]>
Commit | Line | Data |
---|---|---|
71e3aac0 AA |
1 | /* |
2 | * Copyright (C) 2009 Red Hat, Inc. | |
3 | * | |
4 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
5 | * the COPYING file in the top-level directory. | |
6 | */ | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/sched.h> | |
10 | #include <linux/highmem.h> | |
11 | #include <linux/hugetlb.h> | |
12 | #include <linux/mmu_notifier.h> | |
13 | #include <linux/rmap.h> | |
14 | #include <linux/swap.h> | |
ba76149f AA |
15 | #include <linux/mm_inline.h> |
16 | #include <linux/kthread.h> | |
17 | #include <linux/khugepaged.h> | |
878aee7d | 18 | #include <linux/freezer.h> |
a664b2d8 | 19 | #include <linux/mman.h> |
71e3aac0 AA |
20 | #include <asm/tlb.h> |
21 | #include <asm/pgalloc.h> | |
22 | #include "internal.h" | |
23 | ||
ba76149f AA |
24 | /* |
25 | * By default transparent hugepage support is enabled for all mappings | |
26 | * and khugepaged scans all mappings. Defrag is only invoked by | |
27 | * khugepaged hugepage allocations and by page faults inside | |
28 | * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived | |
29 | * allocations. | |
30 | */ | |
71e3aac0 | 31 | unsigned long transparent_hugepage_flags __read_mostly = |
13ece886 | 32 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS |
ba76149f | 33 | (1<<TRANSPARENT_HUGEPAGE_FLAG)| |
13ece886 AA |
34 | #endif |
35 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE | |
36 | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| | |
37 | #endif | |
d39d33c3 | 38 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| |
ba76149f AA |
39 | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); |
40 | ||
41 | /* default scan 8*512 pte (or vmas) every 30 second */ | |
42 | static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; | |
43 | static unsigned int khugepaged_pages_collapsed; | |
44 | static unsigned int khugepaged_full_scans; | |
45 | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | |
46 | /* during fragmentation poll the hugepage allocator once every minute */ | |
47 | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | |
48 | static struct task_struct *khugepaged_thread __read_mostly; | |
49 | static DEFINE_MUTEX(khugepaged_mutex); | |
50 | static DEFINE_SPINLOCK(khugepaged_mm_lock); | |
51 | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | |
52 | /* | |
53 | * default collapse hugepages if there is at least one pte mapped like | |
54 | * it would have happened if the vma was large enough during page | |
55 | * fault. | |
56 | */ | |
57 | static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; | |
58 | ||
59 | static int khugepaged(void *none); | |
60 | static int mm_slots_hash_init(void); | |
61 | static int khugepaged_slab_init(void); | |
62 | static void khugepaged_slab_free(void); | |
63 | ||
64 | #define MM_SLOTS_HASH_HEADS 1024 | |
65 | static struct hlist_head *mm_slots_hash __read_mostly; | |
66 | static struct kmem_cache *mm_slot_cache __read_mostly; | |
67 | ||
68 | /** | |
69 | * struct mm_slot - hash lookup from mm to mm_slot | |
70 | * @hash: hash collision list | |
71 | * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | |
72 | * @mm: the mm that this information is valid for | |
73 | */ | |
74 | struct mm_slot { | |
75 | struct hlist_node hash; | |
76 | struct list_head mm_node; | |
77 | struct mm_struct *mm; | |
78 | }; | |
79 | ||
80 | /** | |
81 | * struct khugepaged_scan - cursor for scanning | |
82 | * @mm_head: the head of the mm list to scan | |
83 | * @mm_slot: the current mm_slot we are scanning | |
84 | * @address: the next address inside that to be scanned | |
85 | * | |
86 | * There is only the one khugepaged_scan instance of this cursor structure. | |
87 | */ | |
88 | struct khugepaged_scan { | |
89 | struct list_head mm_head; | |
90 | struct mm_slot *mm_slot; | |
91 | unsigned long address; | |
2f1da642 HS |
92 | }; |
93 | static struct khugepaged_scan khugepaged_scan = { | |
ba76149f AA |
94 | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), |
95 | }; | |
96 | ||
f000565a AA |
97 | |
98 | static int set_recommended_min_free_kbytes(void) | |
99 | { | |
100 | struct zone *zone; | |
101 | int nr_zones = 0; | |
102 | unsigned long recommended_min; | |
103 | extern int min_free_kbytes; | |
104 | ||
105 | if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
106 | &transparent_hugepage_flags) && | |
107 | !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
108 | &transparent_hugepage_flags)) | |
109 | return 0; | |
110 | ||
111 | for_each_populated_zone(zone) | |
112 | nr_zones++; | |
113 | ||
114 | /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ | |
115 | recommended_min = pageblock_nr_pages * nr_zones * 2; | |
116 | ||
117 | /* | |
118 | * Make sure that on average at least two pageblocks are almost free | |
119 | * of another type, one for a migratetype to fall back to and a | |
120 | * second to avoid subsequent fallbacks of other types There are 3 | |
121 | * MIGRATE_TYPES we care about. | |
122 | */ | |
123 | recommended_min += pageblock_nr_pages * nr_zones * | |
124 | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | |
125 | ||
126 | /* don't ever allow to reserve more than 5% of the lowmem */ | |
127 | recommended_min = min(recommended_min, | |
128 | (unsigned long) nr_free_buffer_pages() / 20); | |
129 | recommended_min <<= (PAGE_SHIFT-10); | |
130 | ||
131 | if (recommended_min > min_free_kbytes) | |
132 | min_free_kbytes = recommended_min; | |
133 | setup_per_zone_wmarks(); | |
134 | return 0; | |
135 | } | |
136 | late_initcall(set_recommended_min_free_kbytes); | |
137 | ||
ba76149f AA |
138 | static int start_khugepaged(void) |
139 | { | |
140 | int err = 0; | |
141 | if (khugepaged_enabled()) { | |
142 | int wakeup; | |
143 | if (unlikely(!mm_slot_cache || !mm_slots_hash)) { | |
144 | err = -ENOMEM; | |
145 | goto out; | |
146 | } | |
147 | mutex_lock(&khugepaged_mutex); | |
148 | if (!khugepaged_thread) | |
149 | khugepaged_thread = kthread_run(khugepaged, NULL, | |
150 | "khugepaged"); | |
151 | if (unlikely(IS_ERR(khugepaged_thread))) { | |
152 | printk(KERN_ERR | |
153 | "khugepaged: kthread_run(khugepaged) failed\n"); | |
154 | err = PTR_ERR(khugepaged_thread); | |
155 | khugepaged_thread = NULL; | |
156 | } | |
157 | wakeup = !list_empty(&khugepaged_scan.mm_head); | |
158 | mutex_unlock(&khugepaged_mutex); | |
159 | if (wakeup) | |
160 | wake_up_interruptible(&khugepaged_wait); | |
f000565a AA |
161 | |
162 | set_recommended_min_free_kbytes(); | |
ba76149f AA |
163 | } else |
164 | /* wakeup to exit */ | |
165 | wake_up_interruptible(&khugepaged_wait); | |
166 | out: | |
167 | return err; | |
168 | } | |
71e3aac0 AA |
169 | |
170 | #ifdef CONFIG_SYSFS | |
ba76149f | 171 | |
71e3aac0 AA |
172 | static ssize_t double_flag_show(struct kobject *kobj, |
173 | struct kobj_attribute *attr, char *buf, | |
174 | enum transparent_hugepage_flag enabled, | |
175 | enum transparent_hugepage_flag req_madv) | |
176 | { | |
177 | if (test_bit(enabled, &transparent_hugepage_flags)) { | |
178 | VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); | |
179 | return sprintf(buf, "[always] madvise never\n"); | |
180 | } else if (test_bit(req_madv, &transparent_hugepage_flags)) | |
181 | return sprintf(buf, "always [madvise] never\n"); | |
182 | else | |
183 | return sprintf(buf, "always madvise [never]\n"); | |
184 | } | |
185 | static ssize_t double_flag_store(struct kobject *kobj, | |
186 | struct kobj_attribute *attr, | |
187 | const char *buf, size_t count, | |
188 | enum transparent_hugepage_flag enabled, | |
189 | enum transparent_hugepage_flag req_madv) | |
190 | { | |
191 | if (!memcmp("always", buf, | |
192 | min(sizeof("always")-1, count))) { | |
193 | set_bit(enabled, &transparent_hugepage_flags); | |
194 | clear_bit(req_madv, &transparent_hugepage_flags); | |
195 | } else if (!memcmp("madvise", buf, | |
196 | min(sizeof("madvise")-1, count))) { | |
197 | clear_bit(enabled, &transparent_hugepage_flags); | |
198 | set_bit(req_madv, &transparent_hugepage_flags); | |
199 | } else if (!memcmp("never", buf, | |
200 | min(sizeof("never")-1, count))) { | |
201 | clear_bit(enabled, &transparent_hugepage_flags); | |
202 | clear_bit(req_madv, &transparent_hugepage_flags); | |
203 | } else | |
204 | return -EINVAL; | |
205 | ||
206 | return count; | |
207 | } | |
208 | ||
209 | static ssize_t enabled_show(struct kobject *kobj, | |
210 | struct kobj_attribute *attr, char *buf) | |
211 | { | |
212 | return double_flag_show(kobj, attr, buf, | |
213 | TRANSPARENT_HUGEPAGE_FLAG, | |
214 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | |
215 | } | |
216 | static ssize_t enabled_store(struct kobject *kobj, | |
217 | struct kobj_attribute *attr, | |
218 | const char *buf, size_t count) | |
219 | { | |
ba76149f AA |
220 | ssize_t ret; |
221 | ||
222 | ret = double_flag_store(kobj, attr, buf, count, | |
223 | TRANSPARENT_HUGEPAGE_FLAG, | |
224 | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | |
225 | ||
226 | if (ret > 0) { | |
227 | int err = start_khugepaged(); | |
228 | if (err) | |
229 | ret = err; | |
230 | } | |
231 | ||
f000565a AA |
232 | if (ret > 0 && |
233 | (test_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
234 | &transparent_hugepage_flags) || | |
235 | test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
236 | &transparent_hugepage_flags))) | |
237 | set_recommended_min_free_kbytes(); | |
238 | ||
ba76149f | 239 | return ret; |
71e3aac0 AA |
240 | } |
241 | static struct kobj_attribute enabled_attr = | |
242 | __ATTR(enabled, 0644, enabled_show, enabled_store); | |
243 | ||
244 | static ssize_t single_flag_show(struct kobject *kobj, | |
245 | struct kobj_attribute *attr, char *buf, | |
246 | enum transparent_hugepage_flag flag) | |
247 | { | |
e27e6151 BH |
248 | return sprintf(buf, "%d\n", |
249 | !!test_bit(flag, &transparent_hugepage_flags)); | |
71e3aac0 | 250 | } |
e27e6151 | 251 | |
71e3aac0 AA |
252 | static ssize_t single_flag_store(struct kobject *kobj, |
253 | struct kobj_attribute *attr, | |
254 | const char *buf, size_t count, | |
255 | enum transparent_hugepage_flag flag) | |
256 | { | |
e27e6151 BH |
257 | unsigned long value; |
258 | int ret; | |
259 | ||
260 | ret = kstrtoul(buf, 10, &value); | |
261 | if (ret < 0) | |
262 | return ret; | |
263 | if (value > 1) | |
264 | return -EINVAL; | |
265 | ||
266 | if (value) | |
71e3aac0 | 267 | set_bit(flag, &transparent_hugepage_flags); |
e27e6151 | 268 | else |
71e3aac0 | 269 | clear_bit(flag, &transparent_hugepage_flags); |
71e3aac0 AA |
270 | |
271 | return count; | |
272 | } | |
273 | ||
274 | /* | |
275 | * Currently defrag only disables __GFP_NOWAIT for allocation. A blind | |
276 | * __GFP_REPEAT is too aggressive, it's never worth swapping tons of | |
277 | * memory just to allocate one more hugepage. | |
278 | */ | |
279 | static ssize_t defrag_show(struct kobject *kobj, | |
280 | struct kobj_attribute *attr, char *buf) | |
281 | { | |
282 | return double_flag_show(kobj, attr, buf, | |
283 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | |
284 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | |
285 | } | |
286 | static ssize_t defrag_store(struct kobject *kobj, | |
287 | struct kobj_attribute *attr, | |
288 | const char *buf, size_t count) | |
289 | { | |
290 | return double_flag_store(kobj, attr, buf, count, | |
291 | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | |
292 | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | |
293 | } | |
294 | static struct kobj_attribute defrag_attr = | |
295 | __ATTR(defrag, 0644, defrag_show, defrag_store); | |
296 | ||
297 | #ifdef CONFIG_DEBUG_VM | |
298 | static ssize_t debug_cow_show(struct kobject *kobj, | |
299 | struct kobj_attribute *attr, char *buf) | |
300 | { | |
301 | return single_flag_show(kobj, attr, buf, | |
302 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | |
303 | } | |
304 | static ssize_t debug_cow_store(struct kobject *kobj, | |
305 | struct kobj_attribute *attr, | |
306 | const char *buf, size_t count) | |
307 | { | |
308 | return single_flag_store(kobj, attr, buf, count, | |
309 | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | |
310 | } | |
311 | static struct kobj_attribute debug_cow_attr = | |
312 | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | |
313 | #endif /* CONFIG_DEBUG_VM */ | |
314 | ||
315 | static struct attribute *hugepage_attr[] = { | |
316 | &enabled_attr.attr, | |
317 | &defrag_attr.attr, | |
318 | #ifdef CONFIG_DEBUG_VM | |
319 | &debug_cow_attr.attr, | |
320 | #endif | |
321 | NULL, | |
322 | }; | |
323 | ||
324 | static struct attribute_group hugepage_attr_group = { | |
325 | .attrs = hugepage_attr, | |
ba76149f AA |
326 | }; |
327 | ||
328 | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | |
329 | struct kobj_attribute *attr, | |
330 | char *buf) | |
331 | { | |
332 | return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | |
333 | } | |
334 | ||
335 | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | |
336 | struct kobj_attribute *attr, | |
337 | const char *buf, size_t count) | |
338 | { | |
339 | unsigned long msecs; | |
340 | int err; | |
341 | ||
342 | err = strict_strtoul(buf, 10, &msecs); | |
343 | if (err || msecs > UINT_MAX) | |
344 | return -EINVAL; | |
345 | ||
346 | khugepaged_scan_sleep_millisecs = msecs; | |
347 | wake_up_interruptible(&khugepaged_wait); | |
348 | ||
349 | return count; | |
350 | } | |
351 | static struct kobj_attribute scan_sleep_millisecs_attr = | |
352 | __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | |
353 | scan_sleep_millisecs_store); | |
354 | ||
355 | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | |
356 | struct kobj_attribute *attr, | |
357 | char *buf) | |
358 | { | |
359 | return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | |
360 | } | |
361 | ||
362 | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | |
363 | struct kobj_attribute *attr, | |
364 | const char *buf, size_t count) | |
365 | { | |
366 | unsigned long msecs; | |
367 | int err; | |
368 | ||
369 | err = strict_strtoul(buf, 10, &msecs); | |
370 | if (err || msecs > UINT_MAX) | |
371 | return -EINVAL; | |
372 | ||
373 | khugepaged_alloc_sleep_millisecs = msecs; | |
374 | wake_up_interruptible(&khugepaged_wait); | |
375 | ||
376 | return count; | |
377 | } | |
378 | static struct kobj_attribute alloc_sleep_millisecs_attr = | |
379 | __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | |
380 | alloc_sleep_millisecs_store); | |
381 | ||
382 | static ssize_t pages_to_scan_show(struct kobject *kobj, | |
383 | struct kobj_attribute *attr, | |
384 | char *buf) | |
385 | { | |
386 | return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | |
387 | } | |
388 | static ssize_t pages_to_scan_store(struct kobject *kobj, | |
389 | struct kobj_attribute *attr, | |
390 | const char *buf, size_t count) | |
391 | { | |
392 | int err; | |
393 | unsigned long pages; | |
394 | ||
395 | err = strict_strtoul(buf, 10, &pages); | |
396 | if (err || !pages || pages > UINT_MAX) | |
397 | return -EINVAL; | |
398 | ||
399 | khugepaged_pages_to_scan = pages; | |
400 | ||
401 | return count; | |
402 | } | |
403 | static struct kobj_attribute pages_to_scan_attr = | |
404 | __ATTR(pages_to_scan, 0644, pages_to_scan_show, | |
405 | pages_to_scan_store); | |
406 | ||
407 | static ssize_t pages_collapsed_show(struct kobject *kobj, | |
408 | struct kobj_attribute *attr, | |
409 | char *buf) | |
410 | { | |
411 | return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | |
412 | } | |
413 | static struct kobj_attribute pages_collapsed_attr = | |
414 | __ATTR_RO(pages_collapsed); | |
415 | ||
416 | static ssize_t full_scans_show(struct kobject *kobj, | |
417 | struct kobj_attribute *attr, | |
418 | char *buf) | |
419 | { | |
420 | return sprintf(buf, "%u\n", khugepaged_full_scans); | |
421 | } | |
422 | static struct kobj_attribute full_scans_attr = | |
423 | __ATTR_RO(full_scans); | |
424 | ||
425 | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | |
426 | struct kobj_attribute *attr, char *buf) | |
427 | { | |
428 | return single_flag_show(kobj, attr, buf, | |
429 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | |
430 | } | |
431 | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | |
432 | struct kobj_attribute *attr, | |
433 | const char *buf, size_t count) | |
434 | { | |
435 | return single_flag_store(kobj, attr, buf, count, | |
436 | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | |
437 | } | |
438 | static struct kobj_attribute khugepaged_defrag_attr = | |
439 | __ATTR(defrag, 0644, khugepaged_defrag_show, | |
440 | khugepaged_defrag_store); | |
441 | ||
442 | /* | |
443 | * max_ptes_none controls if khugepaged should collapse hugepages over | |
444 | * any unmapped ptes in turn potentially increasing the memory | |
445 | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | |
446 | * reduce the available free memory in the system as it | |
447 | * runs. Increasing max_ptes_none will instead potentially reduce the | |
448 | * free memory in the system during the khugepaged scan. | |
449 | */ | |
450 | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | |
451 | struct kobj_attribute *attr, | |
452 | char *buf) | |
453 | { | |
454 | return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | |
455 | } | |
456 | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | |
457 | struct kobj_attribute *attr, | |
458 | const char *buf, size_t count) | |
459 | { | |
460 | int err; | |
461 | unsigned long max_ptes_none; | |
462 | ||
463 | err = strict_strtoul(buf, 10, &max_ptes_none); | |
464 | if (err || max_ptes_none > HPAGE_PMD_NR-1) | |
465 | return -EINVAL; | |
466 | ||
467 | khugepaged_max_ptes_none = max_ptes_none; | |
468 | ||
469 | return count; | |
470 | } | |
471 | static struct kobj_attribute khugepaged_max_ptes_none_attr = | |
472 | __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | |
473 | khugepaged_max_ptes_none_store); | |
474 | ||
475 | static struct attribute *khugepaged_attr[] = { | |
476 | &khugepaged_defrag_attr.attr, | |
477 | &khugepaged_max_ptes_none_attr.attr, | |
478 | &pages_to_scan_attr.attr, | |
479 | &pages_collapsed_attr.attr, | |
480 | &full_scans_attr.attr, | |
481 | &scan_sleep_millisecs_attr.attr, | |
482 | &alloc_sleep_millisecs_attr.attr, | |
483 | NULL, | |
484 | }; | |
485 | ||
486 | static struct attribute_group khugepaged_attr_group = { | |
487 | .attrs = khugepaged_attr, | |
488 | .name = "khugepaged", | |
71e3aac0 AA |
489 | }; |
490 | #endif /* CONFIG_SYSFS */ | |
491 | ||
492 | static int __init hugepage_init(void) | |
493 | { | |
71e3aac0 | 494 | int err; |
ba76149f AA |
495 | #ifdef CONFIG_SYSFS |
496 | static struct kobject *hugepage_kobj; | |
4b7167b9 | 497 | #endif |
71e3aac0 | 498 | |
4b7167b9 AA |
499 | err = -EINVAL; |
500 | if (!has_transparent_hugepage()) { | |
501 | transparent_hugepage_flags = 0; | |
502 | goto out; | |
503 | } | |
504 | ||
505 | #ifdef CONFIG_SYSFS | |
ba76149f AA |
506 | err = -ENOMEM; |
507 | hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); | |
508 | if (unlikely(!hugepage_kobj)) { | |
509 | printk(KERN_ERR "hugepage: failed kobject create\n"); | |
510 | goto out; | |
511 | } | |
512 | ||
513 | err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group); | |
514 | if (err) { | |
515 | printk(KERN_ERR "hugepage: failed register hugeage group\n"); | |
516 | goto out; | |
517 | } | |
518 | ||
519 | err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group); | |
520 | if (err) { | |
521 | printk(KERN_ERR "hugepage: failed register hugeage group\n"); | |
522 | goto out; | |
523 | } | |
71e3aac0 | 524 | #endif |
ba76149f AA |
525 | |
526 | err = khugepaged_slab_init(); | |
527 | if (err) | |
528 | goto out; | |
529 | ||
530 | err = mm_slots_hash_init(); | |
531 | if (err) { | |
532 | khugepaged_slab_free(); | |
533 | goto out; | |
534 | } | |
535 | ||
97562cd2 RR |
536 | /* |
537 | * By default disable transparent hugepages on smaller systems, | |
538 | * where the extra memory used could hurt more than TLB overhead | |
539 | * is likely to save. The admin can still enable it through /sys. | |
540 | */ | |
541 | if (totalram_pages < (512 << (20 - PAGE_SHIFT))) | |
542 | transparent_hugepage_flags = 0; | |
543 | ||
ba76149f AA |
544 | start_khugepaged(); |
545 | ||
f000565a AA |
546 | set_recommended_min_free_kbytes(); |
547 | ||
ba76149f AA |
548 | out: |
549 | return err; | |
71e3aac0 AA |
550 | } |
551 | module_init(hugepage_init) | |
552 | ||
553 | static int __init setup_transparent_hugepage(char *str) | |
554 | { | |
555 | int ret = 0; | |
556 | if (!str) | |
557 | goto out; | |
558 | if (!strcmp(str, "always")) { | |
559 | set_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
560 | &transparent_hugepage_flags); | |
561 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
562 | &transparent_hugepage_flags); | |
563 | ret = 1; | |
564 | } else if (!strcmp(str, "madvise")) { | |
565 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
566 | &transparent_hugepage_flags); | |
567 | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
568 | &transparent_hugepage_flags); | |
569 | ret = 1; | |
570 | } else if (!strcmp(str, "never")) { | |
571 | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | |
572 | &transparent_hugepage_flags); | |
573 | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | |
574 | &transparent_hugepage_flags); | |
575 | ret = 1; | |
576 | } | |
577 | out: | |
578 | if (!ret) | |
579 | printk(KERN_WARNING | |
580 | "transparent_hugepage= cannot parse, ignored\n"); | |
581 | return ret; | |
582 | } | |
583 | __setup("transparent_hugepage=", setup_transparent_hugepage); | |
584 | ||
585 | static void prepare_pmd_huge_pte(pgtable_t pgtable, | |
586 | struct mm_struct *mm) | |
587 | { | |
588 | assert_spin_locked(&mm->page_table_lock); | |
589 | ||
590 | /* FIFO */ | |
591 | if (!mm->pmd_huge_pte) | |
592 | INIT_LIST_HEAD(&pgtable->lru); | |
593 | else | |
594 | list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); | |
595 | mm->pmd_huge_pte = pgtable; | |
596 | } | |
597 | ||
598 | static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) | |
599 | { | |
600 | if (likely(vma->vm_flags & VM_WRITE)) | |
601 | pmd = pmd_mkwrite(pmd); | |
602 | return pmd; | |
603 | } | |
604 | ||
605 | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, | |
606 | struct vm_area_struct *vma, | |
607 | unsigned long haddr, pmd_t *pmd, | |
608 | struct page *page) | |
609 | { | |
610 | int ret = 0; | |
611 | pgtable_t pgtable; | |
612 | ||
613 | VM_BUG_ON(!PageCompound(page)); | |
614 | pgtable = pte_alloc_one(mm, haddr); | |
615 | if (unlikely(!pgtable)) { | |
b9bbfbe3 | 616 | mem_cgroup_uncharge_page(page); |
71e3aac0 AA |
617 | put_page(page); |
618 | return VM_FAULT_OOM; | |
619 | } | |
620 | ||
621 | clear_huge_page(page, haddr, HPAGE_PMD_NR); | |
622 | __SetPageUptodate(page); | |
623 | ||
624 | spin_lock(&mm->page_table_lock); | |
625 | if (unlikely(!pmd_none(*pmd))) { | |
626 | spin_unlock(&mm->page_table_lock); | |
b9bbfbe3 | 627 | mem_cgroup_uncharge_page(page); |
71e3aac0 AA |
628 | put_page(page); |
629 | pte_free(mm, pgtable); | |
630 | } else { | |
631 | pmd_t entry; | |
632 | entry = mk_pmd(page, vma->vm_page_prot); | |
633 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
634 | entry = pmd_mkhuge(entry); | |
635 | /* | |
636 | * The spinlocking to take the lru_lock inside | |
637 | * page_add_new_anon_rmap() acts as a full memory | |
638 | * barrier to be sure clear_huge_page writes become | |
639 | * visible after the set_pmd_at() write. | |
640 | */ | |
641 | page_add_new_anon_rmap(page, vma, haddr); | |
642 | set_pmd_at(mm, haddr, pmd, entry); | |
643 | prepare_pmd_huge_pte(pgtable, mm); | |
644 | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); | |
645 | spin_unlock(&mm->page_table_lock); | |
646 | } | |
647 | ||
648 | return ret; | |
649 | } | |
650 | ||
cc5d462f | 651 | static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) |
0bbbc0b3 | 652 | { |
cc5d462f | 653 | return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; |
0bbbc0b3 AA |
654 | } |
655 | ||
656 | static inline struct page *alloc_hugepage_vma(int defrag, | |
657 | struct vm_area_struct *vma, | |
cc5d462f AK |
658 | unsigned long haddr, int nd, |
659 | gfp_t extra_gfp) | |
0bbbc0b3 | 660 | { |
cc5d462f | 661 | return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), |
5c4b4be3 | 662 | HPAGE_PMD_ORDER, vma, haddr, nd); |
0bbbc0b3 AA |
663 | } |
664 | ||
665 | #ifndef CONFIG_NUMA | |
71e3aac0 AA |
666 | static inline struct page *alloc_hugepage(int defrag) |
667 | { | |
cc5d462f | 668 | return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), |
71e3aac0 AA |
669 | HPAGE_PMD_ORDER); |
670 | } | |
0bbbc0b3 | 671 | #endif |
71e3aac0 AA |
672 | |
673 | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
674 | unsigned long address, pmd_t *pmd, | |
675 | unsigned int flags) | |
676 | { | |
677 | struct page *page; | |
678 | unsigned long haddr = address & HPAGE_PMD_MASK; | |
679 | pte_t *pte; | |
680 | ||
681 | if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { | |
682 | if (unlikely(anon_vma_prepare(vma))) | |
683 | return VM_FAULT_OOM; | |
ba76149f AA |
684 | if (unlikely(khugepaged_enter(vma))) |
685 | return VM_FAULT_OOM; | |
0bbbc0b3 | 686 | page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), |
cc5d462f | 687 | vma, haddr, numa_node_id(), 0); |
81ab4201 AK |
688 | if (unlikely(!page)) { |
689 | count_vm_event(THP_FAULT_FALLBACK); | |
71e3aac0 | 690 | goto out; |
81ab4201 AK |
691 | } |
692 | count_vm_event(THP_FAULT_ALLOC); | |
b9bbfbe3 AA |
693 | if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { |
694 | put_page(page); | |
695 | goto out; | |
696 | } | |
71e3aac0 AA |
697 | |
698 | return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page); | |
699 | } | |
700 | out: | |
701 | /* | |
702 | * Use __pte_alloc instead of pte_alloc_map, because we can't | |
703 | * run pte_offset_map on the pmd, if an huge pmd could | |
704 | * materialize from under us from a different thread. | |
705 | */ | |
706 | if (unlikely(__pte_alloc(mm, vma, pmd, address))) | |
707 | return VM_FAULT_OOM; | |
708 | /* if an huge pmd materialized from under us just retry later */ | |
709 | if (unlikely(pmd_trans_huge(*pmd))) | |
710 | return 0; | |
711 | /* | |
712 | * A regular pmd is established and it can't morph into a huge pmd | |
713 | * from under us anymore at this point because we hold the mmap_sem | |
714 | * read mode and khugepaged takes it in write mode. So now it's | |
715 | * safe to run pte_offset_map(). | |
716 | */ | |
717 | pte = pte_offset_map(pmd, address); | |
718 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | |
719 | } | |
720 | ||
721 | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
722 | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | |
723 | struct vm_area_struct *vma) | |
724 | { | |
725 | struct page *src_page; | |
726 | pmd_t pmd; | |
727 | pgtable_t pgtable; | |
728 | int ret; | |
729 | ||
730 | ret = -ENOMEM; | |
731 | pgtable = pte_alloc_one(dst_mm, addr); | |
732 | if (unlikely(!pgtable)) | |
733 | goto out; | |
734 | ||
735 | spin_lock(&dst_mm->page_table_lock); | |
736 | spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); | |
737 | ||
738 | ret = -EAGAIN; | |
739 | pmd = *src_pmd; | |
740 | if (unlikely(!pmd_trans_huge(pmd))) { | |
741 | pte_free(dst_mm, pgtable); | |
742 | goto out_unlock; | |
743 | } | |
744 | if (unlikely(pmd_trans_splitting(pmd))) { | |
745 | /* split huge page running from under us */ | |
746 | spin_unlock(&src_mm->page_table_lock); | |
747 | spin_unlock(&dst_mm->page_table_lock); | |
748 | pte_free(dst_mm, pgtable); | |
749 | ||
750 | wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ | |
751 | goto out; | |
752 | } | |
753 | src_page = pmd_page(pmd); | |
754 | VM_BUG_ON(!PageHead(src_page)); | |
755 | get_page(src_page); | |
756 | page_dup_rmap(src_page); | |
757 | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | |
758 | ||
759 | pmdp_set_wrprotect(src_mm, addr, src_pmd); | |
760 | pmd = pmd_mkold(pmd_wrprotect(pmd)); | |
761 | set_pmd_at(dst_mm, addr, dst_pmd, pmd); | |
762 | prepare_pmd_huge_pte(pgtable, dst_mm); | |
763 | ||
764 | ret = 0; | |
765 | out_unlock: | |
766 | spin_unlock(&src_mm->page_table_lock); | |
767 | spin_unlock(&dst_mm->page_table_lock); | |
768 | out: | |
769 | return ret; | |
770 | } | |
771 | ||
772 | /* no "address" argument so destroys page coloring of some arch */ | |
773 | pgtable_t get_pmd_huge_pte(struct mm_struct *mm) | |
774 | { | |
775 | pgtable_t pgtable; | |
776 | ||
777 | assert_spin_locked(&mm->page_table_lock); | |
778 | ||
779 | /* FIFO */ | |
780 | pgtable = mm->pmd_huge_pte; | |
781 | if (list_empty(&pgtable->lru)) | |
782 | mm->pmd_huge_pte = NULL; | |
783 | else { | |
784 | mm->pmd_huge_pte = list_entry(pgtable->lru.next, | |
785 | struct page, lru); | |
786 | list_del(&pgtable->lru); | |
787 | } | |
788 | return pgtable; | |
789 | } | |
790 | ||
791 | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, | |
792 | struct vm_area_struct *vma, | |
793 | unsigned long address, | |
794 | pmd_t *pmd, pmd_t orig_pmd, | |
795 | struct page *page, | |
796 | unsigned long haddr) | |
797 | { | |
798 | pgtable_t pgtable; | |
799 | pmd_t _pmd; | |
800 | int ret = 0, i; | |
801 | struct page **pages; | |
802 | ||
803 | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, | |
804 | GFP_KERNEL); | |
805 | if (unlikely(!pages)) { | |
806 | ret |= VM_FAULT_OOM; | |
807 | goto out; | |
808 | } | |
809 | ||
810 | for (i = 0; i < HPAGE_PMD_NR; i++) { | |
cc5d462f AK |
811 | pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | |
812 | __GFP_OTHER_NODE, | |
19ee151e | 813 | vma, address, page_to_nid(page)); |
b9bbfbe3 AA |
814 | if (unlikely(!pages[i] || |
815 | mem_cgroup_newpage_charge(pages[i], mm, | |
816 | GFP_KERNEL))) { | |
817 | if (pages[i]) | |
71e3aac0 | 818 | put_page(pages[i]); |
b9bbfbe3 AA |
819 | mem_cgroup_uncharge_start(); |
820 | while (--i >= 0) { | |
821 | mem_cgroup_uncharge_page(pages[i]); | |
822 | put_page(pages[i]); | |
823 | } | |
824 | mem_cgroup_uncharge_end(); | |
71e3aac0 AA |
825 | kfree(pages); |
826 | ret |= VM_FAULT_OOM; | |
827 | goto out; | |
828 | } | |
829 | } | |
830 | ||
831 | for (i = 0; i < HPAGE_PMD_NR; i++) { | |
832 | copy_user_highpage(pages[i], page + i, | |
0089e485 | 833 | haddr + PAGE_SIZE * i, vma); |
71e3aac0 AA |
834 | __SetPageUptodate(pages[i]); |
835 | cond_resched(); | |
836 | } | |
837 | ||
838 | spin_lock(&mm->page_table_lock); | |
839 | if (unlikely(!pmd_same(*pmd, orig_pmd))) | |
840 | goto out_free_pages; | |
841 | VM_BUG_ON(!PageHead(page)); | |
842 | ||
843 | pmdp_clear_flush_notify(vma, haddr, pmd); | |
844 | /* leave pmd empty until pte is filled */ | |
845 | ||
846 | pgtable = get_pmd_huge_pte(mm); | |
847 | pmd_populate(mm, &_pmd, pgtable); | |
848 | ||
849 | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | |
850 | pte_t *pte, entry; | |
851 | entry = mk_pte(pages[i], vma->vm_page_prot); | |
852 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
853 | page_add_new_anon_rmap(pages[i], vma, haddr); | |
854 | pte = pte_offset_map(&_pmd, haddr); | |
855 | VM_BUG_ON(!pte_none(*pte)); | |
856 | set_pte_at(mm, haddr, pte, entry); | |
857 | pte_unmap(pte); | |
858 | } | |
859 | kfree(pages); | |
860 | ||
861 | mm->nr_ptes++; | |
862 | smp_wmb(); /* make pte visible before pmd */ | |
863 | pmd_populate(mm, pmd, pgtable); | |
864 | page_remove_rmap(page); | |
865 | spin_unlock(&mm->page_table_lock); | |
866 | ||
867 | ret |= VM_FAULT_WRITE; | |
868 | put_page(page); | |
869 | ||
870 | out: | |
871 | return ret; | |
872 | ||
873 | out_free_pages: | |
874 | spin_unlock(&mm->page_table_lock); | |
b9bbfbe3 AA |
875 | mem_cgroup_uncharge_start(); |
876 | for (i = 0; i < HPAGE_PMD_NR; i++) { | |
877 | mem_cgroup_uncharge_page(pages[i]); | |
71e3aac0 | 878 | put_page(pages[i]); |
b9bbfbe3 AA |
879 | } |
880 | mem_cgroup_uncharge_end(); | |
71e3aac0 AA |
881 | kfree(pages); |
882 | goto out; | |
883 | } | |
884 | ||
885 | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | |
886 | unsigned long address, pmd_t *pmd, pmd_t orig_pmd) | |
887 | { | |
888 | int ret = 0; | |
889 | struct page *page, *new_page; | |
890 | unsigned long haddr; | |
891 | ||
892 | VM_BUG_ON(!vma->anon_vma); | |
893 | spin_lock(&mm->page_table_lock); | |
894 | if (unlikely(!pmd_same(*pmd, orig_pmd))) | |
895 | goto out_unlock; | |
896 | ||
897 | page = pmd_page(orig_pmd); | |
898 | VM_BUG_ON(!PageCompound(page) || !PageHead(page)); | |
899 | haddr = address & HPAGE_PMD_MASK; | |
900 | if (page_mapcount(page) == 1) { | |
901 | pmd_t entry; | |
902 | entry = pmd_mkyoung(orig_pmd); | |
903 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
904 | if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) | |
905 | update_mmu_cache(vma, address, entry); | |
906 | ret |= VM_FAULT_WRITE; | |
907 | goto out_unlock; | |
908 | } | |
909 | get_page(page); | |
910 | spin_unlock(&mm->page_table_lock); | |
911 | ||
912 | if (transparent_hugepage_enabled(vma) && | |
913 | !transparent_hugepage_debug_cow()) | |
0bbbc0b3 | 914 | new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), |
cc5d462f | 915 | vma, haddr, numa_node_id(), 0); |
71e3aac0 AA |
916 | else |
917 | new_page = NULL; | |
918 | ||
919 | if (unlikely(!new_page)) { | |
81ab4201 | 920 | count_vm_event(THP_FAULT_FALLBACK); |
71e3aac0 AA |
921 | ret = do_huge_pmd_wp_page_fallback(mm, vma, address, |
922 | pmd, orig_pmd, page, haddr); | |
923 | put_page(page); | |
924 | goto out; | |
925 | } | |
81ab4201 | 926 | count_vm_event(THP_FAULT_ALLOC); |
71e3aac0 | 927 | |
b9bbfbe3 AA |
928 | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { |
929 | put_page(new_page); | |
930 | put_page(page); | |
931 | ret |= VM_FAULT_OOM; | |
932 | goto out; | |
933 | } | |
934 | ||
71e3aac0 AA |
935 | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); |
936 | __SetPageUptodate(new_page); | |
937 | ||
938 | spin_lock(&mm->page_table_lock); | |
939 | put_page(page); | |
b9bbfbe3 AA |
940 | if (unlikely(!pmd_same(*pmd, orig_pmd))) { |
941 | mem_cgroup_uncharge_page(new_page); | |
71e3aac0 | 942 | put_page(new_page); |
b9bbfbe3 | 943 | } else { |
71e3aac0 AA |
944 | pmd_t entry; |
945 | VM_BUG_ON(!PageHead(page)); | |
946 | entry = mk_pmd(new_page, vma->vm_page_prot); | |
947 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
948 | entry = pmd_mkhuge(entry); | |
949 | pmdp_clear_flush_notify(vma, haddr, pmd); | |
950 | page_add_new_anon_rmap(new_page, vma, haddr); | |
951 | set_pmd_at(mm, haddr, pmd, entry); | |
952 | update_mmu_cache(vma, address, entry); | |
953 | page_remove_rmap(page); | |
954 | put_page(page); | |
955 | ret |= VM_FAULT_WRITE; | |
956 | } | |
957 | out_unlock: | |
958 | spin_unlock(&mm->page_table_lock); | |
959 | out: | |
960 | return ret; | |
961 | } | |
962 | ||
963 | struct page *follow_trans_huge_pmd(struct mm_struct *mm, | |
964 | unsigned long addr, | |
965 | pmd_t *pmd, | |
966 | unsigned int flags) | |
967 | { | |
968 | struct page *page = NULL; | |
969 | ||
970 | assert_spin_locked(&mm->page_table_lock); | |
971 | ||
972 | if (flags & FOLL_WRITE && !pmd_write(*pmd)) | |
973 | goto out; | |
974 | ||
975 | page = pmd_page(*pmd); | |
976 | VM_BUG_ON(!PageHead(page)); | |
977 | if (flags & FOLL_TOUCH) { | |
978 | pmd_t _pmd; | |
979 | /* | |
980 | * We should set the dirty bit only for FOLL_WRITE but | |
981 | * for now the dirty bit in the pmd is meaningless. | |
982 | * And if the dirty bit will become meaningful and | |
983 | * we'll only set it with FOLL_WRITE, an atomic | |
984 | * set_bit will be required on the pmd to set the | |
985 | * young bit, instead of the current set_pmd_at. | |
986 | */ | |
987 | _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); | |
988 | set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); | |
989 | } | |
990 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | |
991 | VM_BUG_ON(!PageCompound(page)); | |
992 | if (flags & FOLL_GET) | |
70b50f94 | 993 | get_page_foll(page); |
71e3aac0 AA |
994 | |
995 | out: | |
996 | return page; | |
997 | } | |
998 | ||
999 | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | |
1000 | pmd_t *pmd) | |
1001 | { | |
1002 | int ret = 0; | |
1003 | ||
1004 | spin_lock(&tlb->mm->page_table_lock); | |
1005 | if (likely(pmd_trans_huge(*pmd))) { | |
1006 | if (unlikely(pmd_trans_splitting(*pmd))) { | |
1007 | spin_unlock(&tlb->mm->page_table_lock); | |
1008 | wait_split_huge_page(vma->anon_vma, | |
1009 | pmd); | |
1010 | } else { | |
1011 | struct page *page; | |
1012 | pgtable_t pgtable; | |
1013 | pgtable = get_pmd_huge_pte(tlb->mm); | |
1014 | page = pmd_page(*pmd); | |
1015 | pmd_clear(pmd); | |
1016 | page_remove_rmap(page); | |
1017 | VM_BUG_ON(page_mapcount(page) < 0); | |
1018 | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); | |
1019 | VM_BUG_ON(!PageHead(page)); | |
1020 | spin_unlock(&tlb->mm->page_table_lock); | |
1021 | tlb_remove_page(tlb, page); | |
1022 | pte_free(tlb->mm, pgtable); | |
1023 | ret = 1; | |
1024 | } | |
1025 | } else | |
1026 | spin_unlock(&tlb->mm->page_table_lock); | |
1027 | ||
1028 | return ret; | |
1029 | } | |
1030 | ||
0ca1634d JW |
1031 | int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
1032 | unsigned long addr, unsigned long end, | |
1033 | unsigned char *vec) | |
1034 | { | |
1035 | int ret = 0; | |
1036 | ||
1037 | spin_lock(&vma->vm_mm->page_table_lock); | |
1038 | if (likely(pmd_trans_huge(*pmd))) { | |
1039 | ret = !pmd_trans_splitting(*pmd); | |
1040 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1041 | if (unlikely(!ret)) | |
1042 | wait_split_huge_page(vma->anon_vma, pmd); | |
1043 | else { | |
1044 | /* | |
1045 | * All logical pages in the range are present | |
1046 | * if backed by a huge page. | |
1047 | */ | |
1048 | memset(vec, 1, (end - addr) >> PAGE_SHIFT); | |
1049 | } | |
1050 | } else | |
1051 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1052 | ||
1053 | return ret; | |
1054 | } | |
1055 | ||
37a1c49a AA |
1056 | int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, |
1057 | unsigned long old_addr, | |
1058 | unsigned long new_addr, unsigned long old_end, | |
1059 | pmd_t *old_pmd, pmd_t *new_pmd) | |
1060 | { | |
1061 | int ret = 0; | |
1062 | pmd_t pmd; | |
1063 | ||
1064 | struct mm_struct *mm = vma->vm_mm; | |
1065 | ||
1066 | if ((old_addr & ~HPAGE_PMD_MASK) || | |
1067 | (new_addr & ~HPAGE_PMD_MASK) || | |
1068 | old_end - old_addr < HPAGE_PMD_SIZE || | |
1069 | (new_vma->vm_flags & VM_NOHUGEPAGE)) | |
1070 | goto out; | |
1071 | ||
1072 | /* | |
1073 | * The destination pmd shouldn't be established, free_pgtables() | |
1074 | * should have release it. | |
1075 | */ | |
1076 | if (WARN_ON(!pmd_none(*new_pmd))) { | |
1077 | VM_BUG_ON(pmd_trans_huge(*new_pmd)); | |
1078 | goto out; | |
1079 | } | |
1080 | ||
1081 | spin_lock(&mm->page_table_lock); | |
1082 | if (likely(pmd_trans_huge(*old_pmd))) { | |
1083 | if (pmd_trans_splitting(*old_pmd)) { | |
1084 | spin_unlock(&mm->page_table_lock); | |
1085 | wait_split_huge_page(vma->anon_vma, old_pmd); | |
1086 | ret = -1; | |
1087 | } else { | |
1088 | pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); | |
1089 | VM_BUG_ON(!pmd_none(*new_pmd)); | |
1090 | set_pmd_at(mm, new_addr, new_pmd, pmd); | |
1091 | spin_unlock(&mm->page_table_lock); | |
1092 | ret = 1; | |
1093 | } | |
1094 | } else { | |
1095 | spin_unlock(&mm->page_table_lock); | |
1096 | } | |
1097 | out: | |
1098 | return ret; | |
1099 | } | |
1100 | ||
cd7548ab JW |
1101 | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, |
1102 | unsigned long addr, pgprot_t newprot) | |
1103 | { | |
1104 | struct mm_struct *mm = vma->vm_mm; | |
1105 | int ret = 0; | |
1106 | ||
1107 | spin_lock(&mm->page_table_lock); | |
1108 | if (likely(pmd_trans_huge(*pmd))) { | |
1109 | if (unlikely(pmd_trans_splitting(*pmd))) { | |
1110 | spin_unlock(&mm->page_table_lock); | |
1111 | wait_split_huge_page(vma->anon_vma, pmd); | |
1112 | } else { | |
1113 | pmd_t entry; | |
1114 | ||
1115 | entry = pmdp_get_and_clear(mm, addr, pmd); | |
1116 | entry = pmd_modify(entry, newprot); | |
1117 | set_pmd_at(mm, addr, pmd, entry); | |
1118 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1119 | flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); | |
1120 | ret = 1; | |
1121 | } | |
1122 | } else | |
1123 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1124 | ||
1125 | return ret; | |
1126 | } | |
1127 | ||
71e3aac0 AA |
1128 | pmd_t *page_check_address_pmd(struct page *page, |
1129 | struct mm_struct *mm, | |
1130 | unsigned long address, | |
1131 | enum page_check_address_pmd_flag flag) | |
1132 | { | |
1133 | pgd_t *pgd; | |
1134 | pud_t *pud; | |
1135 | pmd_t *pmd, *ret = NULL; | |
1136 | ||
1137 | if (address & ~HPAGE_PMD_MASK) | |
1138 | goto out; | |
1139 | ||
1140 | pgd = pgd_offset(mm, address); | |
1141 | if (!pgd_present(*pgd)) | |
1142 | goto out; | |
1143 | ||
1144 | pud = pud_offset(pgd, address); | |
1145 | if (!pud_present(*pud)) | |
1146 | goto out; | |
1147 | ||
1148 | pmd = pmd_offset(pud, address); | |
1149 | if (pmd_none(*pmd)) | |
1150 | goto out; | |
1151 | if (pmd_page(*pmd) != page) | |
1152 | goto out; | |
94fcc585 AA |
1153 | /* |
1154 | * split_vma() may create temporary aliased mappings. There is | |
1155 | * no risk as long as all huge pmd are found and have their | |
1156 | * splitting bit set before __split_huge_page_refcount | |
1157 | * runs. Finding the same huge pmd more than once during the | |
1158 | * same rmap walk is not a problem. | |
1159 | */ | |
1160 | if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && | |
1161 | pmd_trans_splitting(*pmd)) | |
1162 | goto out; | |
71e3aac0 AA |
1163 | if (pmd_trans_huge(*pmd)) { |
1164 | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && | |
1165 | !pmd_trans_splitting(*pmd)); | |
1166 | ret = pmd; | |
1167 | } | |
1168 | out: | |
1169 | return ret; | |
1170 | } | |
1171 | ||
1172 | static int __split_huge_page_splitting(struct page *page, | |
1173 | struct vm_area_struct *vma, | |
1174 | unsigned long address) | |
1175 | { | |
1176 | struct mm_struct *mm = vma->vm_mm; | |
1177 | pmd_t *pmd; | |
1178 | int ret = 0; | |
1179 | ||
1180 | spin_lock(&mm->page_table_lock); | |
1181 | pmd = page_check_address_pmd(page, mm, address, | |
1182 | PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); | |
1183 | if (pmd) { | |
1184 | /* | |
1185 | * We can't temporarily set the pmd to null in order | |
1186 | * to split it, the pmd must remain marked huge at all | |
1187 | * times or the VM won't take the pmd_trans_huge paths | |
2b575eb6 | 1188 | * and it won't wait on the anon_vma->root->mutex to |
71e3aac0 AA |
1189 | * serialize against split_huge_page*. |
1190 | */ | |
1191 | pmdp_splitting_flush_notify(vma, address, pmd); | |
1192 | ret = 1; | |
1193 | } | |
1194 | spin_unlock(&mm->page_table_lock); | |
1195 | ||
1196 | return ret; | |
1197 | } | |
1198 | ||
1199 | static void __split_huge_page_refcount(struct page *page) | |
1200 | { | |
1201 | int i; | |
1202 | unsigned long head_index = page->index; | |
1203 | struct zone *zone = page_zone(page); | |
2c888cfb | 1204 | int zonestat; |
70b50f94 | 1205 | int tail_count = 0; |
71e3aac0 AA |
1206 | |
1207 | /* prevent PageLRU to go away from under us, and freeze lru stats */ | |
1208 | spin_lock_irq(&zone->lru_lock); | |
1209 | compound_lock(page); | |
1210 | ||
1211 | for (i = 1; i < HPAGE_PMD_NR; i++) { | |
1212 | struct page *page_tail = page + i; | |
1213 | ||
70b50f94 AA |
1214 | /* tail_page->_mapcount cannot change */ |
1215 | BUG_ON(page_mapcount(page_tail) < 0); | |
1216 | tail_count += page_mapcount(page_tail); | |
1217 | /* check for overflow */ | |
1218 | BUG_ON(tail_count < 0); | |
1219 | BUG_ON(atomic_read(&page_tail->_count) != 0); | |
1220 | /* | |
1221 | * tail_page->_count is zero and not changing from | |
1222 | * under us. But get_page_unless_zero() may be running | |
1223 | * from under us on the tail_page. If we used | |
1224 | * atomic_set() below instead of atomic_add(), we | |
1225 | * would then run atomic_set() concurrently with | |
1226 | * get_page_unless_zero(), and atomic_set() is | |
1227 | * implemented in C not using locked ops. spin_unlock | |
1228 | * on x86 sometime uses locked ops because of PPro | |
1229 | * errata 66, 92, so unless somebody can guarantee | |
1230 | * atomic_set() here would be safe on all archs (and | |
1231 | * not only on x86), it's safer to use atomic_add(). | |
1232 | */ | |
1233 | atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, | |
1234 | &page_tail->_count); | |
71e3aac0 AA |
1235 | |
1236 | /* after clearing PageTail the gup refcount can be released */ | |
1237 | smp_mb(); | |
1238 | ||
a6d30ddd JD |
1239 | /* |
1240 | * retain hwpoison flag of the poisoned tail page: | |
1241 | * fix for the unsuitable process killed on Guest Machine(KVM) | |
1242 | * by the memory-failure. | |
1243 | */ | |
1244 | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; | |
71e3aac0 AA |
1245 | page_tail->flags |= (page->flags & |
1246 | ((1L << PG_referenced) | | |
1247 | (1L << PG_swapbacked) | | |
1248 | (1L << PG_mlocked) | | |
1249 | (1L << PG_uptodate))); | |
1250 | page_tail->flags |= (1L << PG_dirty); | |
1251 | ||
70b50f94 | 1252 | /* clear PageTail before overwriting first_page */ |
71e3aac0 AA |
1253 | smp_wmb(); |
1254 | ||
1255 | /* | |
1256 | * __split_huge_page_splitting() already set the | |
1257 | * splitting bit in all pmd that could map this | |
1258 | * hugepage, that will ensure no CPU can alter the | |
1259 | * mapcount on the head page. The mapcount is only | |
1260 | * accounted in the head page and it has to be | |
1261 | * transferred to all tail pages in the below code. So | |
1262 | * for this code to be safe, the split the mapcount | |
1263 | * can't change. But that doesn't mean userland can't | |
1264 | * keep changing and reading the page contents while | |
1265 | * we transfer the mapcount, so the pmd splitting | |
1266 | * status is achieved setting a reserved bit in the | |
1267 | * pmd, not by clearing the present bit. | |
1268 | */ | |
71e3aac0 AA |
1269 | page_tail->_mapcount = page->_mapcount; |
1270 | ||
1271 | BUG_ON(page_tail->mapping); | |
1272 | page_tail->mapping = page->mapping; | |
1273 | ||
1274 | page_tail->index = ++head_index; | |
1275 | ||
1276 | BUG_ON(!PageAnon(page_tail)); | |
1277 | BUG_ON(!PageUptodate(page_tail)); | |
1278 | BUG_ON(!PageDirty(page_tail)); | |
1279 | BUG_ON(!PageSwapBacked(page_tail)); | |
1280 | ||
ca3e0214 KH |
1281 | mem_cgroup_split_huge_fixup(page, page_tail); |
1282 | ||
71e3aac0 AA |
1283 | lru_add_page_tail(zone, page, page_tail); |
1284 | } | |
70b50f94 AA |
1285 | atomic_sub(tail_count, &page->_count); |
1286 | BUG_ON(atomic_read(&page->_count) <= 0); | |
71e3aac0 | 1287 | |
79134171 AA |
1288 | __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
1289 | __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); | |
1290 | ||
2c888cfb RR |
1291 | /* |
1292 | * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics, | |
1293 | * so adjust those appropriately if this page is on the LRU. | |
1294 | */ | |
1295 | if (PageLRU(page)) { | |
1296 | zonestat = NR_LRU_BASE + page_lru(page); | |
1297 | __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1)); | |
1298 | } | |
1299 | ||
71e3aac0 AA |
1300 | ClearPageCompound(page); |
1301 | compound_unlock(page); | |
1302 | spin_unlock_irq(&zone->lru_lock); | |
1303 | ||
1304 | for (i = 1; i < HPAGE_PMD_NR; i++) { | |
1305 | struct page *page_tail = page + i; | |
1306 | BUG_ON(page_count(page_tail) <= 0); | |
1307 | /* | |
1308 | * Tail pages may be freed if there wasn't any mapping | |
1309 | * like if add_to_swap() is running on a lru page that | |
1310 | * had its mapping zapped. And freeing these pages | |
1311 | * requires taking the lru_lock so we do the put_page | |
1312 | * of the tail pages after the split is complete. | |
1313 | */ | |
1314 | put_page(page_tail); | |
1315 | } | |
1316 | ||
1317 | /* | |
1318 | * Only the head page (now become a regular page) is required | |
1319 | * to be pinned by the caller. | |
1320 | */ | |
1321 | BUG_ON(page_count(page) <= 0); | |
1322 | } | |
1323 | ||
1324 | static int __split_huge_page_map(struct page *page, | |
1325 | struct vm_area_struct *vma, | |
1326 | unsigned long address) | |
1327 | { | |
1328 | struct mm_struct *mm = vma->vm_mm; | |
1329 | pmd_t *pmd, _pmd; | |
1330 | int ret = 0, i; | |
1331 | pgtable_t pgtable; | |
1332 | unsigned long haddr; | |
1333 | ||
1334 | spin_lock(&mm->page_table_lock); | |
1335 | pmd = page_check_address_pmd(page, mm, address, | |
1336 | PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); | |
1337 | if (pmd) { | |
1338 | pgtable = get_pmd_huge_pte(mm); | |
1339 | pmd_populate(mm, &_pmd, pgtable); | |
1340 | ||
1341 | for (i = 0, haddr = address; i < HPAGE_PMD_NR; | |
1342 | i++, haddr += PAGE_SIZE) { | |
1343 | pte_t *pte, entry; | |
1344 | BUG_ON(PageCompound(page+i)); | |
1345 | entry = mk_pte(page + i, vma->vm_page_prot); | |
1346 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1347 | if (!pmd_write(*pmd)) | |
1348 | entry = pte_wrprotect(entry); | |
1349 | else | |
1350 | BUG_ON(page_mapcount(page) != 1); | |
1351 | if (!pmd_young(*pmd)) | |
1352 | entry = pte_mkold(entry); | |
1353 | pte = pte_offset_map(&_pmd, haddr); | |
1354 | BUG_ON(!pte_none(*pte)); | |
1355 | set_pte_at(mm, haddr, pte, entry); | |
1356 | pte_unmap(pte); | |
1357 | } | |
1358 | ||
1359 | mm->nr_ptes++; | |
1360 | smp_wmb(); /* make pte visible before pmd */ | |
1361 | /* | |
1362 | * Up to this point the pmd is present and huge and | |
1363 | * userland has the whole access to the hugepage | |
1364 | * during the split (which happens in place). If we | |
1365 | * overwrite the pmd with the not-huge version | |
1366 | * pointing to the pte here (which of course we could | |
1367 | * if all CPUs were bug free), userland could trigger | |
1368 | * a small page size TLB miss on the small sized TLB | |
1369 | * while the hugepage TLB entry is still established | |
1370 | * in the huge TLB. Some CPU doesn't like that. See | |
1371 | * http://support.amd.com/us/Processor_TechDocs/41322.pdf, | |
1372 | * Erratum 383 on page 93. Intel should be safe but is | |
1373 | * also warns that it's only safe if the permission | |
1374 | * and cache attributes of the two entries loaded in | |
1375 | * the two TLB is identical (which should be the case | |
1376 | * here). But it is generally safer to never allow | |
1377 | * small and huge TLB entries for the same virtual | |
1378 | * address to be loaded simultaneously. So instead of | |
1379 | * doing "pmd_populate(); flush_tlb_range();" we first | |
1380 | * mark the current pmd notpresent (atomically because | |
1381 | * here the pmd_trans_huge and pmd_trans_splitting | |
1382 | * must remain set at all times on the pmd until the | |
1383 | * split is complete for this pmd), then we flush the | |
1384 | * SMP TLB and finally we write the non-huge version | |
1385 | * of the pmd entry with pmd_populate. | |
1386 | */ | |
1387 | set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); | |
1388 | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | |
1389 | pmd_populate(mm, pmd, pgtable); | |
1390 | ret = 1; | |
1391 | } | |
1392 | spin_unlock(&mm->page_table_lock); | |
1393 | ||
1394 | return ret; | |
1395 | } | |
1396 | ||
2b575eb6 | 1397 | /* must be called with anon_vma->root->mutex hold */ |
71e3aac0 AA |
1398 | static void __split_huge_page(struct page *page, |
1399 | struct anon_vma *anon_vma) | |
1400 | { | |
1401 | int mapcount, mapcount2; | |
1402 | struct anon_vma_chain *avc; | |
1403 | ||
1404 | BUG_ON(!PageHead(page)); | |
1405 | BUG_ON(PageTail(page)); | |
1406 | ||
1407 | mapcount = 0; | |
1408 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | |
1409 | struct vm_area_struct *vma = avc->vma; | |
1410 | unsigned long addr = vma_address(page, vma); | |
1411 | BUG_ON(is_vma_temporary_stack(vma)); | |
1412 | if (addr == -EFAULT) | |
1413 | continue; | |
1414 | mapcount += __split_huge_page_splitting(page, vma, addr); | |
1415 | } | |
05759d38 AA |
1416 | /* |
1417 | * It is critical that new vmas are added to the tail of the | |
1418 | * anon_vma list. This guarantes that if copy_huge_pmd() runs | |
1419 | * and establishes a child pmd before | |
1420 | * __split_huge_page_splitting() freezes the parent pmd (so if | |
1421 | * we fail to prevent copy_huge_pmd() from running until the | |
1422 | * whole __split_huge_page() is complete), we will still see | |
1423 | * the newly established pmd of the child later during the | |
1424 | * walk, to be able to set it as pmd_trans_splitting too. | |
1425 | */ | |
1426 | if (mapcount != page_mapcount(page)) | |
1427 | printk(KERN_ERR "mapcount %d page_mapcount %d\n", | |
1428 | mapcount, page_mapcount(page)); | |
71e3aac0 AA |
1429 | BUG_ON(mapcount != page_mapcount(page)); |
1430 | ||
1431 | __split_huge_page_refcount(page); | |
1432 | ||
1433 | mapcount2 = 0; | |
1434 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | |
1435 | struct vm_area_struct *vma = avc->vma; | |
1436 | unsigned long addr = vma_address(page, vma); | |
1437 | BUG_ON(is_vma_temporary_stack(vma)); | |
1438 | if (addr == -EFAULT) | |
1439 | continue; | |
1440 | mapcount2 += __split_huge_page_map(page, vma, addr); | |
1441 | } | |
05759d38 AA |
1442 | if (mapcount != mapcount2) |
1443 | printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", | |
1444 | mapcount, mapcount2, page_mapcount(page)); | |
71e3aac0 AA |
1445 | BUG_ON(mapcount != mapcount2); |
1446 | } | |
1447 | ||
1448 | int split_huge_page(struct page *page) | |
1449 | { | |
1450 | struct anon_vma *anon_vma; | |
1451 | int ret = 1; | |
1452 | ||
1453 | BUG_ON(!PageAnon(page)); | |
1454 | anon_vma = page_lock_anon_vma(page); | |
1455 | if (!anon_vma) | |
1456 | goto out; | |
1457 | ret = 0; | |
1458 | if (!PageCompound(page)) | |
1459 | goto out_unlock; | |
1460 | ||
1461 | BUG_ON(!PageSwapBacked(page)); | |
1462 | __split_huge_page(page, anon_vma); | |
81ab4201 | 1463 | count_vm_event(THP_SPLIT); |
71e3aac0 AA |
1464 | |
1465 | BUG_ON(PageCompound(page)); | |
1466 | out_unlock: | |
1467 | page_unlock_anon_vma(anon_vma); | |
1468 | out: | |
1469 | return ret; | |
1470 | } | |
1471 | ||
78f11a25 AA |
1472 | #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \ |
1473 | VM_HUGETLB|VM_SHARED|VM_MAYSHARE) | |
1474 | ||
60ab3244 AA |
1475 | int hugepage_madvise(struct vm_area_struct *vma, |
1476 | unsigned long *vm_flags, int advice) | |
0af4e98b | 1477 | { |
a664b2d8 AA |
1478 | switch (advice) { |
1479 | case MADV_HUGEPAGE: | |
1480 | /* | |
1481 | * Be somewhat over-protective like KSM for now! | |
1482 | */ | |
78f11a25 | 1483 | if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) |
a664b2d8 AA |
1484 | return -EINVAL; |
1485 | *vm_flags &= ~VM_NOHUGEPAGE; | |
1486 | *vm_flags |= VM_HUGEPAGE; | |
60ab3244 AA |
1487 | /* |
1488 | * If the vma become good for khugepaged to scan, | |
1489 | * register it here without waiting a page fault that | |
1490 | * may not happen any time soon. | |
1491 | */ | |
1492 | if (unlikely(khugepaged_enter_vma_merge(vma))) | |
1493 | return -ENOMEM; | |
a664b2d8 AA |
1494 | break; |
1495 | case MADV_NOHUGEPAGE: | |
1496 | /* | |
1497 | * Be somewhat over-protective like KSM for now! | |
1498 | */ | |
78f11a25 | 1499 | if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) |
a664b2d8 AA |
1500 | return -EINVAL; |
1501 | *vm_flags &= ~VM_HUGEPAGE; | |
1502 | *vm_flags |= VM_NOHUGEPAGE; | |
60ab3244 AA |
1503 | /* |
1504 | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | |
1505 | * this vma even if we leave the mm registered in khugepaged if | |
1506 | * it got registered before VM_NOHUGEPAGE was set. | |
1507 | */ | |
a664b2d8 AA |
1508 | break; |
1509 | } | |
0af4e98b AA |
1510 | |
1511 | return 0; | |
1512 | } | |
1513 | ||
ba76149f AA |
1514 | static int __init khugepaged_slab_init(void) |
1515 | { | |
1516 | mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | |
1517 | sizeof(struct mm_slot), | |
1518 | __alignof__(struct mm_slot), 0, NULL); | |
1519 | if (!mm_slot_cache) | |
1520 | return -ENOMEM; | |
1521 | ||
1522 | return 0; | |
1523 | } | |
1524 | ||
1525 | static void __init khugepaged_slab_free(void) | |
1526 | { | |
1527 | kmem_cache_destroy(mm_slot_cache); | |
1528 | mm_slot_cache = NULL; | |
1529 | } | |
1530 | ||
1531 | static inline struct mm_slot *alloc_mm_slot(void) | |
1532 | { | |
1533 | if (!mm_slot_cache) /* initialization failed */ | |
1534 | return NULL; | |
1535 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | |
1536 | } | |
1537 | ||
1538 | static inline void free_mm_slot(struct mm_slot *mm_slot) | |
1539 | { | |
1540 | kmem_cache_free(mm_slot_cache, mm_slot); | |
1541 | } | |
1542 | ||
1543 | static int __init mm_slots_hash_init(void) | |
1544 | { | |
1545 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | |
1546 | GFP_KERNEL); | |
1547 | if (!mm_slots_hash) | |
1548 | return -ENOMEM; | |
1549 | return 0; | |
1550 | } | |
1551 | ||
1552 | #if 0 | |
1553 | static void __init mm_slots_hash_free(void) | |
1554 | { | |
1555 | kfree(mm_slots_hash); | |
1556 | mm_slots_hash = NULL; | |
1557 | } | |
1558 | #endif | |
1559 | ||
1560 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | |
1561 | { | |
1562 | struct mm_slot *mm_slot; | |
1563 | struct hlist_head *bucket; | |
1564 | struct hlist_node *node; | |
1565 | ||
1566 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | |
1567 | % MM_SLOTS_HASH_HEADS]; | |
1568 | hlist_for_each_entry(mm_slot, node, bucket, hash) { | |
1569 | if (mm == mm_slot->mm) | |
1570 | return mm_slot; | |
1571 | } | |
1572 | return NULL; | |
1573 | } | |
1574 | ||
1575 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | |
1576 | struct mm_slot *mm_slot) | |
1577 | { | |
1578 | struct hlist_head *bucket; | |
1579 | ||
1580 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | |
1581 | % MM_SLOTS_HASH_HEADS]; | |
1582 | mm_slot->mm = mm; | |
1583 | hlist_add_head(&mm_slot->hash, bucket); | |
1584 | } | |
1585 | ||
1586 | static inline int khugepaged_test_exit(struct mm_struct *mm) | |
1587 | { | |
1588 | return atomic_read(&mm->mm_users) == 0; | |
1589 | } | |
1590 | ||
1591 | int __khugepaged_enter(struct mm_struct *mm) | |
1592 | { | |
1593 | struct mm_slot *mm_slot; | |
1594 | int wakeup; | |
1595 | ||
1596 | mm_slot = alloc_mm_slot(); | |
1597 | if (!mm_slot) | |
1598 | return -ENOMEM; | |
1599 | ||
1600 | /* __khugepaged_exit() must not run from under us */ | |
1601 | VM_BUG_ON(khugepaged_test_exit(mm)); | |
1602 | if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | |
1603 | free_mm_slot(mm_slot); | |
1604 | return 0; | |
1605 | } | |
1606 | ||
1607 | spin_lock(&khugepaged_mm_lock); | |
1608 | insert_to_mm_slots_hash(mm, mm_slot); | |
1609 | /* | |
1610 | * Insert just behind the scanning cursor, to let the area settle | |
1611 | * down a little. | |
1612 | */ | |
1613 | wakeup = list_empty(&khugepaged_scan.mm_head); | |
1614 | list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | |
1615 | spin_unlock(&khugepaged_mm_lock); | |
1616 | ||
1617 | atomic_inc(&mm->mm_count); | |
1618 | if (wakeup) | |
1619 | wake_up_interruptible(&khugepaged_wait); | |
1620 | ||
1621 | return 0; | |
1622 | } | |
1623 | ||
1624 | int khugepaged_enter_vma_merge(struct vm_area_struct *vma) | |
1625 | { | |
1626 | unsigned long hstart, hend; | |
1627 | if (!vma->anon_vma) | |
1628 | /* | |
1629 | * Not yet faulted in so we will register later in the | |
1630 | * page fault if needed. | |
1631 | */ | |
1632 | return 0; | |
78f11a25 | 1633 | if (vma->vm_ops) |
ba76149f AA |
1634 | /* khugepaged not yet working on file or special mappings */ |
1635 | return 0; | |
78f11a25 AA |
1636 | /* |
1637 | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be | |
1638 | * true too, verify it here. | |
1639 | */ | |
1640 | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); | |
ba76149f AA |
1641 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; |
1642 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
1643 | if (hstart < hend) | |
1644 | return khugepaged_enter(vma); | |
1645 | return 0; | |
1646 | } | |
1647 | ||
1648 | void __khugepaged_exit(struct mm_struct *mm) | |
1649 | { | |
1650 | struct mm_slot *mm_slot; | |
1651 | int free = 0; | |
1652 | ||
1653 | spin_lock(&khugepaged_mm_lock); | |
1654 | mm_slot = get_mm_slot(mm); | |
1655 | if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | |
1656 | hlist_del(&mm_slot->hash); | |
1657 | list_del(&mm_slot->mm_node); | |
1658 | free = 1; | |
1659 | } | |
d788e80a | 1660 | spin_unlock(&khugepaged_mm_lock); |
ba76149f AA |
1661 | |
1662 | if (free) { | |
ba76149f AA |
1663 | clear_bit(MMF_VM_HUGEPAGE, &mm->flags); |
1664 | free_mm_slot(mm_slot); | |
1665 | mmdrop(mm); | |
1666 | } else if (mm_slot) { | |
ba76149f AA |
1667 | /* |
1668 | * This is required to serialize against | |
1669 | * khugepaged_test_exit() (which is guaranteed to run | |
1670 | * under mmap sem read mode). Stop here (after we | |
1671 | * return all pagetables will be destroyed) until | |
1672 | * khugepaged has finished working on the pagetables | |
1673 | * under the mmap_sem. | |
1674 | */ | |
1675 | down_write(&mm->mmap_sem); | |
1676 | up_write(&mm->mmap_sem); | |
d788e80a | 1677 | } |
ba76149f AA |
1678 | } |
1679 | ||
1680 | static void release_pte_page(struct page *page) | |
1681 | { | |
1682 | /* 0 stands for page_is_file_cache(page) == false */ | |
1683 | dec_zone_page_state(page, NR_ISOLATED_ANON + 0); | |
1684 | unlock_page(page); | |
1685 | putback_lru_page(page); | |
1686 | } | |
1687 | ||
1688 | static void release_pte_pages(pte_t *pte, pte_t *_pte) | |
1689 | { | |
1690 | while (--_pte >= pte) { | |
1691 | pte_t pteval = *_pte; | |
1692 | if (!pte_none(pteval)) | |
1693 | release_pte_page(pte_page(pteval)); | |
1694 | } | |
1695 | } | |
1696 | ||
1697 | static void release_all_pte_pages(pte_t *pte) | |
1698 | { | |
1699 | release_pte_pages(pte, pte + HPAGE_PMD_NR); | |
1700 | } | |
1701 | ||
1702 | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | |
1703 | unsigned long address, | |
1704 | pte_t *pte) | |
1705 | { | |
1706 | struct page *page; | |
1707 | pte_t *_pte; | |
1708 | int referenced = 0, isolated = 0, none = 0; | |
1709 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | |
1710 | _pte++, address += PAGE_SIZE) { | |
1711 | pte_t pteval = *_pte; | |
1712 | if (pte_none(pteval)) { | |
1713 | if (++none <= khugepaged_max_ptes_none) | |
1714 | continue; | |
1715 | else { | |
1716 | release_pte_pages(pte, _pte); | |
1717 | goto out; | |
1718 | } | |
1719 | } | |
1720 | if (!pte_present(pteval) || !pte_write(pteval)) { | |
1721 | release_pte_pages(pte, _pte); | |
1722 | goto out; | |
1723 | } | |
1724 | page = vm_normal_page(vma, address, pteval); | |
1725 | if (unlikely(!page)) { | |
1726 | release_pte_pages(pte, _pte); | |
1727 | goto out; | |
1728 | } | |
1729 | VM_BUG_ON(PageCompound(page)); | |
1730 | BUG_ON(!PageAnon(page)); | |
1731 | VM_BUG_ON(!PageSwapBacked(page)); | |
1732 | ||
1733 | /* cannot use mapcount: can't collapse if there's a gup pin */ | |
1734 | if (page_count(page) != 1) { | |
1735 | release_pte_pages(pte, _pte); | |
1736 | goto out; | |
1737 | } | |
1738 | /* | |
1739 | * We can do it before isolate_lru_page because the | |
1740 | * page can't be freed from under us. NOTE: PG_lock | |
1741 | * is needed to serialize against split_huge_page | |
1742 | * when invoked from the VM. | |
1743 | */ | |
1744 | if (!trylock_page(page)) { | |
1745 | release_pte_pages(pte, _pte); | |
1746 | goto out; | |
1747 | } | |
1748 | /* | |
1749 | * Isolate the page to avoid collapsing an hugepage | |
1750 | * currently in use by the VM. | |
1751 | */ | |
1752 | if (isolate_lru_page(page)) { | |
1753 | unlock_page(page); | |
1754 | release_pte_pages(pte, _pte); | |
1755 | goto out; | |
1756 | } | |
1757 | /* 0 stands for page_is_file_cache(page) == false */ | |
1758 | inc_zone_page_state(page, NR_ISOLATED_ANON + 0); | |
1759 | VM_BUG_ON(!PageLocked(page)); | |
1760 | VM_BUG_ON(PageLRU(page)); | |
1761 | ||
1762 | /* If there is no mapped pte young don't collapse the page */ | |
8ee53820 AA |
1763 | if (pte_young(pteval) || PageReferenced(page) || |
1764 | mmu_notifier_test_young(vma->vm_mm, address)) | |
ba76149f AA |
1765 | referenced = 1; |
1766 | } | |
1767 | if (unlikely(!referenced)) | |
1768 | release_all_pte_pages(pte); | |
1769 | else | |
1770 | isolated = 1; | |
1771 | out: | |
1772 | return isolated; | |
1773 | } | |
1774 | ||
1775 | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | |
1776 | struct vm_area_struct *vma, | |
1777 | unsigned long address, | |
1778 | spinlock_t *ptl) | |
1779 | { | |
1780 | pte_t *_pte; | |
1781 | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { | |
1782 | pte_t pteval = *_pte; | |
1783 | struct page *src_page; | |
1784 | ||
1785 | if (pte_none(pteval)) { | |
1786 | clear_user_highpage(page, address); | |
1787 | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | |
1788 | } else { | |
1789 | src_page = pte_page(pteval); | |
1790 | copy_user_highpage(page, src_page, address, vma); | |
1791 | VM_BUG_ON(page_mapcount(src_page) != 1); | |
1792 | VM_BUG_ON(page_count(src_page) != 2); | |
1793 | release_pte_page(src_page); | |
1794 | /* | |
1795 | * ptl mostly unnecessary, but preempt has to | |
1796 | * be disabled to update the per-cpu stats | |
1797 | * inside page_remove_rmap(). | |
1798 | */ | |
1799 | spin_lock(ptl); | |
1800 | /* | |
1801 | * paravirt calls inside pte_clear here are | |
1802 | * superfluous. | |
1803 | */ | |
1804 | pte_clear(vma->vm_mm, address, _pte); | |
1805 | page_remove_rmap(src_page); | |
1806 | spin_unlock(ptl); | |
1807 | free_page_and_swap_cache(src_page); | |
1808 | } | |
1809 | ||
1810 | address += PAGE_SIZE; | |
1811 | page++; | |
1812 | } | |
1813 | } | |
1814 | ||
1815 | static void collapse_huge_page(struct mm_struct *mm, | |
1816 | unsigned long address, | |
ce83d217 | 1817 | struct page **hpage, |
5c4b4be3 AK |
1818 | struct vm_area_struct *vma, |
1819 | int node) | |
ba76149f | 1820 | { |
ba76149f AA |
1821 | pgd_t *pgd; |
1822 | pud_t *pud; | |
1823 | pmd_t *pmd, _pmd; | |
1824 | pte_t *pte; | |
1825 | pgtable_t pgtable; | |
1826 | struct page *new_page; | |
1827 | spinlock_t *ptl; | |
1828 | int isolated; | |
1829 | unsigned long hstart, hend; | |
1830 | ||
1831 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | |
0bbbc0b3 | 1832 | #ifndef CONFIG_NUMA |
692e0b35 | 1833 | up_read(&mm->mmap_sem); |
ba76149f | 1834 | VM_BUG_ON(!*hpage); |
ce83d217 | 1835 | new_page = *hpage; |
0bbbc0b3 AA |
1836 | #else |
1837 | VM_BUG_ON(*hpage); | |
ce83d217 AA |
1838 | /* |
1839 | * Allocate the page while the vma is still valid and under | |
1840 | * the mmap_sem read mode so there is no memory allocation | |
1841 | * later when we take the mmap_sem in write mode. This is more | |
1842 | * friendly behavior (OTOH it may actually hide bugs) to | |
1843 | * filesystems in userland with daemons allocating memory in | |
1844 | * the userland I/O paths. Allocating memory with the | |
1845 | * mmap_sem in read mode is good idea also to allow greater | |
1846 | * scalability. | |
1847 | */ | |
5c4b4be3 | 1848 | new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address, |
cc5d462f | 1849 | node, __GFP_OTHER_NODE); |
692e0b35 AA |
1850 | |
1851 | /* | |
1852 | * After allocating the hugepage, release the mmap_sem read lock in | |
1853 | * preparation for taking it in write mode. | |
1854 | */ | |
1855 | up_read(&mm->mmap_sem); | |
ce83d217 | 1856 | if (unlikely(!new_page)) { |
81ab4201 | 1857 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); |
ce83d217 AA |
1858 | *hpage = ERR_PTR(-ENOMEM); |
1859 | return; | |
1860 | } | |
692e0b35 AA |
1861 | #endif |
1862 | ||
81ab4201 | 1863 | count_vm_event(THP_COLLAPSE_ALLOC); |
ce83d217 | 1864 | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { |
692e0b35 | 1865 | #ifdef CONFIG_NUMA |
ce83d217 | 1866 | put_page(new_page); |
692e0b35 | 1867 | #endif |
ce83d217 AA |
1868 | return; |
1869 | } | |
ba76149f AA |
1870 | |
1871 | /* | |
1872 | * Prevent all access to pagetables with the exception of | |
1873 | * gup_fast later hanlded by the ptep_clear_flush and the VM | |
1874 | * handled by the anon_vma lock + PG_lock. | |
1875 | */ | |
1876 | down_write(&mm->mmap_sem); | |
1877 | if (unlikely(khugepaged_test_exit(mm))) | |
1878 | goto out; | |
1879 | ||
1880 | vma = find_vma(mm, address); | |
1881 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | |
1882 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
1883 | if (address < hstart || address + HPAGE_PMD_SIZE > hend) | |
1884 | goto out; | |
1885 | ||
60ab3244 AA |
1886 | if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || |
1887 | (vma->vm_flags & VM_NOHUGEPAGE)) | |
ba76149f AA |
1888 | goto out; |
1889 | ||
78f11a25 | 1890 | if (!vma->anon_vma || vma->vm_ops) |
ba76149f | 1891 | goto out; |
a7d6e4ec AA |
1892 | if (is_vma_temporary_stack(vma)) |
1893 | goto out; | |
78f11a25 AA |
1894 | /* |
1895 | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be | |
1896 | * true too, verify it here. | |
1897 | */ | |
1898 | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); | |
ba76149f AA |
1899 | |
1900 | pgd = pgd_offset(mm, address); | |
1901 | if (!pgd_present(*pgd)) | |
1902 | goto out; | |
1903 | ||
1904 | pud = pud_offset(pgd, address); | |
1905 | if (!pud_present(*pud)) | |
1906 | goto out; | |
1907 | ||
1908 | pmd = pmd_offset(pud, address); | |
1909 | /* pmd can't go away or become huge under us */ | |
1910 | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) | |
1911 | goto out; | |
1912 | ||
ba76149f AA |
1913 | anon_vma_lock(vma->anon_vma); |
1914 | ||
1915 | pte = pte_offset_map(pmd, address); | |
1916 | ptl = pte_lockptr(mm, pmd); | |
1917 | ||
1918 | spin_lock(&mm->page_table_lock); /* probably unnecessary */ | |
1919 | /* | |
1920 | * After this gup_fast can't run anymore. This also removes | |
1921 | * any huge TLB entry from the CPU so we won't allow | |
1922 | * huge and small TLB entries for the same virtual address | |
1923 | * to avoid the risk of CPU bugs in that area. | |
1924 | */ | |
1925 | _pmd = pmdp_clear_flush_notify(vma, address, pmd); | |
1926 | spin_unlock(&mm->page_table_lock); | |
1927 | ||
1928 | spin_lock(ptl); | |
1929 | isolated = __collapse_huge_page_isolate(vma, address, pte); | |
1930 | spin_unlock(ptl); | |
ba76149f AA |
1931 | |
1932 | if (unlikely(!isolated)) { | |
453c7192 | 1933 | pte_unmap(pte); |
ba76149f AA |
1934 | spin_lock(&mm->page_table_lock); |
1935 | BUG_ON(!pmd_none(*pmd)); | |
1936 | set_pmd_at(mm, address, pmd, _pmd); | |
1937 | spin_unlock(&mm->page_table_lock); | |
1938 | anon_vma_unlock(vma->anon_vma); | |
ce83d217 | 1939 | goto out; |
ba76149f AA |
1940 | } |
1941 | ||
1942 | /* | |
1943 | * All pages are isolated and locked so anon_vma rmap | |
1944 | * can't run anymore. | |
1945 | */ | |
1946 | anon_vma_unlock(vma->anon_vma); | |
1947 | ||
1948 | __collapse_huge_page_copy(pte, new_page, vma, address, ptl); | |
453c7192 | 1949 | pte_unmap(pte); |
ba76149f AA |
1950 | __SetPageUptodate(new_page); |
1951 | pgtable = pmd_pgtable(_pmd); | |
1952 | VM_BUG_ON(page_count(pgtable) != 1); | |
1953 | VM_BUG_ON(page_mapcount(pgtable) != 0); | |
1954 | ||
1955 | _pmd = mk_pmd(new_page, vma->vm_page_prot); | |
1956 | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | |
1957 | _pmd = pmd_mkhuge(_pmd); | |
1958 | ||
1959 | /* | |
1960 | * spin_lock() below is not the equivalent of smp_wmb(), so | |
1961 | * this is needed to avoid the copy_huge_page writes to become | |
1962 | * visible after the set_pmd_at() write. | |
1963 | */ | |
1964 | smp_wmb(); | |
1965 | ||
1966 | spin_lock(&mm->page_table_lock); | |
1967 | BUG_ON(!pmd_none(*pmd)); | |
1968 | page_add_new_anon_rmap(new_page, vma, address); | |
1969 | set_pmd_at(mm, address, pmd, _pmd); | |
35d8c7ad | 1970 | update_mmu_cache(vma, address, _pmd); |
ba76149f AA |
1971 | prepare_pmd_huge_pte(pgtable, mm); |
1972 | mm->nr_ptes--; | |
1973 | spin_unlock(&mm->page_table_lock); | |
1974 | ||
0bbbc0b3 | 1975 | #ifndef CONFIG_NUMA |
ba76149f | 1976 | *hpage = NULL; |
0bbbc0b3 | 1977 | #endif |
ba76149f | 1978 | khugepaged_pages_collapsed++; |
ce83d217 | 1979 | out_up_write: |
ba76149f | 1980 | up_write(&mm->mmap_sem); |
0bbbc0b3 AA |
1981 | return; |
1982 | ||
ce83d217 | 1983 | out: |
678ff896 | 1984 | mem_cgroup_uncharge_page(new_page); |
0bbbc0b3 AA |
1985 | #ifdef CONFIG_NUMA |
1986 | put_page(new_page); | |
1987 | #endif | |
ce83d217 | 1988 | goto out_up_write; |
ba76149f AA |
1989 | } |
1990 | ||
1991 | static int khugepaged_scan_pmd(struct mm_struct *mm, | |
1992 | struct vm_area_struct *vma, | |
1993 | unsigned long address, | |
1994 | struct page **hpage) | |
1995 | { | |
1996 | pgd_t *pgd; | |
1997 | pud_t *pud; | |
1998 | pmd_t *pmd; | |
1999 | pte_t *pte, *_pte; | |
2000 | int ret = 0, referenced = 0, none = 0; | |
2001 | struct page *page; | |
2002 | unsigned long _address; | |
2003 | spinlock_t *ptl; | |
5c4b4be3 | 2004 | int node = -1; |
ba76149f AA |
2005 | |
2006 | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | |
2007 | ||
2008 | pgd = pgd_offset(mm, address); | |
2009 | if (!pgd_present(*pgd)) | |
2010 | goto out; | |
2011 | ||
2012 | pud = pud_offset(pgd, address); | |
2013 | if (!pud_present(*pud)) | |
2014 | goto out; | |
2015 | ||
2016 | pmd = pmd_offset(pud, address); | |
2017 | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) | |
2018 | goto out; | |
2019 | ||
2020 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2021 | for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | |
2022 | _pte++, _address += PAGE_SIZE) { | |
2023 | pte_t pteval = *_pte; | |
2024 | if (pte_none(pteval)) { | |
2025 | if (++none <= khugepaged_max_ptes_none) | |
2026 | continue; | |
2027 | else | |
2028 | goto out_unmap; | |
2029 | } | |
2030 | if (!pte_present(pteval) || !pte_write(pteval)) | |
2031 | goto out_unmap; | |
2032 | page = vm_normal_page(vma, _address, pteval); | |
2033 | if (unlikely(!page)) | |
2034 | goto out_unmap; | |
5c4b4be3 AK |
2035 | /* |
2036 | * Chose the node of the first page. This could | |
2037 | * be more sophisticated and look at more pages, | |
2038 | * but isn't for now. | |
2039 | */ | |
2040 | if (node == -1) | |
2041 | node = page_to_nid(page); | |
ba76149f AA |
2042 | VM_BUG_ON(PageCompound(page)); |
2043 | if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) | |
2044 | goto out_unmap; | |
2045 | /* cannot use mapcount: can't collapse if there's a gup pin */ | |
2046 | if (page_count(page) != 1) | |
2047 | goto out_unmap; | |
8ee53820 AA |
2048 | if (pte_young(pteval) || PageReferenced(page) || |
2049 | mmu_notifier_test_young(vma->vm_mm, address)) | |
ba76149f AA |
2050 | referenced = 1; |
2051 | } | |
2052 | if (referenced) | |
2053 | ret = 1; | |
2054 | out_unmap: | |
2055 | pte_unmap_unlock(pte, ptl); | |
ce83d217 AA |
2056 | if (ret) |
2057 | /* collapse_huge_page will return with the mmap_sem released */ | |
5c4b4be3 | 2058 | collapse_huge_page(mm, address, hpage, vma, node); |
ba76149f AA |
2059 | out: |
2060 | return ret; | |
2061 | } | |
2062 | ||
2063 | static void collect_mm_slot(struct mm_slot *mm_slot) | |
2064 | { | |
2065 | struct mm_struct *mm = mm_slot->mm; | |
2066 | ||
2067 | VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock)); | |
2068 | ||
2069 | if (khugepaged_test_exit(mm)) { | |
2070 | /* free mm_slot */ | |
2071 | hlist_del(&mm_slot->hash); | |
2072 | list_del(&mm_slot->mm_node); | |
2073 | ||
2074 | /* | |
2075 | * Not strictly needed because the mm exited already. | |
2076 | * | |
2077 | * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | |
2078 | */ | |
2079 | ||
2080 | /* khugepaged_mm_lock actually not necessary for the below */ | |
2081 | free_mm_slot(mm_slot); | |
2082 | mmdrop(mm); | |
2083 | } | |
2084 | } | |
2085 | ||
2086 | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | |
2087 | struct page **hpage) | |
2f1da642 HS |
2088 | __releases(&khugepaged_mm_lock) |
2089 | __acquires(&khugepaged_mm_lock) | |
ba76149f AA |
2090 | { |
2091 | struct mm_slot *mm_slot; | |
2092 | struct mm_struct *mm; | |
2093 | struct vm_area_struct *vma; | |
2094 | int progress = 0; | |
2095 | ||
2096 | VM_BUG_ON(!pages); | |
2097 | VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock)); | |
2098 | ||
2099 | if (khugepaged_scan.mm_slot) | |
2100 | mm_slot = khugepaged_scan.mm_slot; | |
2101 | else { | |
2102 | mm_slot = list_entry(khugepaged_scan.mm_head.next, | |
2103 | struct mm_slot, mm_node); | |
2104 | khugepaged_scan.address = 0; | |
2105 | khugepaged_scan.mm_slot = mm_slot; | |
2106 | } | |
2107 | spin_unlock(&khugepaged_mm_lock); | |
2108 | ||
2109 | mm = mm_slot->mm; | |
2110 | down_read(&mm->mmap_sem); | |
2111 | if (unlikely(khugepaged_test_exit(mm))) | |
2112 | vma = NULL; | |
2113 | else | |
2114 | vma = find_vma(mm, khugepaged_scan.address); | |
2115 | ||
2116 | progress++; | |
2117 | for (; vma; vma = vma->vm_next) { | |
2118 | unsigned long hstart, hend; | |
2119 | ||
2120 | cond_resched(); | |
2121 | if (unlikely(khugepaged_test_exit(mm))) { | |
2122 | progress++; | |
2123 | break; | |
2124 | } | |
2125 | ||
60ab3244 AA |
2126 | if ((!(vma->vm_flags & VM_HUGEPAGE) && |
2127 | !khugepaged_always()) || | |
2128 | (vma->vm_flags & VM_NOHUGEPAGE)) { | |
a7d6e4ec | 2129 | skip: |
ba76149f AA |
2130 | progress++; |
2131 | continue; | |
2132 | } | |
78f11a25 | 2133 | if (!vma->anon_vma || vma->vm_ops) |
a7d6e4ec AA |
2134 | goto skip; |
2135 | if (is_vma_temporary_stack(vma)) | |
2136 | goto skip; | |
78f11a25 AA |
2137 | /* |
2138 | * If is_pfn_mapping() is true is_learn_pfn_mapping() | |
2139 | * must be true too, verify it here. | |
2140 | */ | |
2141 | VM_BUG_ON(is_linear_pfn_mapping(vma) || | |
2142 | vma->vm_flags & VM_NO_THP); | |
ba76149f AA |
2143 | |
2144 | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | |
2145 | hend = vma->vm_end & HPAGE_PMD_MASK; | |
a7d6e4ec AA |
2146 | if (hstart >= hend) |
2147 | goto skip; | |
2148 | if (khugepaged_scan.address > hend) | |
2149 | goto skip; | |
ba76149f AA |
2150 | if (khugepaged_scan.address < hstart) |
2151 | khugepaged_scan.address = hstart; | |
a7d6e4ec | 2152 | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); |
ba76149f AA |
2153 | |
2154 | while (khugepaged_scan.address < hend) { | |
2155 | int ret; | |
2156 | cond_resched(); | |
2157 | if (unlikely(khugepaged_test_exit(mm))) | |
2158 | goto breakouterloop; | |
2159 | ||
2160 | VM_BUG_ON(khugepaged_scan.address < hstart || | |
2161 | khugepaged_scan.address + HPAGE_PMD_SIZE > | |
2162 | hend); | |
2163 | ret = khugepaged_scan_pmd(mm, vma, | |
2164 | khugepaged_scan.address, | |
2165 | hpage); | |
2166 | /* move to next address */ | |
2167 | khugepaged_scan.address += HPAGE_PMD_SIZE; | |
2168 | progress += HPAGE_PMD_NR; | |
2169 | if (ret) | |
2170 | /* we released mmap_sem so break loop */ | |
2171 | goto breakouterloop_mmap_sem; | |
2172 | if (progress >= pages) | |
2173 | goto breakouterloop; | |
2174 | } | |
2175 | } | |
2176 | breakouterloop: | |
2177 | up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | |
2178 | breakouterloop_mmap_sem: | |
2179 | ||
2180 | spin_lock(&khugepaged_mm_lock); | |
a7d6e4ec | 2181 | VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); |
ba76149f AA |
2182 | /* |
2183 | * Release the current mm_slot if this mm is about to die, or | |
2184 | * if we scanned all vmas of this mm. | |
2185 | */ | |
2186 | if (khugepaged_test_exit(mm) || !vma) { | |
2187 | /* | |
2188 | * Make sure that if mm_users is reaching zero while | |
2189 | * khugepaged runs here, khugepaged_exit will find | |
2190 | * mm_slot not pointing to the exiting mm. | |
2191 | */ | |
2192 | if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | |
2193 | khugepaged_scan.mm_slot = list_entry( | |
2194 | mm_slot->mm_node.next, | |
2195 | struct mm_slot, mm_node); | |
2196 | khugepaged_scan.address = 0; | |
2197 | } else { | |
2198 | khugepaged_scan.mm_slot = NULL; | |
2199 | khugepaged_full_scans++; | |
2200 | } | |
2201 | ||
2202 | collect_mm_slot(mm_slot); | |
2203 | } | |
2204 | ||
2205 | return progress; | |
2206 | } | |
2207 | ||
2208 | static int khugepaged_has_work(void) | |
2209 | { | |
2210 | return !list_empty(&khugepaged_scan.mm_head) && | |
2211 | khugepaged_enabled(); | |
2212 | } | |
2213 | ||
2214 | static int khugepaged_wait_event(void) | |
2215 | { | |
2216 | return !list_empty(&khugepaged_scan.mm_head) || | |
2217 | !khugepaged_enabled(); | |
2218 | } | |
2219 | ||
2220 | static void khugepaged_do_scan(struct page **hpage) | |
2221 | { | |
2222 | unsigned int progress = 0, pass_through_head = 0; | |
2223 | unsigned int pages = khugepaged_pages_to_scan; | |
2224 | ||
2225 | barrier(); /* write khugepaged_pages_to_scan to local stack */ | |
2226 | ||
2227 | while (progress < pages) { | |
2228 | cond_resched(); | |
2229 | ||
0bbbc0b3 | 2230 | #ifndef CONFIG_NUMA |
ba76149f AA |
2231 | if (!*hpage) { |
2232 | *hpage = alloc_hugepage(khugepaged_defrag()); | |
81ab4201 AK |
2233 | if (unlikely(!*hpage)) { |
2234 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | |
ba76149f | 2235 | break; |
81ab4201 AK |
2236 | } |
2237 | count_vm_event(THP_COLLAPSE_ALLOC); | |
ba76149f | 2238 | } |
0bbbc0b3 AA |
2239 | #else |
2240 | if (IS_ERR(*hpage)) | |
2241 | break; | |
2242 | #endif | |
ba76149f | 2243 | |
878aee7d AA |
2244 | if (unlikely(kthread_should_stop() || freezing(current))) |
2245 | break; | |
2246 | ||
ba76149f AA |
2247 | spin_lock(&khugepaged_mm_lock); |
2248 | if (!khugepaged_scan.mm_slot) | |
2249 | pass_through_head++; | |
2250 | if (khugepaged_has_work() && | |
2251 | pass_through_head < 2) | |
2252 | progress += khugepaged_scan_mm_slot(pages - progress, | |
2253 | hpage); | |
2254 | else | |
2255 | progress = pages; | |
2256 | spin_unlock(&khugepaged_mm_lock); | |
2257 | } | |
2258 | } | |
2259 | ||
0bbbc0b3 AA |
2260 | static void khugepaged_alloc_sleep(void) |
2261 | { | |
1dfb059b AA |
2262 | wait_event_freezable_timeout(khugepaged_wait, false, |
2263 | msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | |
0bbbc0b3 AA |
2264 | } |
2265 | ||
2266 | #ifndef CONFIG_NUMA | |
ba76149f AA |
2267 | static struct page *khugepaged_alloc_hugepage(void) |
2268 | { | |
2269 | struct page *hpage; | |
2270 | ||
2271 | do { | |
2272 | hpage = alloc_hugepage(khugepaged_defrag()); | |
81ab4201 AK |
2273 | if (!hpage) { |
2274 | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | |
0bbbc0b3 | 2275 | khugepaged_alloc_sleep(); |
81ab4201 AK |
2276 | } else |
2277 | count_vm_event(THP_COLLAPSE_ALLOC); | |
ba76149f AA |
2278 | } while (unlikely(!hpage) && |
2279 | likely(khugepaged_enabled())); | |
2280 | return hpage; | |
2281 | } | |
0bbbc0b3 | 2282 | #endif |
ba76149f AA |
2283 | |
2284 | static void khugepaged_loop(void) | |
2285 | { | |
2286 | struct page *hpage; | |
2287 | ||
0bbbc0b3 AA |
2288 | #ifdef CONFIG_NUMA |
2289 | hpage = NULL; | |
2290 | #endif | |
ba76149f | 2291 | while (likely(khugepaged_enabled())) { |
0bbbc0b3 | 2292 | #ifndef CONFIG_NUMA |
ba76149f | 2293 | hpage = khugepaged_alloc_hugepage(); |
f300ea49 | 2294 | if (unlikely(!hpage)) |
ba76149f | 2295 | break; |
0bbbc0b3 AA |
2296 | #else |
2297 | if (IS_ERR(hpage)) { | |
2298 | khugepaged_alloc_sleep(); | |
2299 | hpage = NULL; | |
2300 | } | |
2301 | #endif | |
ba76149f AA |
2302 | |
2303 | khugepaged_do_scan(&hpage); | |
0bbbc0b3 | 2304 | #ifndef CONFIG_NUMA |
ba76149f AA |
2305 | if (hpage) |
2306 | put_page(hpage); | |
0bbbc0b3 | 2307 | #endif |
878aee7d AA |
2308 | try_to_freeze(); |
2309 | if (unlikely(kthread_should_stop())) | |
2310 | break; | |
ba76149f | 2311 | if (khugepaged_has_work()) { |
ba76149f AA |
2312 | if (!khugepaged_scan_sleep_millisecs) |
2313 | continue; | |
1dfb059b AA |
2314 | wait_event_freezable_timeout(khugepaged_wait, false, |
2315 | msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); | |
ba76149f | 2316 | } else if (khugepaged_enabled()) |
878aee7d AA |
2317 | wait_event_freezable(khugepaged_wait, |
2318 | khugepaged_wait_event()); | |
ba76149f AA |
2319 | } |
2320 | } | |
2321 | ||
2322 | static int khugepaged(void *none) | |
2323 | { | |
2324 | struct mm_slot *mm_slot; | |
2325 | ||
878aee7d | 2326 | set_freezable(); |
ba76149f AA |
2327 | set_user_nice(current, 19); |
2328 | ||
2329 | /* serialize with start_khugepaged() */ | |
2330 | mutex_lock(&khugepaged_mutex); | |
2331 | ||
2332 | for (;;) { | |
2333 | mutex_unlock(&khugepaged_mutex); | |
a7d6e4ec | 2334 | VM_BUG_ON(khugepaged_thread != current); |
ba76149f | 2335 | khugepaged_loop(); |
a7d6e4ec | 2336 | VM_BUG_ON(khugepaged_thread != current); |
ba76149f AA |
2337 | |
2338 | mutex_lock(&khugepaged_mutex); | |
2339 | if (!khugepaged_enabled()) | |
2340 | break; | |
878aee7d AA |
2341 | if (unlikely(kthread_should_stop())) |
2342 | break; | |
ba76149f AA |
2343 | } |
2344 | ||
2345 | spin_lock(&khugepaged_mm_lock); | |
2346 | mm_slot = khugepaged_scan.mm_slot; | |
2347 | khugepaged_scan.mm_slot = NULL; | |
2348 | if (mm_slot) | |
2349 | collect_mm_slot(mm_slot); | |
2350 | spin_unlock(&khugepaged_mm_lock); | |
2351 | ||
2352 | khugepaged_thread = NULL; | |
2353 | mutex_unlock(&khugepaged_mutex); | |
2354 | ||
2355 | return 0; | |
2356 | } | |
2357 | ||
71e3aac0 AA |
2358 | void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) |
2359 | { | |
2360 | struct page *page; | |
2361 | ||
2362 | spin_lock(&mm->page_table_lock); | |
2363 | if (unlikely(!pmd_trans_huge(*pmd))) { | |
2364 | spin_unlock(&mm->page_table_lock); | |
2365 | return; | |
2366 | } | |
2367 | page = pmd_page(*pmd); | |
2368 | VM_BUG_ON(!page_count(page)); | |
2369 | get_page(page); | |
2370 | spin_unlock(&mm->page_table_lock); | |
2371 | ||
2372 | split_huge_page(page); | |
2373 | ||
2374 | put_page(page); | |
2375 | BUG_ON(pmd_trans_huge(*pmd)); | |
2376 | } | |
94fcc585 AA |
2377 | |
2378 | static void split_huge_page_address(struct mm_struct *mm, | |
2379 | unsigned long address) | |
2380 | { | |
2381 | pgd_t *pgd; | |
2382 | pud_t *pud; | |
2383 | pmd_t *pmd; | |
2384 | ||
2385 | VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); | |
2386 | ||
2387 | pgd = pgd_offset(mm, address); | |
2388 | if (!pgd_present(*pgd)) | |
2389 | return; | |
2390 | ||
2391 | pud = pud_offset(pgd, address); | |
2392 | if (!pud_present(*pud)) | |
2393 | return; | |
2394 | ||
2395 | pmd = pmd_offset(pud, address); | |
2396 | if (!pmd_present(*pmd)) | |
2397 | return; | |
2398 | /* | |
2399 | * Caller holds the mmap_sem write mode, so a huge pmd cannot | |
2400 | * materialize from under us. | |
2401 | */ | |
2402 | split_huge_page_pmd(mm, pmd); | |
2403 | } | |
2404 | ||
2405 | void __vma_adjust_trans_huge(struct vm_area_struct *vma, | |
2406 | unsigned long start, | |
2407 | unsigned long end, | |
2408 | long adjust_next) | |
2409 | { | |
2410 | /* | |
2411 | * If the new start address isn't hpage aligned and it could | |
2412 | * previously contain an hugepage: check if we need to split | |
2413 | * an huge pmd. | |
2414 | */ | |
2415 | if (start & ~HPAGE_PMD_MASK && | |
2416 | (start & HPAGE_PMD_MASK) >= vma->vm_start && | |
2417 | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | |
2418 | split_huge_page_address(vma->vm_mm, start); | |
2419 | ||
2420 | /* | |
2421 | * If the new end address isn't hpage aligned and it could | |
2422 | * previously contain an hugepage: check if we need to split | |
2423 | * an huge pmd. | |
2424 | */ | |
2425 | if (end & ~HPAGE_PMD_MASK && | |
2426 | (end & HPAGE_PMD_MASK) >= vma->vm_start && | |
2427 | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | |
2428 | split_huge_page_address(vma->vm_mm, end); | |
2429 | ||
2430 | /* | |
2431 | * If we're also updating the vma->vm_next->vm_start, if the new | |
2432 | * vm_next->vm_start isn't page aligned and it could previously | |
2433 | * contain an hugepage: check if we need to split an huge pmd. | |
2434 | */ | |
2435 | if (adjust_next > 0) { | |
2436 | struct vm_area_struct *next = vma->vm_next; | |
2437 | unsigned long nstart = next->vm_start; | |
2438 | nstart += adjust_next << PAGE_SHIFT; | |
2439 | if (nstart & ~HPAGE_PMD_MASK && | |
2440 | (nstart & HPAGE_PMD_MASK) >= next->vm_start && | |
2441 | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) | |
2442 | split_huge_page_address(next->vm_mm, nstart); | |
2443 | } | |
2444 | } |