]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/swap_state.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie | |
7 | * | |
8 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie | |
9 | */ | |
1da177e4 | 10 | #include <linux/mm.h> |
5a0e3ad6 | 11 | #include <linux/gfp.h> |
1da177e4 LT |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> | |
46017e95 | 14 | #include <linux/swapops.h> |
1da177e4 LT |
15 | #include <linux/init.h> |
16 | #include <linux/pagemap.h> | |
1da177e4 | 17 | #include <linux/backing-dev.h> |
3fb5c298 | 18 | #include <linux/blkdev.h> |
c484d410 | 19 | #include <linux/pagevec.h> |
b20a3503 | 20 | #include <linux/migrate.h> |
4b3ef9da | 21 | #include <linux/vmalloc.h> |
67afa38e | 22 | #include <linux/swap_slots.h> |
38d8b4e6 | 23 | #include <linux/huge_mm.h> |
243bce09 | 24 | #include "internal.h" |
1da177e4 LT |
25 | |
26 | /* | |
27 | * swapper_space is a fiction, retained to simplify the path through | |
7eaceacc | 28 | * vmscan's shrink_page_list. |
1da177e4 | 29 | */ |
f5e54d6e | 30 | static const struct address_space_operations swap_aops = { |
1da177e4 | 31 | .writepage = swap_writepage, |
62c230bc | 32 | .set_page_dirty = swap_set_page_dirty, |
1c93923c | 33 | #ifdef CONFIG_MIGRATION |
e965f963 | 34 | .migratepage = migrate_page, |
1c93923c | 35 | #endif |
1da177e4 LT |
36 | }; |
37 | ||
783cb68e CD |
38 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; |
39 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | |
f5c754d6 | 40 | static bool enable_vma_readahead __read_mostly = true; |
ec560175 | 41 | |
ec560175 YH |
42 | #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) |
43 | #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) | |
44 | #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK | |
45 | #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) | |
46 | ||
47 | #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) | |
48 | #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | |
49 | #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) | |
50 | ||
51 | #define SWAP_RA_VAL(addr, win, hits) \ | |
52 | (((addr) & PAGE_MASK) | \ | |
53 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ | |
54 | ((hits) & SWAP_RA_HITS_MASK)) | |
55 | ||
56 | /* Initial readahead hits is 4 to start up with a small window */ | |
57 | #define GET_SWAP_RA_VAL(vma) \ | |
58 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | |
1da177e4 | 59 | |
b96a3db2 QC |
60 | #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++) |
61 | #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr)) | |
1da177e4 LT |
62 | |
63 | static struct { | |
64 | unsigned long add_total; | |
65 | unsigned long del_total; | |
66 | unsigned long find_success; | |
67 | unsigned long find_total; | |
1da177e4 LT |
68 | } swap_cache_info; |
69 | ||
33806f06 SL |
70 | unsigned long total_swapcache_pages(void) |
71 | { | |
4b3ef9da | 72 | unsigned int i, j, nr; |
33806f06 | 73 | unsigned long ret = 0; |
4b3ef9da | 74 | struct address_space *spaces; |
054f1d1f | 75 | struct swap_info_struct *si; |
33806f06 | 76 | |
4b3ef9da | 77 | for (i = 0; i < MAX_SWAPFILES; i++) { |
054f1d1f YH |
78 | swp_entry_t entry = swp_entry(i, 1); |
79 | ||
80 | /* Avoid get_swap_device() to warn for bad swap entry */ | |
81 | if (!swp_swap_info(entry)) | |
82 | continue; | |
83 | /* Prevent swapoff to free swapper_spaces */ | |
84 | si = get_swap_device(entry); | |
85 | if (!si) | |
4b3ef9da | 86 | continue; |
054f1d1f YH |
87 | nr = nr_swapper_spaces[i]; |
88 | spaces = swapper_spaces[i]; | |
4b3ef9da YH |
89 | for (j = 0; j < nr; j++) |
90 | ret += spaces[j].nrpages; | |
054f1d1f | 91 | put_swap_device(si); |
4b3ef9da | 92 | } |
33806f06 SL |
93 | return ret; |
94 | } | |
95 | ||
579f8290 SL |
96 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); |
97 | ||
1da177e4 LT |
98 | void show_swap_cache_info(void) |
99 | { | |
33806f06 | 100 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
2c97b7fc | 101 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
1da177e4 | 102 | swap_cache_info.add_total, swap_cache_info.del_total, |
bb63be0a | 103 | swap_cache_info.find_success, swap_cache_info.find_total); |
ec8acf20 SL |
104 | printk("Free swap = %ldkB\n", |
105 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | |
1da177e4 LT |
106 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
107 | } | |
108 | ||
aae466b0 JK |
109 | void *get_shadow_from_swap_cache(swp_entry_t entry) |
110 | { | |
111 | struct address_space *address_space = swap_address_space(entry); | |
112 | pgoff_t idx = swp_offset(entry); | |
113 | struct page *page; | |
114 | ||
115 | page = find_get_entry(address_space, idx); | |
116 | if (xa_is_value(page)) | |
117 | return page; | |
118 | if (page) | |
119 | put_page(page); | |
120 | return NULL; | |
121 | } | |
122 | ||
1da177e4 | 123 | /* |
8d93b41c | 124 | * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
1da177e4 LT |
125 | * but sets SwapCache flag and private instead of mapping and index. |
126 | */ | |
3852f676 JK |
127 | int add_to_swap_cache(struct page *page, swp_entry_t entry, |
128 | gfp_t gfp, void **shadowp) | |
1da177e4 | 129 | { |
8d93b41c | 130 | struct address_space *address_space = swap_address_space(entry); |
38d8b4e6 | 131 | pgoff_t idx = swp_offset(entry); |
8d93b41c | 132 | XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); |
6c357848 | 133 | unsigned long i, nr = thp_nr_pages(page); |
3852f676 | 134 | void *old; |
1da177e4 | 135 | |
309381fe SL |
136 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
137 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | |
138 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | |
51726b12 | 139 | |
38d8b4e6 | 140 | page_ref_add(page, nr); |
31a56396 | 141 | SetPageSwapCache(page); |
31a56396 | 142 | |
8d93b41c | 143 | do { |
3852f676 JK |
144 | unsigned long nr_shadows = 0; |
145 | ||
8d93b41c MW |
146 | xas_lock_irq(&xas); |
147 | xas_create_range(&xas); | |
148 | if (xas_error(&xas)) | |
149 | goto unlock; | |
150 | for (i = 0; i < nr; i++) { | |
151 | VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); | |
3852f676 JK |
152 | old = xas_load(&xas); |
153 | if (xa_is_value(old)) { | |
154 | nr_shadows++; | |
155 | if (shadowp) | |
156 | *shadowp = old; | |
157 | } | |
8d93b41c | 158 | set_page_private(page + i, entry.val + i); |
4101196b | 159 | xas_store(&xas, page); |
8d93b41c MW |
160 | xas_next(&xas); |
161 | } | |
3852f676 | 162 | address_space->nrexceptional -= nr_shadows; |
38d8b4e6 YH |
163 | address_space->nrpages += nr; |
164 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | |
165 | ADD_CACHE_INFO(add_total, nr); | |
8d93b41c MW |
166 | unlock: |
167 | xas_unlock_irq(&xas); | |
168 | } while (xas_nomem(&xas, gfp)); | |
31a56396 | 169 | |
8d93b41c MW |
170 | if (!xas_error(&xas)) |
171 | return 0; | |
31a56396 | 172 | |
8d93b41c MW |
173 | ClearPageSwapCache(page); |
174 | page_ref_sub(page, nr); | |
175 | return xas_error(&xas); | |
1da177e4 LT |
176 | } |
177 | ||
1da177e4 LT |
178 | /* |
179 | * This must be called only on pages that have | |
180 | * been verified to be in the swap cache. | |
181 | */ | |
3852f676 JK |
182 | void __delete_from_swap_cache(struct page *page, |
183 | swp_entry_t entry, void *shadow) | |
1da177e4 | 184 | { |
4e17ec25 | 185 | struct address_space *address_space = swap_address_space(entry); |
6c357848 | 186 | int i, nr = thp_nr_pages(page); |
4e17ec25 MW |
187 | pgoff_t idx = swp_offset(entry); |
188 | XA_STATE(xas, &address_space->i_pages, idx); | |
33806f06 | 189 | |
309381fe SL |
190 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
191 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
192 | VM_BUG_ON_PAGE(PageWriteback(page), page); | |
1da177e4 | 193 | |
38d8b4e6 | 194 | for (i = 0; i < nr; i++) { |
3852f676 | 195 | void *entry = xas_store(&xas, shadow); |
4101196b | 196 | VM_BUG_ON_PAGE(entry != page, entry); |
38d8b4e6 | 197 | set_page_private(page + i, 0); |
4e17ec25 | 198 | xas_next(&xas); |
38d8b4e6 | 199 | } |
1da177e4 | 200 | ClearPageSwapCache(page); |
3852f676 JK |
201 | if (shadow) |
202 | address_space->nrexceptional += nr; | |
38d8b4e6 YH |
203 | address_space->nrpages -= nr; |
204 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
205 | ADD_CACHE_INFO(del_total, nr); | |
1da177e4 LT |
206 | } |
207 | ||
208 | /** | |
209 | * add_to_swap - allocate swap space for a page | |
210 | * @page: page we want to move to swap | |
211 | * | |
212 | * Allocate swap space for the page and add the page to the | |
213 | * swap cache. Caller needs to hold the page lock. | |
214 | */ | |
0f074658 | 215 | int add_to_swap(struct page *page) |
1da177e4 LT |
216 | { |
217 | swp_entry_t entry; | |
1da177e4 LT |
218 | int err; |
219 | ||
309381fe SL |
220 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
221 | VM_BUG_ON_PAGE(!PageUptodate(page), page); | |
1da177e4 | 222 | |
38d8b4e6 | 223 | entry = get_swap_page(page); |
2ca4532a | 224 | if (!entry.val) |
0f074658 MK |
225 | return 0; |
226 | ||
2ca4532a | 227 | /* |
8d93b41c | 228 | * XArray node allocations from PF_MEMALLOC contexts could |
2ca4532a DN |
229 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
230 | * stops emergency reserves from being allocated. | |
231 | * | |
232 | * TODO: this could cause a theoretical memory reclaim | |
233 | * deadlock in the swap out path. | |
234 | */ | |
235 | /* | |
854e9ed0 | 236 | * Add it to the swap cache. |
2ca4532a DN |
237 | */ |
238 | err = add_to_swap_cache(page, entry, | |
3852f676 | 239 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); |
38d8b4e6 | 240 | if (err) |
bd53b714 | 241 | /* |
2ca4532a DN |
242 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
243 | * clear SWAP_HAS_CACHE flag. | |
1da177e4 | 244 | */ |
0f074658 | 245 | goto fail; |
9625456c SL |
246 | /* |
247 | * Normally the page will be dirtied in unmap because its pte should be | |
248 | * dirty. A special case is MADV_FREE page. The page'e pte could have | |
249 | * dirty bit cleared but the page's SwapBacked bit is still set because | |
250 | * clearing the dirty bit and SwapBacked bit has no lock protected. For | |
251 | * such page, unmap will not set dirty bit for it, so page reclaim will | |
252 | * not write the page out. This can cause data corruption when the page | |
253 | * is swap in later. Always setting the dirty bit for the page solves | |
254 | * the problem. | |
255 | */ | |
256 | set_page_dirty(page); | |
38d8b4e6 YH |
257 | |
258 | return 1; | |
259 | ||
38d8b4e6 | 260 | fail: |
0f074658 | 261 | put_swap_page(page, entry); |
38d8b4e6 | 262 | return 0; |
1da177e4 LT |
263 | } |
264 | ||
265 | /* | |
266 | * This must be called only on pages that have | |
267 | * been verified to be in the swap cache and locked. | |
268 | * It will never put the page into the free list, | |
269 | * the caller has a reference on the page. | |
270 | */ | |
271 | void delete_from_swap_cache(struct page *page) | |
272 | { | |
4e17ec25 MW |
273 | swp_entry_t entry = { .val = page_private(page) }; |
274 | struct address_space *address_space = swap_address_space(entry); | |
1da177e4 | 275 | |
b93b0163 | 276 | xa_lock_irq(&address_space->i_pages); |
3852f676 | 277 | __delete_from_swap_cache(page, entry, NULL); |
b93b0163 | 278 | xa_unlock_irq(&address_space->i_pages); |
1da177e4 | 279 | |
75f6d6d2 | 280 | put_swap_page(page, entry); |
6c357848 | 281 | page_ref_sub(page, thp_nr_pages(page)); |
1da177e4 LT |
282 | } |
283 | ||
3852f676 JK |
284 | void clear_shadow_from_swap_cache(int type, unsigned long begin, |
285 | unsigned long end) | |
286 | { | |
287 | unsigned long curr = begin; | |
288 | void *old; | |
289 | ||
290 | for (;;) { | |
291 | unsigned long nr_shadows = 0; | |
292 | swp_entry_t entry = swp_entry(type, curr); | |
293 | struct address_space *address_space = swap_address_space(entry); | |
294 | XA_STATE(xas, &address_space->i_pages, curr); | |
295 | ||
296 | xa_lock_irq(&address_space->i_pages); | |
297 | xas_for_each(&xas, old, end) { | |
298 | if (!xa_is_value(old)) | |
299 | continue; | |
300 | xas_store(&xas, NULL); | |
301 | nr_shadows++; | |
302 | } | |
303 | address_space->nrexceptional -= nr_shadows; | |
304 | xa_unlock_irq(&address_space->i_pages); | |
305 | ||
306 | /* search the next swapcache until we meet end */ | |
307 | curr >>= SWAP_ADDRESS_SPACE_SHIFT; | |
308 | curr++; | |
309 | curr <<= SWAP_ADDRESS_SPACE_SHIFT; | |
310 | if (curr > end) | |
311 | break; | |
312 | } | |
313 | } | |
314 | ||
1da177e4 LT |
315 | /* |
316 | * If we are the only user, then try to free up the swap cache. | |
317 | * | |
318 | * Its ok to check for PageSwapCache without the page lock | |
a2c43eed HD |
319 | * here because we are going to recheck again inside |
320 | * try_to_free_swap() _with_ the lock. | |
1da177e4 LT |
321 | * - Marcelo |
322 | */ | |
323 | static inline void free_swap_cache(struct page *page) | |
324 | { | |
a2c43eed HD |
325 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
326 | try_to_free_swap(page); | |
1da177e4 LT |
327 | unlock_page(page); |
328 | } | |
329 | } | |
330 | ||
331 | /* | |
332 | * Perform a free_page(), also freeing any swap cache associated with | |
b8072f09 | 333 | * this page if it is the last user of the page. |
1da177e4 LT |
334 | */ |
335 | void free_page_and_swap_cache(struct page *page) | |
336 | { | |
337 | free_swap_cache(page); | |
6fcb52a5 | 338 | if (!is_huge_zero_page(page)) |
770a5370 | 339 | put_page(page); |
1da177e4 LT |
340 | } |
341 | ||
342 | /* | |
343 | * Passed an array of pages, drop them all from swapcache and then release | |
344 | * them. They are removed from the LRU and freed if this is their last use. | |
345 | */ | |
346 | void free_pages_and_swap_cache(struct page **pages, int nr) | |
347 | { | |
1da177e4 | 348 | struct page **pagep = pages; |
aabfb572 | 349 | int i; |
1da177e4 LT |
350 | |
351 | lru_add_drain(); | |
aabfb572 MH |
352 | for (i = 0; i < nr; i++) |
353 | free_swap_cache(pagep[i]); | |
c6f92f9f | 354 | release_pages(pagep, nr); |
1da177e4 LT |
355 | } |
356 | ||
e9e9b7ec MK |
357 | static inline bool swap_use_vma_readahead(void) |
358 | { | |
359 | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | |
360 | } | |
361 | ||
1da177e4 LT |
362 | /* |
363 | * Lookup a swap entry in the swap cache. A found page will be returned | |
364 | * unlocked and with its refcount incremented - we rely on the kernel | |
365 | * lock getting page table operations atomic even if we drop the page | |
366 | * lock before returning. | |
367 | */ | |
ec560175 YH |
368 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, |
369 | unsigned long addr) | |
1da177e4 LT |
370 | { |
371 | struct page *page; | |
eb085574 | 372 | struct swap_info_struct *si; |
1da177e4 | 373 | |
eb085574 YH |
374 | si = get_swap_device(entry); |
375 | if (!si) | |
376 | return NULL; | |
f6ab1f7f | 377 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); |
eb085574 | 378 | put_swap_device(si); |
1da177e4 | 379 | |
ec560175 YH |
380 | INC_CACHE_INFO(find_total); |
381 | if (page) { | |
eaf649eb MK |
382 | bool vma_ra = swap_use_vma_readahead(); |
383 | bool readahead; | |
384 | ||
1da177e4 | 385 | INC_CACHE_INFO(find_success); |
eaf649eb MK |
386 | /* |
387 | * At the moment, we don't support PG_readahead for anon THP | |
388 | * so let's bail out rather than confusing the readahead stat. | |
389 | */ | |
ec560175 YH |
390 | if (unlikely(PageTransCompound(page))) |
391 | return page; | |
eaf649eb | 392 | |
ec560175 | 393 | readahead = TestClearPageReadahead(page); |
eaf649eb MK |
394 | if (vma && vma_ra) { |
395 | unsigned long ra_val; | |
396 | int win, hits; | |
397 | ||
398 | ra_val = GET_SWAP_RA_VAL(vma); | |
399 | win = SWAP_RA_WIN(ra_val); | |
400 | hits = SWAP_RA_HITS(ra_val); | |
ec560175 YH |
401 | if (readahead) |
402 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | |
403 | atomic_long_set(&vma->swap_readahead_info, | |
404 | SWAP_RA_VAL(addr, win, hits)); | |
405 | } | |
eaf649eb | 406 | |
ec560175 | 407 | if (readahead) { |
cbc65df2 | 408 | count_vm_event(SWAP_RA_HIT); |
eaf649eb | 409 | if (!vma || !vma_ra) |
ec560175 | 410 | atomic_inc(&swapin_readahead_hits); |
cbc65df2 | 411 | } |
579f8290 | 412 | } |
eaf649eb | 413 | |
1da177e4 LT |
414 | return page; |
415 | } | |
416 | ||
5b999aad DS |
417 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
418 | struct vm_area_struct *vma, unsigned long addr, | |
419 | bool *new_page_allocated) | |
1da177e4 | 420 | { |
eb085574 | 421 | struct swap_info_struct *si; |
4c6355b2 | 422 | struct page *page; |
aae466b0 | 423 | void *shadow = NULL; |
4c6355b2 | 424 | |
5b999aad | 425 | *new_page_allocated = false; |
1da177e4 | 426 | |
4c6355b2 JW |
427 | for (;;) { |
428 | int err; | |
1da177e4 LT |
429 | /* |
430 | * First check the swap cache. Since this is normally | |
431 | * called after lookup_swap_cache() failed, re-calling | |
432 | * that would confuse statistics. | |
433 | */ | |
eb085574 YH |
434 | si = get_swap_device(entry); |
435 | if (!si) | |
4c6355b2 JW |
436 | return NULL; |
437 | page = find_get_page(swap_address_space(entry), | |
438 | swp_offset(entry)); | |
eb085574 | 439 | put_swap_device(si); |
4c6355b2 JW |
440 | if (page) |
441 | return page; | |
1da177e4 | 442 | |
ba81f838 YH |
443 | /* |
444 | * Just skip read ahead for unused swap slot. | |
445 | * During swap_off when swap_slot_cache is disabled, | |
446 | * we have to handle the race between putting | |
447 | * swap entry in swap cache and marking swap slot | |
448 | * as SWAP_HAS_CACHE. That's done in later part of code or | |
449 | * else swap_off will be aborted if we return NULL. | |
450 | */ | |
451 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | |
4c6355b2 | 452 | return NULL; |
e8c26ab6 | 453 | |
1da177e4 | 454 | /* |
4c6355b2 JW |
455 | * Get a new page to read into from swap. Allocate it now, |
456 | * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will | |
457 | * cause any racers to loop around until we add it to cache. | |
1da177e4 | 458 | */ |
4c6355b2 JW |
459 | page = alloc_page_vma(gfp_mask, vma, addr); |
460 | if (!page) | |
461 | return NULL; | |
1da177e4 | 462 | |
f000944d HD |
463 | /* |
464 | * Swap entry may have been freed since our caller observed it. | |
465 | */ | |
355cfa73 | 466 | err = swapcache_prepare(entry); |
4c6355b2 | 467 | if (!err) |
f000944d HD |
468 | break; |
469 | ||
4c6355b2 JW |
470 | put_page(page); |
471 | if (err != -EEXIST) | |
472 | return NULL; | |
473 | ||
2ca4532a | 474 | /* |
4c6355b2 JW |
475 | * We might race against __delete_from_swap_cache(), and |
476 | * stumble across a swap_map entry whose SWAP_HAS_CACHE | |
477 | * has not yet been cleared. Or race against another | |
478 | * __read_swap_cache_async(), which has set SWAP_HAS_CACHE | |
479 | * in swap_map, but not yet added its page to swap cache. | |
2ca4532a | 480 | */ |
4c6355b2 JW |
481 | cond_resched(); |
482 | } | |
483 | ||
484 | /* | |
485 | * The swap entry is ours to swap in. Prepare the new page. | |
486 | */ | |
487 | ||
488 | __SetPageLocked(page); | |
489 | __SetPageSwapBacked(page); | |
490 | ||
491 | /* May fail (-ENOMEM) if XArray node allocation failed. */ | |
aae466b0 | 492 | if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) { |
4c6355b2 JW |
493 | put_swap_page(page, entry); |
494 | goto fail_unlock; | |
495 | } | |
496 | ||
d9eb1ea2 | 497 | if (mem_cgroup_charge(page, NULL, gfp_mask)) { |
4c6355b2 JW |
498 | delete_from_swap_cache(page); |
499 | goto fail_unlock; | |
500 | } | |
501 | ||
aae466b0 JK |
502 | if (shadow) |
503 | workingset_refault(page, shadow); | |
314b57fb | 504 | |
4c6355b2 JW |
505 | /* Caller will initiate read into locked page */ |
506 | SetPageWorkingset(page); | |
6058eaec | 507 | lru_cache_add(page); |
4c6355b2 JW |
508 | *new_page_allocated = true; |
509 | return page; | |
1da177e4 | 510 | |
4c6355b2 JW |
511 | fail_unlock: |
512 | unlock_page(page); | |
513 | put_page(page); | |
514 | return NULL; | |
1da177e4 | 515 | } |
46017e95 | 516 | |
5b999aad DS |
517 | /* |
518 | * Locate a page of swap in physical memory, reserving swap cache space | |
519 | * and reading the disk if it is not already cached. | |
520 | * A failure return means that either the page allocation failed or that | |
521 | * the swap entry is no longer in use. | |
522 | */ | |
523 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | |
23955622 | 524 | struct vm_area_struct *vma, unsigned long addr, bool do_poll) |
5b999aad DS |
525 | { |
526 | bool page_was_allocated; | |
527 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | |
528 | vma, addr, &page_was_allocated); | |
529 | ||
530 | if (page_was_allocated) | |
23955622 | 531 | swap_readpage(retpage, do_poll); |
5b999aad DS |
532 | |
533 | return retpage; | |
534 | } | |
535 | ||
ec560175 YH |
536 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, |
537 | unsigned long offset, | |
538 | int hits, | |
539 | int max_pages, | |
540 | int prev_win) | |
579f8290 | 541 | { |
ec560175 | 542 | unsigned int pages, last_ra; |
579f8290 SL |
543 | |
544 | /* | |
545 | * This heuristic has been found to work well on both sequential and | |
546 | * random loads, swapping to hard disk or to SSD: please don't ask | |
547 | * what the "+ 2" means, it just happens to work well, that's all. | |
548 | */ | |
ec560175 | 549 | pages = hits + 2; |
579f8290 SL |
550 | if (pages == 2) { |
551 | /* | |
552 | * We can have no readahead hits to judge by: but must not get | |
553 | * stuck here forever, so check for an adjacent offset instead | |
554 | * (and don't even bother to check whether swap type is same). | |
555 | */ | |
556 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | |
557 | pages = 1; | |
579f8290 SL |
558 | } else { |
559 | unsigned int roundup = 4; | |
560 | while (roundup < pages) | |
561 | roundup <<= 1; | |
562 | pages = roundup; | |
563 | } | |
564 | ||
565 | if (pages > max_pages) | |
566 | pages = max_pages; | |
567 | ||
568 | /* Don't shrink readahead too fast */ | |
ec560175 | 569 | last_ra = prev_win / 2; |
579f8290 SL |
570 | if (pages < last_ra) |
571 | pages = last_ra; | |
ec560175 YH |
572 | |
573 | return pages; | |
574 | } | |
575 | ||
576 | static unsigned long swapin_nr_pages(unsigned long offset) | |
577 | { | |
578 | static unsigned long prev_offset; | |
579 | unsigned int hits, pages, max_pages; | |
580 | static atomic_t last_readahead_pages; | |
581 | ||
582 | max_pages = 1 << READ_ONCE(page_cluster); | |
583 | if (max_pages <= 1) | |
584 | return 1; | |
585 | ||
586 | hits = atomic_xchg(&swapin_readahead_hits, 0); | |
d6c1f098 QC |
587 | pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, |
588 | max_pages, | |
ec560175 YH |
589 | atomic_read(&last_readahead_pages)); |
590 | if (!hits) | |
d6c1f098 | 591 | WRITE_ONCE(prev_offset, offset); |
579f8290 SL |
592 | atomic_set(&last_readahead_pages, pages); |
593 | ||
594 | return pages; | |
595 | } | |
596 | ||
46017e95 | 597 | /** |
e9e9b7ec | 598 | * swap_cluster_readahead - swap in pages in hope we need them soon |
46017e95 | 599 | * @entry: swap entry of this memory |
7682486b | 600 | * @gfp_mask: memory allocation flags |
e9e9b7ec | 601 | * @vmf: fault information |
46017e95 HD |
602 | * |
603 | * Returns the struct page for entry and addr, after queueing swapin. | |
604 | * | |
605 | * Primitive swap readahead code. We simply read an aligned block of | |
606 | * (1 << page_cluster) entries in the swap area. This method is chosen | |
607 | * because it doesn't cost us any seek time. We also make sure to queue | |
608 | * the 'original' request together with the readahead ones... | |
609 | * | |
610 | * This has been extended to use the NUMA policies from the mm triggering | |
611 | * the readahead. | |
612 | * | |
c1e8d7c6 | 613 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
46017e95 | 614 | */ |
e9e9b7ec MK |
615 | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, |
616 | struct vm_fault *vmf) | |
46017e95 | 617 | { |
46017e95 | 618 | struct page *page; |
579f8290 SL |
619 | unsigned long entry_offset = swp_offset(entry); |
620 | unsigned long offset = entry_offset; | |
67f96aa2 | 621 | unsigned long start_offset, end_offset; |
579f8290 | 622 | unsigned long mask; |
e9a6effa | 623 | struct swap_info_struct *si = swp_swap_info(entry); |
3fb5c298 | 624 | struct blk_plug plug; |
c4fa6309 | 625 | bool do_poll = true, page_allocated; |
e9e9b7ec MK |
626 | struct vm_area_struct *vma = vmf->vma; |
627 | unsigned long addr = vmf->address; | |
46017e95 | 628 | |
579f8290 SL |
629 | mask = swapin_nr_pages(offset) - 1; |
630 | if (!mask) | |
631 | goto skip; | |
632 | ||
8fd2e0b5 YS |
633 | /* Test swap type to make sure the dereference is safe */ |
634 | if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) { | |
635 | struct inode *inode = si->swap_file->f_mapping->host; | |
636 | if (inode_read_congested(inode)) | |
637 | goto skip; | |
638 | } | |
639 | ||
23955622 | 640 | do_poll = false; |
67f96aa2 RR |
641 | /* Read a page_cluster sized and aligned cluster around offset. */ |
642 | start_offset = offset & ~mask; | |
643 | end_offset = offset | mask; | |
644 | if (!start_offset) /* First page is swap header. */ | |
645 | start_offset++; | |
e9a6effa HY |
646 | if (end_offset >= si->max) |
647 | end_offset = si->max - 1; | |
67f96aa2 | 648 | |
3fb5c298 | 649 | blk_start_plug(&plug); |
67f96aa2 | 650 | for (offset = start_offset; offset <= end_offset ; offset++) { |
46017e95 | 651 | /* Ok, do the async read-ahead now */ |
c4fa6309 YH |
652 | page = __read_swap_cache_async( |
653 | swp_entry(swp_type(entry), offset), | |
654 | gfp_mask, vma, addr, &page_allocated); | |
46017e95 | 655 | if (!page) |
67f96aa2 | 656 | continue; |
c4fa6309 YH |
657 | if (page_allocated) { |
658 | swap_readpage(page, false); | |
eaf649eb | 659 | if (offset != entry_offset) { |
c4fa6309 YH |
660 | SetPageReadahead(page); |
661 | count_vm_event(SWAP_RA); | |
662 | } | |
cbc65df2 | 663 | } |
09cbfeaf | 664 | put_page(page); |
46017e95 | 665 | } |
3fb5c298 CE |
666 | blk_finish_plug(&plug); |
667 | ||
46017e95 | 668 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
579f8290 | 669 | skip: |
23955622 | 670 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); |
46017e95 | 671 | } |
4b3ef9da YH |
672 | |
673 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | |
674 | { | |
675 | struct address_space *spaces, *space; | |
676 | unsigned int i, nr; | |
677 | ||
678 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | |
778e1cdd | 679 | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); |
4b3ef9da YH |
680 | if (!spaces) |
681 | return -ENOMEM; | |
682 | for (i = 0; i < nr; i++) { | |
683 | space = spaces + i; | |
a2833486 | 684 | xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); |
4b3ef9da YH |
685 | atomic_set(&space->i_mmap_writable, 0); |
686 | space->a_ops = &swap_aops; | |
687 | /* swap cache doesn't use writeback related tags */ | |
688 | mapping_set_no_writeback_tags(space); | |
4b3ef9da YH |
689 | } |
690 | nr_swapper_spaces[type] = nr; | |
054f1d1f | 691 | swapper_spaces[type] = spaces; |
4b3ef9da YH |
692 | |
693 | return 0; | |
694 | } | |
695 | ||
696 | void exit_swap_address_space(unsigned int type) | |
697 | { | |
054f1d1f | 698 | kvfree(swapper_spaces[type]); |
4b3ef9da | 699 | nr_swapper_spaces[type] = 0; |
054f1d1f | 700 | swapper_spaces[type] = NULL; |
4b3ef9da | 701 | } |
ec560175 YH |
702 | |
703 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | |
704 | unsigned long faddr, | |
705 | unsigned long lpfn, | |
706 | unsigned long rpfn, | |
707 | unsigned long *start, | |
708 | unsigned long *end) | |
709 | { | |
710 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | |
711 | PFN_DOWN(faddr & PMD_MASK)); | |
712 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | |
713 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | |
714 | } | |
715 | ||
eaf649eb MK |
716 | static void swap_ra_info(struct vm_fault *vmf, |
717 | struct vma_swap_readahead *ra_info) | |
ec560175 YH |
718 | { |
719 | struct vm_area_struct *vma = vmf->vma; | |
eaf649eb | 720 | unsigned long ra_val; |
ec560175 YH |
721 | swp_entry_t entry; |
722 | unsigned long faddr, pfn, fpfn; | |
723 | unsigned long start, end; | |
eaf649eb | 724 | pte_t *pte, *orig_pte; |
ec560175 YH |
725 | unsigned int max_win, hits, prev_win, win, left; |
726 | #ifndef CONFIG_64BIT | |
727 | pte_t *tpte; | |
728 | #endif | |
729 | ||
61b63972 YH |
730 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), |
731 | SWAP_RA_ORDER_CEILING); | |
732 | if (max_win == 1) { | |
eaf649eb MK |
733 | ra_info->win = 1; |
734 | return; | |
61b63972 YH |
735 | } |
736 | ||
ec560175 | 737 | faddr = vmf->address; |
eaf649eb MK |
738 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); |
739 | entry = pte_to_swp_entry(*pte); | |
740 | if ((unlikely(non_swap_entry(entry)))) { | |
741 | pte_unmap(orig_pte); | |
742 | return; | |
743 | } | |
ec560175 | 744 | |
ec560175 | 745 | fpfn = PFN_DOWN(faddr); |
eaf649eb MK |
746 | ra_val = GET_SWAP_RA_VAL(vma); |
747 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | |
748 | prev_win = SWAP_RA_WIN(ra_val); | |
749 | hits = SWAP_RA_HITS(ra_val); | |
750 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | |
ec560175 YH |
751 | max_win, prev_win); |
752 | atomic_long_set(&vma->swap_readahead_info, | |
753 | SWAP_RA_VAL(faddr, win, 0)); | |
754 | ||
eaf649eb MK |
755 | if (win == 1) { |
756 | pte_unmap(orig_pte); | |
757 | return; | |
758 | } | |
ec560175 YH |
759 | |
760 | /* Copy the PTEs because the page table may be unmapped */ | |
761 | if (fpfn == pfn + 1) | |
762 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | |
763 | else if (pfn == fpfn + 1) | |
764 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | |
765 | &start, &end); | |
766 | else { | |
767 | left = (win - 1) / 2; | |
768 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | |
769 | &start, &end); | |
770 | } | |
eaf649eb MK |
771 | ra_info->nr_pte = end - start; |
772 | ra_info->offset = fpfn - start; | |
773 | pte -= ra_info->offset; | |
ec560175 | 774 | #ifdef CONFIG_64BIT |
eaf649eb | 775 | ra_info->ptes = pte; |
ec560175 | 776 | #else |
eaf649eb | 777 | tpte = ra_info->ptes; |
ec560175 YH |
778 | for (pfn = start; pfn != end; pfn++) |
779 | *tpte++ = *pte++; | |
780 | #endif | |
eaf649eb | 781 | pte_unmap(orig_pte); |
ec560175 YH |
782 | } |
783 | ||
e9f59873 YS |
784 | /** |
785 | * swap_vma_readahead - swap in pages in hope we need them soon | |
27ec4878 | 786 | * @fentry: swap entry of this memory |
e9f59873 YS |
787 | * @gfp_mask: memory allocation flags |
788 | * @vmf: fault information | |
789 | * | |
790 | * Returns the struct page for entry and addr, after queueing swapin. | |
791 | * | |
792 | * Primitive swap readahead code. We simply read in a few pages whoes | |
793 | * virtual addresses are around the fault address in the same vma. | |
794 | * | |
c1e8d7c6 | 795 | * Caller must hold read mmap_lock if vmf->vma is not NULL. |
e9f59873 YS |
796 | * |
797 | */ | |
f5c754d6 CIK |
798 | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, |
799 | struct vm_fault *vmf) | |
ec560175 YH |
800 | { |
801 | struct blk_plug plug; | |
802 | struct vm_area_struct *vma = vmf->vma; | |
803 | struct page *page; | |
804 | pte_t *pte, pentry; | |
805 | swp_entry_t entry; | |
806 | unsigned int i; | |
807 | bool page_allocated; | |
eaf649eb | 808 | struct vma_swap_readahead ra_info = {0,}; |
ec560175 | 809 | |
eaf649eb MK |
810 | swap_ra_info(vmf, &ra_info); |
811 | if (ra_info.win == 1) | |
ec560175 YH |
812 | goto skip; |
813 | ||
814 | blk_start_plug(&plug); | |
eaf649eb | 815 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; |
ec560175 YH |
816 | i++, pte++) { |
817 | pentry = *pte; | |
818 | if (pte_none(pentry)) | |
819 | continue; | |
820 | if (pte_present(pentry)) | |
821 | continue; | |
822 | entry = pte_to_swp_entry(pentry); | |
823 | if (unlikely(non_swap_entry(entry))) | |
824 | continue; | |
825 | page = __read_swap_cache_async(entry, gfp_mask, vma, | |
826 | vmf->address, &page_allocated); | |
827 | if (!page) | |
828 | continue; | |
829 | if (page_allocated) { | |
830 | swap_readpage(page, false); | |
eaf649eb | 831 | if (i != ra_info.offset) { |
ec560175 YH |
832 | SetPageReadahead(page); |
833 | count_vm_event(SWAP_RA); | |
834 | } | |
835 | } | |
836 | put_page(page); | |
837 | } | |
838 | blk_finish_plug(&plug); | |
839 | lru_add_drain(); | |
840 | skip: | |
841 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | |
eaf649eb | 842 | ra_info.win == 1); |
ec560175 | 843 | } |
d9bfcfdc | 844 | |
e9e9b7ec MK |
845 | /** |
846 | * swapin_readahead - swap in pages in hope we need them soon | |
847 | * @entry: swap entry of this memory | |
848 | * @gfp_mask: memory allocation flags | |
849 | * @vmf: fault information | |
850 | * | |
851 | * Returns the struct page for entry and addr, after queueing swapin. | |
852 | * | |
853 | * It's a main entry function for swap readahead. By the configuration, | |
854 | * it will read ahead blocks by cluster-based(ie, physical disk based) | |
855 | * or vma-based(ie, virtual address based on faulty address) readahead. | |
856 | */ | |
857 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | |
858 | struct vm_fault *vmf) | |
859 | { | |
860 | return swap_use_vma_readahead() ? | |
861 | swap_vma_readahead(entry, gfp_mask, vmf) : | |
862 | swap_cluster_readahead(entry, gfp_mask, vmf); | |
863 | } | |
864 | ||
d9bfcfdc YH |
865 | #ifdef CONFIG_SYSFS |
866 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | |
867 | struct kobj_attribute *attr, char *buf) | |
868 | { | |
e9e9b7ec | 869 | return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); |
d9bfcfdc YH |
870 | } |
871 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | |
872 | struct kobj_attribute *attr, | |
873 | const char *buf, size_t count) | |
874 | { | |
875 | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | |
e9e9b7ec | 876 | enable_vma_readahead = true; |
d9bfcfdc | 877 | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) |
e9e9b7ec | 878 | enable_vma_readahead = false; |
d9bfcfdc YH |
879 | else |
880 | return -EINVAL; | |
881 | ||
882 | return count; | |
883 | } | |
884 | static struct kobj_attribute vma_ra_enabled_attr = | |
885 | __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | |
886 | vma_ra_enabled_store); | |
887 | ||
d9bfcfdc YH |
888 | static struct attribute *swap_attrs[] = { |
889 | &vma_ra_enabled_attr.attr, | |
d9bfcfdc YH |
890 | NULL, |
891 | }; | |
892 | ||
893 | static struct attribute_group swap_attr_group = { | |
894 | .attrs = swap_attrs, | |
895 | }; | |
896 | ||
897 | static int __init swap_init_sysfs(void) | |
898 | { | |
899 | int err; | |
900 | struct kobject *swap_kobj; | |
901 | ||
902 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | |
903 | if (!swap_kobj) { | |
904 | pr_err("failed to create swap kobject\n"); | |
905 | return -ENOMEM; | |
906 | } | |
907 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | |
908 | if (err) { | |
909 | pr_err("failed to register swap group\n"); | |
910 | goto delete_obj; | |
911 | } | |
912 | return 0; | |
913 | ||
914 | delete_obj: | |
915 | kobject_put(swap_kobj); | |
916 | return err; | |
917 | } | |
918 | subsys_initcall(swap_init_sysfs); | |
919 | #endif |