]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
68db0cf1 | 10 | #include <linux/sched/task_stack.h> |
eb36c587 | 11 | #include <linux/security.h> |
9800339b | 12 | #include <linux/swap.h> |
33806f06 | 13 | #include <linux/swapops.h> |
00619bcc JM |
14 | #include <linux/mman.h> |
15 | #include <linux/hugetlb.h> | |
39f1f78d | 16 | #include <linux/vmalloc.h> |
897ab3e0 | 17 | #include <linux/userfaultfd_k.h> |
00619bcc | 18 | |
7c0f6ba6 | 19 | #include <linux/uaccess.h> |
30992c97 | 20 | |
6038def0 NK |
21 | #include "internal.h" |
22 | ||
a4bb1e43 AH |
23 | /** |
24 | * kfree_const - conditionally free memory | |
25 | * @x: pointer to the memory | |
26 | * | |
27 | * Function calls kfree only if @x is not in .rodata section. | |
28 | */ | |
29 | void kfree_const(const void *x) | |
30 | { | |
31 | if (!is_kernel_rodata((unsigned long)x)) | |
32 | kfree(x); | |
33 | } | |
34 | EXPORT_SYMBOL(kfree_const); | |
35 | ||
30992c97 | 36 | /** |
30992c97 | 37 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
38 | * @s: the string to duplicate |
39 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
40 | * |
41 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
42 | */ |
43 | char *kstrdup(const char *s, gfp_t gfp) | |
44 | { | |
45 | size_t len; | |
46 | char *buf; | |
47 | ||
48 | if (!s) | |
49 | return NULL; | |
50 | ||
51 | len = strlen(s) + 1; | |
1d2c8eea | 52 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
53 | if (buf) |
54 | memcpy(buf, s, len); | |
55 | return buf; | |
56 | } | |
57 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 58 | |
a4bb1e43 AH |
59 | /** |
60 | * kstrdup_const - conditionally duplicate an existing const string | |
61 | * @s: the string to duplicate | |
62 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
63 | * | |
a862f68a MR |
64 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const. |
65 | * | |
66 | * Return: source string if it is in .rodata section otherwise | |
67 | * fallback to kstrdup. | |
a4bb1e43 AH |
68 | */ |
69 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
70 | { | |
71 | if (is_kernel_rodata((unsigned long)s)) | |
72 | return s; | |
73 | ||
74 | return kstrdup(s, gfp); | |
75 | } | |
76 | EXPORT_SYMBOL(kstrdup_const); | |
77 | ||
1e66df3e JF |
78 | /** |
79 | * kstrndup - allocate space for and copy an existing string | |
80 | * @s: the string to duplicate | |
81 | * @max: read at most @max chars from @s | |
82 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
83 | * |
84 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
85 | * |
86 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
87 | */ |
88 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
89 | { | |
90 | size_t len; | |
91 | char *buf; | |
92 | ||
93 | if (!s) | |
94 | return NULL; | |
95 | ||
96 | len = strnlen(s, max); | |
97 | buf = kmalloc_track_caller(len+1, gfp); | |
98 | if (buf) { | |
99 | memcpy(buf, s, len); | |
100 | buf[len] = '\0'; | |
101 | } | |
102 | return buf; | |
103 | } | |
104 | EXPORT_SYMBOL(kstrndup); | |
105 | ||
1a2f67b4 AD |
106 | /** |
107 | * kmemdup - duplicate region of memory | |
108 | * | |
109 | * @src: memory region to duplicate | |
110 | * @len: memory region length | |
111 | * @gfp: GFP mask to use | |
a862f68a MR |
112 | * |
113 | * Return: newly allocated copy of @src or %NULL in case of error | |
1a2f67b4 AD |
114 | */ |
115 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
116 | { | |
117 | void *p; | |
118 | ||
1d2c8eea | 119 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
120 | if (p) |
121 | memcpy(p, src, len); | |
122 | return p; | |
123 | } | |
124 | EXPORT_SYMBOL(kmemdup); | |
125 | ||
f3515741 DH |
126 | /** |
127 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
128 | * @s: The data to stringify | |
129 | * @len: The size of the data | |
130 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
131 | * |
132 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
133 | * case of error | |
f3515741 DH |
134 | */ |
135 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
136 | { | |
137 | char *buf; | |
138 | ||
139 | if (!s) | |
140 | return NULL; | |
141 | ||
142 | buf = kmalloc_track_caller(len + 1, gfp); | |
143 | if (buf) { | |
144 | memcpy(buf, s, len); | |
145 | buf[len] = '\0'; | |
146 | } | |
147 | return buf; | |
148 | } | |
149 | EXPORT_SYMBOL(kmemdup_nul); | |
150 | ||
610a77e0 LZ |
151 | /** |
152 | * memdup_user - duplicate memory region from user space | |
153 | * | |
154 | * @src: source address in user space | |
155 | * @len: number of bytes to copy | |
156 | * | |
a862f68a | 157 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 158 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
159 | */ |
160 | void *memdup_user(const void __user *src, size_t len) | |
161 | { | |
162 | void *p; | |
163 | ||
6c8fcc09 | 164 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
165 | if (!p) |
166 | return ERR_PTR(-ENOMEM); | |
167 | ||
168 | if (copy_from_user(p, src, len)) { | |
169 | kfree(p); | |
170 | return ERR_PTR(-EFAULT); | |
171 | } | |
172 | ||
173 | return p; | |
174 | } | |
175 | EXPORT_SYMBOL(memdup_user); | |
176 | ||
50fd2f29 AV |
177 | /** |
178 | * vmemdup_user - duplicate memory region from user space | |
179 | * | |
180 | * @src: source address in user space | |
181 | * @len: number of bytes to copy | |
182 | * | |
a862f68a | 183 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
184 | * physically contiguous. Use kvfree() to free. |
185 | */ | |
186 | void *vmemdup_user(const void __user *src, size_t len) | |
187 | { | |
188 | void *p; | |
189 | ||
190 | p = kvmalloc(len, GFP_USER); | |
191 | if (!p) | |
192 | return ERR_PTR(-ENOMEM); | |
193 | ||
194 | if (copy_from_user(p, src, len)) { | |
195 | kvfree(p); | |
196 | return ERR_PTR(-EFAULT); | |
197 | } | |
198 | ||
199 | return p; | |
200 | } | |
201 | EXPORT_SYMBOL(vmemdup_user); | |
202 | ||
b86181f1 | 203 | /** |
96840aa0 | 204 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
205 | * @s: The string to duplicate |
206 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 207 | * |
e9145521 | 208 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
209 | */ |
210 | char *strndup_user(const char __user *s, long n) | |
211 | { | |
212 | char *p; | |
213 | long length; | |
214 | ||
215 | length = strnlen_user(s, n); | |
216 | ||
217 | if (!length) | |
218 | return ERR_PTR(-EFAULT); | |
219 | ||
220 | if (length > n) | |
221 | return ERR_PTR(-EINVAL); | |
222 | ||
90d74045 | 223 | p = memdup_user(s, length); |
96840aa0 | 224 | |
90d74045 JL |
225 | if (IS_ERR(p)) |
226 | return p; | |
96840aa0 DA |
227 | |
228 | p[length - 1] = '\0'; | |
229 | ||
230 | return p; | |
231 | } | |
232 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 233 | |
e9d408e1 AV |
234 | /** |
235 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
236 | * | |
237 | * @src: source address in user space | |
238 | * @len: number of bytes to copy | |
239 | * | |
a862f68a | 240 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
241 | */ |
242 | void *memdup_user_nul(const void __user *src, size_t len) | |
243 | { | |
244 | char *p; | |
245 | ||
246 | /* | |
247 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
248 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
249 | * or GFP_ATOMIC. | |
250 | */ | |
251 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
252 | if (!p) | |
253 | return ERR_PTR(-ENOMEM); | |
254 | ||
255 | if (copy_from_user(p, src, len)) { | |
256 | kfree(p); | |
257 | return ERR_PTR(-EFAULT); | |
258 | } | |
259 | p[len] = '\0'; | |
260 | ||
261 | return p; | |
262 | } | |
263 | EXPORT_SYMBOL(memdup_user_nul); | |
264 | ||
6038def0 NK |
265 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
266 | struct vm_area_struct *prev, struct rb_node *rb_parent) | |
267 | { | |
268 | struct vm_area_struct *next; | |
269 | ||
270 | vma->vm_prev = prev; | |
271 | if (prev) { | |
272 | next = prev->vm_next; | |
273 | prev->vm_next = vma; | |
274 | } else { | |
275 | mm->mmap = vma; | |
276 | if (rb_parent) | |
277 | next = rb_entry(rb_parent, | |
278 | struct vm_area_struct, vm_rb); | |
279 | else | |
280 | next = NULL; | |
281 | } | |
282 | vma->vm_next = next; | |
283 | if (next) | |
284 | next->vm_prev = vma; | |
285 | } | |
286 | ||
b7643757 | 287 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 288 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 289 | { |
d17af505 AL |
290 | struct task_struct * __maybe_unused t = current; |
291 | ||
b7643757 SP |
292 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
293 | } | |
294 | ||
efc1a3b1 | 295 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
8f2af155 | 296 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
297 | { |
298 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
299 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
300 | } |
301 | #endif | |
912985dc | 302 | |
45888a0c XG |
303 | /* |
304 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | |
305 | * back to the regular GUP. | |
d0811078 MT |
306 | * Note a difference with get_user_pages_fast: this always returns the |
307 | * number of pages pinned, 0 if no pages were pinned. | |
308 | * If the architecture does not support this function, simply return with no | |
309 | * pages pinned. | |
45888a0c | 310 | */ |
3b32123d | 311 | int __weak __get_user_pages_fast(unsigned long start, |
45888a0c XG |
312 | int nr_pages, int write, struct page **pages) |
313 | { | |
314 | return 0; | |
315 | } | |
316 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | |
317 | ||
9de100d0 AG |
318 | /** |
319 | * get_user_pages_fast() - pin user pages in memory | |
320 | * @start: starting user address | |
321 | * @nr_pages: number of pages from start to pin | |
73b0140b | 322 | * @gup_flags: flags modifying pin behaviour |
9de100d0 AG |
323 | * @pages: array that receives pointers to the pages pinned. |
324 | * Should be at least nr_pages long. | |
325 | * | |
d2bf6be8 NP |
326 | * get_user_pages_fast provides equivalent functionality to get_user_pages, |
327 | * operating on current and current->mm, with force=0 and vma=NULL. However | |
328 | * unlike get_user_pages, it must be called without mmap_sem held. | |
329 | * | |
330 | * get_user_pages_fast may take mmap_sem and page table locks, so no | |
331 | * assumptions can be made about lack of locking. get_user_pages_fast is to be | |
332 | * implemented in a way that is advantageous (vs get_user_pages()) when the | |
333 | * user memory area is already faulted in and present in ptes. However if the | |
334 | * pages have to be faulted in, it may turn out to be slightly slower so | |
335 | * callers need to carefully consider what to use. On many architectures, | |
336 | * get_user_pages_fast simply falls back to get_user_pages. | |
a862f68a MR |
337 | * |
338 | * Return: number of pages pinned. This may be fewer than the number | |
339 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
340 | * were pinned, returns -errno. | |
9de100d0 | 341 | */ |
3b32123d | 342 | int __weak get_user_pages_fast(unsigned long start, |
73b0140b IW |
343 | int nr_pages, unsigned int gup_flags, |
344 | struct page **pages) | |
912985dc | 345 | { |
73b0140b | 346 | return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); |
912985dc RR |
347 | } |
348 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | |
ca2b84cb | 349 | |
eb36c587 AV |
350 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
351 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 352 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
353 | { |
354 | unsigned long ret; | |
355 | struct mm_struct *mm = current->mm; | |
41badc15 | 356 | unsigned long populate; |
897ab3e0 | 357 | LIST_HEAD(uf); |
eb36c587 AV |
358 | |
359 | ret = security_mmap_file(file, prot, flag); | |
360 | if (!ret) { | |
9fbeb5ab MH |
361 | if (down_write_killable(&mm->mmap_sem)) |
362 | return -EINTR; | |
bebeb3d6 | 363 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, |
897ab3e0 | 364 | &populate, &uf); |
eb36c587 | 365 | up_write(&mm->mmap_sem); |
897ab3e0 | 366 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
367 | if (populate) |
368 | mm_populate(ret, populate); | |
eb36c587 AV |
369 | } |
370 | return ret; | |
371 | } | |
372 | ||
373 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
374 | unsigned long len, unsigned long prot, | |
375 | unsigned long flag, unsigned long offset) | |
376 | { | |
377 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
378 | return -EINVAL; | |
ea53cde0 | 379 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
380 | return -EINVAL; |
381 | ||
9fbeb5ab | 382 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
383 | } |
384 | EXPORT_SYMBOL(vm_mmap); | |
385 | ||
a7c3e901 MH |
386 | /** |
387 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
388 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
389 | * @size: size of the request. | |
390 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
391 | * @node: numa node to allocate from | |
392 | * | |
393 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
394 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
395 | * | |
cc965a29 MH |
396 | * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. |
397 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is | |
398 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 399 | * |
ce91f6ee MH |
400 | * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not |
401 | * fall back to vmalloc. | |
a862f68a MR |
402 | * |
403 | * Return: pointer to the allocated memory of %NULL in case of failure | |
a7c3e901 MH |
404 | */ |
405 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
406 | { | |
407 | gfp_t kmalloc_flags = flags; | |
408 | void *ret; | |
409 | ||
410 | /* | |
411 | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | |
412 | * so the given set of flags has to be compatible. | |
413 | */ | |
ce91f6ee MH |
414 | if ((flags & GFP_KERNEL) != GFP_KERNEL) |
415 | return kmalloc_node(size, flags, node); | |
a7c3e901 MH |
416 | |
417 | /* | |
4f4f2ba9 MH |
418 | * We want to attempt a large physically contiguous block first because |
419 | * it is less likely to fragment multiple larger blocks and therefore | |
420 | * contribute to a long term fragmentation less than vmalloc fallback. | |
421 | * However make sure that larger requests are not too disruptive - no | |
422 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 423 | */ |
6c5ab651 MH |
424 | if (size > PAGE_SIZE) { |
425 | kmalloc_flags |= __GFP_NOWARN; | |
426 | ||
cc965a29 | 427 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 MH |
428 | kmalloc_flags |= __GFP_NORETRY; |
429 | } | |
a7c3e901 MH |
430 | |
431 | ret = kmalloc_node(size, kmalloc_flags, node); | |
432 | ||
433 | /* | |
434 | * It doesn't really make sense to fallback to vmalloc for sub page | |
435 | * requests | |
436 | */ | |
437 | if (ret || size <= PAGE_SIZE) | |
438 | return ret; | |
439 | ||
8594a21c MH |
440 | return __vmalloc_node_flags_caller(size, node, flags, |
441 | __builtin_return_address(0)); | |
a7c3e901 MH |
442 | } |
443 | EXPORT_SYMBOL(kvmalloc_node); | |
444 | ||
ff4dc772 | 445 | /** |
04b8e946 AM |
446 | * kvfree() - Free memory. |
447 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 448 | * |
04b8e946 AM |
449 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
450 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
451 | * that you know which one to use. | |
452 | * | |
52414d33 | 453 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 454 | */ |
39f1f78d AV |
455 | void kvfree(const void *addr) |
456 | { | |
457 | if (is_vmalloc_addr(addr)) | |
458 | vfree(addr); | |
459 | else | |
460 | kfree(addr); | |
461 | } | |
462 | EXPORT_SYMBOL(kvfree); | |
463 | ||
e39155ea KS |
464 | static inline void *__page_rmapping(struct page *page) |
465 | { | |
466 | unsigned long mapping; | |
467 | ||
468 | mapping = (unsigned long)page->mapping; | |
469 | mapping &= ~PAGE_MAPPING_FLAGS; | |
470 | ||
471 | return (void *)mapping; | |
472 | } | |
473 | ||
474 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | |
475 | void *page_rmapping(struct page *page) | |
476 | { | |
477 | page = compound_head(page); | |
478 | return __page_rmapping(page); | |
479 | } | |
480 | ||
1aa8aea5 AM |
481 | /* |
482 | * Return true if this page is mapped into pagetables. | |
483 | * For compound page it returns true if any subpage of compound page is mapped. | |
484 | */ | |
485 | bool page_mapped(struct page *page) | |
486 | { | |
487 | int i; | |
488 | ||
489 | if (likely(!PageCompound(page))) | |
490 | return atomic_read(&page->_mapcount) >= 0; | |
491 | page = compound_head(page); | |
492 | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | |
493 | return true; | |
494 | if (PageHuge(page)) | |
495 | return false; | |
8ab88c71 | 496 | for (i = 0; i < (1 << compound_order(page)); i++) { |
1aa8aea5 AM |
497 | if (atomic_read(&page[i]._mapcount) >= 0) |
498 | return true; | |
499 | } | |
500 | return false; | |
501 | } | |
502 | EXPORT_SYMBOL(page_mapped); | |
503 | ||
e39155ea KS |
504 | struct anon_vma *page_anon_vma(struct page *page) |
505 | { | |
506 | unsigned long mapping; | |
507 | ||
508 | page = compound_head(page); | |
509 | mapping = (unsigned long)page->mapping; | |
510 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
511 | return NULL; | |
512 | return __page_rmapping(page); | |
513 | } | |
514 | ||
9800339b SL |
515 | struct address_space *page_mapping(struct page *page) |
516 | { | |
1c290f64 KS |
517 | struct address_space *mapping; |
518 | ||
519 | page = compound_head(page); | |
9800339b | 520 | |
03e5ac2f MP |
521 | /* This happens if someone calls flush_dcache_page on slab page */ |
522 | if (unlikely(PageSlab(page))) | |
523 | return NULL; | |
524 | ||
33806f06 SL |
525 | if (unlikely(PageSwapCache(page))) { |
526 | swp_entry_t entry; | |
527 | ||
528 | entry.val = page_private(page); | |
e39155ea KS |
529 | return swap_address_space(entry); |
530 | } | |
531 | ||
1c290f64 | 532 | mapping = page->mapping; |
bda807d4 | 533 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 534 | return NULL; |
bda807d4 MK |
535 | |
536 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 537 | } |
bda807d4 | 538 | EXPORT_SYMBOL(page_mapping); |
9800339b | 539 | |
cb9f753a YH |
540 | /* |
541 | * For file cache pages, return the address_space, otherwise return NULL | |
542 | */ | |
543 | struct address_space *page_mapping_file(struct page *page) | |
544 | { | |
545 | if (unlikely(PageSwapCache(page))) | |
546 | return NULL; | |
547 | return page_mapping(page); | |
548 | } | |
549 | ||
b20ce5e0 KS |
550 | /* Slow path of page_mapcount() for compound pages */ |
551 | int __page_mapcount(struct page *page) | |
552 | { | |
553 | int ret; | |
554 | ||
555 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
556 | /* |
557 | * For file THP page->_mapcount contains total number of mapping | |
558 | * of the page: no need to look into compound_mapcount. | |
559 | */ | |
560 | if (!PageAnon(page) && !PageHuge(page)) | |
561 | return ret; | |
b20ce5e0 KS |
562 | page = compound_head(page); |
563 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
564 | if (PageDoubleMap(page)) | |
565 | ret--; | |
566 | return ret; | |
567 | } | |
568 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
569 | ||
39a1aa8e AR |
570 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
571 | int sysctl_overcommit_ratio __read_mostly = 50; | |
572 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
573 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
574 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
575 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
576 | ||
49f0ce5f JM |
577 | int overcommit_ratio_handler(struct ctl_table *table, int write, |
578 | void __user *buffer, size_t *lenp, | |
579 | loff_t *ppos) | |
580 | { | |
581 | int ret; | |
582 | ||
583 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
584 | if (ret == 0 && write) | |
585 | sysctl_overcommit_kbytes = 0; | |
586 | return ret; | |
587 | } | |
588 | ||
589 | int overcommit_kbytes_handler(struct ctl_table *table, int write, | |
590 | void __user *buffer, size_t *lenp, | |
591 | loff_t *ppos) | |
592 | { | |
593 | int ret; | |
594 | ||
595 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
596 | if (ret == 0 && write) | |
597 | sysctl_overcommit_ratio = 0; | |
598 | return ret; | |
599 | } | |
600 | ||
00619bcc JM |
601 | /* |
602 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
603 | */ | |
604 | unsigned long vm_commit_limit(void) | |
605 | { | |
49f0ce5f JM |
606 | unsigned long allowed; |
607 | ||
608 | if (sysctl_overcommit_kbytes) | |
609 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
610 | else | |
ca79b0c2 | 611 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
612 | * sysctl_overcommit_ratio / 100); |
613 | allowed += total_swap_pages; | |
614 | ||
615 | return allowed; | |
00619bcc JM |
616 | } |
617 | ||
39a1aa8e AR |
618 | /* |
619 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
620 | * other variables. It can be updated by several CPUs frequently. | |
621 | */ | |
622 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
623 | ||
624 | /* | |
625 | * The global memory commitment made in the system can be a metric | |
626 | * that can be used to drive ballooning decisions when Linux is hosted | |
627 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
628 | * balancing memory across competing virtual machines that are hosted. | |
629 | * Several metrics drive this policy engine including the guest reported | |
630 | * memory commitment. | |
631 | */ | |
632 | unsigned long vm_memory_committed(void) | |
633 | { | |
634 | return percpu_counter_read_positive(&vm_committed_as); | |
635 | } | |
636 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
637 | ||
638 | /* | |
639 | * Check that a process has enough memory to allocate a new virtual | |
640 | * mapping. 0 means there is enough memory for the allocation to | |
641 | * succeed and -ENOMEM implies there is not. | |
642 | * | |
643 | * We currently support three overcommit policies, which are set via the | |
ad56b738 | 644 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst |
39a1aa8e AR |
645 | * |
646 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
647 | * Additional code 2002 Jul 20 by Robert Love. | |
648 | * | |
649 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
650 | * | |
651 | * Note this is a helper function intended to be used by LSMs which | |
652 | * wish to use this logic. | |
653 | */ | |
654 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
655 | { | |
8c7829b0 | 656 | long allowed; |
39a1aa8e AR |
657 | |
658 | VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < | |
659 | -(s64)vm_committed_as_batch * num_online_cpus(), | |
660 | "memory commitment underflow"); | |
661 | ||
662 | vm_acct_memory(pages); | |
663 | ||
664 | /* | |
665 | * Sometimes we want to use more memory than we have | |
666 | */ | |
667 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
668 | return 0; | |
669 | ||
670 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 671 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 672 | goto error; |
8c7829b0 | 673 | return 0; |
39a1aa8e AR |
674 | } |
675 | ||
676 | allowed = vm_commit_limit(); | |
677 | /* | |
678 | * Reserve some for root | |
679 | */ | |
680 | if (!cap_sys_admin) | |
681 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
682 | ||
683 | /* | |
684 | * Don't let a single process grow so big a user can't recover | |
685 | */ | |
686 | if (mm) { | |
8c7829b0 JW |
687 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
688 | ||
39a1aa8e AR |
689 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
690 | } | |
691 | ||
692 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
693 | return 0; | |
694 | error: | |
695 | vm_unacct_memory(pages); | |
696 | ||
697 | return -ENOMEM; | |
698 | } | |
699 | ||
a9090253 WR |
700 | /** |
701 | * get_cmdline() - copy the cmdline value to a buffer. | |
702 | * @task: the task whose cmdline value to copy. | |
703 | * @buffer: the buffer to copy to. | |
704 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
705 | * to this length. | |
a862f68a MR |
706 | * |
707 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
708 | * not guarantee an ending NULL byte. |
709 | */ | |
710 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
711 | { | |
712 | int res = 0; | |
713 | unsigned int len; | |
714 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 715 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
716 | if (!mm) |
717 | goto out; | |
718 | if (!mm->arg_end) | |
719 | goto out_mm; /* Shh! No looking before we're done */ | |
720 | ||
bc81426f | 721 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
722 | arg_start = mm->arg_start; |
723 | arg_end = mm->arg_end; | |
724 | env_start = mm->env_start; | |
725 | env_end = mm->env_end; | |
bc81426f | 726 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
727 | |
728 | len = arg_end - arg_start; | |
a9090253 WR |
729 | |
730 | if (len > buflen) | |
731 | len = buflen; | |
732 | ||
f307ab6d | 733 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
734 | |
735 | /* | |
736 | * If the nul at the end of args has been overwritten, then | |
737 | * assume application is using setproctitle(3). | |
738 | */ | |
739 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
740 | len = strnlen(buffer, res); | |
741 | if (len < res) { | |
742 | res = len; | |
743 | } else { | |
a3b609ef | 744 | len = env_end - env_start; |
a9090253 WR |
745 | if (len > buflen - res) |
746 | len = buflen - res; | |
a3b609ef | 747 | res += access_process_vm(task, env_start, |
f307ab6d LS |
748 | buffer+res, len, |
749 | FOLL_FORCE); | |
a9090253 WR |
750 | res = strnlen(buffer, res); |
751 | } | |
752 | } | |
753 | out_mm: | |
754 | mmput(mm); | |
755 | out: | |
756 | return res; | |
757 | } |