vpit) | |
4582 | goto out; | |
4583 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | |
e9f42757 BK |
4584 | break; |
4585 | } | |
52d939a0 MT |
4586 | case KVM_REINJECT_CONTROL: { |
4587 | struct kvm_reinject_control control; | |
4588 | r = -EFAULT; | |
4589 | if (copy_from_user(&control, argp, sizeof(control))) | |
4590 | goto out; | |
4591 | r = kvm_vm_ioctl_reinject(kvm, &control); | |
52d939a0 MT |
4592 | break; |
4593 | } | |
d71ba788 PB |
4594 | case KVM_SET_BOOT_CPU_ID: |
4595 | r = 0; | |
4596 | mutex_lock(&kvm->lock); | |
557abc40 | 4597 | if (kvm->created_vcpus) |
d71ba788 PB |
4598 | r = -EBUSY; |
4599 | else | |
4600 | kvm->arch.bsp_vcpu_id = arg; | |
4601 | mutex_unlock(&kvm->lock); | |
4602 | break; | |
ffde22ac | 4603 | case KVM_XEN_HVM_CONFIG: { |
51776043 | 4604 | struct kvm_xen_hvm_config xhc; |
ffde22ac | 4605 | r = -EFAULT; |
51776043 | 4606 | if (copy_from_user(&xhc, argp, sizeof(xhc))) |
ffde22ac ES |
4607 | goto out; |
4608 | r = -EINVAL; | |
51776043 | 4609 | if (xhc.flags) |
ffde22ac | 4610 | goto out; |
51776043 | 4611 | memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); |
ffde22ac ES |
4612 | r = 0; |
4613 | break; | |
4614 | } | |
afbcf7ab | 4615 | case KVM_SET_CLOCK: { |
afbcf7ab GC |
4616 | struct kvm_clock_data user_ns; |
4617 | u64 now_ns; | |
afbcf7ab GC |
4618 | |
4619 | r = -EFAULT; | |
4620 | if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | |
4621 | goto out; | |
4622 | ||
4623 | r = -EINVAL; | |
4624 | if (user_ns.flags) | |
4625 | goto out; | |
4626 | ||
4627 | r = 0; | |
0bc48bea RK |
4628 | /* |
4629 | * TODO: userspace has to take care of races with VCPU_RUN, so | |
4630 | * kvm_gen_update_masterclock() can be cut down to locked | |
4631 | * pvclock_update_vm_gtod_copy(). | |
4632 | */ | |
4633 | kvm_gen_update_masterclock(kvm); | |
e891a32e | 4634 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4635 | kvm->arch.kvmclock_offset += user_ns.clock - now_ns; |
0bc48bea | 4636 | kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); |
afbcf7ab GC |
4637 | break; |
4638 | } | |
4639 | case KVM_GET_CLOCK: { | |
afbcf7ab GC |
4640 | struct kvm_clock_data user_ns; |
4641 | u64 now_ns; | |
4642 | ||
e891a32e | 4643 | now_ns = get_kvmclock_ns(kvm); |
108b249c | 4644 | user_ns.clock = now_ns; |
e3fd9a93 | 4645 | user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; |
97e69aa6 | 4646 | memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
afbcf7ab GC |
4647 | |
4648 | r = -EFAULT; | |
4649 | if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | |
4650 | goto out; | |
4651 | r = 0; | |
4652 | break; | |
4653 | } | |
90de4a18 NA |
4654 | case KVM_ENABLE_CAP: { |
4655 | struct kvm_enable_cap cap; | |
afbcf7ab | 4656 | |
90de4a18 NA |
4657 | r = -EFAULT; |
4658 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
4659 | goto out; | |
4660 | r = kvm_vm_ioctl_enable_cap(kvm, &cap); | |
4661 | break; | |
4662 | } | |
5acc5c06 BS |
4663 | case KVM_MEMORY_ENCRYPT_OP: { |
4664 | r = -ENOTTY; | |
4665 | if (kvm_x86_ops->mem_enc_op) | |
4666 | r = kvm_x86_ops->mem_enc_op(kvm, argp); | |
4667 | break; | |
4668 | } | |
69eaedee BS |
4669 | case KVM_MEMORY_ENCRYPT_REG_REGION: { |
4670 | struct kvm_enc_region region; | |
4671 | ||
4672 | r = -EFAULT; | |
4673 | if (copy_from_user(®ion, argp, sizeof(region))) | |
4674 | goto out; | |
4675 | ||
4676 | r = -ENOTTY; | |
4677 | if (kvm_x86_ops->mem_enc_reg_region) | |
4678 | r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion); | |
4679 | break; | |
4680 | } | |
4681 | case KVM_MEMORY_ENCRYPT_UNREG_REGION: { | |
4682 | struct kvm_enc_region region; | |
4683 | ||
4684 | r = -EFAULT; | |
4685 | if (copy_from_user(®ion, argp, sizeof(region))) | |
4686 | goto out; | |
4687 | ||
4688 | r = -ENOTTY; | |
4689 | if (kvm_x86_ops->mem_enc_unreg_region) | |
4690 | r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion); | |
4691 | break; | |
4692 | } | |
faeb7833 RK |
4693 | case KVM_HYPERV_EVENTFD: { |
4694 | struct kvm_hyperv_eventfd hvevfd; | |
4695 | ||
4696 | r = -EFAULT; | |
4697 | if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) | |
4698 | goto out; | |
4699 | r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); | |
4700 | break; | |
4701 | } | |
1fe779f8 | 4702 | default: |
ad6260da | 4703 | r = -ENOTTY; |
1fe779f8 CO |
4704 | } |
4705 | out: | |
4706 | return r; | |
4707 | } | |
4708 | ||
a16b043c | 4709 | static void kvm_init_msr_list(void) |
043405e1 CO |
4710 | { |
4711 | u32 dummy[2]; | |
4712 | unsigned i, j; | |
4713 | ||
62ef68bb | 4714 | for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { |
043405e1 CO |
4715 | if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
4716 | continue; | |
93c4adc7 PB |
4717 | |
4718 | /* | |
4719 | * Even MSRs that are valid in the host may not be exposed | |
9dbe6cf9 | 4720 | * to the guests in some cases. |
93c4adc7 PB |
4721 | */ |
4722 | switch (msrs_to_save[i]) { | |
4723 | case MSR_IA32_BNDCFGS: | |
503234b3 | 4724 | if (!kvm_mpx_supported()) |
93c4adc7 PB |
4725 | continue; |
4726 | break; | |
9dbe6cf9 PB |
4727 | case MSR_TSC_AUX: |
4728 | if (!kvm_x86_ops->rdtscp_supported()) | |
4729 | continue; | |
4730 | break; | |
93c4adc7 PB |
4731 | default: |
4732 | break; | |
4733 | } | |
4734 | ||
043405e1 CO |
4735 | if (j < i) |
4736 | msrs_to_save[j] = msrs_to_save[i]; | |
4737 | j++; | |
4738 | } | |
4739 | num_msrs_to_save = j; | |
62ef68bb PB |
4740 | |
4741 | for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { | |
bc226f07 TL |
4742 | if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i])) |
4743 | continue; | |
62ef68bb PB |
4744 | |
4745 | if (j < i) | |
4746 | emulated_msrs[j] = emulated_msrs[i]; | |
4747 | j++; | |
4748 | } | |
4749 | num_emulated_msrs = j; | |
801e459a TL |
4750 | |
4751 | for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) { | |
4752 | struct kvm_msr_entry msr; | |
4753 | ||
4754 | msr.index = msr_based_features[i]; | |
66421c1e | 4755 | if (kvm_get_msr_feature(&msr)) |
801e459a TL |
4756 | continue; |
4757 | ||
4758 | if (j < i) | |
4759 | msr_based_features[j] = msr_based_features[i]; | |
4760 | j++; | |
4761 | } | |
4762 | num_msr_based_features = j; | |
043405e1 CO |
4763 | } |
4764 | ||
bda9020e MT |
4765 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
4766 | const void *v) | |
bbd9b64e | 4767 | { |
70252a10 AK |
4768 | int handled = 0; |
4769 | int n; | |
4770 | ||
4771 | do { | |
4772 | n = min(len, 8); | |
bce87cce | 4773 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4774 | !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
4775 | && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
4776 | break; |
4777 | handled += n; | |
4778 | addr += n; | |
4779 | len -= n; | |
4780 | v += n; | |
4781 | } while (len); | |
bbd9b64e | 4782 | |
70252a10 | 4783 | return handled; |
bbd9b64e CO |
4784 | } |
4785 | ||
bda9020e | 4786 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 4787 | { |
70252a10 AK |
4788 | int handled = 0; |
4789 | int n; | |
4790 | ||
4791 | do { | |
4792 | n = min(len, 8); | |
bce87cce | 4793 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
4794 | !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
4795 | addr, n, v)) | |
4796 | && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 | 4797 | break; |
e39d200f | 4798 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); |
70252a10 AK |
4799 | handled += n; |
4800 | addr += n; | |
4801 | len -= n; | |
4802 | v += n; | |
4803 | } while (len); | |
bbd9b64e | 4804 | |
70252a10 | 4805 | return handled; |
bbd9b64e CO |
4806 | } |
4807 | ||
2dafc6c2 GN |
4808 | static void kvm_set_segment(struct kvm_vcpu *vcpu, |
4809 | struct kvm_segment *var, int seg) | |
4810 | { | |
4811 | kvm_x86_ops->set_segment(vcpu, var, seg); | |
4812 | } | |
4813 | ||
4814 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
4815 | struct kvm_segment *var, int seg) | |
4816 | { | |
4817 | kvm_x86_ops->get_segment(vcpu, var, seg); | |
4818 | } | |
4819 | ||
54987b7a PB |
4820 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, |
4821 | struct x86_exception *exception) | |
02f59dc9 JR |
4822 | { |
4823 | gpa_t t_gpa; | |
02f59dc9 JR |
4824 | |
4825 | BUG_ON(!mmu_is_nested(vcpu)); | |
4826 | ||
4827 | /* NPT walks are always user-walks */ | |
4828 | access |= PFERR_USER_MASK; | |
44dd3ffa | 4829 | t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); |
02f59dc9 JR |
4830 | |
4831 | return t_gpa; | |
4832 | } | |
4833 | ||
ab9ae313 AK |
4834 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
4835 | struct x86_exception *exception) | |
1871c602 GN |
4836 | { |
4837 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
ab9ae313 | 4838 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4839 | } |
4840 | ||
ab9ae313 AK |
4841 | gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, |
4842 | struct x86_exception *exception) | |
1871c602 GN |
4843 | { |
4844 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4845 | access |= PFERR_FETCH_MASK; | |
ab9ae313 | 4846 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4847 | } |
4848 | ||
ab9ae313 AK |
4849 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
4850 | struct x86_exception *exception) | |
1871c602 GN |
4851 | { |
4852 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
4853 | access |= PFERR_WRITE_MASK; | |
ab9ae313 | 4854 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
1871c602 GN |
4855 | } |
4856 | ||
4857 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
4858 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
4859 | struct x86_exception *exception) | |
1871c602 | 4860 | { |
ab9ae313 | 4861 | return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); |
1871c602 GN |
4862 | } |
4863 | ||
4864 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
4865 | struct kvm_vcpu *vcpu, u32 access, | |
bcc55cba | 4866 | struct x86_exception *exception) |
bbd9b64e CO |
4867 | { |
4868 | void *data = val; | |
10589a46 | 4869 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
4870 | |
4871 | while (bytes) { | |
14dfe855 | 4872 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
ab9ae313 | 4873 | exception); |
bbd9b64e | 4874 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 4875 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
4876 | int ret; |
4877 | ||
bcc55cba | 4878 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4879 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa PB |
4880 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
4881 | offset, toread); | |
10589a46 | 4882 | if (ret < 0) { |
c3cd7ffa | 4883 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
4884 | goto out; |
4885 | } | |
bbd9b64e | 4886 | |
77c2002e IE |
4887 | bytes -= toread; |
4888 | data += toread; | |
4889 | addr += toread; | |
bbd9b64e | 4890 | } |
10589a46 | 4891 | out: |
10589a46 | 4892 | return r; |
bbd9b64e | 4893 | } |
77c2002e | 4894 | |
1871c602 | 4895 | /* used for instruction fetching */ |
0f65dd70 AK |
4896 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
4897 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 4898 | struct x86_exception *exception) |
1871c602 | 4899 | { |
0f65dd70 | 4900 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1871c602 | 4901 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
44583cba PB |
4902 | unsigned offset; |
4903 | int ret; | |
0f65dd70 | 4904 | |
44583cba PB |
4905 | /* Inline kvm_read_guest_virt_helper for speed. */ |
4906 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, | |
4907 | exception); | |
4908 | if (unlikely(gpa == UNMAPPED_GVA)) | |
4909 | return X86EMUL_PROPAGATE_FAULT; | |
4910 | ||
4911 | offset = addr & (PAGE_SIZE-1); | |
4912 | if (WARN_ON(offset + bytes > PAGE_SIZE)) | |
4913 | bytes = (unsigned)PAGE_SIZE - offset; | |
54bf36aa PB |
4914 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
4915 | offset, bytes); | |
44583cba PB |
4916 | if (unlikely(ret < 0)) |
4917 | return X86EMUL_IO_NEEDED; | |
4918 | ||
4919 | return X86EMUL_CONTINUE; | |
1871c602 GN |
4920 | } |
4921 | ||
ce14e868 | 4922 | int kvm_read_guest_virt(struct kvm_vcpu *vcpu, |
0f65dd70 | 4923 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 4924 | struct x86_exception *exception) |
1871c602 GN |
4925 | { |
4926 | u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | |
0f65dd70 | 4927 | |
1871c602 | 4928 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 4929 | exception); |
1871c602 | 4930 | } |
064aea77 | 4931 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 4932 | |
ce14e868 PB |
4933 | static int emulator_read_std(struct x86_emulate_ctxt *ctxt, |
4934 | gva_t addr, void *val, unsigned int bytes, | |
3c9fa24c | 4935 | struct x86_exception *exception, bool system) |
1871c602 | 4936 | { |
0f65dd70 | 4937 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3c9fa24c PB |
4938 | u32 access = 0; |
4939 | ||
4940 | if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) | |
4941 | access |= PFERR_USER_MASK; | |
4942 | ||
4943 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); | |
1871c602 GN |
4944 | } |
4945 | ||
7a036a6f RK |
4946 | static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, |
4947 | unsigned long addr, void *val, unsigned int bytes) | |
4948 | { | |
4949 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
4950 | int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); | |
4951 | ||
4952 | return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; | |
4953 | } | |
4954 | ||
ce14e868 PB |
4955 | static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
4956 | struct kvm_vcpu *vcpu, u32 access, | |
4957 | struct x86_exception *exception) | |
77c2002e IE |
4958 | { |
4959 | void *data = val; | |
4960 | int r = X86EMUL_CONTINUE; | |
4961 | ||
4962 | while (bytes) { | |
14dfe855 | 4963 | gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
ce14e868 | 4964 | access, |
ab9ae313 | 4965 | exception); |
77c2002e IE |
4966 | unsigned offset = addr & (PAGE_SIZE-1); |
4967 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
4968 | int ret; | |
4969 | ||
bcc55cba | 4970 | if (gpa == UNMAPPED_GVA) |
ab9ae313 | 4971 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa | 4972 | ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
77c2002e | 4973 | if (ret < 0) { |
c3cd7ffa | 4974 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
4975 | goto out; |
4976 | } | |
4977 | ||
4978 | bytes -= towrite; | |
4979 | data += towrite; | |
4980 | addr += towrite; | |
4981 | } | |
4982 | out: | |
4983 | return r; | |
4984 | } | |
ce14e868 PB |
4985 | |
4986 | static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, | |
3c9fa24c PB |
4987 | unsigned int bytes, struct x86_exception *exception, |
4988 | bool system) | |
ce14e868 PB |
4989 | { |
4990 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
3c9fa24c PB |
4991 | u32 access = PFERR_WRITE_MASK; |
4992 | ||
4993 | if (!system && kvm_x86_ops->get_cpl(vcpu) == 3) | |
4994 | access |= PFERR_USER_MASK; | |
ce14e868 PB |
4995 | |
4996 | return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, | |
3c9fa24c | 4997 | access, exception); |
ce14e868 PB |
4998 | } |
4999 | ||
5000 | int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, | |
5001 | unsigned int bytes, struct x86_exception *exception) | |
5002 | { | |
c595ceee PB |
5003 | /* kvm_write_guest_virt_system can pull in tons of pages. */ |
5004 | vcpu->arch.l1tf_flush_l1d = true; | |
5005 | ||
ce14e868 PB |
5006 | return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, |
5007 | PFERR_WRITE_MASK, exception); | |
5008 | } | |
6a4d7550 | 5009 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 5010 | |
082d06ed WL |
5011 | int handle_ud(struct kvm_vcpu *vcpu) |
5012 | { | |
6c86eedc | 5013 | int emul_type = EMULTYPE_TRAP_UD; |
082d06ed | 5014 | enum emulation_result er; |
6c86eedc WL |
5015 | char sig[5]; /* ud2; .ascii "kvm" */ |
5016 | struct x86_exception e; | |
5017 | ||
5018 | if (force_emulation_prefix && | |
3c9fa24c PB |
5019 | kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), |
5020 | sig, sizeof(sig), &e) == 0 && | |
6c86eedc WL |
5021 | memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) { |
5022 | kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); | |
5023 | emul_type = 0; | |
5024 | } | |
082d06ed | 5025 | |
0ce97a2b | 5026 | er = kvm_emulate_instruction(vcpu, emul_type); |
082d06ed WL |
5027 | if (er == EMULATE_USER_EXIT) |
5028 | return 0; | |
5029 | if (er != EMULATE_DONE) | |
5030 | kvm_queue_exception(vcpu, UD_VECTOR); | |
5031 | return 1; | |
5032 | } | |
5033 | EXPORT_SYMBOL_GPL(handle_ud); | |
5034 | ||
0f89b207 TL |
5035 | static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
5036 | gpa_t gpa, bool write) | |
5037 | { | |
5038 | /* For APIC access vmexit */ | |
5039 | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
5040 | return 1; | |
5041 | ||
5042 | if (vcpu_match_mmio_gpa(vcpu, gpa)) { | |
5043 | trace_vcpu_match_mmio(gva, gpa, write, true); | |
5044 | return 1; | |
5045 | } | |
5046 | ||
5047 | return 0; | |
5048 | } | |
5049 | ||
af7cc7d1 XG |
5050 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
5051 | gpa_t *gpa, struct x86_exception *exception, | |
5052 | bool write) | |
5053 | { | |
97d64b78 AK |
5054 | u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) |
5055 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 5056 | |
be94f6b7 HH |
5057 | /* |
5058 | * currently PKRU is only applied to ept enabled guest so | |
5059 | * there is no pkey in EPT page table for L1 guest or EPT | |
5060 | * shadow page table for L2 guest. | |
5061 | */ | |
97d64b78 | 5062 | if (vcpu_match_mmio_gva(vcpu, gva) |
97ec8c06 | 5063 | && !permission_fault(vcpu, vcpu->arch.walk_mmu, |
be94f6b7 | 5064 | vcpu->arch.access, 0, access)) { |
bebb106a XG |
5065 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
5066 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 5067 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
5068 | return 1; |
5069 | } | |
5070 | ||
af7cc7d1 XG |
5071 | *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); |
5072 | ||
5073 | if (*gpa == UNMAPPED_GVA) | |
5074 | return -1; | |
5075 | ||
0f89b207 | 5076 | return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
af7cc7d1 XG |
5077 | } |
5078 | ||
3200f405 | 5079 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 5080 | const void *val, int bytes) |
bbd9b64e CO |
5081 | { |
5082 | int ret; | |
5083 | ||
54bf36aa | 5084 | ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
9f811285 | 5085 | if (ret < 0) |
bbd9b64e | 5086 | return 0; |
0eb05bf2 | 5087 | kvm_page_track_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
5088 | return 1; |
5089 | } | |
5090 | ||
77d197b2 XG |
5091 | struct read_write_emulator_ops { |
5092 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
5093 | int bytes); | |
5094 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5095 | void *val, int bytes); | |
5096 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5097 | int bytes, void *val); | |
5098 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5099 | void *val, int bytes); | |
5100 | bool write; | |
5101 | }; | |
5102 | ||
5103 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
5104 | { | |
5105 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 5106 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
e39d200f | 5107 | vcpu->mmio_fragments[0].gpa, val); |
77d197b2 XG |
5108 | vcpu->mmio_read_completed = 0; |
5109 | return 1; | |
5110 | } | |
5111 | ||
5112 | return 0; | |
5113 | } | |
5114 | ||
5115 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5116 | void *val, int bytes) | |
5117 | { | |
54bf36aa | 5118 | return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
77d197b2 XG |
5119 | } |
5120 | ||
5121 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5122 | void *val, int bytes) | |
5123 | { | |
5124 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
5125 | } | |
5126 | ||
5127 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
5128 | { | |
e39d200f | 5129 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); |
77d197b2 XG |
5130 | return vcpu_mmio_write(vcpu, gpa, bytes, val); |
5131 | } | |
5132 | ||
5133 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5134 | void *val, int bytes) | |
5135 | { | |
e39d200f | 5136 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); |
77d197b2 XG |
5137 | return X86EMUL_IO_NEEDED; |
5138 | } | |
5139 | ||
5140 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
5141 | void *val, int bytes) | |
5142 | { | |
f78146b0 AK |
5143 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
5144 | ||
87da7e66 | 5145 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
5146 | return X86EMUL_CONTINUE; |
5147 | } | |
5148 | ||
0fbe9b0b | 5149 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
5150 | .read_write_prepare = read_prepare, |
5151 | .read_write_emulate = read_emulate, | |
5152 | .read_write_mmio = vcpu_mmio_read, | |
5153 | .read_write_exit_mmio = read_exit_mmio, | |
5154 | }; | |
5155 | ||
0fbe9b0b | 5156 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
5157 | .read_write_emulate = write_emulate, |
5158 | .read_write_mmio = write_mmio, | |
5159 | .read_write_exit_mmio = write_exit_mmio, | |
5160 | .write = true, | |
5161 | }; | |
5162 | ||
22388a3c XG |
5163 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
5164 | unsigned int bytes, | |
5165 | struct x86_exception *exception, | |
5166 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 5167 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 5168 | { |
af7cc7d1 XG |
5169 | gpa_t gpa; |
5170 | int handled, ret; | |
22388a3c | 5171 | bool write = ops->write; |
f78146b0 | 5172 | struct kvm_mmio_fragment *frag; |
0f89b207 TL |
5173 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
5174 | ||
5175 | /* | |
5176 | * If the exit was due to a NPF we may already have a GPA. | |
5177 | * If the GPA is present, use it to avoid the GVA to GPA table walk. | |
5178 | * Note, this cannot be used on string operations since string | |
5179 | * operation using rep will only have the initial GPA from the NPF | |
5180 | * occurred. | |
5181 | */ | |
5182 | if (vcpu->arch.gpa_available && | |
5183 | emulator_can_use_gpa(ctxt) && | |
618232e2 BS |
5184 | (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { |
5185 | gpa = vcpu->arch.gpa_val; | |
5186 | ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); | |
5187 | } else { | |
5188 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | |
5189 | if (ret < 0) | |
5190 | return X86EMUL_PROPAGATE_FAULT; | |
0f89b207 | 5191 | } |
10589a46 | 5192 | |
618232e2 | 5193 | if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
5194 | return X86EMUL_CONTINUE; |
5195 | ||
bbd9b64e CO |
5196 | /* |
5197 | * Is this MMIO handled locally? | |
5198 | */ | |
22388a3c | 5199 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 5200 | if (handled == bytes) |
bbd9b64e | 5201 | return X86EMUL_CONTINUE; |
bbd9b64e | 5202 | |
70252a10 AK |
5203 | gpa += handled; |
5204 | bytes -= handled; | |
5205 | val += handled; | |
5206 | ||
87da7e66 XG |
5207 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
5208 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
5209 | frag->gpa = gpa; | |
5210 | frag->data = val; | |
5211 | frag->len = bytes; | |
f78146b0 | 5212 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
5213 | } |
5214 | ||
52eb5a6d XL |
5215 | static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
5216 | unsigned long addr, | |
22388a3c XG |
5217 | void *val, unsigned int bytes, |
5218 | struct x86_exception *exception, | |
0fbe9b0b | 5219 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 5220 | { |
0f65dd70 | 5221 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
5222 | gpa_t gpa; |
5223 | int rc; | |
5224 | ||
5225 | if (ops->read_write_prepare && | |
5226 | ops->read_write_prepare(vcpu, val, bytes)) | |
5227 | return X86EMUL_CONTINUE; | |
5228 | ||
5229 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 5230 | |
bbd9b64e CO |
5231 | /* Crossing a page boundary? */ |
5232 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 5233 | int now; |
bbd9b64e CO |
5234 | |
5235 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
5236 | rc = emulator_read_write_onepage(addr, val, now, exception, |
5237 | vcpu, ops); | |
5238 | ||
bbd9b64e CO |
5239 | if (rc != X86EMUL_CONTINUE) |
5240 | return rc; | |
5241 | addr += now; | |
bac15531 NA |
5242 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
5243 | addr = (u32)addr; | |
bbd9b64e CO |
5244 | val += now; |
5245 | bytes -= now; | |
5246 | } | |
22388a3c | 5247 | |
f78146b0 AK |
5248 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
5249 | vcpu, ops); | |
5250 | if (rc != X86EMUL_CONTINUE) | |
5251 | return rc; | |
5252 | ||
5253 | if (!vcpu->mmio_nr_fragments) | |
5254 | return rc; | |
5255 | ||
5256 | gpa = vcpu->mmio_fragments[0].gpa; | |
5257 | ||
5258 | vcpu->mmio_needed = 1; | |
5259 | vcpu->mmio_cur_fragment = 0; | |
5260 | ||
87da7e66 | 5261 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
5262 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
5263 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
5264 | vcpu->run->mmio.phys_addr = gpa; | |
5265 | ||
5266 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
5267 | } |
5268 | ||
5269 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
5270 | unsigned long addr, | |
5271 | void *val, | |
5272 | unsigned int bytes, | |
5273 | struct x86_exception *exception) | |
5274 | { | |
5275 | return emulator_read_write(ctxt, addr, val, bytes, | |
5276 | exception, &read_emultor); | |
5277 | } | |
5278 | ||
52eb5a6d | 5279 | static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
22388a3c XG |
5280 | unsigned long addr, |
5281 | const void *val, | |
5282 | unsigned int bytes, | |
5283 | struct x86_exception *exception) | |
5284 | { | |
5285 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
5286 | exception, &write_emultor); | |
bbd9b64e | 5287 | } |
bbd9b64e | 5288 | |
daea3e73 AK |
5289 | #define CMPXCHG_TYPE(t, ptr, old, new) \ |
5290 | (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | |
5291 | ||
5292 | #ifdef CONFIG_X86_64 | |
5293 | # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | |
5294 | #else | |
5295 | # define CMPXCHG64(ptr, old, new) \ | |
9749a6c0 | 5296 | (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
daea3e73 AK |
5297 | #endif |
5298 | ||
0f65dd70 AK |
5299 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
5300 | unsigned long addr, | |
bbd9b64e CO |
5301 | const void *old, |
5302 | const void *new, | |
5303 | unsigned int bytes, | |
0f65dd70 | 5304 | struct x86_exception *exception) |
bbd9b64e | 5305 | { |
0f65dd70 | 5306 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
daea3e73 AK |
5307 | gpa_t gpa; |
5308 | struct page *page; | |
5309 | char *kaddr; | |
5310 | bool exchanged; | |
2bacc55c | 5311 | |
daea3e73 AK |
5312 | /* guests cmpxchg8b have to be emulated atomically */ |
5313 | if (bytes > 8 || (bytes & (bytes - 1))) | |
5314 | goto emul_write; | |
10589a46 | 5315 | |
daea3e73 | 5316 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 5317 | |
daea3e73 AK |
5318 | if (gpa == UNMAPPED_GVA || |
5319 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
5320 | goto emul_write; | |
2bacc55c | 5321 | |
daea3e73 AK |
5322 | if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
5323 | goto emul_write; | |
72dc67a6 | 5324 | |
54bf36aa | 5325 | page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); |
32cad84f | 5326 | if (is_error_page(page)) |
c19b8bd6 | 5327 | goto emul_write; |
72dc67a6 | 5328 | |
8fd75e12 | 5329 | kaddr = kmap_atomic(page); |
daea3e73 AK |
5330 | kaddr += offset_in_page(gpa); |
5331 | switch (bytes) { | |
5332 | case 1: | |
5333 | exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | |
5334 | break; | |
5335 | case 2: | |
5336 | exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | |
5337 | break; | |
5338 | case 4: | |
5339 | exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | |
5340 | break; | |
5341 | case 8: | |
5342 | exchanged = CMPXCHG64(kaddr, old, new); | |
5343 | break; | |
5344 | default: | |
5345 | BUG(); | |
2bacc55c | 5346 | } |
8fd75e12 | 5347 | kunmap_atomic(kaddr); |
daea3e73 AK |
5348 | kvm_release_page_dirty(page); |
5349 | ||
5350 | if (!exchanged) | |
5351 | return X86EMUL_CMPXCHG_FAILED; | |
5352 | ||
54bf36aa | 5353 | kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
0eb05bf2 | 5354 | kvm_page_track_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
5355 | |
5356 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 5357 | |
3200f405 | 5358 | emul_write: |
daea3e73 | 5359 | printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
2bacc55c | 5360 | |
0f65dd70 | 5361 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
5362 | } |
5363 | ||
cf8f70bf GN |
5364 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
5365 | { | |
cbfc6c91 | 5366 | int r = 0, i; |
cf8f70bf | 5367 | |
cbfc6c91 WL |
5368 | for (i = 0; i < vcpu->arch.pio.count; i++) { |
5369 | if (vcpu->arch.pio.in) | |
5370 | r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, | |
5371 | vcpu->arch.pio.size, pd); | |
5372 | else | |
5373 | r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, | |
5374 | vcpu->arch.pio.port, vcpu->arch.pio.size, | |
5375 | pd); | |
5376 | if (r) | |
5377 | break; | |
5378 | pd += vcpu->arch.pio.size; | |
5379 | } | |
cf8f70bf GN |
5380 | return r; |
5381 | } | |
5382 | ||
6f6fbe98 XG |
5383 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
5384 | unsigned short port, void *val, | |
5385 | unsigned int count, bool in) | |
cf8f70bf | 5386 | { |
cf8f70bf | 5387 | vcpu->arch.pio.port = port; |
6f6fbe98 | 5388 | vcpu->arch.pio.in = in; |
7972995b | 5389 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
5390 | vcpu->arch.pio.size = size; |
5391 | ||
5392 | if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | |
7972995b | 5393 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
5394 | return 1; |
5395 | } | |
5396 | ||
5397 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 5398 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
5399 | vcpu->run->io.size = size; |
5400 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
5401 | vcpu->run->io.count = count; | |
5402 | vcpu->run->io.port = port; | |
5403 | ||
5404 | return 0; | |
5405 | } | |
5406 | ||
6f6fbe98 XG |
5407 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
5408 | int size, unsigned short port, void *val, | |
5409 | unsigned int count) | |
cf8f70bf | 5410 | { |
ca1d4a9e | 5411 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
6f6fbe98 | 5412 | int ret; |
ca1d4a9e | 5413 | |
6f6fbe98 XG |
5414 | if (vcpu->arch.pio.count) |
5415 | goto data_avail; | |
cf8f70bf | 5416 | |
cbfc6c91 WL |
5417 | memset(vcpu->arch.pio_data, 0, size * count); |
5418 | ||
6f6fbe98 XG |
5419 | ret = emulator_pio_in_out(vcpu, size, port, val, count, true); |
5420 | if (ret) { | |
5421 | data_avail: | |
5422 | memcpy(val, vcpu->arch.pio_data, size * count); | |
1171903d | 5423 | trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); |
7972995b | 5424 | vcpu->arch.pio.count = 0; |
cf8f70bf GN |
5425 | return 1; |
5426 | } | |
5427 | ||
cf8f70bf GN |
5428 | return 0; |
5429 | } | |
5430 | ||
6f6fbe98 XG |
5431 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
5432 | int size, unsigned short port, | |
5433 | const void *val, unsigned int count) | |
5434 | { | |
5435 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5436 | ||
5437 | memcpy(vcpu->arch.pio_data, val, size * count); | |
1171903d | 5438 | trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); |
6f6fbe98 XG |
5439 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
5440 | } | |
5441 | ||
bbd9b64e CO |
5442 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
5443 | { | |
5444 | return kvm_x86_ops->get_segment_base(vcpu, seg); | |
5445 | } | |
5446 | ||
3cb16fe7 | 5447 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 5448 | { |
3cb16fe7 | 5449 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
5450 | } |
5451 | ||
ae6a2375 | 5452 | static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
f5f48ee1 SY |
5453 | { |
5454 | if (!need_emulate_wbinvd(vcpu)) | |
5455 | return X86EMUL_CONTINUE; | |
5456 | ||
5457 | if (kvm_x86_ops->has_wbinvd_exit()) { | |
2eec7343 JK |
5458 | int cpu = get_cpu(); |
5459 | ||
5460 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
f5f48ee1 SY |
5461 | smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
5462 | wbinvd_ipi, NULL, 1); | |
2eec7343 | 5463 | put_cpu(); |
f5f48ee1 | 5464 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
5465 | } else |
5466 | wbinvd(); | |
f5f48ee1 SY |
5467 | return X86EMUL_CONTINUE; |
5468 | } | |
5cb56059 JS |
5469 | |
5470 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
5471 | { | |
6affcbed KH |
5472 | kvm_emulate_wbinvd_noskip(vcpu); |
5473 | return kvm_skip_emulated_instruction(vcpu); | |
5cb56059 | 5474 | } |
f5f48ee1 SY |
5475 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
5476 | ||
5cb56059 JS |
5477 | |
5478 | ||
bcaf5cc5 AK |
5479 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
5480 | { | |
5cb56059 | 5481 | kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
bcaf5cc5 AK |
5482 | } |
5483 | ||
52eb5a6d XL |
5484 | static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, |
5485 | unsigned long *dest) | |
bbd9b64e | 5486 | { |
16f8a6f9 | 5487 | return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
bbd9b64e CO |
5488 | } |
5489 | ||
52eb5a6d XL |
5490 | static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
5491 | unsigned long value) | |
bbd9b64e | 5492 | { |
338dbc97 | 5493 | |
717746e3 | 5494 | return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
5495 | } |
5496 | ||
52a46617 | 5497 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 5498 | { |
52a46617 | 5499 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
5500 | } |
5501 | ||
717746e3 | 5502 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 5503 | { |
717746e3 | 5504 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
5505 | unsigned long value; |
5506 | ||
5507 | switch (cr) { | |
5508 | case 0: | |
5509 | value = kvm_read_cr0(vcpu); | |
5510 | break; | |
5511 | case 2: | |
5512 | value = vcpu->arch.cr2; | |
5513 | break; | |
5514 | case 3: | |
9f8fe504 | 5515 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
5516 | break; |
5517 | case 4: | |
5518 | value = kvm_read_cr4(vcpu); | |
5519 | break; | |
5520 | case 8: | |
5521 | value = kvm_get_cr8(vcpu); | |
5522 | break; | |
5523 | default: | |
a737f256 | 5524 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
5525 | return 0; |
5526 | } | |
5527 | ||
5528 | return value; | |
5529 | } | |
5530 | ||
717746e3 | 5531 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 5532 | { |
717746e3 | 5533 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
5534 | int res = 0; |
5535 | ||
52a46617 GN |
5536 | switch (cr) { |
5537 | case 0: | |
49a9b07e | 5538 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
5539 | break; |
5540 | case 2: | |
5541 | vcpu->arch.cr2 = val; | |
5542 | break; | |
5543 | case 3: | |
2390218b | 5544 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
5545 | break; |
5546 | case 4: | |
a83b29c6 | 5547 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
5548 | break; |
5549 | case 8: | |
eea1cff9 | 5550 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
5551 | break; |
5552 | default: | |
a737f256 | 5553 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 5554 | res = -1; |
52a46617 | 5555 | } |
0f12244f GN |
5556 | |
5557 | return res; | |
52a46617 GN |
5558 | } |
5559 | ||
717746e3 | 5560 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 5561 | { |
717746e3 | 5562 | return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); |
9c537244 GN |
5563 | } |
5564 | ||
4bff1e86 | 5565 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 5566 | { |
4bff1e86 | 5567 | kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
5568 | } |
5569 | ||
4bff1e86 | 5570 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 5571 | { |
4bff1e86 | 5572 | kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
5573 | } |
5574 | ||
1ac9d0cf AK |
5575 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
5576 | { | |
5577 | kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | |
5578 | } | |
5579 | ||
5580 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
5581 | { | |
5582 | kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | |
5583 | } | |
5584 | ||
4bff1e86 AK |
5585 | static unsigned long emulator_get_cached_segment_base( |
5586 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 5587 | { |
4bff1e86 | 5588 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
5589 | } |
5590 | ||
1aa36616 AK |
5591 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
5592 | struct desc_struct *desc, u32 *base3, | |
5593 | int seg) | |
2dafc6c2 GN |
5594 | { |
5595 | struct kvm_segment var; | |
5596 | ||
4bff1e86 | 5597 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 5598 | *selector = var.selector; |
2dafc6c2 | 5599 | |
378a8b09 GN |
5600 | if (var.unusable) { |
5601 | memset(desc, 0, sizeof(*desc)); | |
f0367ee1 RK |
5602 | if (base3) |
5603 | *base3 = 0; | |
2dafc6c2 | 5604 | return false; |
378a8b09 | 5605 | } |
2dafc6c2 GN |
5606 | |
5607 | if (var.g) | |
5608 | var.limit >>= 12; | |
5609 | set_desc_limit(desc, var.limit); | |
5610 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
5611 | #ifdef CONFIG_X86_64 |
5612 | if (base3) | |
5613 | *base3 = var.base >> 32; | |
5614 | #endif | |
2dafc6c2 GN |
5615 | desc->type = var.type; |
5616 | desc->s = var.s; | |
5617 | desc->dpl = var.dpl; | |
5618 | desc->p = var.present; | |
5619 | desc->avl = var.avl; | |
5620 | desc->l = var.l; | |
5621 | desc->d = var.db; | |
5622 | desc->g = var.g; | |
5623 | ||
5624 | return true; | |
5625 | } | |
5626 | ||
1aa36616 AK |
5627 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
5628 | struct desc_struct *desc, u32 base3, | |
5629 | int seg) | |
2dafc6c2 | 5630 | { |
4bff1e86 | 5631 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
5632 | struct kvm_segment var; |
5633 | ||
1aa36616 | 5634 | var.selector = selector; |
2dafc6c2 | 5635 | var.base = get_desc_base(desc); |
5601d05b GN |
5636 | #ifdef CONFIG_X86_64 |
5637 | var.base |= ((u64)base3) << 32; | |
5638 | #endif | |
2dafc6c2 GN |
5639 | var.limit = get_desc_limit(desc); |
5640 | if (desc->g) | |
5641 | var.limit = (var.limit << 12) | 0xfff; | |
5642 | var.type = desc->type; | |
2dafc6c2 GN |
5643 | var.dpl = desc->dpl; |
5644 | var.db = desc->d; | |
5645 | var.s = desc->s; | |
5646 | var.l = desc->l; | |
5647 | var.g = desc->g; | |
5648 | var.avl = desc->avl; | |
5649 | var.present = desc->p; | |
5650 | var.unusable = !var.present; | |
5651 | var.padding = 0; | |
5652 | ||
5653 | kvm_set_segment(vcpu, &var, seg); | |
5654 | return; | |
5655 | } | |
5656 | ||
717746e3 AK |
5657 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
5658 | u32 msr_index, u64 *pdata) | |
5659 | { | |
609e36d3 PB |
5660 | struct msr_data msr; |
5661 | int r; | |
5662 | ||
5663 | msr.index = msr_index; | |
5664 | msr.host_initiated = false; | |
5665 | r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); | |
5666 | if (r) | |
5667 | return r; | |
5668 | ||
5669 | *pdata = msr.data; | |
5670 | return 0; | |
717746e3 AK |
5671 | } |
5672 | ||
5673 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | |
5674 | u32 msr_index, u64 data) | |
5675 | { | |
8fe8ab46 WA |
5676 | struct msr_data msr; |
5677 | ||
5678 | msr.data = data; | |
5679 | msr.index = msr_index; | |
5680 | msr.host_initiated = false; | |
5681 | return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | |
717746e3 AK |
5682 | } |
5683 | ||
64d60670 PB |
5684 | static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) |
5685 | { | |
5686 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5687 | ||
5688 | return vcpu->arch.smbase; | |
5689 | } | |
5690 | ||
5691 | static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) | |
5692 | { | |
5693 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5694 | ||
5695 | vcpu->arch.smbase = smbase; | |
5696 | } | |
5697 | ||
67f4d428 NA |
5698 | static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, |
5699 | u32 pmc) | |
5700 | { | |
c6702c9d | 5701 | return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); |
67f4d428 NA |
5702 | } |
5703 | ||
222d21aa AK |
5704 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
5705 | u32 pmc, u64 *pdata) | |
5706 | { | |
c6702c9d | 5707 | return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
222d21aa AK |
5708 | } |
5709 | ||
6c3287f7 AK |
5710 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
5711 | { | |
5712 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
5713 | } | |
5714 | ||
2953538e | 5715 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 5716 | struct x86_instruction_info *info, |
c4f035c6 AK |
5717 | enum x86_intercept_stage stage) |
5718 | { | |
2953538e | 5719 | return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); |
c4f035c6 AK |
5720 | } |
5721 | ||
e911eb3b YZ |
5722 | static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
5723 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) | |
bdb42f5a | 5724 | { |
e911eb3b | 5725 | return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); |
bdb42f5a SB |
5726 | } |
5727 | ||
dd856efa AK |
5728 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
5729 | { | |
5730 | return kvm_register_read(emul_to_vcpu(ctxt), reg); | |
5731 | } | |
5732 | ||
5733 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
5734 | { | |
5735 | kvm_register_write(emul_to_vcpu(ctxt), reg, val); | |
5736 | } | |
5737 | ||
801806d9 NA |
5738 | static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
5739 | { | |
5740 | kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); | |
5741 | } | |
5742 | ||
6ed071f0 LP |
5743 | static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) |
5744 | { | |
5745 | return emul_to_vcpu(ctxt)->arch.hflags; | |
5746 | } | |
5747 | ||
5748 | static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) | |
5749 | { | |
5750 | kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); | |
5751 | } | |
5752 | ||
0234bf88 LP |
5753 | static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) |
5754 | { | |
5755 | return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); | |
5756 | } | |
5757 | ||
0225fb50 | 5758 | static const struct x86_emulate_ops emulate_ops = { |
dd856efa AK |
5759 | .read_gpr = emulator_read_gpr, |
5760 | .write_gpr = emulator_write_gpr, | |
ce14e868 PB |
5761 | .read_std = emulator_read_std, |
5762 | .write_std = emulator_write_std, | |
7a036a6f | 5763 | .read_phys = kvm_read_guest_phys_system, |
1871c602 | 5764 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
5765 | .read_emulated = emulator_read_emulated, |
5766 | .write_emulated = emulator_write_emulated, | |
5767 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 5768 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
5769 | .pio_in_emulated = emulator_pio_in_emulated, |
5770 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
5771 | .get_segment = emulator_get_segment, |
5772 | .set_segment = emulator_set_segment, | |
5951c442 | 5773 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 5774 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 5775 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
5776 | .set_gdt = emulator_set_gdt, |
5777 | .set_idt = emulator_set_idt, | |
52a46617 GN |
5778 | .get_cr = emulator_get_cr, |
5779 | .set_cr = emulator_set_cr, | |
9c537244 | 5780 | .cpl = emulator_get_cpl, |
35aa5375 GN |
5781 | .get_dr = emulator_get_dr, |
5782 | .set_dr = emulator_set_dr, | |
64d60670 PB |
5783 | .get_smbase = emulator_get_smbase, |
5784 | .set_smbase = emulator_set_smbase, | |
717746e3 AK |
5785 | .set_msr = emulator_set_msr, |
5786 | .get_msr = emulator_get_msr, | |
67f4d428 | 5787 | .check_pmc = emulator_check_pmc, |
222d21aa | 5788 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 5789 | .halt = emulator_halt, |
bcaf5cc5 | 5790 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 5791 | .fix_hypercall = emulator_fix_hypercall, |
c4f035c6 | 5792 | .intercept = emulator_intercept, |
bdb42f5a | 5793 | .get_cpuid = emulator_get_cpuid, |
801806d9 | 5794 | .set_nmi_mask = emulator_set_nmi_mask, |
6ed071f0 LP |
5795 | .get_hflags = emulator_get_hflags, |
5796 | .set_hflags = emulator_set_hflags, | |
0234bf88 | 5797 | .pre_leave_smm = emulator_pre_leave_smm, |
bbd9b64e CO |
5798 | }; |
5799 | ||
95cb2295 GN |
5800 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
5801 | { | |
37ccdcbe | 5802 | u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); |
95cb2295 GN |
5803 | /* |
5804 | * an sti; sti; sequence only disable interrupts for the first | |
5805 | * instruction. So, if the last instruction, be it emulated or | |
5806 | * not, left the system with the INT_STI flag enabled, it | |
5807 | * means that the last instruction is an sti. We should not | |
5808 | * leave the flag on in this case. The same goes for mov ss | |
5809 | */ | |
37ccdcbe PB |
5810 | if (int_shadow & mask) |
5811 | mask = 0; | |
6addfc42 | 5812 | if (unlikely(int_shadow || mask)) { |
95cb2295 | 5813 | kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
6addfc42 PB |
5814 | if (!mask) |
5815 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5816 | } | |
95cb2295 GN |
5817 | } |
5818 | ||
ef54bcfe | 5819 | static bool inject_emulated_exception(struct kvm_vcpu *vcpu) |
54b8486f GN |
5820 | { |
5821 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | |
da9cb575 | 5822 | if (ctxt->exception.vector == PF_VECTOR) |
ef54bcfe PB |
5823 | return kvm_propagate_fault(vcpu, &ctxt->exception); |
5824 | ||
5825 | if (ctxt->exception.error_code_valid) | |
da9cb575 AK |
5826 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
5827 | ctxt->exception.error_code); | |
54b8486f | 5828 | else |
da9cb575 | 5829 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
ef54bcfe | 5830 | return false; |
54b8486f GN |
5831 | } |
5832 | ||
8ec4722d MG |
5833 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
5834 | { | |
adf52235 | 5835 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d MG |
5836 | int cs_db, cs_l; |
5837 | ||
8ec4722d MG |
5838 | kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
5839 | ||
adf52235 | 5840 | ctxt->eflags = kvm_get_rflags(vcpu); |
c8401dda PB |
5841 | ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
5842 | ||
adf52235 TY |
5843 | ctxt->eip = kvm_rip_read(vcpu); |
5844 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
5845 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
42bf549f | 5846 | (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
adf52235 TY |
5847 | cs_db ? X86EMUL_MODE_PROT32 : |
5848 | X86EMUL_MODE_PROT16; | |
a584539b | 5849 | BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); |
64d60670 PB |
5850 | BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); |
5851 | BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); | |
adf52235 | 5852 | |
dd856efa | 5853 | init_decode_cache(ctxt); |
7ae441ea | 5854 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
5855 | } |
5856 | ||
71f9833b | 5857 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 5858 | { |
9d74191a | 5859 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
63995653 MG |
5860 | int ret; |
5861 | ||
5862 | init_emulate_ctxt(vcpu); | |
5863 | ||
9dac77fa AK |
5864 | ctxt->op_bytes = 2; |
5865 | ctxt->ad_bytes = 2; | |
5866 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 5867 | ret = emulate_int_real(ctxt, irq); |
63995653 MG |
5868 | |
5869 | if (ret != X86EMUL_CONTINUE) | |
5870 | return EMULATE_FAIL; | |
5871 | ||
9dac77fa | 5872 | ctxt->eip = ctxt->_eip; |
9d74191a TY |
5873 | kvm_rip_write(vcpu, ctxt->eip); |
5874 | kvm_set_rflags(vcpu, ctxt->eflags); | |
63995653 | 5875 | |
63995653 MG |
5876 | return EMULATE_DONE; |
5877 | } | |
5878 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
5879 | ||
e2366171 | 5880 | static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) |
6d77dbfc | 5881 | { |
fc3a9157 JR |
5882 | int r = EMULATE_DONE; |
5883 | ||
6d77dbfc GN |
5884 | ++vcpu->stat.insn_emulation_fail; |
5885 | trace_kvm_emulate_insn_failed(vcpu); | |
e2366171 LA |
5886 | |
5887 | if (emulation_type & EMULTYPE_NO_UD_ON_FAIL) | |
5888 | return EMULATE_FAIL; | |
5889 | ||
a2b9e6c1 | 5890 | if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { |
fc3a9157 JR |
5891 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
5892 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
5893 | vcpu->run->internal.ndata = 0; | |
1f4dcb3b | 5894 | r = EMULATE_USER_EXIT; |
fc3a9157 | 5895 | } |
e2366171 | 5896 | |
6d77dbfc | 5897 | kvm_queue_exception(vcpu, UD_VECTOR); |
fc3a9157 JR |
5898 | |
5899 | return r; | |
6d77dbfc GN |
5900 | } |
5901 | ||
93c05d3e | 5902 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, |
991eebf9 GN |
5903 | bool write_fault_to_shadow_pgtable, |
5904 | int emulation_type) | |
a6f177ef | 5905 | { |
95b3cf69 | 5906 | gpa_t gpa = cr2; |
ba049e93 | 5907 | kvm_pfn_t pfn; |
a6f177ef | 5908 | |
384bf221 | 5909 | if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) |
991eebf9 GN |
5910 | return false; |
5911 | ||
6c3dfeb6 SC |
5912 | if (WARN_ON_ONCE(is_guest_mode(vcpu))) |
5913 | return false; | |
5914 | ||
44dd3ffa | 5915 | if (!vcpu->arch.mmu->direct_map) { |
95b3cf69 XG |
5916 | /* |
5917 | * Write permission should be allowed since only | |
5918 | * write access need to be emulated. | |
5919 | */ | |
5920 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | |
a6f177ef | 5921 | |
95b3cf69 XG |
5922 | /* |
5923 | * If the mapping is invalid in guest, let cpu retry | |
5924 | * it to generate fault. | |
5925 | */ | |
5926 | if (gpa == UNMAPPED_GVA) | |
5927 | return true; | |
5928 | } | |
a6f177ef | 5929 | |
8e3d9d06 XG |
5930 | /* |
5931 | * Do not retry the unhandleable instruction if it faults on the | |
5932 | * readonly host memory, otherwise it will goto a infinite loop: | |
5933 | * retry instruction -> write #PF -> emulation fail -> retry | |
5934 | * instruction -> ... | |
5935 | */ | |
5936 | pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | |
95b3cf69 XG |
5937 | |
5938 | /* | |
5939 | * If the instruction failed on the error pfn, it can not be fixed, | |
5940 | * report the error to userspace. | |
5941 | */ | |
5942 | if (is_error_noslot_pfn(pfn)) | |
5943 | return false; | |
5944 | ||
5945 | kvm_release_pfn_clean(pfn); | |
5946 | ||
5947 | /* The instructions are well-emulated on direct mmu. */ | |
44dd3ffa | 5948 | if (vcpu->arch.mmu->direct_map) { |
95b3cf69 XG |
5949 | unsigned int indirect_shadow_pages; |
5950 | ||
5951 | spin_lock(&vcpu->kvm->mmu_lock); | |
5952 | indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | |
5953 | spin_unlock(&vcpu->kvm->mmu_lock); | |
5954 | ||
5955 | if (indirect_shadow_pages) | |
5956 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
5957 | ||
a6f177ef | 5958 | return true; |
8e3d9d06 | 5959 | } |
a6f177ef | 5960 | |
95b3cf69 XG |
5961 | /* |
5962 | * if emulation was due to access to shadowed page table | |
5963 | * and it failed try to unshadow page and re-enter the | |
5964 | * guest to let CPU execute the instruction. | |
5965 | */ | |
5966 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | |
93c05d3e XG |
5967 | |
5968 | /* | |
5969 | * If the access faults on its page table, it can not | |
5970 | * be fixed by unprotecting shadow page and it should | |
5971 | * be reported to userspace. | |
5972 | */ | |
5973 | return !write_fault_to_shadow_pgtable; | |
a6f177ef GN |
5974 | } |
5975 | ||
1cb3f3ae XG |
5976 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
5977 | unsigned long cr2, int emulation_type) | |
5978 | { | |
5979 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5980 | unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | |
5981 | ||
5982 | last_retry_eip = vcpu->arch.last_retry_eip; | |
5983 | last_retry_addr = vcpu->arch.last_retry_addr; | |
5984 | ||
5985 | /* | |
5986 | * If the emulation is caused by #PF and it is non-page_table | |
5987 | * writing instruction, it means the VM-EXIT is caused by shadow | |
5988 | * page protected, we can zap the shadow page and retry this | |
5989 | * instruction directly. | |
5990 | * | |
5991 | * Note: if the guest uses a non-page-table modifying instruction | |
5992 | * on the PDE that points to the instruction, then we will unmap | |
5993 | * the instruction and go to an infinite loop. So, we cache the | |
5994 | * last retried eip and the last fault address, if we meet the eip | |
5995 | * and the address again, we can break out of the potential infinite | |
5996 | * loop. | |
5997 | */ | |
5998 | vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | |
5999 | ||
384bf221 | 6000 | if (!(emulation_type & EMULTYPE_ALLOW_RETRY)) |
1cb3f3ae XG |
6001 | return false; |
6002 | ||
6c3dfeb6 SC |
6003 | if (WARN_ON_ONCE(is_guest_mode(vcpu))) |
6004 | return false; | |
6005 | ||
1cb3f3ae XG |
6006 | if (x86_page_table_writing_insn(ctxt)) |
6007 | return false; | |
6008 | ||
6009 | if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | |
6010 | return false; | |
6011 | ||
6012 | vcpu->arch.last_retry_eip = ctxt->eip; | |
6013 | vcpu->arch.last_retry_addr = cr2; | |
6014 | ||
44dd3ffa | 6015 | if (!vcpu->arch.mmu->direct_map) |
1cb3f3ae XG |
6016 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); |
6017 | ||
22368028 | 6018 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
1cb3f3ae XG |
6019 | |
6020 | return true; | |
6021 | } | |
6022 | ||
716d51ab GN |
6023 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
6024 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
6025 | ||
64d60670 | 6026 | static void kvm_smm_changed(struct kvm_vcpu *vcpu) |
a584539b | 6027 | { |
64d60670 | 6028 | if (!(vcpu->arch.hflags & HF_SMM_MASK)) { |
660a5d51 PB |
6029 | /* This is a good place to trace that we are exiting SMM. */ |
6030 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); | |
6031 | ||
c43203ca PB |
6032 | /* Process a latched INIT or SMI, if any. */ |
6033 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
64d60670 | 6034 | } |
699023e2 PB |
6035 | |
6036 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
6037 | } |
6038 | ||
6039 | static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) | |
6040 | { | |
6041 | unsigned changed = vcpu->arch.hflags ^ emul_flags; | |
6042 | ||
a584539b | 6043 | vcpu->arch.hflags = emul_flags; |
64d60670 PB |
6044 | |
6045 | if (changed & HF_SMM_MASK) | |
6046 | kvm_smm_changed(vcpu); | |
a584539b PB |
6047 | } |
6048 | ||
4a1e10d5 PB |
6049 | static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
6050 | unsigned long *db) | |
6051 | { | |
6052 | u32 dr6 = 0; | |
6053 | int i; | |
6054 | u32 enable, rwlen; | |
6055 | ||
6056 | enable = dr7; | |
6057 | rwlen = dr7 >> 16; | |
6058 | for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) | |
6059 | if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) | |
6060 | dr6 |= (1 << i); | |
6061 | return dr6; | |
6062 | } | |
6063 | ||
c8401dda | 6064 | static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) |
663f4c61 PB |
6065 | { |
6066 | struct kvm_run *kvm_run = vcpu->run; | |
6067 | ||
c8401dda PB |
6068 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
6069 | kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; | |
6070 | kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; | |
6071 | kvm_run->debug.arch.exception = DB_VECTOR; | |
6072 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
6073 | *r = EMULATE_USER_EXIT; | |
6074 | } else { | |
6075 | /* | |
6076 | * "Certain debug exceptions may clear bit 0-3. The | |
6077 | * remaining contents of the DR6 register are never | |
6078 | * cleared by the processor". | |
6079 | */ | |
6080 | vcpu->arch.dr6 &= ~15; | |
6081 | vcpu->arch.dr6 |= DR6_BS | DR6_RTM; | |
6082 | kvm_queue_exception(vcpu, DB_VECTOR); | |
663f4c61 PB |
6083 | } |
6084 | } | |
6085 | ||
6affcbed KH |
6086 | int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
6087 | { | |
6088 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); | |
6089 | int r = EMULATE_DONE; | |
6090 | ||
6091 | kvm_x86_ops->skip_emulated_instruction(vcpu); | |
c8401dda PB |
6092 | |
6093 | /* | |
6094 | * rflags is the old, "raw" value of the flags. The new value has | |
6095 | * not been saved yet. | |
6096 | * | |
6097 | * This is correct even for TF set by the guest, because "the | |
6098 | * processor will not generate this exception after the instruction | |
6099 | * that sets the TF flag". | |
6100 | */ | |
6101 | if (unlikely(rflags & X86_EFLAGS_TF)) | |
6102 | kvm_vcpu_do_singlestep(vcpu, &r); | |
6affcbed KH |
6103 | return r == EMULATE_DONE; |
6104 | } | |
6105 | EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); | |
6106 | ||
4a1e10d5 PB |
6107 | static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) |
6108 | { | |
4a1e10d5 PB |
6109 | if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
6110 | (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { | |
82b32774 NA |
6111 | struct kvm_run *kvm_run = vcpu->run; |
6112 | unsigned long eip = kvm_get_linear_rip(vcpu); | |
6113 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
6114 | vcpu->arch.guest_debug_dr7, |
6115 | vcpu->arch.eff_db); | |
6116 | ||
6117 | if (dr6 != 0) { | |
6f43ed01 | 6118 | kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; |
82b32774 | 6119 | kvm_run->debug.arch.pc = eip; |
4a1e10d5 PB |
6120 | kvm_run->debug.arch.exception = DB_VECTOR; |
6121 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
6122 | *r = EMULATE_USER_EXIT; | |
6123 | return true; | |
6124 | } | |
6125 | } | |
6126 | ||
4161a569 NA |
6127 | if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
6128 | !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { | |
82b32774 NA |
6129 | unsigned long eip = kvm_get_linear_rip(vcpu); |
6130 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
6131 | vcpu->arch.dr7, |
6132 | vcpu->arch.db); | |
6133 | ||
6134 | if (dr6 != 0) { | |
6135 | vcpu->arch.dr6 &= ~15; | |
6f43ed01 | 6136 | vcpu->arch.dr6 |= dr6 | DR6_RTM; |
4a1e10d5 PB |
6137 | kvm_queue_exception(vcpu, DB_VECTOR); |
6138 | *r = EMULATE_DONE; | |
6139 | return true; | |
6140 | } | |
6141 | } | |
6142 | ||
6143 | return false; | |
6144 | } | |
6145 | ||
04789b66 LA |
6146 | static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) |
6147 | { | |
2d7921c4 AM |
6148 | switch (ctxt->opcode_len) { |
6149 | case 1: | |
6150 | switch (ctxt->b) { | |
6151 | case 0xe4: /* IN */ | |
6152 | case 0xe5: | |
6153 | case 0xec: | |
6154 | case 0xed: | |
6155 | case 0xe6: /* OUT */ | |
6156 | case 0xe7: | |
6157 | case 0xee: | |
6158 | case 0xef: | |
6159 | case 0x6c: /* INS */ | |
6160 | case 0x6d: | |
6161 | case 0x6e: /* OUTS */ | |
6162 | case 0x6f: | |
6163 | return true; | |
6164 | } | |
6165 | break; | |
6166 | case 2: | |
6167 | switch (ctxt->b) { | |
6168 | case 0x33: /* RDPMC */ | |
6169 | return true; | |
6170 | } | |
6171 | break; | |
04789b66 LA |
6172 | } |
6173 | ||
6174 | return false; | |
6175 | } | |
6176 | ||
51d8b661 AP |
6177 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, |
6178 | unsigned long cr2, | |
dc25e89e AP |
6179 | int emulation_type, |
6180 | void *insn, | |
6181 | int insn_len) | |
bbd9b64e | 6182 | { |
95cb2295 | 6183 | int r; |
9d74191a | 6184 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
7ae441ea | 6185 | bool writeback = true; |
93c05d3e | 6186 | bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; |
bbd9b64e | 6187 | |
c595ceee PB |
6188 | vcpu->arch.l1tf_flush_l1d = true; |
6189 | ||
93c05d3e XG |
6190 | /* |
6191 | * Clear write_fault_to_shadow_pgtable here to ensure it is | |
6192 | * never reused. | |
6193 | */ | |
6194 | vcpu->arch.write_fault_to_shadow_pgtable = false; | |
26eef70c | 6195 | kvm_clear_exception_queue(vcpu); |
8d7d8102 | 6196 | |
571008da | 6197 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
8ec4722d | 6198 | init_emulate_ctxt(vcpu); |
4a1e10d5 PB |
6199 | |
6200 | /* | |
6201 | * We will reenter on the same instruction since | |
6202 | * we do not set complete_userspace_io. This does not | |
6203 | * handle watchpoints yet, those would be handled in | |
6204 | * the emulate_ops. | |
6205 | */ | |
d391f120 VK |
6206 | if (!(emulation_type & EMULTYPE_SKIP) && |
6207 | kvm_vcpu_check_breakpoint(vcpu, &r)) | |
4a1e10d5 PB |
6208 | return r; |
6209 | ||
9d74191a TY |
6210 | ctxt->interruptibility = 0; |
6211 | ctxt->have_exception = false; | |
e0ad0b47 | 6212 | ctxt->exception.vector = -1; |
9d74191a | 6213 | ctxt->perm_ok = false; |
bbd9b64e | 6214 | |
b51e974f | 6215 | ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; |
4005996e | 6216 | |
9d74191a | 6217 | r = x86_decode_insn(ctxt, insn, insn_len); |
bbd9b64e | 6218 | |
e46479f8 | 6219 | trace_kvm_emulate_insn_start(vcpu); |
f2b5756b | 6220 | ++vcpu->stat.insn_emulation; |
1d2887e2 | 6221 | if (r != EMULATION_OK) { |
4005996e AK |
6222 | if (emulation_type & EMULTYPE_TRAP_UD) |
6223 | return EMULATE_FAIL; | |
991eebf9 GN |
6224 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
6225 | emulation_type)) | |
bbd9b64e | 6226 | return EMULATE_DONE; |
6ea6e843 PB |
6227 | if (ctxt->have_exception && inject_emulated_exception(vcpu)) |
6228 | return EMULATE_DONE; | |
6d77dbfc GN |
6229 | if (emulation_type & EMULTYPE_SKIP) |
6230 | return EMULATE_FAIL; | |
e2366171 | 6231 | return handle_emulation_failure(vcpu, emulation_type); |
bbd9b64e CO |
6232 | } |
6233 | } | |
6234 | ||
04789b66 LA |
6235 | if ((emulation_type & EMULTYPE_VMWARE) && |
6236 | !is_vmware_backdoor_opcode(ctxt)) | |
6237 | return EMULATE_FAIL; | |
6238 | ||
ba8afb6b | 6239 | if (emulation_type & EMULTYPE_SKIP) { |
9dac77fa | 6240 | kvm_rip_write(vcpu, ctxt->_eip); |
bb663c7a NA |
6241 | if (ctxt->eflags & X86_EFLAGS_RF) |
6242 | kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); | |
ba8afb6b GN |
6243 | return EMULATE_DONE; |
6244 | } | |
6245 | ||
1cb3f3ae XG |
6246 | if (retry_instruction(ctxt, cr2, emulation_type)) |
6247 | return EMULATE_DONE; | |
6248 | ||
7ae441ea | 6249 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 6250 | changes registers values during IO operation */ |
7ae441ea GN |
6251 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
6252 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 6253 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 6254 | } |
4d2179e1 | 6255 | |
5cd21917 | 6256 | restart: |
0f89b207 TL |
6257 | /* Save the faulting GPA (cr2) in the address field */ |
6258 | ctxt->exception.address = cr2; | |
6259 | ||
9d74191a | 6260 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 6261 | |
775fde86 JR |
6262 | if (r == EMULATION_INTERCEPTED) |
6263 | return EMULATE_DONE; | |
6264 | ||
d2ddd1c4 | 6265 | if (r == EMULATION_FAILED) { |
991eebf9 GN |
6266 | if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, |
6267 | emulation_type)) | |
c3cd7ffa GN |
6268 | return EMULATE_DONE; |
6269 | ||
e2366171 | 6270 | return handle_emulation_failure(vcpu, emulation_type); |
bbd9b64e CO |
6271 | } |
6272 | ||
9d74191a | 6273 | if (ctxt->have_exception) { |
d2ddd1c4 | 6274 | r = EMULATE_DONE; |
ef54bcfe PB |
6275 | if (inject_emulated_exception(vcpu)) |
6276 | return r; | |
d2ddd1c4 | 6277 | } else if (vcpu->arch.pio.count) { |
0912c977 PB |
6278 | if (!vcpu->arch.pio.in) { |
6279 | /* FIXME: return into emulator if single-stepping. */ | |
3457e419 | 6280 | vcpu->arch.pio.count = 0; |
0912c977 | 6281 | } else { |
7ae441ea | 6282 | writeback = false; |
716d51ab GN |
6283 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
6284 | } | |
ac0a48c3 | 6285 | r = EMULATE_USER_EXIT; |
7ae441ea GN |
6286 | } else if (vcpu->mmio_needed) { |
6287 | if (!vcpu->mmio_is_write) | |
6288 | writeback = false; | |
ac0a48c3 | 6289 | r = EMULATE_USER_EXIT; |
716d51ab | 6290 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
7ae441ea | 6291 | } else if (r == EMULATION_RESTART) |
5cd21917 | 6292 | goto restart; |
d2ddd1c4 GN |
6293 | else |
6294 | r = EMULATE_DONE; | |
f850e2e6 | 6295 | |
7ae441ea | 6296 | if (writeback) { |
6addfc42 | 6297 | unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
9d74191a | 6298 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
7ae441ea | 6299 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
9d74191a | 6300 | kvm_rip_write(vcpu, ctxt->eip); |
c8401dda PB |
6301 | if (r == EMULATE_DONE && |
6302 | (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) | |
6303 | kvm_vcpu_do_singlestep(vcpu, &r); | |
38827dbd NA |
6304 | if (!ctxt->have_exception || |
6305 | exception_type(ctxt->exception.vector) == EXCPT_TRAP) | |
6306 | __kvm_set_rflags(vcpu, ctxt->eflags); | |
6addfc42 PB |
6307 | |
6308 | /* | |
6309 | * For STI, interrupts are shadowed; so KVM_REQ_EVENT will | |
6310 | * do nothing, and it will be requested again as soon as | |
6311 | * the shadow expires. But we still need to check here, | |
6312 | * because POPF has no interrupt shadow. | |
6313 | */ | |
6314 | if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) | |
6315 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7ae441ea GN |
6316 | } else |
6317 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
6318 | |
6319 | return r; | |
de7d789a | 6320 | } |
c60658d1 SC |
6321 | |
6322 | int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) | |
6323 | { | |
6324 | return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); | |
6325 | } | |
6326 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction); | |
6327 | ||
6328 | int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, | |
6329 | void *insn, int insn_len) | |
6330 | { | |
6331 | return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); | |
6332 | } | |
6333 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); | |
de7d789a | 6334 | |
dca7f128 SC |
6335 | static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, |
6336 | unsigned short port) | |
de7d789a | 6337 | { |
cf8f70bf | 6338 | unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
ca1d4a9e AK |
6339 | int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, |
6340 | size, port, &val, 1); | |
cf8f70bf | 6341 | /* do not return to emulator after return from userspace */ |
7972995b | 6342 | vcpu->arch.pio.count = 0; |
de7d789a CO |
6343 | return ret; |
6344 | } | |
de7d789a | 6345 | |
8370c3d0 TL |
6346 | static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
6347 | { | |
6348 | unsigned long val; | |
6349 | ||
6350 | /* We should only ever be called with arch.pio.count equal to 1 */ | |
6351 | BUG_ON(vcpu->arch.pio.count != 1); | |
6352 | ||
6353 | /* For size less than 4 we merge, else we zero extend */ | |
6354 | val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) | |
6355 | : 0; | |
6356 | ||
6357 | /* | |
6358 | * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform | |
6359 | * the copy and tracing | |
6360 | */ | |
6361 | emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, | |
6362 | vcpu->arch.pio.port, &val, 1); | |
6363 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
6364 | ||
6365 | return 1; | |
6366 | } | |
6367 | ||
dca7f128 SC |
6368 | static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, |
6369 | unsigned short port) | |
8370c3d0 TL |
6370 | { |
6371 | unsigned long val; | |
6372 | int ret; | |
6373 | ||
6374 | /* For size less than 4 we merge, else we zero extend */ | |
6375 | val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; | |
6376 | ||
6377 | ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, | |
6378 | &val, 1); | |
6379 | if (ret) { | |
6380 | kvm_register_write(vcpu, VCPU_REGS_RAX, val); | |
6381 | return ret; | |
6382 | } | |
6383 | ||
6384 | vcpu->arch.complete_userspace_io = complete_fast_pio_in; | |
6385 | ||
6386 | return 0; | |
6387 | } | |
dca7f128 SC |
6388 | |
6389 | int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) | |
6390 | { | |
6391 | int ret = kvm_skip_emulated_instruction(vcpu); | |
6392 | ||
6393 | /* | |
6394 | * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered | |
6395 | * KVM_EXIT_DEBUG here. | |
6396 | */ | |
6397 | if (in) | |
6398 | return kvm_fast_pio_in(vcpu, size, port) && ret; | |
6399 | else | |
6400 | return kvm_fast_pio_out(vcpu, size, port) && ret; | |
6401 | } | |
6402 | EXPORT_SYMBOL_GPL(kvm_fast_pio); | |
8370c3d0 | 6403 | |
251a5fd6 | 6404 | static int kvmclock_cpu_down_prep(unsigned int cpu) |
8cfdc000 | 6405 | { |
0a3aee0d | 6406 | __this_cpu_write(cpu_tsc_khz, 0); |
251a5fd6 | 6407 | return 0; |
8cfdc000 ZA |
6408 | } |
6409 | ||
6410 | static void tsc_khz_changed(void *data) | |
c8076604 | 6411 | { |
8cfdc000 ZA |
6412 | struct cpufreq_freqs *freq = data; |
6413 | unsigned long khz = 0; | |
6414 | ||
6415 | if (data) | |
6416 | khz = freq->new; | |
6417 | else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
6418 | khz = cpufreq_quick_get(raw_smp_processor_id()); | |
6419 | if (!khz) | |
6420 | khz = tsc_khz; | |
0a3aee0d | 6421 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
6422 | } |
6423 | ||
5fa4ec9c | 6424 | #ifdef CONFIG_X86_64 |
0092e434 VK |
6425 | static void kvm_hyperv_tsc_notifier(void) |
6426 | { | |
0092e434 VK |
6427 | struct kvm *kvm; |
6428 | struct kvm_vcpu *vcpu; | |
6429 | int cpu; | |
6430 | ||
6431 | spin_lock(&kvm_lock); | |
6432 | list_for_each_entry(kvm, &vm_list, vm_list) | |
6433 | kvm_make_mclock_inprogress_request(kvm); | |
6434 | ||
6435 | hyperv_stop_tsc_emulation(); | |
6436 | ||
6437 | /* TSC frequency always matches when on Hyper-V */ | |
6438 | for_each_present_cpu(cpu) | |
6439 | per_cpu(cpu_tsc_khz, cpu) = tsc_khz; | |
6440 | kvm_max_guest_tsc_khz = tsc_khz; | |
6441 | ||
6442 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
6443 | struct kvm_arch *ka = &kvm->arch; | |
6444 | ||
6445 | spin_lock(&ka->pvclock_gtod_sync_lock); | |
6446 | ||
6447 | pvclock_update_vm_gtod_copy(kvm); | |
6448 | ||
6449 | kvm_for_each_vcpu(cpu, vcpu, kvm) | |
6450 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
6451 | ||
6452 | kvm_for_each_vcpu(cpu, vcpu, kvm) | |
6453 | kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); | |
6454 | ||
6455 | spin_unlock(&ka->pvclock_gtod_sync_lock); | |
6456 | } | |
6457 | spin_unlock(&kvm_lock); | |
0092e434 | 6458 | } |
5fa4ec9c | 6459 | #endif |
0092e434 | 6460 | |
c8076604 GH |
6461 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
6462 | void *data) | |
6463 | { | |
6464 | struct cpufreq_freqs *freq = data; | |
6465 | struct kvm *kvm; | |
6466 | struct kvm_vcpu *vcpu; | |
6467 | int i, send_ipi = 0; | |
6468 | ||
8cfdc000 ZA |
6469 | /* |
6470 | * We allow guests to temporarily run on slowing clocks, | |
6471 | * provided we notify them after, or to run on accelerating | |
6472 | * clocks, provided we notify them before. Thus time never | |
6473 | * goes backwards. | |
6474 | * | |
6475 | * However, we have a problem. We can't atomically update | |
6476 | * the frequency of a given CPU from this function; it is | |
6477 | * merely a notifier, which can be called from any CPU. | |
6478 | * Changing the TSC frequency at arbitrary points in time | |
6479 | * requires a recomputation of local variables related to | |
6480 | * the TSC for each VCPU. We must flag these local variables | |
6481 | * to be updated and be sure the update takes place with the | |
6482 | * new frequency before any guests proceed. | |
6483 | * | |
6484 | * Unfortunately, the combination of hotplug CPU and frequency | |
6485 | * change creates an intractable locking scenario; the order | |
6486 | * of when these callouts happen is undefined with respect to | |
6487 | * CPU hotplug, and they can race with each other. As such, | |
6488 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
6489 | * undefined; you can actually have a CPU frequency change take | |
6490 | * place in between the computation of X and the setting of the | |
6491 | * variable. To protect against this problem, all updates of | |
6492 | * the per_cpu tsc_khz variable are done in an interrupt | |
6493 | * protected IPI, and all callers wishing to update the value | |
6494 | * must wait for a synchronous IPI to complete (which is trivial | |
6495 | * if the caller is on the CPU already). This establishes the | |
6496 | * necessary total order on variable updates. | |
6497 | * | |
6498 | * Note that because a guest time update may take place | |
6499 | * anytime after the setting of the VCPU's request bit, the | |
6500 | * correct TSC value must be set before the request. However, | |
6501 | * to ensure the update actually makes it to any guest which | |
6502 | * starts running in hardware virtualization between the set | |
6503 | * and the acquisition of the spinlock, we must also ping the | |
6504 | * CPU after setting the request bit. | |
6505 | * | |
6506 | */ | |
6507 | ||
c8076604 GH |
6508 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
6509 | return 0; | |
6510 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
6511 | return 0; | |
8cfdc000 ZA |
6512 | |
6513 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | |
c8076604 | 6514 | |
2f303b74 | 6515 | spin_lock(&kvm_lock); |
c8076604 | 6516 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 6517 | kvm_for_each_vcpu(i, vcpu, kvm) { |
c8076604 GH |
6518 | if (vcpu->cpu != freq->cpu) |
6519 | continue; | |
c285545f | 6520 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
c8076604 | 6521 | if (vcpu->cpu != smp_processor_id()) |
8cfdc000 | 6522 | send_ipi = 1; |
c8076604 GH |
6523 | } |
6524 | } | |
2f303b74 | 6525 | spin_unlock(&kvm_lock); |
c8076604 GH |
6526 | |
6527 | if (freq->old < freq->new && send_ipi) { | |
6528 | /* | |
6529 | * We upscale the frequency. Must make the guest | |
6530 | * doesn't see old kvmclock values while running with | |
6531 | * the new frequency, otherwise we risk the guest sees | |
6532 | * time go backwards. | |
6533 | * | |
6534 | * In case we update the frequency for another cpu | |
6535 | * (which might be in guest context) send an interrupt | |
6536 | * to kick the cpu out of guest context. Next time | |
6537 | * guest context is entered kvmclock will be updated, | |
6538 | * so the guest will not see stale values. | |
6539 | */ | |
8cfdc000 | 6540 | smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
c8076604 GH |
6541 | } |
6542 | return 0; | |
6543 | } | |
6544 | ||
6545 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
6546 | .notifier_call = kvmclock_cpufreq_notifier |
6547 | }; | |
6548 | ||
251a5fd6 | 6549 | static int kvmclock_cpu_online(unsigned int cpu) |
8cfdc000 | 6550 | { |
251a5fd6 SAS |
6551 | tsc_khz_changed(NULL); |
6552 | return 0; | |
8cfdc000 ZA |
6553 | } |
6554 | ||
b820cc0c ZA |
6555 | static void kvm_timer_init(void) |
6556 | { | |
c285545f | 6557 | max_tsc_khz = tsc_khz; |
460dd42e | 6558 | |
b820cc0c | 6559 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
c285545f ZA |
6560 | #ifdef CONFIG_CPU_FREQ |
6561 | struct cpufreq_policy policy; | |
758f588d BP |
6562 | int cpu; |
6563 | ||
c285545f | 6564 | memset(&policy, 0, sizeof(policy)); |
3e26f230 AK |
6565 | cpu = get_cpu(); |
6566 | cpufreq_get_policy(&policy, cpu); | |
c285545f ZA |
6567 | if (policy.cpuinfo.max_freq) |
6568 | max_tsc_khz = policy.cpuinfo.max_freq; | |
3e26f230 | 6569 | put_cpu(); |
c285545f | 6570 | #endif |
b820cc0c ZA |
6571 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
6572 | CPUFREQ_TRANSITION_NOTIFIER); | |
6573 | } | |
c285545f | 6574 | pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
460dd42e | 6575 | |
73c1b41e | 6576 | cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
251a5fd6 | 6577 | kvmclock_cpu_online, kvmclock_cpu_down_prep); |
b820cc0c ZA |
6578 | } |
6579 | ||
dd60d217 AK |
6580 | DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
6581 | EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); | |
ff9d07a0 | 6582 | |
f5132b01 | 6583 | int kvm_is_in_guest(void) |
ff9d07a0 | 6584 | { |
086c9855 | 6585 | return __this_cpu_read(current_vcpu) != NULL; |
ff9d07a0 ZY |
6586 | } |
6587 | ||
6588 | static int kvm_is_user_mode(void) | |
6589 | { | |
6590 | int user_mode = 3; | |
dcf46b94 | 6591 | |
086c9855 AS |
6592 | if (__this_cpu_read(current_vcpu)) |
6593 | user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 6594 | |
ff9d07a0 ZY |
6595 | return user_mode != 0; |
6596 | } | |
6597 | ||
6598 | static unsigned long kvm_get_guest_ip(void) | |
6599 | { | |
6600 | unsigned long ip = 0; | |
dcf46b94 | 6601 | |
086c9855 AS |
6602 | if (__this_cpu_read(current_vcpu)) |
6603 | ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | |
dcf46b94 | 6604 | |
ff9d07a0 ZY |
6605 | return ip; |
6606 | } | |
6607 | ||
6608 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | |
6609 | .is_in_guest = kvm_is_in_guest, | |
6610 | .is_user_mode = kvm_is_user_mode, | |
6611 | .get_guest_ip = kvm_get_guest_ip, | |
6612 | }; | |
6613 | ||
ce88decf XG |
6614 | static void kvm_set_mmio_spte_mask(void) |
6615 | { | |
6616 | u64 mask; | |
6617 | int maxphyaddr = boot_cpu_data.x86_phys_bits; | |
6618 | ||
6619 | /* | |
6620 | * Set the reserved bits and the present bit of an paging-structure | |
6621 | * entry to generate page fault with PFER.RSV = 1. | |
6622 | */ | |
28a1f3ac JS |
6623 | |
6624 | /* | |
6625 | * Mask the uppermost physical address bit, which would be reserved as | |
6626 | * long as the supported physical address width is less than 52. | |
6627 | */ | |
6628 | mask = 1ull << 51; | |
885032b9 | 6629 | |
885032b9 | 6630 | /* Set the present bit. */ |
ce88decf XG |
6631 | mask |= 1ull; |
6632 | ||
ce88decf XG |
6633 | /* |
6634 | * If reserved bit is not supported, clear the present bit to disable | |
6635 | * mmio page fault. | |
6636 | */ | |
7288bde1 | 6637 | if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52) |
ce88decf | 6638 | mask &= ~1ull; |
ce88decf | 6639 | |
dcdca5fe | 6640 | kvm_mmu_set_mmio_spte_mask(mask, mask); |
ce88decf XG |
6641 | } |
6642 | ||
16e8d74d MT |
6643 | #ifdef CONFIG_X86_64 |
6644 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
6645 | { | |
d828199e MT |
6646 | struct kvm *kvm; |
6647 | ||
6648 | struct kvm_vcpu *vcpu; | |
6649 | int i; | |
6650 | ||
2f303b74 | 6651 | spin_lock(&kvm_lock); |
d828199e MT |
6652 | list_for_each_entry(kvm, &vm_list, vm_list) |
6653 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 6654 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
d828199e | 6655 | atomic_set(&kvm_guest_has_master_clock, 0); |
2f303b74 | 6656 | spin_unlock(&kvm_lock); |
16e8d74d MT |
6657 | } |
6658 | ||
6659 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
6660 | ||
6661 | /* | |
6662 | * Notification about pvclock gtod data update. | |
6663 | */ | |
6664 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
6665 | void *priv) | |
6666 | { | |
6667 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
6668 | struct timekeeper *tk = priv; | |
6669 | ||
6670 | update_pvclock_gtod(tk); | |
6671 | ||
6672 | /* disable master clock if host does not trust, or does not | |
b0c39dc6 | 6673 | * use, TSC based clocksource. |
16e8d74d | 6674 | */ |
b0c39dc6 | 6675 | if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && |
16e8d74d MT |
6676 | atomic_read(&kvm_guest_has_master_clock) != 0) |
6677 | queue_work(system_long_wq, &pvclock_gtod_work); | |
6678 | ||
6679 | return 0; | |
6680 | } | |
6681 | ||
6682 | static struct notifier_block pvclock_gtod_notifier = { | |
6683 | .notifier_call = pvclock_gtod_notify, | |
6684 | }; | |
6685 | #endif | |
6686 | ||
f8c16bba | 6687 | int kvm_arch_init(void *opaque) |
043405e1 | 6688 | { |
b820cc0c | 6689 | int r; |
6b61edf7 | 6690 | struct kvm_x86_ops *ops = opaque; |
f8c16bba | 6691 | |
f8c16bba ZX |
6692 | if (kvm_x86_ops) { |
6693 | printk(KERN_ERR "kvm: already loaded the other module\n"); | |
56c6d28a ZX |
6694 | r = -EEXIST; |
6695 | goto out; | |
f8c16bba ZX |
6696 | } |
6697 | ||
6698 | if (!ops->cpu_has_kvm_support()) { | |
6699 | printk(KERN_ERR "kvm: no hardware support\n"); | |
56c6d28a ZX |
6700 | r = -EOPNOTSUPP; |
6701 | goto out; | |
f8c16bba ZX |
6702 | } |
6703 | if (ops->disabled_by_bios()) { | |
6704 | printk(KERN_ERR "kvm: disabled by bios\n"); | |
56c6d28a ZX |
6705 | r = -EOPNOTSUPP; |
6706 | goto out; | |
f8c16bba ZX |
6707 | } |
6708 | ||
013f6a5d MT |
6709 | r = -ENOMEM; |
6710 | shared_msrs = alloc_percpu(struct kvm_shared_msrs); | |
6711 | if (!shared_msrs) { | |
6712 | printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); | |
6713 | goto out; | |
6714 | } | |
6715 | ||
97db56ce AK |
6716 | r = kvm_mmu_module_init(); |
6717 | if (r) | |
013f6a5d | 6718 | goto out_free_percpu; |
97db56ce | 6719 | |
ce88decf | 6720 | kvm_set_mmio_spte_mask(); |
97db56ce | 6721 | |
f8c16bba | 6722 | kvm_x86_ops = ops; |
920c8377 | 6723 | |
7b52345e | 6724 | kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
ffb128c8 | 6725 | PT_DIRTY_MASK, PT64_NX_MASK, 0, |
d0ec49d4 | 6726 | PT_PRESENT_MASK, 0, sme_me_mask); |
b820cc0c | 6727 | kvm_timer_init(); |
c8076604 | 6728 | |
ff9d07a0 ZY |
6729 | perf_register_guest_info_callbacks(&kvm_guest_cbs); |
6730 | ||
d366bf7e | 6731 | if (boot_cpu_has(X86_FEATURE_XSAVE)) |
2acf923e DC |
6732 | host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
6733 | ||
c5cc421b | 6734 | kvm_lapic_init(); |
16e8d74d MT |
6735 | #ifdef CONFIG_X86_64 |
6736 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
0092e434 | 6737 | |
5fa4ec9c | 6738 | if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
0092e434 | 6739 | set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); |
16e8d74d MT |
6740 | #endif |
6741 | ||
f8c16bba | 6742 | return 0; |
56c6d28a | 6743 | |
013f6a5d MT |
6744 | out_free_percpu: |
6745 | free_percpu(shared_msrs); | |
56c6d28a | 6746 | out: |
56c6d28a | 6747 | return r; |
043405e1 | 6748 | } |
8776e519 | 6749 | |
f8c16bba ZX |
6750 | void kvm_arch_exit(void) |
6751 | { | |
0092e434 | 6752 | #ifdef CONFIG_X86_64 |
5fa4ec9c | 6753 | if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
0092e434 VK |
6754 | clear_hv_tscchange_cb(); |
6755 | #endif | |
cef84c30 | 6756 | kvm_lapic_exit(); |
ff9d07a0 ZY |
6757 | perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
6758 | ||
888d256e JK |
6759 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
6760 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | |
6761 | CPUFREQ_TRANSITION_NOTIFIER); | |
251a5fd6 | 6762 | cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
16e8d74d MT |
6763 | #ifdef CONFIG_X86_64 |
6764 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
6765 | #endif | |
f8c16bba | 6766 | kvm_x86_ops = NULL; |
56c6d28a | 6767 | kvm_mmu_module_exit(); |
013f6a5d | 6768 | free_percpu(shared_msrs); |
56c6d28a | 6769 | } |
f8c16bba | 6770 | |
5cb56059 | 6771 | int kvm_vcpu_halt(struct kvm_vcpu *vcpu) |
8776e519 HB |
6772 | { |
6773 | ++vcpu->stat.halt_exits; | |
35754c98 | 6774 | if (lapic_in_kernel(vcpu)) { |
a4535290 | 6775 | vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
8776e519 HB |
6776 | return 1; |
6777 | } else { | |
6778 | vcpu->run->exit_reason = KVM_EXIT_HLT; | |
6779 | return 0; | |
6780 | } | |
6781 | } | |
5cb56059 JS |
6782 | EXPORT_SYMBOL_GPL(kvm_vcpu_halt); |
6783 | ||
6784 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | |
6785 | { | |
6affcbed KH |
6786 | int ret = kvm_skip_emulated_instruction(vcpu); |
6787 | /* | |
6788 | * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered | |
6789 | * KVM_EXIT_DEBUG here. | |
6790 | */ | |
6791 | return kvm_vcpu_halt(vcpu) && ret; | |
5cb56059 | 6792 | } |
8776e519 HB |
6793 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
6794 | ||
8ef81a9a | 6795 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6796 | static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
6797 | unsigned long clock_type) | |
6798 | { | |
6799 | struct kvm_clock_pairing clock_pairing; | |
899a31f5 | 6800 | struct timespec64 ts; |
80fbd89c | 6801 | u64 cycle; |
55dd00a7 MT |
6802 | int ret; |
6803 | ||
6804 | if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) | |
6805 | return -KVM_EOPNOTSUPP; | |
6806 | ||
6807 | if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) | |
6808 | return -KVM_EOPNOTSUPP; | |
6809 | ||
6810 | clock_pairing.sec = ts.tv_sec; | |
6811 | clock_pairing.nsec = ts.tv_nsec; | |
6812 | clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); | |
6813 | clock_pairing.flags = 0; | |
6814 | ||
6815 | ret = 0; | |
6816 | if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, | |
6817 | sizeof(struct kvm_clock_pairing))) | |
6818 | ret = -KVM_EFAULT; | |
6819 | ||
6820 | return ret; | |
6821 | } | |
8ef81a9a | 6822 | #endif |
55dd00a7 | 6823 | |
6aef266c SV |
6824 | /* |
6825 | * kvm_pv_kick_cpu_op: Kick a vcpu. | |
6826 | * | |
6827 | * @apicid - apicid of vcpu to be kicked. | |
6828 | */ | |
6829 | static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) | |
6830 | { | |
24d2166b | 6831 | struct kvm_lapic_irq lapic_irq; |
6aef266c | 6832 | |
24d2166b R |
6833 | lapic_irq.shorthand = 0; |
6834 | lapic_irq.dest_mode = 0; | |
ebd28fcb | 6835 | lapic_irq.level = 0; |
24d2166b | 6836 | lapic_irq.dest_id = apicid; |
93bbf0b8 | 6837 | lapic_irq.msi_redir_hint = false; |
6aef266c | 6838 | |
24d2166b | 6839 | lapic_irq.delivery_mode = APIC_DM_REMRD; |
795a149e | 6840 | kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
6aef266c SV |
6841 | } |
6842 | ||
d62caabb AS |
6843 | void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) |
6844 | { | |
6845 | vcpu->arch.apicv_active = false; | |
6846 | kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); | |
6847 | } | |
6848 | ||
8776e519 HB |
6849 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
6850 | { | |
6851 | unsigned long nr, a0, a1, a2, a3, ret; | |
6356ee0c | 6852 | int op_64_bit; |
8776e519 | 6853 | |
696ca779 RK |
6854 | if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
6855 | return kvm_hv_hypercall(vcpu); | |
55cd8e5a | 6856 | |
5fdbf976 MT |
6857 | nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
6858 | a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
6859 | a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
6860 | a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
6861 | a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
8776e519 | 6862 | |
229456fc | 6863 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 6864 | |
a449c7aa NA |
6865 | op_64_bit = is_64_bit_mode(vcpu); |
6866 | if (!op_64_bit) { | |
8776e519 HB |
6867 | nr &= 0xFFFFFFFF; |
6868 | a0 &= 0xFFFFFFFF; | |
6869 | a1 &= 0xFFFFFFFF; | |
6870 | a2 &= 0xFFFFFFFF; | |
6871 | a3 &= 0xFFFFFFFF; | |
6872 | } | |
6873 | ||
07708c4a JK |
6874 | if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
6875 | ret = -KVM_EPERM; | |
696ca779 | 6876 | goto out; |
07708c4a JK |
6877 | } |
6878 | ||
8776e519 | 6879 | switch (nr) { |
b93463aa AK |
6880 | case KVM_HC_VAPIC_POLL_IRQ: |
6881 | ret = 0; | |
6882 | break; | |
6aef266c SV |
6883 | case KVM_HC_KICK_CPU: |
6884 | kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); | |
6885 | ret = 0; | |
6886 | break; | |
8ef81a9a | 6887 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
6888 | case KVM_HC_CLOCK_PAIRING: |
6889 | ret = kvm_pv_clock_pairing(vcpu, a0, a1); | |
6890 | break; | |
4180bf1b WL |
6891 | case KVM_HC_SEND_IPI: |
6892 | ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); | |
6893 | break; | |
8ef81a9a | 6894 | #endif |
8776e519 HB |
6895 | default: |
6896 | ret = -KVM_ENOSYS; | |
6897 | break; | |
6898 | } | |
696ca779 | 6899 | out: |
a449c7aa NA |
6900 | if (!op_64_bit) |
6901 | ret = (u32)ret; | |
5fdbf976 | 6902 | kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
6356ee0c | 6903 | |
f11c3a8d | 6904 | ++vcpu->stat.hypercalls; |
6356ee0c | 6905 | return kvm_skip_emulated_instruction(vcpu); |
8776e519 HB |
6906 | } |
6907 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
6908 | ||
b6785def | 6909 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 6910 | { |
d6aa1000 | 6911 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 6912 | char instruction[3]; |
5fdbf976 | 6913 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 6914 | |
8776e519 | 6915 | kvm_x86_ops->patch_hypercall(vcpu, instruction); |
8776e519 | 6916 | |
ce2e852e DV |
6917 | return emulator_write_emulated(ctxt, rip, instruction, 3, |
6918 | &ctxt->exception); | |
8776e519 HB |
6919 | } |
6920 | ||
851ba692 | 6921 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6922 | { |
782d422b MG |
6923 | return vcpu->run->request_interrupt_window && |
6924 | likely(!pic_in_kernel(vcpu->kvm)); | |
b6c7a5dc HB |
6925 | } |
6926 | ||
851ba692 | 6927 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 6928 | { |
851ba692 AK |
6929 | struct kvm_run *kvm_run = vcpu->run; |
6930 | ||
91586a3b | 6931 | kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
f077825a | 6932 | kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; |
2d3ad1f4 | 6933 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
b6c7a5dc | 6934 | kvm_run->apic_base = kvm_get_apic_base(vcpu); |
127a457a MG |
6935 | kvm_run->ready_for_interrupt_injection = |
6936 | pic_in_kernel(vcpu->kvm) || | |
782d422b | 6937 | kvm_vcpu_ready_for_interrupt_injection(vcpu); |
b6c7a5dc HB |
6938 | } |
6939 | ||
95ba8273 GN |
6940 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
6941 | { | |
6942 | int max_irr, tpr; | |
6943 | ||
6944 | if (!kvm_x86_ops->update_cr8_intercept) | |
6945 | return; | |
6946 | ||
bce87cce | 6947 | if (!lapic_in_kernel(vcpu)) |
88c808fd AK |
6948 | return; |
6949 | ||
d62caabb AS |
6950 | if (vcpu->arch.apicv_active) |
6951 | return; | |
6952 | ||
8db3baa2 GN |
6953 | if (!vcpu->arch.apic->vapic_addr) |
6954 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
6955 | else | |
6956 | max_irr = -1; | |
95ba8273 GN |
6957 | |
6958 | if (max_irr != -1) | |
6959 | max_irr >>= 4; | |
6960 | ||
6961 | tpr = kvm_lapic_get_cr8(vcpu); | |
6962 | ||
6963 | kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | |
6964 | } | |
6965 | ||
b6b8a145 | 6966 | static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) |
95ba8273 | 6967 | { |
b6b8a145 JK |
6968 | int r; |
6969 | ||
95ba8273 | 6970 | /* try to reinject previous events if any */ |
664f8e26 | 6971 | |
1a680e35 LA |
6972 | if (vcpu->arch.exception.injected) |
6973 | kvm_x86_ops->queue_exception(vcpu); | |
664f8e26 | 6974 | /* |
a042c26f LA |
6975 | * Do not inject an NMI or interrupt if there is a pending |
6976 | * exception. Exceptions and interrupts are recognized at | |
6977 | * instruction boundaries, i.e. the start of an instruction. | |
6978 | * Trap-like exceptions, e.g. #DB, have higher priority than | |
6979 | * NMIs and interrupts, i.e. traps are recognized before an | |
6980 | * NMI/interrupt that's pending on the same instruction. | |
6981 | * Fault-like exceptions, e.g. #GP and #PF, are the lowest | |
6982 | * priority, but are only generated (pended) during instruction | |
6983 | * execution, i.e. a pending fault-like exception means the | |
6984 | * fault occurred on the *previous* instruction and must be | |
6985 | * serviced prior to recognizing any new events in order to | |
6986 | * fully complete the previous instruction. | |
664f8e26 | 6987 | */ |
1a680e35 LA |
6988 | else if (!vcpu->arch.exception.pending) { |
6989 | if (vcpu->arch.nmi_injected) | |
664f8e26 | 6990 | kvm_x86_ops->set_nmi(vcpu); |
1a680e35 | 6991 | else if (vcpu->arch.interrupt.injected) |
664f8e26 | 6992 | kvm_x86_ops->set_irq(vcpu); |
664f8e26 WL |
6993 | } |
6994 | ||
1a680e35 LA |
6995 | /* |
6996 | * Call check_nested_events() even if we reinjected a previous event | |
6997 | * in order for caller to determine if it should require immediate-exit | |
6998 | * from L2 to L1 due to pending L1 events which require exit | |
6999 | * from L2 to L1. | |
7000 | */ | |
664f8e26 WL |
7001 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { |
7002 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
7003 | if (r != 0) | |
7004 | return r; | |
7005 | } | |
7006 | ||
7007 | /* try to inject new event if pending */ | |
b59bb7bd | 7008 | if (vcpu->arch.exception.pending) { |
5c1c85d0 AK |
7009 | trace_kvm_inj_exception(vcpu->arch.exception.nr, |
7010 | vcpu->arch.exception.has_error_code, | |
7011 | vcpu->arch.exception.error_code); | |
d6e8c854 | 7012 | |
1a680e35 | 7013 | WARN_ON_ONCE(vcpu->arch.exception.injected); |
664f8e26 WL |
7014 | vcpu->arch.exception.pending = false; |
7015 | vcpu->arch.exception.injected = true; | |
7016 | ||
d6e8c854 NA |
7017 | if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) |
7018 | __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | | |
7019 | X86_EFLAGS_RF); | |
7020 | ||
6bdf0662 NA |
7021 | if (vcpu->arch.exception.nr == DB_VECTOR && |
7022 | (vcpu->arch.dr7 & DR7_GD)) { | |
7023 | vcpu->arch.dr7 &= ~DR7_GD; | |
7024 | kvm_update_dr7(vcpu); | |
7025 | } | |
7026 | ||
cfcd20e5 | 7027 | kvm_x86_ops->queue_exception(vcpu); |
1a680e35 LA |
7028 | } |
7029 | ||
7030 | /* Don't consider new event if we re-injected an event */ | |
7031 | if (kvm_event_needs_reinjection(vcpu)) | |
7032 | return 0; | |
7033 | ||
7034 | if (vcpu->arch.smi_pending && !is_smm(vcpu) && | |
7035 | kvm_x86_ops->smi_allowed(vcpu)) { | |
c43203ca | 7036 | vcpu->arch.smi_pending = false; |
52797bf9 | 7037 | ++vcpu->arch.smi_count; |
ee2cd4b7 | 7038 | enter_smm(vcpu); |
c43203ca | 7039 | } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { |
321c5658 YS |
7040 | --vcpu->arch.nmi_pending; |
7041 | vcpu->arch.nmi_injected = true; | |
7042 | kvm_x86_ops->set_nmi(vcpu); | |
c7c9c56c | 7043 | } else if (kvm_cpu_has_injectable_intr(vcpu)) { |
9242b5b6 BD |
7044 | /* |
7045 | * Because interrupts can be injected asynchronously, we are | |
7046 | * calling check_nested_events again here to avoid a race condition. | |
7047 | * See https://lkml.org/lkml/2014/7/2/60 for discussion about this | |
7048 | * proposal and current concerns. Perhaps we should be setting | |
7049 | * KVM_REQ_EVENT only on certain events and not unconditionally? | |
7050 | */ | |
7051 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { | |
7052 | r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); | |
7053 | if (r != 0) | |
7054 | return r; | |
7055 | } | |
95ba8273 | 7056 | if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
66fd3f7f GN |
7057 | kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
7058 | false); | |
7059 | kvm_x86_ops->set_irq(vcpu); | |
95ba8273 GN |
7060 | } |
7061 | } | |
ee2cd4b7 | 7062 | |
b6b8a145 | 7063 | return 0; |
95ba8273 GN |
7064 | } |
7065 | ||
7460fb4a AK |
7066 | static void process_nmi(struct kvm_vcpu *vcpu) |
7067 | { | |
7068 | unsigned limit = 2; | |
7069 | ||
7070 | /* | |
7071 | * x86 is limited to one NMI running, and one NMI pending after it. | |
7072 | * If an NMI is already in progress, limit further NMIs to just one. | |
7073 | * Otherwise, allow two (and we'll inject the first one immediately). | |
7074 | */ | |
7075 | if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | |
7076 | limit = 1; | |
7077 | ||
7078 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
7079 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
7080 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7081 | } | |
7082 | ||
ee2cd4b7 | 7083 | static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) |
660a5d51 PB |
7084 | { |
7085 | u32 flags = 0; | |
7086 | flags |= seg->g << 23; | |
7087 | flags |= seg->db << 22; | |
7088 | flags |= seg->l << 21; | |
7089 | flags |= seg->avl << 20; | |
7090 | flags |= seg->present << 15; | |
7091 | flags |= seg->dpl << 13; | |
7092 | flags |= seg->s << 12; | |
7093 | flags |= seg->type << 8; | |
7094 | return flags; | |
7095 | } | |
7096 | ||
ee2cd4b7 | 7097 | static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
7098 | { |
7099 | struct kvm_segment seg; | |
7100 | int offset; | |
7101 | ||
7102 | kvm_get_segment(vcpu, &seg, n); | |
7103 | put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); | |
7104 | ||
7105 | if (n < 3) | |
7106 | offset = 0x7f84 + n * 12; | |
7107 | else | |
7108 | offset = 0x7f2c + (n - 3) * 12; | |
7109 | ||
7110 | put_smstate(u32, buf, offset + 8, seg.base); | |
7111 | put_smstate(u32, buf, offset + 4, seg.limit); | |
ee2cd4b7 | 7112 | put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
7113 | } |
7114 | ||
efbb288a | 7115 | #ifdef CONFIG_X86_64 |
ee2cd4b7 | 7116 | static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) |
660a5d51 PB |
7117 | { |
7118 | struct kvm_segment seg; | |
7119 | int offset; | |
7120 | u16 flags; | |
7121 | ||
7122 | kvm_get_segment(vcpu, &seg, n); | |
7123 | offset = 0x7e00 + n * 16; | |
7124 | ||
ee2cd4b7 | 7125 | flags = enter_smm_get_segment_flags(&seg) >> 8; |
660a5d51 PB |
7126 | put_smstate(u16, buf, offset, seg.selector); |
7127 | put_smstate(u16, buf, offset + 2, flags); | |
7128 | put_smstate(u32, buf, offset + 4, seg.limit); | |
7129 | put_smstate(u64, buf, offset + 8, seg.base); | |
7130 | } | |
efbb288a | 7131 | #endif |
660a5d51 | 7132 | |
ee2cd4b7 | 7133 | static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
7134 | { |
7135 | struct desc_ptr dt; | |
7136 | struct kvm_segment seg; | |
7137 | unsigned long val; | |
7138 | int i; | |
7139 | ||
7140 | put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); | |
7141 | put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); | |
7142 | put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); | |
7143 | put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); | |
7144 | ||
7145 | for (i = 0; i < 8; i++) | |
7146 | put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); | |
7147 | ||
7148 | kvm_get_dr(vcpu, 6, &val); | |
7149 | put_smstate(u32, buf, 0x7fcc, (u32)val); | |
7150 | kvm_get_dr(vcpu, 7, &val); | |
7151 | put_smstate(u32, buf, 0x7fc8, (u32)val); | |
7152 | ||
7153 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
7154 | put_smstate(u32, buf, 0x7fc4, seg.selector); | |
7155 | put_smstate(u32, buf, 0x7f64, seg.base); | |
7156 | put_smstate(u32, buf, 0x7f60, seg.limit); | |
ee2cd4b7 | 7157 | put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
7158 | |
7159 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
7160 | put_smstate(u32, buf, 0x7fc0, seg.selector); | |
7161 | put_smstate(u32, buf, 0x7f80, seg.base); | |
7162 | put_smstate(u32, buf, 0x7f7c, seg.limit); | |
ee2cd4b7 | 7163 | put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); |
660a5d51 PB |
7164 | |
7165 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
7166 | put_smstate(u32, buf, 0x7f74, dt.address); | |
7167 | put_smstate(u32, buf, 0x7f70, dt.size); | |
7168 | ||
7169 | kvm_x86_ops->get_idt(vcpu, &dt); | |
7170 | put_smstate(u32, buf, 0x7f58, dt.address); | |
7171 | put_smstate(u32, buf, 0x7f54, dt.size); | |
7172 | ||
7173 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 7174 | enter_smm_save_seg_32(vcpu, buf, i); |
660a5d51 PB |
7175 | |
7176 | put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); | |
7177 | ||
7178 | /* revision id */ | |
7179 | put_smstate(u32, buf, 0x7efc, 0x00020000); | |
7180 | put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); | |
7181 | } | |
7182 | ||
ee2cd4b7 | 7183 | static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) |
660a5d51 PB |
7184 | { |
7185 | #ifdef CONFIG_X86_64 | |
7186 | struct desc_ptr dt; | |
7187 | struct kvm_segment seg; | |
7188 | unsigned long val; | |
7189 | int i; | |
7190 | ||
7191 | for (i = 0; i < 16; i++) | |
7192 | put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); | |
7193 | ||
7194 | put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); | |
7195 | put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); | |
7196 | ||
7197 | kvm_get_dr(vcpu, 6, &val); | |
7198 | put_smstate(u64, buf, 0x7f68, val); | |
7199 | kvm_get_dr(vcpu, 7, &val); | |
7200 | put_smstate(u64, buf, 0x7f60, val); | |
7201 | ||
7202 | put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); | |
7203 | put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); | |
7204 | put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); | |
7205 | ||
7206 | put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); | |
7207 | ||
7208 | /* revision id */ | |
7209 | put_smstate(u32, buf, 0x7efc, 0x00020064); | |
7210 | ||
7211 | put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); | |
7212 | ||
7213 | kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); | |
7214 | put_smstate(u16, buf, 0x7e90, seg.selector); | |
ee2cd4b7 | 7215 | put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
7216 | put_smstate(u32, buf, 0x7e94, seg.limit); |
7217 | put_smstate(u64, buf, 0x7e98, seg.base); | |
7218 | ||
7219 | kvm_x86_ops->get_idt(vcpu, &dt); | |
7220 | put_smstate(u32, buf, 0x7e84, dt.size); | |
7221 | put_smstate(u64, buf, 0x7e88, dt.address); | |
7222 | ||
7223 | kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); | |
7224 | put_smstate(u16, buf, 0x7e70, seg.selector); | |
ee2cd4b7 | 7225 | put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); |
660a5d51 PB |
7226 | put_smstate(u32, buf, 0x7e74, seg.limit); |
7227 | put_smstate(u64, buf, 0x7e78, seg.base); | |
7228 | ||
7229 | kvm_x86_ops->get_gdt(vcpu, &dt); | |
7230 | put_smstate(u32, buf, 0x7e64, dt.size); | |
7231 | put_smstate(u64, buf, 0x7e68, dt.address); | |
7232 | ||
7233 | for (i = 0; i < 6; i++) | |
ee2cd4b7 | 7234 | enter_smm_save_seg_64(vcpu, buf, i); |
660a5d51 PB |
7235 | #else |
7236 | WARN_ON_ONCE(1); | |
7237 | #endif | |
7238 | } | |
7239 | ||
ee2cd4b7 | 7240 | static void enter_smm(struct kvm_vcpu *vcpu) |
64d60670 | 7241 | { |
660a5d51 | 7242 | struct kvm_segment cs, ds; |
18c3626e | 7243 | struct desc_ptr dt; |
660a5d51 PB |
7244 | char buf[512]; |
7245 | u32 cr0; | |
7246 | ||
660a5d51 | 7247 | trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); |
660a5d51 | 7248 | memset(buf, 0, 512); |
d6321d49 | 7249 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
ee2cd4b7 | 7250 | enter_smm_save_state_64(vcpu, buf); |
660a5d51 | 7251 | else |
ee2cd4b7 | 7252 | enter_smm_save_state_32(vcpu, buf); |
660a5d51 | 7253 | |
0234bf88 LP |
7254 | /* |
7255 | * Give pre_enter_smm() a chance to make ISA-specific changes to the | |
7256 | * vCPU state (e.g. leave guest mode) after we've saved the state into | |
7257 | * the SMM state-save area. | |
7258 | */ | |
7259 | kvm_x86_ops->pre_enter_smm(vcpu, buf); | |
7260 | ||
7261 | vcpu->arch.hflags |= HF_SMM_MASK; | |
54bf36aa | 7262 | kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); |
660a5d51 PB |
7263 | |
7264 | if (kvm_x86_ops->get_nmi_mask(vcpu)) | |
7265 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
7266 | else | |
7267 | kvm_x86_ops->set_nmi_mask(vcpu, true); | |
7268 | ||
7269 | kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); | |
7270 | kvm_rip_write(vcpu, 0x8000); | |
7271 | ||
7272 | cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); | |
7273 | kvm_x86_ops->set_cr0(vcpu, cr0); | |
7274 | vcpu->arch.cr0 = cr0; | |
7275 | ||
7276 | kvm_x86_ops->set_cr4(vcpu, 0); | |
7277 | ||
18c3626e PB |
7278 | /* Undocumented: IDT limit is set to zero on entry to SMM. */ |
7279 | dt.address = dt.size = 0; | |
7280 | kvm_x86_ops->set_idt(vcpu, &dt); | |
7281 | ||
660a5d51 PB |
7282 | __kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
7283 | ||
7284 | cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; | |
7285 | cs.base = vcpu->arch.smbase; | |
7286 | ||
7287 | ds.selector = 0; | |
7288 | ds.base = 0; | |
7289 | ||
7290 | cs.limit = ds.limit = 0xffffffff; | |
7291 | cs.type = ds.type = 0x3; | |
7292 | cs.dpl = ds.dpl = 0; | |
7293 | cs.db = ds.db = 0; | |
7294 | cs.s = ds.s = 1; | |
7295 | cs.l = ds.l = 0; | |
7296 | cs.g = ds.g = 1; | |
7297 | cs.avl = ds.avl = 0; | |
7298 | cs.present = ds.present = 1; | |
7299 | cs.unusable = ds.unusable = 0; | |
7300 | cs.padding = ds.padding = 0; | |
7301 | ||
7302 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
7303 | kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); | |
7304 | kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); | |
7305 | kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); | |
7306 | kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); | |
7307 | kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); | |
7308 | ||
d6321d49 | 7309 | if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
660a5d51 PB |
7310 | kvm_x86_ops->set_efer(vcpu, 0); |
7311 | ||
7312 | kvm_update_cpuid(vcpu); | |
7313 | kvm_mmu_reset_context(vcpu); | |
64d60670 PB |
7314 | } |
7315 | ||
ee2cd4b7 | 7316 | static void process_smi(struct kvm_vcpu *vcpu) |
c43203ca PB |
7317 | { |
7318 | vcpu->arch.smi_pending = true; | |
7319 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7320 | } | |
7321 | ||
2860c4b1 PB |
7322 | void kvm_make_scan_ioapic_request(struct kvm *kvm) |
7323 | { | |
7324 | kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | |
7325 | } | |
7326 | ||
3d81bc7e | 7327 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
c7c9c56c | 7328 | { |
3d81bc7e YZ |
7329 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
7330 | return; | |
c7c9c56c | 7331 | |
6308630b | 7332 | bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
c7c9c56c | 7333 | |
b053b2ae | 7334 | if (irqchip_split(vcpu->kvm)) |
6308630b | 7335 | kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 7336 | else { |
fa59cc00 | 7337 | if (vcpu->arch.apicv_active) |
d62caabb | 7338 | kvm_x86_ops->sync_pir_to_irr(vcpu); |
6308630b | 7339 | kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); |
db2bdcbb | 7340 | } |
e40ff1d6 LA |
7341 | |
7342 | if (is_guest_mode(vcpu)) | |
7343 | vcpu->arch.load_eoi_exitmap_pending = true; | |
7344 | else | |
7345 | kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); | |
7346 | } | |
7347 | ||
7348 | static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) | |
7349 | { | |
7350 | u64 eoi_exit_bitmap[4]; | |
7351 | ||
7352 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) | |
7353 | return; | |
7354 | ||
5c919412 AS |
7355 | bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, |
7356 | vcpu_to_synic(vcpu)->vec_bitmap, 256); | |
7357 | kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); | |
c7c9c56c YZ |
7358 | } |
7359 | ||
93065ac7 MH |
7360 | int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, |
7361 | unsigned long start, unsigned long end, | |
7362 | bool blockable) | |
b1394e74 RK |
7363 | { |
7364 | unsigned long apic_address; | |
7365 | ||
7366 | /* | |
7367 | * The physical address of apic access page is stored in the VMCS. | |
7368 | * Update it when it becomes invalid. | |
7369 | */ | |
7370 | apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); | |
7371 | if (start <= apic_address && apic_address < end) | |
7372 | kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); | |
93065ac7 MH |
7373 | |
7374 | return 0; | |
b1394e74 RK |
7375 | } |
7376 | ||
4256f43f TC |
7377 | void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
7378 | { | |
c24ae0dc TC |
7379 | struct page *page = NULL; |
7380 | ||
35754c98 | 7381 | if (!lapic_in_kernel(vcpu)) |
f439ed27 PB |
7382 | return; |
7383 | ||
4256f43f TC |
7384 | if (!kvm_x86_ops->set_apic_access_page_addr) |
7385 | return; | |
7386 | ||
c24ae0dc | 7387 | page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
e8fd5e9e AA |
7388 | if (is_error_page(page)) |
7389 | return; | |
c24ae0dc TC |
7390 | kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); |
7391 | ||
7392 | /* | |
7393 | * Do not pin apic access page in memory, the MMU notifier | |
7394 | * will call us again if it is migrated or swapped out. | |
7395 | */ | |
7396 | put_page(page); | |
4256f43f TC |
7397 | } |
7398 | EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); | |
7399 | ||
d264ee0c SC |
7400 | void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) |
7401 | { | |
7402 | smp_send_reschedule(vcpu->cpu); | |
7403 | } | |
7404 | EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); | |
7405 | ||
9357d939 | 7406 | /* |
362c698f | 7407 | * Returns 1 to let vcpu_run() continue the guest execution loop without |
9357d939 TY |
7408 | * exiting to the userspace. Otherwise, the value will be returned to the |
7409 | * userspace. | |
7410 | */ | |
851ba692 | 7411 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
7412 | { |
7413 | int r; | |
62a193ed MG |
7414 | bool req_int_win = |
7415 | dm_request_for_irq_injection(vcpu) && | |
7416 | kvm_cpu_accept_dm_intr(vcpu); | |
7417 | ||
730dca42 | 7418 | bool req_immediate_exit = false; |
b6c7a5dc | 7419 | |
2fa6e1e1 | 7420 | if (kvm_request_pending(vcpu)) { |
7f7f1ba3 PB |
7421 | if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) |
7422 | kvm_x86_ops->get_vmcs12_pages(vcpu); | |
a8eeb04a | 7423 | if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
2e53d63a | 7424 | kvm_mmu_unload(vcpu); |
a8eeb04a | 7425 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 7426 | __kvm_migrate_timers(vcpu); |
d828199e MT |
7427 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
7428 | kvm_gen_update_masterclock(vcpu->kvm); | |
0061d53d MT |
7429 | if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
7430 | kvm_gen_kvmclock_update(vcpu); | |
34c238a1 ZA |
7431 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
7432 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
7433 | if (unlikely(r)) |
7434 | goto out; | |
7435 | } | |
a8eeb04a | 7436 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 7437 | kvm_mmu_sync_roots(vcpu); |
6e42782f JS |
7438 | if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu)) |
7439 | kvm_mmu_load_cr3(vcpu); | |
a8eeb04a | 7440 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
c2ba05cc | 7441 | kvm_vcpu_flush_tlb(vcpu, true); |
a8eeb04a | 7442 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 7443 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
7444 | r = 0; |
7445 | goto out; | |
7446 | } | |
a8eeb04a | 7447 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
851ba692 | 7448 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
bbeac283 | 7449 | vcpu->mmio_needed = 0; |
71c4dfaf JR |
7450 | r = 0; |
7451 | goto out; | |
7452 | } | |
af585b92 GN |
7453 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
7454 | /* Page is swapped out. Do synthetic halt */ | |
7455 | vcpu->arch.apf.halted = true; | |
7456 | r = 1; | |
7457 | goto out; | |
7458 | } | |
c9aaa895 GC |
7459 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
7460 | record_steal_time(vcpu); | |
64d60670 PB |
7461 | if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
7462 | process_smi(vcpu); | |
7460fb4a AK |
7463 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
7464 | process_nmi(vcpu); | |
f5132b01 | 7465 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
c6702c9d | 7466 | kvm_pmu_handle_event(vcpu); |
f5132b01 | 7467 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
c6702c9d | 7468 | kvm_pmu_deliver_pmi(vcpu); |
7543a635 SR |
7469 | if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
7470 | BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); | |
7471 | if (test_bit(vcpu->arch.pending_ioapic_eoi, | |
6308630b | 7472 | vcpu->arch.ioapic_handled_vectors)) { |
7543a635 SR |
7473 | vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
7474 | vcpu->run->eoi.vector = | |
7475 | vcpu->arch.pending_ioapic_eoi; | |
7476 | r = 0; | |
7477 | goto out; | |
7478 | } | |
7479 | } | |
3d81bc7e YZ |
7480 | if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
7481 | vcpu_scan_ioapic(vcpu); | |
e40ff1d6 LA |
7482 | if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) |
7483 | vcpu_load_eoi_exitmap(vcpu); | |
4256f43f TC |
7484 | if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
7485 | kvm_vcpu_reload_apic_access_page(vcpu); | |
2ce79189 AS |
7486 | if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
7487 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
7488 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; | |
7489 | r = 0; | |
7490 | goto out; | |
7491 | } | |
e516cebb AS |
7492 | if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
7493 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
7494 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; | |
7495 | r = 0; | |
7496 | goto out; | |
7497 | } | |
db397571 AS |
7498 | if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
7499 | vcpu->run->exit_reason = KVM_EXIT_HYPERV; | |
7500 | vcpu->run->hyperv = vcpu->arch.hyperv.exit; | |
7501 | r = 0; | |
7502 | goto out; | |
7503 | } | |
f3b138c5 AS |
7504 | |
7505 | /* | |
7506 | * KVM_REQ_HV_STIMER has to be processed after | |
7507 | * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers | |
7508 | * depend on the guest clock being up-to-date | |
7509 | */ | |
1f4b34f8 AS |
7510 | if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
7511 | kvm_hv_process_stimers(vcpu); | |
2f52d58c | 7512 | } |
b93463aa | 7513 | |
b463a6f7 | 7514 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
0f1e261e | 7515 | ++vcpu->stat.req_event; |
66450a21 JK |
7516 | kvm_apic_accept_events(vcpu); |
7517 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | |
7518 | r = 1; | |
7519 | goto out; | |
7520 | } | |
7521 | ||
b6b8a145 JK |
7522 | if (inject_pending_event(vcpu, req_int_win) != 0) |
7523 | req_immediate_exit = true; | |
321c5658 | 7524 | else { |
cc3d967f | 7525 | /* Enable SMI/NMI/IRQ window open exits if needed. |
c43203ca | 7526 | * |
cc3d967f LP |
7527 | * SMIs have three cases: |
7528 | * 1) They can be nested, and then there is nothing to | |
7529 | * do here because RSM will cause a vmexit anyway. | |
7530 | * 2) There is an ISA-specific reason why SMI cannot be | |
7531 | * injected, and the moment when this changes can be | |
7532 | * intercepted. | |
7533 | * 3) Or the SMI can be pending because | |
7534 | * inject_pending_event has completed the injection | |
7535 | * of an IRQ or NMI from the previous vmexit, and | |
7536 | * then we request an immediate exit to inject the | |
7537 | * SMI. | |
c43203ca PB |
7538 | */ |
7539 | if (vcpu->arch.smi_pending && !is_smm(vcpu)) | |
cc3d967f LP |
7540 | if (!kvm_x86_ops->enable_smi_window(vcpu)) |
7541 | req_immediate_exit = true; | |
321c5658 YS |
7542 | if (vcpu->arch.nmi_pending) |
7543 | kvm_x86_ops->enable_nmi_window(vcpu); | |
7544 | if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) | |
7545 | kvm_x86_ops->enable_irq_window(vcpu); | |
664f8e26 | 7546 | WARN_ON(vcpu->arch.exception.pending); |
321c5658 | 7547 | } |
b463a6f7 AK |
7548 | |
7549 | if (kvm_lapic_enabled(vcpu)) { | |
7550 | update_cr8_intercept(vcpu); | |
7551 | kvm_lapic_sync_to_vapic(vcpu); | |
7552 | } | |
7553 | } | |
7554 | ||
d8368af8 AK |
7555 | r = kvm_mmu_reload(vcpu); |
7556 | if (unlikely(r)) { | |
d905c069 | 7557 | goto cancel_injection; |
d8368af8 AK |
7558 | } |
7559 | ||
b6c7a5dc HB |
7560 | preempt_disable(); |
7561 | ||
7562 | kvm_x86_ops->prepare_guest_switch(vcpu); | |
b95234c8 PB |
7563 | |
7564 | /* | |
7565 | * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt | |
7566 | * IPI are then delayed after guest entry, which ensures that they | |
7567 | * result in virtual interrupt delivery. | |
7568 | */ | |
7569 | local_irq_disable(); | |
6b7e2d09 XG |
7570 | vcpu->mode = IN_GUEST_MODE; |
7571 | ||
01b71917 MT |
7572 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
7573 | ||
0f127d12 | 7574 | /* |
b95234c8 | 7575 | * 1) We should set ->mode before checking ->requests. Please see |
cde9af6e | 7576 | * the comment in kvm_vcpu_exiting_guest_mode(). |
b95234c8 PB |
7577 | * |
7578 | * 2) For APICv, we should set ->mode before checking PIR.ON. This | |
7579 | * pairs with the memory barrier implicit in pi_test_and_set_on | |
7580 | * (see vmx_deliver_posted_interrupt). | |
7581 | * | |
7582 | * 3) This also orders the write to mode from any reads to the page | |
7583 | * tables done while the VCPU is running. Please see the comment | |
7584 | * in kvm_flush_remote_tlbs. | |
6b7e2d09 | 7585 | */ |
01b71917 | 7586 | smp_mb__after_srcu_read_unlock(); |
b6c7a5dc | 7587 | |
b95234c8 PB |
7588 | /* |
7589 | * This handles the case where a posted interrupt was | |
7590 | * notified with kvm_vcpu_kick. | |
7591 | */ | |
fa59cc00 LA |
7592 | if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) |
7593 | kvm_x86_ops->sync_pir_to_irr(vcpu); | |
32f88400 | 7594 | |
2fa6e1e1 | 7595 | if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) |
d94e1dc9 | 7596 | || need_resched() || signal_pending(current)) { |
6b7e2d09 | 7597 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 7598 | smp_wmb(); |
6c142801 AK |
7599 | local_irq_enable(); |
7600 | preempt_enable(); | |
01b71917 | 7601 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
6c142801 | 7602 | r = 1; |
d905c069 | 7603 | goto cancel_injection; |
6c142801 AK |
7604 | } |
7605 | ||
fc5b7f3b DM |
7606 | kvm_load_guest_xcr0(vcpu); |
7607 | ||
c43203ca PB |
7608 | if (req_immediate_exit) { |
7609 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
d264ee0c | 7610 | kvm_x86_ops->request_immediate_exit(vcpu); |
c43203ca | 7611 | } |
d6185f20 | 7612 | |
8b89fe1f | 7613 | trace_kvm_entry(vcpu->vcpu_id); |
9c48d517 WL |
7614 | if (lapic_timer_advance_ns) |
7615 | wait_lapic_expire(vcpu); | |
6edaa530 | 7616 | guest_enter_irqoff(); |
b6c7a5dc | 7617 | |
42dbaa5a | 7618 | if (unlikely(vcpu->arch.switch_db_regs)) { |
42dbaa5a JK |
7619 | set_debugreg(0, 7); |
7620 | set_debugreg(vcpu->arch.eff_db[0], 0); | |
7621 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
7622 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
7623 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
c77fb5fe | 7624 | set_debugreg(vcpu->arch.dr6, 6); |
ae561ede | 7625 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; |
42dbaa5a | 7626 | } |
b6c7a5dc | 7627 | |
851ba692 | 7628 | kvm_x86_ops->run(vcpu); |
b6c7a5dc | 7629 | |
c77fb5fe PB |
7630 | /* |
7631 | * Do this here before restoring debug registers on the host. And | |
7632 | * since we do this before handling the vmexit, a DR access vmexit | |
7633 | * can (a) read the correct value of the debug registers, (b) set | |
7634 | * KVM_DEBUGREG_WONT_EXIT again. | |
7635 | */ | |
7636 | if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { | |
c77fb5fe PB |
7637 | WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
7638 | kvm_x86_ops->sync_dirty_debug_regs(vcpu); | |
70e4da7a PB |
7639 | kvm_update_dr0123(vcpu); |
7640 | kvm_update_dr6(vcpu); | |
7641 | kvm_update_dr7(vcpu); | |
7642 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; | |
c77fb5fe PB |
7643 | } |
7644 | ||
24f1e32c FW |
7645 | /* |
7646 | * If the guest has used debug registers, at least dr7 | |
7647 | * will be disabled while returning to the host. | |
7648 | * If we don't have active breakpoints in the host, we don't | |
7649 | * care about the messed up debug address registers. But if | |
7650 | * we have some of them active, restore the old state. | |
7651 | */ | |
59d8eb53 | 7652 | if (hw_breakpoint_active()) |
24f1e32c | 7653 | hw_breakpoint_restore(); |
42dbaa5a | 7654 | |
4ba76538 | 7655 | vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
1d5f066e | 7656 | |
6b7e2d09 | 7657 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 7658 | smp_wmb(); |
a547c6db | 7659 | |
fc5b7f3b DM |
7660 | kvm_put_guest_xcr0(vcpu); |
7661 | ||
dd60d217 | 7662 | kvm_before_interrupt(vcpu); |
a547c6db | 7663 | kvm_x86_ops->handle_external_intr(vcpu); |
dd60d217 | 7664 | kvm_after_interrupt(vcpu); |
b6c7a5dc HB |
7665 | |
7666 | ++vcpu->stat.exits; | |
7667 | ||
f2485b3e | 7668 | guest_exit_irqoff(); |
b6c7a5dc | 7669 | |
f2485b3e | 7670 | local_irq_enable(); |
b6c7a5dc HB |
7671 | preempt_enable(); |
7672 | ||
f656ce01 | 7673 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
3200f405 | 7674 | |
b6c7a5dc HB |
7675 | /* |
7676 | * Profile KVM exit RIPs: | |
7677 | */ | |
7678 | if (unlikely(prof_on == KVM_PROFILING)) { | |
5fdbf976 MT |
7679 | unsigned long rip = kvm_rip_read(vcpu); |
7680 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
7681 | } |
7682 | ||
cc578287 ZA |
7683 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
7684 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 7685 | |
5cfb1d5a MT |
7686 | if (vcpu->arch.apic_attention) |
7687 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 7688 | |
618232e2 | 7689 | vcpu->arch.gpa_available = false; |
851ba692 | 7690 | r = kvm_x86_ops->handle_exit(vcpu); |
d905c069 MT |
7691 | return r; |
7692 | ||
7693 | cancel_injection: | |
7694 | kvm_x86_ops->cancel_injection(vcpu); | |
ae7a2a3f MT |
7695 | if (unlikely(vcpu->arch.apic_attention)) |
7696 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
7697 | out: |
7698 | return r; | |
7699 | } | |
b6c7a5dc | 7700 | |
362c698f PB |
7701 | static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) |
7702 | { | |
bf9f6ac8 FW |
7703 | if (!kvm_arch_vcpu_runnable(vcpu) && |
7704 | (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { | |
9c8fd1ba PB |
7705 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
7706 | kvm_vcpu_block(vcpu); | |
7707 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | |
bf9f6ac8 FW |
7708 | |
7709 | if (kvm_x86_ops->post_block) | |
7710 | kvm_x86_ops->post_block(vcpu); | |
7711 | ||
9c8fd1ba PB |
7712 | if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
7713 | return 1; | |
7714 | } | |
362c698f PB |
7715 | |
7716 | kvm_apic_accept_events(vcpu); | |
7717 | switch(vcpu->arch.mp_state) { | |
7718 | case KVM_MP_STATE_HALTED: | |
7719 | vcpu->arch.pv.pv_unhalted = false; | |
7720 | vcpu->arch.mp_state = | |
7721 | KVM_MP_STATE_RUNNABLE; | |
7722 | case KVM_MP_STATE_RUNNABLE: | |
7723 | vcpu->arch.apf.halted = false; | |
7724 | break; | |
7725 | case KVM_MP_STATE_INIT_RECEIVED: | |
7726 | break; | |
7727 | default: | |
7728 | return -EINTR; | |
7729 | break; | |
7730 | } | |
7731 | return 1; | |
7732 | } | |
09cec754 | 7733 | |
5d9bc648 PB |
7734 | static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
7735 | { | |
0ad3bed6 PB |
7736 | if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) |
7737 | kvm_x86_ops->check_nested_events(vcpu, false); | |
7738 | ||
5d9bc648 PB |
7739 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
7740 | !vcpu->arch.apf.halted); | |
7741 | } | |
7742 | ||
362c698f | 7743 | static int vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
7744 | { |
7745 | int r; | |
f656ce01 | 7746 | struct kvm *kvm = vcpu->kvm; |
d7690175 | 7747 | |
f656ce01 | 7748 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
c595ceee | 7749 | vcpu->arch.l1tf_flush_l1d = true; |
d7690175 | 7750 | |
362c698f | 7751 | for (;;) { |
58f800d5 | 7752 | if (kvm_vcpu_running(vcpu)) { |
851ba692 | 7753 | r = vcpu_enter_guest(vcpu); |
bf9f6ac8 | 7754 | } else { |
362c698f | 7755 | r = vcpu_block(kvm, vcpu); |
bf9f6ac8 FW |
7756 | } |
7757 | ||
09cec754 GN |
7758 | if (r <= 0) |
7759 | break; | |
7760 | ||
72875d8a | 7761 | kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); |
09cec754 GN |
7762 | if (kvm_cpu_has_pending_timer(vcpu)) |
7763 | kvm_inject_pending_timer_irqs(vcpu); | |
7764 | ||
782d422b MG |
7765 | if (dm_request_for_irq_injection(vcpu) && |
7766 | kvm_vcpu_ready_for_interrupt_injection(vcpu)) { | |
4ca7dd8c PB |
7767 | r = 0; |
7768 | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | |
09cec754 | 7769 | ++vcpu->stat.request_irq_exits; |
362c698f | 7770 | break; |
09cec754 | 7771 | } |
af585b92 GN |
7772 | |
7773 | kvm_check_async_pf_completion(vcpu); | |
7774 | ||
09cec754 GN |
7775 | if (signal_pending(current)) { |
7776 | r = -EINTR; | |
851ba692 | 7777 | vcpu->run->exit_reason = KVM_EXIT_INTR; |
09cec754 | 7778 | ++vcpu->stat.signal_exits; |
362c698f | 7779 | break; |
09cec754 GN |
7780 | } |
7781 | if (need_resched()) { | |
f656ce01 | 7782 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
c08ac06a | 7783 | cond_resched(); |
f656ce01 | 7784 | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
d7690175 | 7785 | } |
b6c7a5dc HB |
7786 | } |
7787 | ||
f656ce01 | 7788 | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
b6c7a5dc HB |
7789 | |
7790 | return r; | |
7791 | } | |
7792 | ||
716d51ab GN |
7793 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
7794 | { | |
7795 | int r; | |
7796 | vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
0ce97a2b | 7797 | r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); |
716d51ab GN |
7798 | srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
7799 | if (r != EMULATE_DONE) | |
7800 | return 0; | |
7801 | return 1; | |
7802 | } | |
7803 | ||
7804 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
7805 | { | |
7806 | BUG_ON(!vcpu->arch.pio.count); | |
7807 | ||
7808 | return complete_emulated_io(vcpu); | |
7809 | } | |
7810 | ||
f78146b0 AK |
7811 | /* |
7812 | * Implements the following, as a state machine: | |
7813 | * | |
7814 | * read: | |
7815 | * for each fragment | |
87da7e66 XG |
7816 | * for each mmio piece in the fragment |
7817 | * write gpa, len | |
7818 | * exit | |
7819 | * copy data | |
f78146b0 AK |
7820 | * execute insn |
7821 | * | |
7822 | * write: | |
7823 | * for each fragment | |
87da7e66 XG |
7824 | * for each mmio piece in the fragment |
7825 | * write gpa, len | |
7826 | * copy data | |
7827 | * exit | |
f78146b0 | 7828 | */ |
716d51ab | 7829 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
7830 | { |
7831 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 7832 | struct kvm_mmio_fragment *frag; |
87da7e66 | 7833 | unsigned len; |
5287f194 | 7834 | |
716d51ab | 7835 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 7836 | |
716d51ab | 7837 | /* Complete previous fragment */ |
87da7e66 XG |
7838 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
7839 | len = min(8u, frag->len); | |
716d51ab | 7840 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
7841 | memcpy(frag->data, run->mmio.data, len); |
7842 | ||
7843 | if (frag->len <= 8) { | |
7844 | /* Switch to the next fragment. */ | |
7845 | frag++; | |
7846 | vcpu->mmio_cur_fragment++; | |
7847 | } else { | |
7848 | /* Go forward to the next mmio piece. */ | |
7849 | frag->data += len; | |
7850 | frag->gpa += len; | |
7851 | frag->len -= len; | |
7852 | } | |
7853 | ||
a08d3b3b | 7854 | if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
716d51ab | 7855 | vcpu->mmio_needed = 0; |
0912c977 PB |
7856 | |
7857 | /* FIXME: return into emulator if single-stepping. */ | |
cef4dea0 | 7858 | if (vcpu->mmio_is_write) |
716d51ab GN |
7859 | return 1; |
7860 | vcpu->mmio_read_completed = 1; | |
7861 | return complete_emulated_io(vcpu); | |
7862 | } | |
87da7e66 | 7863 | |
716d51ab GN |
7864 | run->exit_reason = KVM_EXIT_MMIO; |
7865 | run->mmio.phys_addr = frag->gpa; | |
7866 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
7867 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
7868 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
7869 | run->mmio.is_write = vcpu->mmio_is_write; |
7870 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
7871 | return 0; | |
5287f194 AK |
7872 | } |
7873 | ||
822f312d SAS |
7874 | /* Swap (qemu) user FPU context for the guest FPU context. */ |
7875 | static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | |
7876 | { | |
7877 | preempt_disable(); | |
7878 | copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); | |
7879 | /* PKRU is separately restored in kvm_x86_ops->run. */ | |
7880 | __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, | |
7881 | ~XFEATURE_MASK_PKRU); | |
7882 | preempt_enable(); | |
7883 | trace_kvm_fpu(1); | |
7884 | } | |
7885 | ||
7886 | /* When vcpu_run ends, restore user space FPU context. */ | |
7887 | static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | |
7888 | { | |
7889 | preempt_disable(); | |
7890 | copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); | |
7891 | copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); | |
7892 | preempt_enable(); | |
7893 | ++vcpu->stat.fpu_reload; | |
7894 | trace_kvm_fpu(0); | |
7895 | } | |
7896 | ||
b6c7a5dc HB |
7897 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
7898 | { | |
7899 | int r; | |
b6c7a5dc | 7900 | |
accb757d | 7901 | vcpu_load(vcpu); |
20b7035c | 7902 | kvm_sigset_activate(vcpu); |
5663d8f9 PX |
7903 | kvm_load_guest_fpu(vcpu); |
7904 | ||
a4535290 | 7905 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
2f173d26 JS |
7906 | if (kvm_run->immediate_exit) { |
7907 | r = -EINTR; | |
7908 | goto out; | |
7909 | } | |
b6c7a5dc | 7910 | kvm_vcpu_block(vcpu); |
66450a21 | 7911 | kvm_apic_accept_events(vcpu); |
72875d8a | 7912 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
ac9f6dc0 | 7913 | r = -EAGAIN; |
a0595000 JS |
7914 | if (signal_pending(current)) { |
7915 | r = -EINTR; | |
7916 | vcpu->run->exit_reason = KVM_EXIT_INTR; | |
7917 | ++vcpu->stat.signal_exits; | |
7918 | } | |
ac9f6dc0 | 7919 | goto out; |
b6c7a5dc HB |
7920 | } |
7921 | ||
01643c51 KH |
7922 | if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { |
7923 | r = -EINVAL; | |
7924 | goto out; | |
7925 | } | |
7926 | ||
7927 | if (vcpu->run->kvm_dirty_regs) { | |
7928 | r = sync_regs(vcpu); | |
7929 | if (r != 0) | |
7930 | goto out; | |
7931 | } | |
7932 | ||
b6c7a5dc | 7933 | /* re-sync apic's tpr */ |
35754c98 | 7934 | if (!lapic_in_kernel(vcpu)) { |
eea1cff9 AP |
7935 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
7936 | r = -EINVAL; | |
7937 | goto out; | |
7938 | } | |
7939 | } | |
b6c7a5dc | 7940 | |
716d51ab GN |
7941 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
7942 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
7943 | vcpu->arch.complete_userspace_io = NULL; | |
7944 | r = cui(vcpu); | |
7945 | if (r <= 0) | |
5663d8f9 | 7946 | goto out; |
716d51ab GN |
7947 | } else |
7948 | WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | |
5287f194 | 7949 | |
460df4c1 PB |
7950 | if (kvm_run->immediate_exit) |
7951 | r = -EINTR; | |
7952 | else | |
7953 | r = vcpu_run(vcpu); | |
b6c7a5dc HB |
7954 | |
7955 | out: | |
5663d8f9 | 7956 | kvm_put_guest_fpu(vcpu); |
01643c51 KH |
7957 | if (vcpu->run->kvm_valid_regs) |
7958 | store_regs(vcpu); | |
f1d86e46 | 7959 | post_kvm_run_save(vcpu); |
20b7035c | 7960 | kvm_sigset_deactivate(vcpu); |
b6c7a5dc | 7961 | |
accb757d | 7962 | vcpu_put(vcpu); |
b6c7a5dc HB |
7963 | return r; |
7964 | } | |
7965 | ||
01643c51 | 7966 | static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
b6c7a5dc | 7967 | { |
7ae441ea GN |
7968 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
7969 | /* | |
7970 | * We are here if userspace calls get_regs() in the middle of | |
7971 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 7972 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
7973 | * that usually, but some bad designed PV devices (vmware |
7974 | * backdoor interface) need this to work | |
7975 | */ | |
dd856efa | 7976 | emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); |
7ae441ea GN |
7977 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
7978 | } | |
5fdbf976 MT |
7979 | regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
7980 | regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | |
7981 | regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | |
7982 | regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | |
7983 | regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | |
7984 | regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | |
7985 | regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | |
7986 | regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | |
b6c7a5dc | 7987 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
7988 | regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
7989 | regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | |
7990 | regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | |
7991 | regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | |
7992 | regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | |
7993 | regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | |
7994 | regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | |
7995 | regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | |
b6c7a5dc HB |
7996 | #endif |
7997 | ||
5fdbf976 | 7998 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 7999 | regs->rflags = kvm_get_rflags(vcpu); |
01643c51 | 8000 | } |
b6c7a5dc | 8001 | |
01643c51 KH |
8002 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
8003 | { | |
8004 | vcpu_load(vcpu); | |
8005 | __get_regs(vcpu, regs); | |
1fc9b76b | 8006 | vcpu_put(vcpu); |
b6c7a5dc HB |
8007 | return 0; |
8008 | } | |
8009 | ||
01643c51 | 8010 | static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
b6c7a5dc | 8011 | { |
7ae441ea GN |
8012 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
8013 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
8014 | ||
5fdbf976 MT |
8015 | kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
8016 | kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | |
8017 | kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | |
8018 | kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | |
8019 | kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | |
8020 | kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | |
8021 | kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | |
8022 | kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | |
b6c7a5dc | 8023 | #ifdef CONFIG_X86_64 |
5fdbf976 MT |
8024 | kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
8025 | kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | |
8026 | kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | |
8027 | kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | |
8028 | kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | |
8029 | kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | |
8030 | kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | |
8031 | kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | |
b6c7a5dc HB |
8032 | #endif |
8033 | ||
5fdbf976 | 8034 | kvm_rip_write(vcpu, regs->rip); |
d73235d1 | 8035 | kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); |
b6c7a5dc | 8036 | |
b4f14abd JK |
8037 | vcpu->arch.exception.pending = false; |
8038 | ||
3842d135 | 8039 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
01643c51 | 8040 | } |
3842d135 | 8041 | |
01643c51 KH |
8042 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
8043 | { | |
8044 | vcpu_load(vcpu); | |
8045 | __set_regs(vcpu, regs); | |
875656fe | 8046 | vcpu_put(vcpu); |
b6c7a5dc HB |
8047 | return 0; |
8048 | } | |
8049 | ||
b6c7a5dc HB |
8050 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
8051 | { | |
8052 | struct kvm_segment cs; | |
8053 | ||
3e6e0aab | 8054 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
b6c7a5dc HB |
8055 | *db = cs.db; |
8056 | *l = cs.l; | |
8057 | } | |
8058 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | |
8059 | ||
01643c51 | 8060 | static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
b6c7a5dc | 8061 | { |
89a27f4d | 8062 | struct desc_ptr dt; |
b6c7a5dc | 8063 | |
3e6e0aab GT |
8064 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
8065 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
8066 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
8067 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
8068 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
8069 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 8070 | |
3e6e0aab GT |
8071 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
8072 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc HB |
8073 | |
8074 | kvm_x86_ops->get_idt(vcpu, &dt); | |
89a27f4d GN |
8075 | sregs->idt.limit = dt.size; |
8076 | sregs->idt.base = dt.address; | |
b6c7a5dc | 8077 | kvm_x86_ops->get_gdt(vcpu, &dt); |
89a27f4d GN |
8078 | sregs->gdt.limit = dt.size; |
8079 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 8080 | |
4d4ec087 | 8081 | sregs->cr0 = kvm_read_cr0(vcpu); |
ad312c7c | 8082 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 8083 | sregs->cr3 = kvm_read_cr3(vcpu); |
fc78f519 | 8084 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 8085 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 8086 | sregs->efer = vcpu->arch.efer; |
b6c7a5dc HB |
8087 | sregs->apic_base = kvm_get_apic_base(vcpu); |
8088 | ||
923c61bb | 8089 | memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
b6c7a5dc | 8090 | |
04140b41 | 8091 | if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
8092 | set_bit(vcpu->arch.interrupt.nr, |
8093 | (unsigned long *)sregs->interrupt_bitmap); | |
01643c51 | 8094 | } |
16d7a191 | 8095 | |
01643c51 KH |
8096 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
8097 | struct kvm_sregs *sregs) | |
8098 | { | |
8099 | vcpu_load(vcpu); | |
8100 | __get_sregs(vcpu, sregs); | |
bcdec41c | 8101 | vcpu_put(vcpu); |
b6c7a5dc HB |
8102 | return 0; |
8103 | } | |
8104 | ||
62d9f0db MT |
8105 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
8106 | struct kvm_mp_state *mp_state) | |
8107 | { | |
fd232561 CD |
8108 | vcpu_load(vcpu); |
8109 | ||
66450a21 | 8110 | kvm_apic_accept_events(vcpu); |
6aef266c SV |
8111 | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && |
8112 | vcpu->arch.pv.pv_unhalted) | |
8113 | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; | |
8114 | else | |
8115 | mp_state->mp_state = vcpu->arch.mp_state; | |
8116 | ||
fd232561 | 8117 | vcpu_put(vcpu); |
62d9f0db MT |
8118 | return 0; |
8119 | } | |
8120 | ||
8121 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
8122 | struct kvm_mp_state *mp_state) | |
8123 | { | |
e83dff5e CD |
8124 | int ret = -EINVAL; |
8125 | ||
8126 | vcpu_load(vcpu); | |
8127 | ||
bce87cce | 8128 | if (!lapic_in_kernel(vcpu) && |
66450a21 | 8129 | mp_state->mp_state != KVM_MP_STATE_RUNNABLE) |
e83dff5e | 8130 | goto out; |
66450a21 | 8131 | |
28bf2888 DH |
8132 | /* INITs are latched while in SMM */ |
8133 | if ((is_smm(vcpu) || vcpu->arch.smi_pending) && | |
8134 | (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || | |
8135 | mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) | |
e83dff5e | 8136 | goto out; |
28bf2888 | 8137 | |
66450a21 JK |
8138 | if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
8139 | vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | |
8140 | set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | |
8141 | } else | |
8142 | vcpu->arch.mp_state = mp_state->mp_state; | |
3842d135 | 8143 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
e83dff5e CD |
8144 | |
8145 | ret = 0; | |
8146 | out: | |
8147 | vcpu_put(vcpu); | |
8148 | return ret; | |
62d9f0db MT |
8149 | } |
8150 | ||
7f3d35fd KW |
8151 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
8152 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 8153 | { |
9d74191a | 8154 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
8ec4722d | 8155 | int ret; |
e01c2426 | 8156 | |
8ec4722d | 8157 | init_emulate_ctxt(vcpu); |
c697518a | 8158 | |
7f3d35fd | 8159 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 8160 | has_error_code, error_code); |
c697518a | 8161 | |
c697518a | 8162 | if (ret) |
19d04437 | 8163 | return EMULATE_FAIL; |
37817f29 | 8164 | |
9d74191a TY |
8165 | kvm_rip_write(vcpu, ctxt->eip); |
8166 | kvm_set_rflags(vcpu, ctxt->eflags); | |
3842d135 | 8167 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
19d04437 | 8168 | return EMULATE_DONE; |
37817f29 IE |
8169 | } |
8170 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
8171 | ||
3140c156 | 8172 | static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
f2981033 | 8173 | { |
74fec5b9 TL |
8174 | if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
8175 | (sregs->cr4 & X86_CR4_OSXSAVE)) | |
8176 | return -EINVAL; | |
8177 | ||
37b95951 | 8178 | if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { |
f2981033 LT |
8179 | /* |
8180 | * When EFER.LME and CR0.PG are set, the processor is in | |
8181 | * 64-bit mode (though maybe in a 32-bit code segment). | |
8182 | * CR4.PAE and EFER.LMA must be set. | |
8183 | */ | |
37b95951 | 8184 | if (!(sregs->cr4 & X86_CR4_PAE) |
f2981033 LT |
8185 | || !(sregs->efer & EFER_LMA)) |
8186 | return -EINVAL; | |
8187 | } else { | |
8188 | /* | |
8189 | * Not in 64-bit mode: EFER.LMA is clear and the code | |
8190 | * segment cannot be 64-bit. | |
8191 | */ | |
8192 | if (sregs->efer & EFER_LMA || sregs->cs.l) | |
8193 | return -EINVAL; | |
8194 | } | |
8195 | ||
8196 | return 0; | |
8197 | } | |
8198 | ||
01643c51 | 8199 | static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
b6c7a5dc | 8200 | { |
58cb628d | 8201 | struct msr_data apic_base_msr; |
b6c7a5dc | 8202 | int mmu_reset_needed = 0; |
c4d21882 | 8203 | int cpuid_update_needed = 0; |
63f42e02 | 8204 | int pending_vec, max_bits, idx; |
89a27f4d | 8205 | struct desc_ptr dt; |
b4ef9d4e CD |
8206 | int ret = -EINVAL; |
8207 | ||
f2981033 | 8208 | if (kvm_valid_sregs(vcpu, sregs)) |
8dbfb2bf | 8209 | goto out; |
f2981033 | 8210 | |
d3802286 JM |
8211 | apic_base_msr.data = sregs->apic_base; |
8212 | apic_base_msr.host_initiated = true; | |
8213 | if (kvm_set_apic_base(vcpu, &apic_base_msr)) | |
b4ef9d4e | 8214 | goto out; |
6d1068b3 | 8215 | |
89a27f4d GN |
8216 | dt.size = sregs->idt.limit; |
8217 | dt.address = sregs->idt.base; | |
b6c7a5dc | 8218 | kvm_x86_ops->set_idt(vcpu, &dt); |
89a27f4d GN |
8219 | dt.size = sregs->gdt.limit; |
8220 | dt.address = sregs->gdt.base; | |
b6c7a5dc HB |
8221 | kvm_x86_ops->set_gdt(vcpu, &dt); |
8222 | ||
ad312c7c | 8223 | vcpu->arch.cr2 = sregs->cr2; |
9f8fe504 | 8224 | mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 8225 | vcpu->arch.cr3 = sregs->cr3; |
aff48baa | 8226 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
b6c7a5dc | 8227 | |
2d3ad1f4 | 8228 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 8229 | |
f6801dff | 8230 | mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
b6c7a5dc | 8231 | kvm_x86_ops->set_efer(vcpu, sregs->efer); |
b6c7a5dc | 8232 | |
4d4ec087 | 8233 | mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
b6c7a5dc | 8234 | kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
d7306163 | 8235 | vcpu->arch.cr0 = sregs->cr0; |
b6c7a5dc | 8236 | |
fc78f519 | 8237 | mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
c4d21882 WH |
8238 | cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) & |
8239 | (X86_CR4_OSXSAVE | X86_CR4_PKE)); | |
b6c7a5dc | 8240 | kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
c4d21882 | 8241 | if (cpuid_update_needed) |
00b27a3e | 8242 | kvm_update_cpuid(vcpu); |
63f42e02 XG |
8243 | |
8244 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
d35b34a9 | 8245 | if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) { |
9f8fe504 | 8246 | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); |
7c93be44 MT |
8247 | mmu_reset_needed = 1; |
8248 | } | |
63f42e02 | 8249 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b6c7a5dc HB |
8250 | |
8251 | if (mmu_reset_needed) | |
8252 | kvm_mmu_reset_context(vcpu); | |
8253 | ||
a50abc3b | 8254 | max_bits = KVM_NR_INTERRUPTS; |
923c61bb GN |
8255 | pending_vec = find_first_bit( |
8256 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
8257 | if (pending_vec < max_bits) { | |
66fd3f7f | 8258 | kvm_queue_interrupt(vcpu, pending_vec, false); |
923c61bb | 8259 | pr_debug("Set back pending irq %d\n", pending_vec); |
b6c7a5dc HB |
8260 | } |
8261 | ||
3e6e0aab GT |
8262 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
8263 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
8264 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
8265 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
8266 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
8267 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 8268 | |
3e6e0aab GT |
8269 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
8270 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 8271 | |
5f0269f5 ME |
8272 | update_cr8_intercept(vcpu); |
8273 | ||
9c3e4aab | 8274 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 8275 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 8276 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 8277 | !is_protmode(vcpu)) |
9c3e4aab MT |
8278 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
8279 | ||
3842d135 AK |
8280 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
8281 | ||
b4ef9d4e CD |
8282 | ret = 0; |
8283 | out: | |
01643c51 KH |
8284 | return ret; |
8285 | } | |
8286 | ||
8287 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | |
8288 | struct kvm_sregs *sregs) | |
8289 | { | |
8290 | int ret; | |
8291 | ||
8292 | vcpu_load(vcpu); | |
8293 | ret = __set_sregs(vcpu, sregs); | |
b4ef9d4e CD |
8294 | vcpu_put(vcpu); |
8295 | return ret; | |
b6c7a5dc HB |
8296 | } |
8297 | ||
d0bfb940 JK |
8298 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
8299 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 8300 | { |
355be0b9 | 8301 | unsigned long rflags; |
ae675ef0 | 8302 | int i, r; |
b6c7a5dc | 8303 | |
66b56562 CD |
8304 | vcpu_load(vcpu); |
8305 | ||
4f926bf2 JK |
8306 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
8307 | r = -EBUSY; | |
8308 | if (vcpu->arch.exception.pending) | |
2122ff5e | 8309 | goto out; |
4f926bf2 JK |
8310 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
8311 | kvm_queue_exception(vcpu, DB_VECTOR); | |
8312 | else | |
8313 | kvm_queue_exception(vcpu, BP_VECTOR); | |
8314 | } | |
8315 | ||
91586a3b JK |
8316 | /* |
8317 | * Read rflags as long as potentially injected trace flags are still | |
8318 | * filtered out. | |
8319 | */ | |
8320 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
8321 | |
8322 | vcpu->guest_debug = dbg->control; | |
8323 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
8324 | vcpu->guest_debug = 0; | |
8325 | ||
8326 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
8327 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
8328 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 8329 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
8330 | } else { |
8331 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
8332 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 8333 | } |
c8639010 | 8334 | kvm_update_dr7(vcpu); |
ae675ef0 | 8335 | |
f92653ee JK |
8336 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
8337 | vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | |
8338 | get_segment_base(vcpu, VCPU_SREG_CS); | |
94fe45da | 8339 | |
91586a3b JK |
8340 | /* |
8341 | * Trigger an rflags update that will inject or remove the trace | |
8342 | * flags. | |
8343 | */ | |
8344 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 8345 | |
a96036b8 | 8346 | kvm_x86_ops->update_bp_intercept(vcpu); |
b6c7a5dc | 8347 | |
4f926bf2 | 8348 | r = 0; |
d0bfb940 | 8349 | |
2122ff5e | 8350 | out: |
66b56562 | 8351 | vcpu_put(vcpu); |
b6c7a5dc HB |
8352 | return r; |
8353 | } | |
8354 | ||
8b006791 ZX |
8355 | /* |
8356 | * Translate a guest virtual address to a guest physical address. | |
8357 | */ | |
8358 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
8359 | struct kvm_translation *tr) | |
8360 | { | |
8361 | unsigned long vaddr = tr->linear_address; | |
8362 | gpa_t gpa; | |
f656ce01 | 8363 | int idx; |
8b006791 | 8364 | |
1da5b61d CD |
8365 | vcpu_load(vcpu); |
8366 | ||
f656ce01 | 8367 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 8368 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 8369 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 ZX |
8370 | tr->physical_address = gpa; |
8371 | tr->valid = gpa != UNMAPPED_GVA; | |
8372 | tr->writeable = 1; | |
8373 | tr->usermode = 0; | |
8b006791 | 8374 | |
1da5b61d | 8375 | vcpu_put(vcpu); |
8b006791 ZX |
8376 | return 0; |
8377 | } | |
8378 | ||
d0752060 HB |
8379 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
8380 | { | |
1393123e | 8381 | struct fxregs_state *fxsave; |
d0752060 | 8382 | |
1393123e | 8383 | vcpu_load(vcpu); |
d0752060 | 8384 | |
1393123e | 8385 | fxsave = &vcpu->arch.guest_fpu.state.fxsave; |
d0752060 HB |
8386 | memcpy(fpu->fpr, fxsave->st_space, 128); |
8387 | fpu->fcw = fxsave->cwd; | |
8388 | fpu->fsw = fxsave->swd; | |
8389 | fpu->ftwx = fxsave->twd; | |
8390 | fpu->last_opcode = fxsave->fop; | |
8391 | fpu->last_ip = fxsave->rip; | |
8392 | fpu->last_dp = fxsave->rdp; | |
8393 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | |
8394 | ||
1393123e | 8395 | vcpu_put(vcpu); |
d0752060 HB |
8396 | return 0; |
8397 | } | |
8398 | ||
8399 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
8400 | { | |
6a96bc7f CD |
8401 | struct fxregs_state *fxsave; |
8402 | ||
8403 | vcpu_load(vcpu); | |
8404 | ||
8405 | fxsave = &vcpu->arch.guest_fpu.state.fxsave; | |
d0752060 | 8406 | |
d0752060 HB |
8407 | memcpy(fxsave->st_space, fpu->fpr, 128); |
8408 | fxsave->cwd = fpu->fcw; | |
8409 | fxsave->swd = fpu->fsw; | |
8410 | fxsave->twd = fpu->ftwx; | |
8411 | fxsave->fop = fpu->last_opcode; | |
8412 | fxsave->rip = fpu->last_ip; | |
8413 | fxsave->rdp = fpu->last_dp; | |
8414 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | |
8415 | ||
6a96bc7f | 8416 | vcpu_put(vcpu); |
d0752060 HB |
8417 | return 0; |
8418 | } | |
8419 | ||
01643c51 KH |
8420 | static void store_regs(struct kvm_vcpu *vcpu) |
8421 | { | |
8422 | BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); | |
8423 | ||
8424 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) | |
8425 | __get_regs(vcpu, &vcpu->run->s.regs.regs); | |
8426 | ||
8427 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) | |
8428 | __get_sregs(vcpu, &vcpu->run->s.regs.sregs); | |
8429 | ||
8430 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) | |
8431 | kvm_vcpu_ioctl_x86_get_vcpu_events( | |
8432 | vcpu, &vcpu->run->s.regs.events); | |
8433 | } | |
8434 | ||
8435 | static int sync_regs(struct kvm_vcpu *vcpu) | |
8436 | { | |
8437 | if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) | |
8438 | return -EINVAL; | |
8439 | ||
8440 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { | |
8441 | __set_regs(vcpu, &vcpu->run->s.regs.regs); | |
8442 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; | |
8443 | } | |
8444 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { | |
8445 | if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) | |
8446 | return -EINVAL; | |
8447 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; | |
8448 | } | |
8449 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { | |
8450 | if (kvm_vcpu_ioctl_x86_set_vcpu_events( | |
8451 | vcpu, &vcpu->run->s.regs.events)) | |
8452 | return -EINVAL; | |
8453 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; | |
8454 | } | |
8455 | ||
8456 | return 0; | |
8457 | } | |
8458 | ||
0ee6a517 | 8459 | static void fx_init(struct kvm_vcpu *vcpu) |
d0752060 | 8460 | { |
bf935b0b | 8461 | fpstate_init(&vcpu->arch.guest_fpu.state); |
782511b0 | 8462 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
7366ed77 | 8463 | vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = |
df1daba7 | 8464 | host_xcr0 | XSTATE_COMPACTION_ENABLED; |
d0752060 | 8465 | |
2acf923e DC |
8466 | /* |
8467 | * Ensure guest xcr0 is valid for loading | |
8468 | */ | |
d91cab78 | 8469 | vcpu->arch.xcr0 = XFEATURE_MASK_FP; |
2acf923e | 8470 | |
ad312c7c | 8471 | vcpu->arch.cr0 |= X86_CR0_ET; |
d0752060 | 8472 | } |
d0752060 | 8473 | |
e9b11c17 ZX |
8474 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
8475 | { | |
bd768e14 IY |
8476 | void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; |
8477 | ||
12f9a48f | 8478 | kvmclock_reset(vcpu); |
7f1ea208 | 8479 | |
e9b11c17 | 8480 | kvm_x86_ops->vcpu_free(vcpu); |
bd768e14 | 8481 | free_cpumask_var(wbinvd_dirty_mask); |
e9b11c17 ZX |
8482 | } |
8483 | ||
8484 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | |
8485 | unsigned int id) | |
8486 | { | |
c447e76b LL |
8487 | struct kvm_vcpu *vcpu; |
8488 | ||
b0c39dc6 | 8489 | if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
6755bae8 ZA |
8490 | printk_once(KERN_WARNING |
8491 | "kvm: SMP vm created on host with unstable TSC; " | |
8492 | "guest TSC will not be reliable\n"); | |
c447e76b LL |
8493 | |
8494 | vcpu = kvm_x86_ops->vcpu_create(kvm, id); | |
8495 | ||
c447e76b | 8496 | return vcpu; |
26e5215f | 8497 | } |
e9b11c17 | 8498 | |
26e5215f AK |
8499 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
8500 | { | |
19efffa2 | 8501 | kvm_vcpu_mtrr_init(vcpu); |
ec7660cc | 8502 | vcpu_load(vcpu); |
d28bc9dd | 8503 | kvm_vcpu_reset(vcpu, false); |
e1732991 | 8504 | kvm_init_mmu(vcpu, false); |
e9b11c17 | 8505 | vcpu_put(vcpu); |
ec7660cc | 8506 | return 0; |
e9b11c17 ZX |
8507 | } |
8508 | ||
31928aa5 | 8509 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
42897d86 | 8510 | { |
8fe8ab46 | 8511 | struct msr_data msr; |
332967a3 | 8512 | struct kvm *kvm = vcpu->kvm; |
42897d86 | 8513 | |
d3457c87 RK |
8514 | kvm_hv_vcpu_postcreate(vcpu); |
8515 | ||
ec7660cc | 8516 | if (mutex_lock_killable(&vcpu->mutex)) |
31928aa5 | 8517 | return; |
ec7660cc | 8518 | vcpu_load(vcpu); |
8fe8ab46 WA |
8519 | msr.data = 0x0; |
8520 | msr.index = MSR_IA32_TSC; | |
8521 | msr.host_initiated = true; | |
8522 | kvm_write_tsc(vcpu, &msr); | |
42897d86 | 8523 | vcpu_put(vcpu); |
ec7660cc | 8524 | mutex_unlock(&vcpu->mutex); |
42897d86 | 8525 | |
630994b3 MT |
8526 | if (!kvmclock_periodic_sync) |
8527 | return; | |
8528 | ||
332967a3 AJ |
8529 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
8530 | KVMCLOCK_SYNC_PERIOD); | |
42897d86 MT |
8531 | } |
8532 | ||
d40ccc62 | 8533 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 8534 | { |
344d9588 GN |
8535 | vcpu->arch.apf.msr_val = 0; |
8536 | ||
ec7660cc | 8537 | vcpu_load(vcpu); |
e9b11c17 ZX |
8538 | kvm_mmu_unload(vcpu); |
8539 | vcpu_put(vcpu); | |
8540 | ||
8541 | kvm_x86_ops->vcpu_free(vcpu); | |
8542 | } | |
8543 | ||
d28bc9dd | 8544 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
e9b11c17 | 8545 | { |
b7e31be3 RK |
8546 | kvm_lapic_reset(vcpu, init_event); |
8547 | ||
e69fab5d PB |
8548 | vcpu->arch.hflags = 0; |
8549 | ||
c43203ca | 8550 | vcpu->arch.smi_pending = 0; |
52797bf9 | 8551 | vcpu->arch.smi_count = 0; |
7460fb4a AK |
8552 | atomic_set(&vcpu->arch.nmi_queued, 0); |
8553 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 | 8554 | vcpu->arch.nmi_injected = false; |
5f7552d4 NA |
8555 | kvm_clear_interrupt_queue(vcpu); |
8556 | kvm_clear_exception_queue(vcpu); | |
664f8e26 | 8557 | vcpu->arch.exception.pending = false; |
448fa4a9 | 8558 | |
42dbaa5a | 8559 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
ae561ede | 8560 | kvm_update_dr0123(vcpu); |
6f43ed01 | 8561 | vcpu->arch.dr6 = DR6_INIT; |
73aaf249 | 8562 | kvm_update_dr6(vcpu); |
42dbaa5a | 8563 | vcpu->arch.dr7 = DR7_FIXED_1; |
c8639010 | 8564 | kvm_update_dr7(vcpu); |
42dbaa5a | 8565 | |
1119022c NA |
8566 | vcpu->arch.cr2 = 0; |
8567 | ||
3842d135 | 8568 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
344d9588 | 8569 | vcpu->arch.apf.msr_val = 0; |
c9aaa895 | 8570 | vcpu->arch.st.msr_val = 0; |
3842d135 | 8571 | |
12f9a48f GC |
8572 | kvmclock_reset(vcpu); |
8573 | ||
af585b92 GN |
8574 | kvm_clear_async_pf_completion_queue(vcpu); |
8575 | kvm_async_pf_hash_reset(vcpu); | |
8576 | vcpu->arch.apf.halted = false; | |
3842d135 | 8577 | |
a554d207 WL |
8578 | if (kvm_mpx_supported()) { |
8579 | void *mpx_state_buffer; | |
8580 | ||
8581 | /* | |
8582 | * To avoid have the INIT path from kvm_apic_has_events() that be | |
8583 | * called with loaded FPU and does not let userspace fix the state. | |
8584 | */ | |
f775b13e RR |
8585 | if (init_event) |
8586 | kvm_put_guest_fpu(vcpu); | |
a554d207 WL |
8587 | mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, |
8588 | XFEATURE_MASK_BNDREGS); | |
8589 | if (mpx_state_buffer) | |
8590 | memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); | |
8591 | mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, | |
8592 | XFEATURE_MASK_BNDCSR); | |
8593 | if (mpx_state_buffer) | |
8594 | memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); | |
f775b13e RR |
8595 | if (init_event) |
8596 | kvm_load_guest_fpu(vcpu); | |
a554d207 WL |
8597 | } |
8598 | ||
64d60670 | 8599 | if (!init_event) { |
d28bc9dd | 8600 | kvm_pmu_reset(vcpu); |
64d60670 | 8601 | vcpu->arch.smbase = 0x30000; |
db2336a8 KH |
8602 | |
8603 | vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; | |
8604 | vcpu->arch.msr_misc_features_enables = 0; | |
a554d207 WL |
8605 | |
8606 | vcpu->arch.xcr0 = XFEATURE_MASK_FP; | |
64d60670 | 8607 | } |
f5132b01 | 8608 | |
66f7b72e JS |
8609 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
8610 | vcpu->arch.regs_avail = ~0; | |
8611 | vcpu->arch.regs_dirty = ~0; | |
8612 | ||
a554d207 WL |
8613 | vcpu->arch.ia32_xss = 0; |
8614 | ||
d28bc9dd | 8615 | kvm_x86_ops->vcpu_reset(vcpu, init_event); |
e9b11c17 ZX |
8616 | } |
8617 | ||
2b4a273b | 8618 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
66450a21 JK |
8619 | { |
8620 | struct kvm_segment cs; | |
8621 | ||
8622 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | |
8623 | cs.selector = vector << 8; | |
8624 | cs.base = vector << 12; | |
8625 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
8626 | kvm_rip_write(vcpu, 0); | |
e9b11c17 ZX |
8627 | } |
8628 | ||
13a34e06 | 8629 | int kvm_arch_hardware_enable(void) |
e9b11c17 | 8630 | { |
ca84d1a2 ZA |
8631 | struct kvm *kvm; |
8632 | struct kvm_vcpu *vcpu; | |
8633 | int i; | |
0dd6a6ed ZA |
8634 | int ret; |
8635 | u64 local_tsc; | |
8636 | u64 max_tsc = 0; | |
8637 | bool stable, backwards_tsc = false; | |
18863bdd AK |
8638 | |
8639 | kvm_shared_msr_cpu_online(); | |
13a34e06 | 8640 | ret = kvm_x86_ops->hardware_enable(); |
0dd6a6ed ZA |
8641 | if (ret != 0) |
8642 | return ret; | |
8643 | ||
4ea1636b | 8644 | local_tsc = rdtsc(); |
b0c39dc6 | 8645 | stable = !kvm_check_tsc_unstable(); |
0dd6a6ed ZA |
8646 | list_for_each_entry(kvm, &vm_list, vm_list) { |
8647 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
8648 | if (!stable && vcpu->cpu == smp_processor_id()) | |
105b21bb | 8649 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
8650 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
8651 | backwards_tsc = true; | |
8652 | if (vcpu->arch.last_host_tsc > max_tsc) | |
8653 | max_tsc = vcpu->arch.last_host_tsc; | |
8654 | } | |
8655 | } | |
8656 | } | |
8657 | ||
8658 | /* | |
8659 | * Sometimes, even reliable TSCs go backwards. This happens on | |
8660 | * platforms that reset TSC during suspend or hibernate actions, but | |
8661 | * maintain synchronization. We must compensate. Fortunately, we can | |
8662 | * detect that condition here, which happens early in CPU bringup, | |
8663 | * before any KVM threads can be running. Unfortunately, we can't | |
8664 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
8665 | * enough into CPU bringup that we know how much real time has actually | |
108b249c | 8666 | * elapsed; our helper function, ktime_get_boot_ns() will be using boot |
0dd6a6ed ZA |
8667 | * variables that haven't been updated yet. |
8668 | * | |
8669 | * So we simply find the maximum observed TSC above, then record the | |
8670 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
8671 | * the adjustment will be applied. Note that we accumulate | |
8672 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
8673 | * gets a chance to run again. In the event that no KVM threads get a | |
8674 | * chance to run, we will miss the entire elapsed period, as we'll have | |
8675 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
8676 | * loose cycle time. This isn't too big a deal, since the loss will be | |
8677 | * uniform across all VCPUs (not to mention the scenario is extremely | |
8678 | * unlikely). It is possible that a second hibernate recovery happens | |
8679 | * much faster than a first, causing the observed TSC here to be | |
8680 | * smaller; this would require additional padding adjustment, which is | |
8681 | * why we set last_host_tsc to the local tsc observed here. | |
8682 | * | |
8683 | * N.B. - this code below runs only on platforms with reliable TSC, | |
8684 | * as that is the only way backwards_tsc is set above. Also note | |
8685 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
8686 | * have the same delta_cyc adjustment applied if backwards_tsc | |
8687 | * is detected. Note further, this adjustment is only done once, | |
8688 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
8689 | * called multiple times (one for each physical CPU bringup). | |
8690 | * | |
4a969980 | 8691 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
8692 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
8693 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
8694 | * guarantee that they stay in perfect synchronization. | |
8695 | */ | |
8696 | if (backwards_tsc) { | |
8697 | u64 delta_cyc = max_tsc - local_tsc; | |
8698 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
a826faf1 | 8699 | kvm->arch.backwards_tsc_observed = true; |
0dd6a6ed ZA |
8700 | kvm_for_each_vcpu(i, vcpu, kvm) { |
8701 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
8702 | vcpu->arch.last_host_tsc = local_tsc; | |
105b21bb | 8703 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
8704 | } |
8705 | ||
8706 | /* | |
8707 | * We have to disable TSC offset matching.. if you were | |
8708 | * booting a VM while issuing an S4 host suspend.... | |
8709 | * you may have some problem. Solving this issue is | |
8710 | * left as an exercise to the reader. | |
8711 | */ | |
8712 | kvm->arch.last_tsc_nsec = 0; | |
8713 | kvm->arch.last_tsc_write = 0; | |
8714 | } | |
8715 | ||
8716 | } | |
8717 | return 0; | |
e9b11c17 ZX |
8718 | } |
8719 | ||
13a34e06 | 8720 | void kvm_arch_hardware_disable(void) |
e9b11c17 | 8721 | { |
13a34e06 RK |
8722 | kvm_x86_ops->hardware_disable(); |
8723 | drop_user_return_notifiers(); | |
e9b11c17 ZX |
8724 | } |
8725 | ||
8726 | int kvm_arch_hardware_setup(void) | |
8727 | { | |
9e9c3fe4 NA |
8728 | int r; |
8729 | ||
8730 | r = kvm_x86_ops->hardware_setup(); | |
8731 | if (r != 0) | |
8732 | return r; | |
8733 | ||
35181e86 HZ |
8734 | if (kvm_has_tsc_control) { |
8735 | /* | |
8736 | * Make sure the user can only configure tsc_khz values that | |
8737 | * fit into a signed integer. | |
273ba457 | 8738 | * A min value is not calculated because it will always |
35181e86 HZ |
8739 | * be 1 on all machines. |
8740 | */ | |
8741 | u64 max = min(0x7fffffffULL, | |
8742 | __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); | |
8743 | kvm_max_guest_tsc_khz = max; | |
8744 | ||
ad721883 | 8745 | kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; |
35181e86 | 8746 | } |
ad721883 | 8747 | |
9e9c3fe4 NA |
8748 | kvm_init_msr_list(); |
8749 | return 0; | |
e9b11c17 ZX |
8750 | } |
8751 | ||
8752 | void kvm_arch_hardware_unsetup(void) | |
8753 | { | |
8754 | kvm_x86_ops->hardware_unsetup(); | |
8755 | } | |
8756 | ||
8757 | void kvm_arch_check_processor_compat(void *rtn) | |
8758 | { | |
8759 | kvm_x86_ops->check_processor_compatibility(rtn); | |
d71ba788 PB |
8760 | } |
8761 | ||
8762 | bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) | |
8763 | { | |
8764 | return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; | |
8765 | } | |
8766 | EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); | |
8767 | ||
8768 | bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) | |
8769 | { | |
8770 | return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; | |
e9b11c17 ZX |
8771 | } |
8772 | ||
54e9818f | 8773 | struct static_key kvm_no_apic_vcpu __read_mostly; |
bce87cce | 8774 | EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); |
54e9818f | 8775 | |
e9b11c17 ZX |
8776 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
8777 | { | |
8778 | struct page *page; | |
e9b11c17 ZX |
8779 | int r; |
8780 | ||
b2a05fef | 8781 | vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu); |
9aabc88f | 8782 | vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
26de7988 | 8783 | if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
a4535290 | 8784 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
e9b11c17 | 8785 | else |
a4535290 | 8786 | vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
e9b11c17 ZX |
8787 | |
8788 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); | |
8789 | if (!page) { | |
8790 | r = -ENOMEM; | |
8791 | goto fail; | |
8792 | } | |
ad312c7c | 8793 | vcpu->arch.pio_data = page_address(page); |
e9b11c17 | 8794 | |
cc578287 | 8795 | kvm_set_tsc_khz(vcpu, max_tsc_khz); |
c285545f | 8796 | |
e9b11c17 ZX |
8797 | r = kvm_mmu_create(vcpu); |
8798 | if (r < 0) | |
8799 | goto fail_free_pio_data; | |
8800 | ||
26de7988 | 8801 | if (irqchip_in_kernel(vcpu->kvm)) { |
e9b11c17 ZX |
8802 | r = kvm_create_lapic(vcpu); |
8803 | if (r < 0) | |
8804 | goto fail_mmu_destroy; | |
54e9818f GN |
8805 | } else |
8806 | static_key_slow_inc(&kvm_no_apic_vcpu); | |
e9b11c17 | 8807 | |
890ca9ae YH |
8808 | vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
8809 | GFP_KERNEL); | |
8810 | if (!vcpu->arch.mce_banks) { | |
8811 | r = -ENOMEM; | |
443c39bc | 8812 | goto fail_free_lapic; |
890ca9ae YH |
8813 | } |
8814 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | |
8815 | ||
f1797359 WY |
8816 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { |
8817 | r = -ENOMEM; | |
f5f48ee1 | 8818 | goto fail_free_mce_banks; |
f1797359 | 8819 | } |
f5f48ee1 | 8820 | |
0ee6a517 | 8821 | fx_init(vcpu); |
66f7b72e | 8822 | |
4344ee98 | 8823 | vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
d7876f1b | 8824 | |
5a4f55cd EK |
8825 | vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
8826 | ||
74545705 RK |
8827 | vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
8828 | ||
af585b92 | 8829 | kvm_async_pf_hash_reset(vcpu); |
f5132b01 | 8830 | kvm_pmu_init(vcpu); |
af585b92 | 8831 | |
1c1a9ce9 | 8832 | vcpu->arch.pending_external_vector = -1; |
de63ad4c | 8833 | vcpu->arch.preempted_in_kernel = false; |
1c1a9ce9 | 8834 | |
5c919412 AS |
8835 | kvm_hv_vcpu_init(vcpu); |
8836 | ||
e9b11c17 | 8837 | return 0; |
0ee6a517 | 8838 | |
f5f48ee1 SY |
8839 | fail_free_mce_banks: |
8840 | kfree(vcpu->arch.mce_banks); | |
443c39bc WY |
8841 | fail_free_lapic: |
8842 | kvm_free_lapic(vcpu); | |
e9b11c17 ZX |
8843 | fail_mmu_destroy: |
8844 | kvm_mmu_destroy(vcpu); | |
8845 | fail_free_pio_data: | |
ad312c7c | 8846 | free_page((unsigned long)vcpu->arch.pio_data); |
e9b11c17 ZX |
8847 | fail: |
8848 | return r; | |
8849 | } | |
8850 | ||
8851 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | |
8852 | { | |
f656ce01 MT |
8853 | int idx; |
8854 | ||
1f4b34f8 | 8855 | kvm_hv_vcpu_uninit(vcpu); |
f5132b01 | 8856 | kvm_pmu_destroy(vcpu); |
36cb93fd | 8857 | kfree(vcpu->arch.mce_banks); |
e9b11c17 | 8858 | kvm_free_lapic(vcpu); |
f656ce01 | 8859 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
e9b11c17 | 8860 | kvm_mmu_destroy(vcpu); |
f656ce01 | 8861 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
ad312c7c | 8862 | free_page((unsigned long)vcpu->arch.pio_data); |
35754c98 | 8863 | if (!lapic_in_kernel(vcpu)) |
54e9818f | 8864 | static_key_slow_dec(&kvm_no_apic_vcpu); |
e9b11c17 | 8865 | } |
d19a9cd2 | 8866 | |
e790d9ef RK |
8867 | void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) |
8868 | { | |
c595ceee | 8869 | vcpu->arch.l1tf_flush_l1d = true; |
ae97a3b8 | 8870 | kvm_x86_ops->sched_in(vcpu, cpu); |
e790d9ef RK |
8871 | } |
8872 | ||
e08b9637 | 8873 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 8874 | { |
e08b9637 CO |
8875 | if (type) |
8876 | return -EINVAL; | |
8877 | ||
6ef768fa | 8878 | INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
f05e70ac | 8879 | INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
365c8868 | 8880 | INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); |
4d5c5d0f | 8881 | INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
e0f0bbc5 | 8882 | atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
d19a9cd2 | 8883 | |
5550af4d SY |
8884 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
8885 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
8886 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
8887 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
8888 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 8889 | |
038f8c11 | 8890 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 8891 | mutex_init(&kvm->arch.apic_map_lock); |
d828199e MT |
8892 | spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); |
8893 | ||
108b249c | 8894 | kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); |
d828199e | 8895 | pvclock_update_vm_gtod_copy(kvm); |
53f658b3 | 8896 | |
6fbbde9a DS |
8897 | kvm->arch.guest_can_read_msr_platform_info = true; |
8898 | ||
7e44e449 | 8899 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
332967a3 | 8900 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
7e44e449 | 8901 | |
cbc0236a | 8902 | kvm_hv_init_vm(kvm); |
0eb05bf2 | 8903 | kvm_page_track_init(kvm); |
13d268ca | 8904 | kvm_mmu_init_vm(kvm); |
0eb05bf2 | 8905 | |
03543133 SS |
8906 | if (kvm_x86_ops->vm_init) |
8907 | return kvm_x86_ops->vm_init(kvm); | |
8908 | ||
d89f5eff | 8909 | return 0; |
d19a9cd2 ZX |
8910 | } |
8911 | ||
8912 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | |
8913 | { | |
ec7660cc | 8914 | vcpu_load(vcpu); |
d19a9cd2 ZX |
8915 | kvm_mmu_unload(vcpu); |
8916 | vcpu_put(vcpu); | |
8917 | } | |
8918 | ||
8919 | static void kvm_free_vcpus(struct kvm *kvm) | |
8920 | { | |
8921 | unsigned int i; | |
988a2cae | 8922 | struct kvm_vcpu *vcpu; |
d19a9cd2 ZX |
8923 | |
8924 | /* | |
8925 | * Unpin any mmu pages first. | |
8926 | */ | |
af585b92 GN |
8927 | kvm_for_each_vcpu(i, vcpu, kvm) { |
8928 | kvm_clear_async_pf_completion_queue(vcpu); | |
988a2cae | 8929 | kvm_unload_vcpu_mmu(vcpu); |
af585b92 | 8930 | } |
988a2cae GN |
8931 | kvm_for_each_vcpu(i, vcpu, kvm) |
8932 | kvm_arch_vcpu_free(vcpu); | |
8933 | ||
8934 | mutex_lock(&kvm->lock); | |
8935 | for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | |
8936 | kvm->vcpus[i] = NULL; | |
d19a9cd2 | 8937 | |
988a2cae GN |
8938 | atomic_set(&kvm->online_vcpus, 0); |
8939 | mutex_unlock(&kvm->lock); | |
d19a9cd2 ZX |
8940 | } |
8941 | ||
ad8ba2cd SY |
8942 | void kvm_arch_sync_events(struct kvm *kvm) |
8943 | { | |
332967a3 | 8944 | cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); |
7e44e449 | 8945 | cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); |
aea924f6 | 8946 | kvm_free_pit(kvm); |
ad8ba2cd SY |
8947 | } |
8948 | ||
1d8007bd | 8949 | int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
8950 | { |
8951 | int i, r; | |
25188b99 | 8952 | unsigned long hva; |
f0d648bd PB |
8953 | struct kvm_memslots *slots = kvm_memslots(kvm); |
8954 | struct kvm_memory_slot *slot, old; | |
9da0e4d5 PB |
8955 | |
8956 | /* Called with kvm->slots_lock held. */ | |
1d8007bd PB |
8957 | if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
8958 | return -EINVAL; | |
9da0e4d5 | 8959 | |
f0d648bd PB |
8960 | slot = id_to_memslot(slots, id); |
8961 | if (size) { | |
b21629da | 8962 | if (slot->npages) |
f0d648bd PB |
8963 | return -EEXIST; |
8964 | ||
8965 | /* | |
8966 | * MAP_SHARED to prevent internal slot pages from being moved | |
8967 | * by fork()/COW. | |
8968 | */ | |
8969 | hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, | |
8970 | MAP_SHARED | MAP_ANONYMOUS, 0); | |
8971 | if (IS_ERR((void *)hva)) | |
8972 | return PTR_ERR((void *)hva); | |
8973 | } else { | |
8974 | if (!slot->npages) | |
8975 | return 0; | |
8976 | ||
8977 | hva = 0; | |
8978 | } | |
8979 | ||
8980 | old = *slot; | |
9da0e4d5 | 8981 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
1d8007bd | 8982 | struct kvm_userspace_memory_region m; |
9da0e4d5 | 8983 | |
1d8007bd PB |
8984 | m.slot = id | (i << 16); |
8985 | m.flags = 0; | |
8986 | m.guest_phys_addr = gpa; | |
f0d648bd | 8987 | m.userspace_addr = hva; |
1d8007bd | 8988 | m.memory_size = size; |
9da0e4d5 PB |
8989 | r = __kvm_set_memory_region(kvm, &m); |
8990 | if (r < 0) | |
8991 | return r; | |
8992 | } | |
8993 | ||
103c763c EB |
8994 | if (!size) |
8995 | vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); | |
f0d648bd | 8996 | |
9da0e4d5 PB |
8997 | return 0; |
8998 | } | |
8999 | EXPORT_SYMBOL_GPL(__x86_set_memory_region); | |
9000 | ||
1d8007bd | 9001 | int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) |
9da0e4d5 PB |
9002 | { |
9003 | int r; | |
9004 | ||
9005 | mutex_lock(&kvm->slots_lock); | |
1d8007bd | 9006 | r = __x86_set_memory_region(kvm, id, gpa, size); |
9da0e4d5 PB |
9007 | mutex_unlock(&kvm->slots_lock); |
9008 | ||
9009 | return r; | |
9010 | } | |
9011 | EXPORT_SYMBOL_GPL(x86_set_memory_region); | |
9012 | ||
d19a9cd2 ZX |
9013 | void kvm_arch_destroy_vm(struct kvm *kvm) |
9014 | { | |
27469d29 AH |
9015 | if (current->mm == kvm->mm) { |
9016 | /* | |
9017 | * Free memory regions allocated on behalf of userspace, | |
9018 | * unless the the memory map has changed due to process exit | |
9019 | * or fd copying. | |
9020 | */ | |
1d8007bd PB |
9021 | x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); |
9022 | x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); | |
9023 | x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); | |
27469d29 | 9024 | } |
03543133 SS |
9025 | if (kvm_x86_ops->vm_destroy) |
9026 | kvm_x86_ops->vm_destroy(kvm); | |
c761159c PX |
9027 | kvm_pic_destroy(kvm); |
9028 | kvm_ioapic_destroy(kvm); | |
d19a9cd2 | 9029 | kvm_free_vcpus(kvm); |
af1bae54 | 9030 | kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
13d268ca | 9031 | kvm_mmu_uninit_vm(kvm); |
2beb6dad | 9032 | kvm_page_track_cleanup(kvm); |
cbc0236a | 9033 | kvm_hv_destroy_vm(kvm); |
d19a9cd2 | 9034 | } |
0de10343 | 9035 | |
5587027c | 9036 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
db3fe4eb TY |
9037 | struct kvm_memory_slot *dont) |
9038 | { | |
9039 | int i; | |
9040 | ||
d89cc617 TY |
9041 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
9042 | if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | |
548ef284 | 9043 | kvfree(free->arch.rmap[i]); |
d89cc617 | 9044 | free->arch.rmap[i] = NULL; |
77d11309 | 9045 | } |
d89cc617 TY |
9046 | if (i == 0) |
9047 | continue; | |
9048 | ||
9049 | if (!dont || free->arch.lpage_info[i - 1] != | |
9050 | dont->arch.lpage_info[i - 1]) { | |
548ef284 | 9051 | kvfree(free->arch.lpage_info[i - 1]); |
d89cc617 | 9052 | free->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
9053 | } |
9054 | } | |
21ebbeda XG |
9055 | |
9056 | kvm_page_track_free_memslot(free, dont); | |
db3fe4eb TY |
9057 | } |
9058 | ||
5587027c AK |
9059 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
9060 | unsigned long npages) | |
db3fe4eb TY |
9061 | { |
9062 | int i; | |
9063 | ||
d89cc617 | 9064 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
92f94f1e | 9065 | struct kvm_lpage_info *linfo; |
db3fe4eb TY |
9066 | unsigned long ugfn; |
9067 | int lpages; | |
d89cc617 | 9068 | int level = i + 1; |
db3fe4eb TY |
9069 | |
9070 | lpages = gfn_to_index(slot->base_gfn + npages - 1, | |
9071 | slot->base_gfn, level) + 1; | |
9072 | ||
d89cc617 | 9073 | slot->arch.rmap[i] = |
778e1cdd KC |
9074 | kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), |
9075 | GFP_KERNEL); | |
d89cc617 | 9076 | if (!slot->arch.rmap[i]) |
77d11309 | 9077 | goto out_free; |
d89cc617 TY |
9078 | if (i == 0) |
9079 | continue; | |
77d11309 | 9080 | |
778e1cdd | 9081 | linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL); |
92f94f1e | 9082 | if (!linfo) |
db3fe4eb TY |
9083 | goto out_free; |
9084 | ||
92f94f1e XG |
9085 | slot->arch.lpage_info[i - 1] = linfo; |
9086 | ||
db3fe4eb | 9087 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 9088 | linfo[0].disallow_lpage = 1; |
db3fe4eb | 9089 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 9090 | linfo[lpages - 1].disallow_lpage = 1; |
db3fe4eb TY |
9091 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
9092 | /* | |
9093 | * If the gfn and userspace address are not aligned wrt each | |
9094 | * other, or if explicitly asked to, disable large page | |
9095 | * support for this slot | |
9096 | */ | |
9097 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | |
9098 | !kvm_largepages_enabled()) { | |
9099 | unsigned long j; | |
9100 | ||
9101 | for (j = 0; j < lpages; ++j) | |
92f94f1e | 9102 | linfo[j].disallow_lpage = 1; |
db3fe4eb TY |
9103 | } |
9104 | } | |
9105 | ||
21ebbeda XG |
9106 | if (kvm_page_track_create_memslot(slot, npages)) |
9107 | goto out_free; | |
9108 | ||
db3fe4eb TY |
9109 | return 0; |
9110 | ||
9111 | out_free: | |
d89cc617 | 9112 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
548ef284 | 9113 | kvfree(slot->arch.rmap[i]); |
d89cc617 TY |
9114 | slot->arch.rmap[i] = NULL; |
9115 | if (i == 0) | |
9116 | continue; | |
9117 | ||
548ef284 | 9118 | kvfree(slot->arch.lpage_info[i - 1]); |
d89cc617 | 9119 | slot->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
9120 | } |
9121 | return -ENOMEM; | |
9122 | } | |
9123 | ||
15f46015 | 9124 | void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) |
e59dbe09 | 9125 | { |
e6dff7d1 TY |
9126 | /* |
9127 | * memslots->generation has been incremented. | |
9128 | * mmio generation may have reached its maximum value. | |
9129 | */ | |
54bf36aa | 9130 | kvm_mmu_invalidate_mmio_sptes(kvm, slots); |
e59dbe09 TY |
9131 | } |
9132 | ||
f7784b8e MT |
9133 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
9134 | struct kvm_memory_slot *memslot, | |
09170a49 | 9135 | const struct kvm_userspace_memory_region *mem, |
7b6195a9 | 9136 | enum kvm_mr_change change) |
0de10343 | 9137 | { |
f7784b8e MT |
9138 | return 0; |
9139 | } | |
9140 | ||
88178fd4 KH |
9141 | static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
9142 | struct kvm_memory_slot *new) | |
9143 | { | |
9144 | /* Still write protect RO slot */ | |
9145 | if (new->flags & KVM_MEM_READONLY) { | |
9146 | kvm_mmu_slot_remove_write_access(kvm, new); | |
9147 | return; | |
9148 | } | |
9149 | ||
9150 | /* | |
9151 | * Call kvm_x86_ops dirty logging hooks when they are valid. | |
9152 | * | |
9153 | * kvm_x86_ops->slot_disable_log_dirty is called when: | |
9154 | * | |
9155 | * - KVM_MR_CREATE with dirty logging is disabled | |
9156 | * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag | |
9157 | * | |
9158 | * The reason is, in case of PML, we need to set D-bit for any slots | |
9159 | * with dirty logging disabled in order to eliminate unnecessary GPA | |
9160 | * logging in PML buffer (and potential PML buffer full VMEXT). This | |
9161 | * guarantees leaving PML enabled during guest's lifetime won't have | |
9162 | * any additonal overhead from PML when guest is running with dirty | |
9163 | * logging disabled for memory slots. | |
9164 | * | |
9165 | * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot | |
9166 | * to dirty logging mode. | |
9167 | * | |
9168 | * If kvm_x86_ops dirty logging hooks are invalid, use write protect. | |
9169 | * | |
9170 | * In case of write protect: | |
9171 | * | |
9172 | * Write protect all pages for dirty logging. | |
9173 | * | |
9174 | * All the sptes including the large sptes which point to this | |
9175 | * slot are set to readonly. We can not create any new large | |
9176 | * spte on this slot until the end of the logging. | |
9177 | * | |
9178 | * See the comments in fast_page_fault(). | |
9179 | */ | |
9180 | if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { | |
9181 | if (kvm_x86_ops->slot_enable_log_dirty) | |
9182 | kvm_x86_ops->slot_enable_log_dirty(kvm, new); | |
9183 | else | |
9184 | kvm_mmu_slot_remove_write_access(kvm, new); | |
9185 | } else { | |
9186 | if (kvm_x86_ops->slot_disable_log_dirty) | |
9187 | kvm_x86_ops->slot_disable_log_dirty(kvm, new); | |
9188 | } | |
9189 | } | |
9190 | ||
f7784b8e | 9191 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
09170a49 | 9192 | const struct kvm_userspace_memory_region *mem, |
8482644a | 9193 | const struct kvm_memory_slot *old, |
f36f3f28 | 9194 | const struct kvm_memory_slot *new, |
8482644a | 9195 | enum kvm_mr_change change) |
f7784b8e | 9196 | { |
8482644a | 9197 | int nr_mmu_pages = 0; |
f7784b8e | 9198 | |
48c0e4e9 XG |
9199 | if (!kvm->arch.n_requested_mmu_pages) |
9200 | nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | |
9201 | ||
48c0e4e9 | 9202 | if (nr_mmu_pages) |
0de10343 | 9203 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
1c91cad4 | 9204 | |
3ea3b7fa WL |
9205 | /* |
9206 | * Dirty logging tracks sptes in 4k granularity, meaning that large | |
9207 | * sptes have to be split. If live migration is successful, the guest | |
9208 | * in the source machine will be destroyed and large sptes will be | |
9209 | * created in the destination. However, if the guest continues to run | |
9210 | * in the source machine (for example if live migration fails), small | |
9211 | * sptes will remain around and cause bad performance. | |
9212 | * | |
9213 | * Scan sptes if dirty logging has been stopped, dropping those | |
9214 | * which can be collapsed into a single large-page spte. Later | |
9215 | * page faults will create the large-page sptes. | |
9216 | */ | |
9217 | if ((change != KVM_MR_DELETE) && | |
9218 | (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && | |
9219 | !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) | |
9220 | kvm_mmu_zap_collapsible_sptes(kvm, new); | |
9221 | ||
c972f3b1 | 9222 | /* |
88178fd4 | 9223 | * Set up write protection and/or dirty logging for the new slot. |
c126d94f | 9224 | * |
88178fd4 KH |
9225 | * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have |
9226 | * been zapped so no dirty logging staff is needed for old slot. For | |
9227 | * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the | |
9228 | * new and it's also covered when dealing with the new slot. | |
f36f3f28 PB |
9229 | * |
9230 | * FIXME: const-ify all uses of struct kvm_memory_slot. | |
c972f3b1 | 9231 | */ |
88178fd4 | 9232 | if (change != KVM_MR_DELETE) |
f36f3f28 | 9233 | kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); |
0de10343 | 9234 | } |
1d737c8a | 9235 | |
2df72e9b | 9236 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
34d4cb8f | 9237 | { |
6ca18b69 | 9238 | kvm_mmu_invalidate_zap_all_pages(kvm); |
34d4cb8f MT |
9239 | } |
9240 | ||
2df72e9b MT |
9241 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
9242 | struct kvm_memory_slot *slot) | |
9243 | { | |
ae7cd873 | 9244 | kvm_page_track_flush_slot(kvm, slot); |
2df72e9b MT |
9245 | } |
9246 | ||
e6c67d8c LA |
9247 | static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) |
9248 | { | |
9249 | return (is_guest_mode(vcpu) && | |
9250 | kvm_x86_ops->guest_apic_has_interrupt && | |
9251 | kvm_x86_ops->guest_apic_has_interrupt(vcpu)); | |
9252 | } | |
9253 | ||
5d9bc648 PB |
9254 | static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
9255 | { | |
9256 | if (!list_empty_careful(&vcpu->async_pf.done)) | |
9257 | return true; | |
9258 | ||
9259 | if (kvm_apic_has_events(vcpu)) | |
9260 | return true; | |
9261 | ||
9262 | if (vcpu->arch.pv.pv_unhalted) | |
9263 | return true; | |
9264 | ||
a5f01f8e WL |
9265 | if (vcpu->arch.exception.pending) |
9266 | return true; | |
9267 | ||
47a66eed Z |
9268 | if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
9269 | (vcpu->arch.nmi_pending && | |
9270 | kvm_x86_ops->nmi_allowed(vcpu))) | |
5d9bc648 PB |
9271 | return true; |
9272 | ||
47a66eed Z |
9273 | if (kvm_test_request(KVM_REQ_SMI, vcpu) || |
9274 | (vcpu->arch.smi_pending && !is_smm(vcpu))) | |
73917739 PB |
9275 | return true; |
9276 | ||
5d9bc648 | 9277 | if (kvm_arch_interrupt_allowed(vcpu) && |
e6c67d8c LA |
9278 | (kvm_cpu_has_interrupt(vcpu) || |
9279 | kvm_guest_apic_has_interrupt(vcpu))) | |
5d9bc648 PB |
9280 | return true; |
9281 | ||
1f4b34f8 AS |
9282 | if (kvm_hv_has_stimer_pending(vcpu)) |
9283 | return true; | |
9284 | ||
5d9bc648 PB |
9285 | return false; |
9286 | } | |
9287 | ||
1d737c8a ZX |
9288 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
9289 | { | |
5d9bc648 | 9290 | return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); |
1d737c8a | 9291 | } |
5736199a | 9292 | |
199b5763 LM |
9293 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
9294 | { | |
de63ad4c | 9295 | return vcpu->arch.preempted_in_kernel; |
199b5763 LM |
9296 | } |
9297 | ||
b6d33834 | 9298 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 9299 | { |
b6d33834 | 9300 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 9301 | } |
78646121 GN |
9302 | |
9303 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
9304 | { | |
9305 | return kvm_x86_ops->interrupt_allowed(vcpu); | |
9306 | } | |
229456fc | 9307 | |
82b32774 | 9308 | unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
f92653ee | 9309 | { |
82b32774 NA |
9310 | if (is_64_bit_mode(vcpu)) |
9311 | return kvm_rip_read(vcpu); | |
9312 | return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + | |
9313 | kvm_rip_read(vcpu)); | |
9314 | } | |
9315 | EXPORT_SYMBOL_GPL(kvm_get_linear_rip); | |
f92653ee | 9316 | |
82b32774 NA |
9317 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
9318 | { | |
9319 | return kvm_get_linear_rip(vcpu) == linear_rip; | |
f92653ee JK |
9320 | } |
9321 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
9322 | ||
94fe45da JK |
9323 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
9324 | { | |
9325 | unsigned long rflags; | |
9326 | ||
9327 | rflags = kvm_x86_ops->get_rflags(vcpu); | |
9328 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | |
c310bac5 | 9329 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
9330 | return rflags; |
9331 | } | |
9332 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
9333 | ||
6addfc42 | 9334 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
94fe45da JK |
9335 | { |
9336 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 9337 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 9338 | rflags |= X86_EFLAGS_TF; |
94fe45da | 9339 | kvm_x86_ops->set_rflags(vcpu, rflags); |
6addfc42 PB |
9340 | } |
9341 | ||
9342 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
9343 | { | |
9344 | __kvm_set_rflags(vcpu, rflags); | |
3842d135 | 9345 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
9346 | } |
9347 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
9348 | ||
56028d08 GN |
9349 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
9350 | { | |
9351 | int r; | |
9352 | ||
44dd3ffa | 9353 | if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || |
f2e10669 | 9354 | work->wakeup_all) |
56028d08 GN |
9355 | return; |
9356 | ||
9357 | r = kvm_mmu_reload(vcpu); | |
9358 | if (unlikely(r)) | |
9359 | return; | |
9360 | ||
44dd3ffa VK |
9361 | if (!vcpu->arch.mmu->direct_map && |
9362 | work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu)) | |
fb67e14f XG |
9363 | return; |
9364 | ||
44dd3ffa | 9365 | vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true); |
56028d08 GN |
9366 | } |
9367 | ||
af585b92 GN |
9368 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
9369 | { | |
9370 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | |
9371 | } | |
9372 | ||
9373 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
9374 | { | |
9375 | return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | |
9376 | } | |
9377 | ||
9378 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
9379 | { | |
9380 | u32 key = kvm_async_pf_hash_fn(gfn); | |
9381 | ||
9382 | while (vcpu->arch.apf.gfns[key] != ~0) | |
9383 | key = kvm_async_pf_next_probe(key); | |
9384 | ||
9385 | vcpu->arch.apf.gfns[key] = gfn; | |
9386 | } | |
9387 | ||
9388 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
9389 | { | |
9390 | int i; | |
9391 | u32 key = kvm_async_pf_hash_fn(gfn); | |
9392 | ||
9393 | for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | |
c7d28c24 XG |
9394 | (vcpu->arch.apf.gfns[key] != gfn && |
9395 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
9396 | key = kvm_async_pf_next_probe(key); |
9397 | ||
9398 | return key; | |
9399 | } | |
9400 | ||
9401 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
9402 | { | |
9403 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
9404 | } | |
9405 | ||
9406 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
9407 | { | |
9408 | u32 i, j, k; | |
9409 | ||
9410 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
9411 | while (true) { | |
9412 | vcpu->arch.apf.gfns[i] = ~0; | |
9413 | do { | |
9414 | j = kvm_async_pf_next_probe(j); | |
9415 | if (vcpu->arch.apf.gfns[j] == ~0) | |
9416 | return; | |
9417 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
9418 | /* | |
9419 | * k lies cyclically in ]i,j] | |
9420 | * | i.k.j | | |
9421 | * |....j i.k.| or |.k..j i...| | |
9422 | */ | |
9423 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
9424 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
9425 | i = j; | |
9426 | } | |
9427 | } | |
9428 | ||
7c90705b GN |
9429 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
9430 | { | |
4e335d9e PB |
9431 | |
9432 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | |
9433 | sizeof(val)); | |
7c90705b GN |
9434 | } |
9435 | ||
9a6e7c39 WL |
9436 | static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val) |
9437 | { | |
9438 | ||
9439 | return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val, | |
9440 | sizeof(u32)); | |
9441 | } | |
9442 | ||
af585b92 GN |
9443 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
9444 | struct kvm_async_pf *work) | |
9445 | { | |
6389ee94 AK |
9446 | struct x86_exception fault; |
9447 | ||
7c90705b | 9448 | trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
af585b92 | 9449 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b GN |
9450 | |
9451 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | |
fc5f06fa GN |
9452 | (vcpu->arch.apf.send_user_only && |
9453 | kvm_x86_ops->get_cpl(vcpu) == 0)) | |
7c90705b GN |
9454 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
9455 | else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | |
6389ee94 AK |
9456 | fault.vector = PF_VECTOR; |
9457 | fault.error_code_valid = true; | |
9458 | fault.error_code = 0; | |
9459 | fault.nested_page_fault = false; | |
9460 | fault.address = work->arch.token; | |
adfe20fb | 9461 | fault.async_page_fault = true; |
6389ee94 | 9462 | kvm_inject_page_fault(vcpu, &fault); |
7c90705b | 9463 | } |
af585b92 GN |
9464 | } |
9465 | ||
9466 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
9467 | struct kvm_async_pf *work) | |
9468 | { | |
6389ee94 | 9469 | struct x86_exception fault; |
9a6e7c39 | 9470 | u32 val; |
6389ee94 | 9471 | |
f2e10669 | 9472 | if (work->wakeup_all) |
7c90705b GN |
9473 | work->arch.token = ~0; /* broadcast wakeup */ |
9474 | else | |
9475 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
24dccf83 | 9476 | trace_kvm_async_pf_ready(work->arch.token, work->gva); |
7c90705b | 9477 | |
9a6e7c39 WL |
9478 | if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED && |
9479 | !apf_get_user(vcpu, &val)) { | |
9480 | if (val == KVM_PV_REASON_PAGE_NOT_PRESENT && | |
9481 | vcpu->arch.exception.pending && | |
9482 | vcpu->arch.exception.nr == PF_VECTOR && | |
9483 | !apf_put_user(vcpu, 0)) { | |
9484 | vcpu->arch.exception.injected = false; | |
9485 | vcpu->arch.exception.pending = false; | |
9486 | vcpu->arch.exception.nr = 0; | |
9487 | vcpu->arch.exception.has_error_code = false; | |
9488 | vcpu->arch.exception.error_code = 0; | |
9489 | } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | |
9490 | fault.vector = PF_VECTOR; | |
9491 | fault.error_code_valid = true; | |
9492 | fault.error_code = 0; | |
9493 | fault.nested_page_fault = false; | |
9494 | fault.address = work->arch.token; | |
9495 | fault.async_page_fault = true; | |
9496 | kvm_inject_page_fault(vcpu, &fault); | |
9497 | } | |
7c90705b | 9498 | } |
e6d53e3b | 9499 | vcpu->arch.apf.halted = false; |
a4fa1635 | 9500 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
7c90705b GN |
9501 | } |
9502 | ||
9503 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | |
9504 | { | |
9505 | if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | |
9506 | return true; | |
9507 | else | |
9bc1f09f | 9508 | return kvm_can_do_async_pf(vcpu); |
af585b92 GN |
9509 | } |
9510 | ||
5544eb9b PB |
9511 | void kvm_arch_start_assignment(struct kvm *kvm) |
9512 | { | |
9513 | atomic_inc(&kvm->arch.assigned_device_count); | |
9514 | } | |
9515 | EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); | |
9516 | ||
9517 | void kvm_arch_end_assignment(struct kvm *kvm) | |
9518 | { | |
9519 | atomic_dec(&kvm->arch.assigned_device_count); | |
9520 | } | |
9521 | EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); | |
9522 | ||
9523 | bool kvm_arch_has_assigned_device(struct kvm *kvm) | |
9524 | { | |
9525 | return atomic_read(&kvm->arch.assigned_device_count); | |
9526 | } | |
9527 | EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); | |
9528 | ||
e0f0bbc5 AW |
9529 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
9530 | { | |
9531 | atomic_inc(&kvm->arch.noncoherent_dma_count); | |
9532 | } | |
9533 | EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); | |
9534 | ||
9535 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) | |
9536 | { | |
9537 | atomic_dec(&kvm->arch.noncoherent_dma_count); | |
9538 | } | |
9539 | EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); | |
9540 | ||
9541 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) | |
9542 | { | |
9543 | return atomic_read(&kvm->arch.noncoherent_dma_count); | |
9544 | } | |
9545 | EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); | |
9546 | ||
14717e20 AW |
9547 | bool kvm_arch_has_irq_bypass(void) |
9548 | { | |
9549 | return kvm_x86_ops->update_pi_irte != NULL; | |
9550 | } | |
9551 | ||
87276880 FW |
9552 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
9553 | struct irq_bypass_producer *prod) | |
9554 | { | |
9555 | struct kvm_kernel_irqfd *irqfd = | |
9556 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
9557 | ||
14717e20 | 9558 | irqfd->producer = prod; |
87276880 | 9559 | |
14717e20 AW |
9560 | return kvm_x86_ops->update_pi_irte(irqfd->kvm, |
9561 | prod->irq, irqfd->gsi, 1); | |
87276880 FW |
9562 | } |
9563 | ||
9564 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | |
9565 | struct irq_bypass_producer *prod) | |
9566 | { | |
9567 | int ret; | |
9568 | struct kvm_kernel_irqfd *irqfd = | |
9569 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
9570 | ||
87276880 FW |
9571 | WARN_ON(irqfd->producer != prod); |
9572 | irqfd->producer = NULL; | |
9573 | ||
9574 | /* | |
9575 | * When producer of consumer is unregistered, we change back to | |
9576 | * remapped mode, so we can re-use the current implementation | |
bb3541f1 | 9577 | * when the irq is masked/disabled or the consumer side (KVM |
87276880 FW |
9578 | * int this case doesn't want to receive the interrupts. |
9579 | */ | |
9580 | ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); | |
9581 | if (ret) | |
9582 | printk(KERN_INFO "irq bypass consumer (token %p) unregistration" | |
9583 | " fails: %d\n", irqfd->consumer.token, ret); | |
9584 | } | |
9585 | ||
9586 | int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, | |
9587 | uint32_t guest_irq, bool set) | |
9588 | { | |
9589 | if (!kvm_x86_ops->update_pi_irte) | |
9590 | return -EINVAL; | |
9591 | ||
9592 | return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); | |
9593 | } | |
9594 | ||
52004014 FW |
9595 | bool kvm_vector_hashing_enabled(void) |
9596 | { | |
9597 | return vector_hashing; | |
9598 | } | |
9599 | EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); | |
9600 | ||
229456fc | 9601 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
931c33b1 | 9602 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
229456fc MT |
9603 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
9604 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
9605 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
9606 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
0ac406de | 9607 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
d8cabddf | 9608 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 9609 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 9610 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
ec1ff790 | 9611 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 9612 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 9613 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
489223ed | 9614 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
7b46268d | 9615 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); |
843e4330 | 9616 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
efc64404 | 9617 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
18f40c53 SS |
9618 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
9619 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); |