]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
3 | * (C) William Irwin, April 2004 | |
4 | */ | |
5 | #include <linux/gfp.h> | |
6 | #include <linux/list.h> | |
7 | #include <linux/init.h> | |
8 | #include <linux/module.h> | |
9 | #include <linux/mm.h> | |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
12 | #include <linux/nodemask.h> | |
63551ae0 | 13 | #include <linux/pagemap.h> |
5da7ca86 | 14 | #include <linux/mempolicy.h> |
aea47ff3 | 15 | #include <linux/cpuset.h> |
3935baa9 | 16 | #include <linux/mutex.h> |
5da7ca86 | 17 | |
63551ae0 DG |
18 | #include <asm/page.h> |
19 | #include <asm/pgtable.h> | |
20 | ||
21 | #include <linux/hugetlb.h> | |
7835e98b | 22 | #include "internal.h" |
1da177e4 LT |
23 | |
24 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
a43a8c39 | 25 | static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; |
7893d1d5 | 26 | static unsigned long surplus_huge_pages; |
1da177e4 LT |
27 | unsigned long max_huge_pages; |
28 | static struct list_head hugepage_freelists[MAX_NUMNODES]; | |
29 | static unsigned int nr_huge_pages_node[MAX_NUMNODES]; | |
30 | static unsigned int free_huge_pages_node[MAX_NUMNODES]; | |
7893d1d5 | 31 | static unsigned int surplus_huge_pages_node[MAX_NUMNODES]; |
396faf03 MG |
32 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
33 | unsigned long hugepages_treat_as_movable; | |
d1c3fb1f | 34 | unsigned long nr_overcommit_huge_pages; |
63b4613c | 35 | static int hugetlb_next_nid; |
396faf03 | 36 | |
3935baa9 DG |
37 | /* |
38 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
39 | */ | |
40 | static DEFINE_SPINLOCK(hugetlb_lock); | |
0bd0f9fb | 41 | |
79ac6ba4 DG |
42 | static void clear_huge_page(struct page *page, unsigned long addr) |
43 | { | |
44 | int i; | |
45 | ||
46 | might_sleep(); | |
47 | for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { | |
48 | cond_resched(); | |
281e0e3b | 49 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
79ac6ba4 DG |
50 | } |
51 | } | |
52 | ||
53 | static void copy_huge_page(struct page *dst, struct page *src, | |
9de455b2 | 54 | unsigned long addr, struct vm_area_struct *vma) |
79ac6ba4 DG |
55 | { |
56 | int i; | |
57 | ||
58 | might_sleep(); | |
59 | for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { | |
60 | cond_resched(); | |
9de455b2 | 61 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
79ac6ba4 DG |
62 | } |
63 | } | |
64 | ||
1da177e4 LT |
65 | static void enqueue_huge_page(struct page *page) |
66 | { | |
67 | int nid = page_to_nid(page); | |
68 | list_add(&page->lru, &hugepage_freelists[nid]); | |
69 | free_huge_pages++; | |
70 | free_huge_pages_node[nid]++; | |
71 | } | |
72 | ||
5da7ca86 CL |
73 | static struct page *dequeue_huge_page(struct vm_area_struct *vma, |
74 | unsigned long address) | |
1da177e4 | 75 | { |
31a5c6e4 | 76 | int nid; |
1da177e4 | 77 | struct page *page = NULL; |
480eccf9 | 78 | struct mempolicy *mpol; |
396faf03 | 79 | struct zonelist *zonelist = huge_zonelist(vma, address, |
480eccf9 | 80 | htlb_alloc_mask, &mpol); |
96df9333 | 81 | struct zone **z; |
1da177e4 | 82 | |
96df9333 | 83 | for (z = zonelist->zones; *z; z++) { |
89fa3024 | 84 | nid = zone_to_nid(*z); |
396faf03 | 85 | if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) && |
3abf7afd AM |
86 | !list_empty(&hugepage_freelists[nid])) { |
87 | page = list_entry(hugepage_freelists[nid].next, | |
88 | struct page, lru); | |
89 | list_del(&page->lru); | |
90 | free_huge_pages--; | |
91 | free_huge_pages_node[nid]--; | |
e4e574b7 AL |
92 | if (vma && vma->vm_flags & VM_MAYSHARE) |
93 | resv_huge_pages--; | |
5ab3ee7b | 94 | break; |
3abf7afd | 95 | } |
1da177e4 | 96 | } |
480eccf9 | 97 | mpol_free(mpol); /* unref if mpol !NULL */ |
1da177e4 LT |
98 | return page; |
99 | } | |
100 | ||
6af2acb6 AL |
101 | static void update_and_free_page(struct page *page) |
102 | { | |
103 | int i; | |
104 | nr_huge_pages--; | |
105 | nr_huge_pages_node[page_to_nid(page)]--; | |
106 | for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { | |
107 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | | |
108 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | |
109 | 1 << PG_private | 1<< PG_writeback); | |
110 | } | |
111 | set_compound_page_dtor(page, NULL); | |
112 | set_page_refcounted(page); | |
113 | __free_pages(page, HUGETLB_PAGE_ORDER); | |
114 | } | |
115 | ||
27a85ef1 DG |
116 | static void free_huge_page(struct page *page) |
117 | { | |
7893d1d5 | 118 | int nid = page_to_nid(page); |
c79fb75e | 119 | struct address_space *mapping; |
27a85ef1 | 120 | |
c79fb75e | 121 | mapping = (struct address_space *) page_private(page); |
7893d1d5 | 122 | BUG_ON(page_count(page)); |
27a85ef1 DG |
123 | INIT_LIST_HEAD(&page->lru); |
124 | ||
125 | spin_lock(&hugetlb_lock); | |
7893d1d5 AL |
126 | if (surplus_huge_pages_node[nid]) { |
127 | update_and_free_page(page); | |
128 | surplus_huge_pages--; | |
129 | surplus_huge_pages_node[nid]--; | |
130 | } else { | |
131 | enqueue_huge_page(page); | |
132 | } | |
27a85ef1 | 133 | spin_unlock(&hugetlb_lock); |
c79fb75e | 134 | if (mapping) |
9a119c05 | 135 | hugetlb_put_quota(mapping, 1); |
c79fb75e | 136 | set_page_private(page, 0); |
27a85ef1 DG |
137 | } |
138 | ||
7893d1d5 AL |
139 | /* |
140 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
141 | * balanced by operating on them in a round-robin fashion. | |
142 | * Returns 1 if an adjustment was made. | |
143 | */ | |
144 | static int adjust_pool_surplus(int delta) | |
145 | { | |
146 | static int prev_nid; | |
147 | int nid = prev_nid; | |
148 | int ret = 0; | |
149 | ||
150 | VM_BUG_ON(delta != -1 && delta != 1); | |
151 | do { | |
152 | nid = next_node(nid, node_online_map); | |
153 | if (nid == MAX_NUMNODES) | |
154 | nid = first_node(node_online_map); | |
155 | ||
156 | /* To shrink on this node, there must be a surplus page */ | |
157 | if (delta < 0 && !surplus_huge_pages_node[nid]) | |
158 | continue; | |
159 | /* Surplus cannot exceed the total number of pages */ | |
160 | if (delta > 0 && surplus_huge_pages_node[nid] >= | |
161 | nr_huge_pages_node[nid]) | |
162 | continue; | |
163 | ||
164 | surplus_huge_pages += delta; | |
165 | surplus_huge_pages_node[nid] += delta; | |
166 | ret = 1; | |
167 | break; | |
168 | } while (nid != prev_nid); | |
169 | ||
170 | prev_nid = nid; | |
171 | return ret; | |
172 | } | |
173 | ||
63b4613c | 174 | static struct page *alloc_fresh_huge_page_node(int nid) |
1da177e4 | 175 | { |
1da177e4 | 176 | struct page *page; |
f96efd58 | 177 | |
63b4613c NA |
178 | page = alloc_pages_node(nid, |
179 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN, | |
180 | HUGETLB_PAGE_ORDER); | |
1da177e4 | 181 | if (page) { |
33f2ef89 | 182 | set_compound_page_dtor(page, free_huge_page); |
0bd0f9fb | 183 | spin_lock(&hugetlb_lock); |
1da177e4 | 184 | nr_huge_pages++; |
63b4613c | 185 | nr_huge_pages_node[nid]++; |
0bd0f9fb | 186 | spin_unlock(&hugetlb_lock); |
a482289d | 187 | put_page(page); /* free it into the hugepage allocator */ |
1da177e4 | 188 | } |
63b4613c NA |
189 | |
190 | return page; | |
191 | } | |
192 | ||
193 | static int alloc_fresh_huge_page(void) | |
194 | { | |
195 | struct page *page; | |
196 | int start_nid; | |
197 | int next_nid; | |
198 | int ret = 0; | |
199 | ||
200 | start_nid = hugetlb_next_nid; | |
201 | ||
202 | do { | |
203 | page = alloc_fresh_huge_page_node(hugetlb_next_nid); | |
204 | if (page) | |
205 | ret = 1; | |
206 | /* | |
207 | * Use a helper variable to find the next node and then | |
208 | * copy it back to hugetlb_next_nid afterwards: | |
209 | * otherwise there's a window in which a racer might | |
210 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | |
211 | * But we don't need to use a spin_lock here: it really | |
212 | * doesn't matter if occasionally a racer chooses the | |
213 | * same nid as we do. Move nid forward in the mask even | |
214 | * if we just successfully allocated a hugepage so that | |
215 | * the next caller gets hugepages on the next node. | |
216 | */ | |
217 | next_nid = next_node(hugetlb_next_nid, node_online_map); | |
218 | if (next_nid == MAX_NUMNODES) | |
219 | next_nid = first_node(node_online_map); | |
220 | hugetlb_next_nid = next_nid; | |
221 | } while (!page && hugetlb_next_nid != start_nid); | |
222 | ||
223 | return ret; | |
1da177e4 LT |
224 | } |
225 | ||
7893d1d5 AL |
226 | static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, |
227 | unsigned long address) | |
228 | { | |
229 | struct page *page; | |
d1c3fb1f | 230 | unsigned int nid; |
7893d1d5 | 231 | |
d1c3fb1f NA |
232 | /* |
233 | * Assume we will successfully allocate the surplus page to | |
234 | * prevent racing processes from causing the surplus to exceed | |
235 | * overcommit | |
236 | * | |
237 | * This however introduces a different race, where a process B | |
238 | * tries to grow the static hugepage pool while alloc_pages() is | |
239 | * called by process A. B will only examine the per-node | |
240 | * counters in determining if surplus huge pages can be | |
241 | * converted to normal huge pages in adjust_pool_surplus(). A | |
242 | * won't be able to increment the per-node counter, until the | |
243 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
244 | * no more huge pages can be converted from surplus to normal | |
245 | * state (and doesn't try to convert again). Thus, we have a | |
246 | * case where a surplus huge page exists, the pool is grown, and | |
247 | * the surplus huge page still exists after, even though it | |
248 | * should just have been converted to a normal huge page. This | |
249 | * does not leak memory, though, as the hugepage will be freed | |
250 | * once it is out of use. It also does not allow the counters to | |
251 | * go out of whack in adjust_pool_surplus() as we don't modify | |
252 | * the node values until we've gotten the hugepage and only the | |
253 | * per-node value is checked there. | |
254 | */ | |
255 | spin_lock(&hugetlb_lock); | |
256 | if (surplus_huge_pages >= nr_overcommit_huge_pages) { | |
257 | spin_unlock(&hugetlb_lock); | |
258 | return NULL; | |
259 | } else { | |
260 | nr_huge_pages++; | |
261 | surplus_huge_pages++; | |
262 | } | |
263 | spin_unlock(&hugetlb_lock); | |
264 | ||
7893d1d5 AL |
265 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN, |
266 | HUGETLB_PAGE_ORDER); | |
d1c3fb1f NA |
267 | |
268 | spin_lock(&hugetlb_lock); | |
7893d1d5 | 269 | if (page) { |
d1c3fb1f | 270 | nid = page_to_nid(page); |
7893d1d5 | 271 | set_compound_page_dtor(page, free_huge_page); |
d1c3fb1f NA |
272 | /* |
273 | * We incremented the global counters already | |
274 | */ | |
275 | nr_huge_pages_node[nid]++; | |
276 | surplus_huge_pages_node[nid]++; | |
277 | } else { | |
278 | nr_huge_pages--; | |
279 | surplus_huge_pages--; | |
7893d1d5 | 280 | } |
d1c3fb1f | 281 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
282 | |
283 | return page; | |
284 | } | |
285 | ||
e4e574b7 AL |
286 | /* |
287 | * Increase the hugetlb pool such that it can accomodate a reservation | |
288 | * of size 'delta'. | |
289 | */ | |
290 | static int gather_surplus_pages(int delta) | |
291 | { | |
292 | struct list_head surplus_list; | |
293 | struct page *page, *tmp; | |
294 | int ret, i; | |
295 | int needed, allocated; | |
296 | ||
297 | needed = (resv_huge_pages + delta) - free_huge_pages; | |
298 | if (needed <= 0) | |
299 | return 0; | |
300 | ||
301 | allocated = 0; | |
302 | INIT_LIST_HEAD(&surplus_list); | |
303 | ||
304 | ret = -ENOMEM; | |
305 | retry: | |
306 | spin_unlock(&hugetlb_lock); | |
307 | for (i = 0; i < needed; i++) { | |
308 | page = alloc_buddy_huge_page(NULL, 0); | |
309 | if (!page) { | |
310 | /* | |
311 | * We were not able to allocate enough pages to | |
312 | * satisfy the entire reservation so we free what | |
313 | * we've allocated so far. | |
314 | */ | |
315 | spin_lock(&hugetlb_lock); | |
316 | needed = 0; | |
317 | goto free; | |
318 | } | |
319 | ||
320 | list_add(&page->lru, &surplus_list); | |
321 | } | |
322 | allocated += needed; | |
323 | ||
324 | /* | |
325 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
326 | * because either resv_huge_pages or free_huge_pages may have changed. | |
327 | */ | |
328 | spin_lock(&hugetlb_lock); | |
329 | needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); | |
330 | if (needed > 0) | |
331 | goto retry; | |
332 | ||
333 | /* | |
334 | * The surplus_list now contains _at_least_ the number of extra pages | |
335 | * needed to accomodate the reservation. Add the appropriate number | |
336 | * of pages to the hugetlb pool and free the extras back to the buddy | |
337 | * allocator. | |
338 | */ | |
339 | needed += allocated; | |
340 | ret = 0; | |
341 | free: | |
342 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | |
343 | list_del(&page->lru); | |
344 | if ((--needed) >= 0) | |
345 | enqueue_huge_page(page); | |
af767cbd AL |
346 | else { |
347 | /* | |
348 | * Decrement the refcount and free the page using its | |
349 | * destructor. This must be done with hugetlb_lock | |
350 | * unlocked which is safe because free_huge_page takes | |
351 | * hugetlb_lock before deciding how to free the page. | |
352 | */ | |
353 | spin_unlock(&hugetlb_lock); | |
354 | put_page(page); | |
355 | spin_lock(&hugetlb_lock); | |
356 | } | |
e4e574b7 AL |
357 | } |
358 | ||
359 | return ret; | |
360 | } | |
361 | ||
362 | /* | |
363 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
364 | * allocated to satisfy the reservation must be explicitly freed if they were | |
365 | * never used. | |
366 | */ | |
8cde045c | 367 | static void return_unused_surplus_pages(unsigned long unused_resv_pages) |
e4e574b7 AL |
368 | { |
369 | static int nid = -1; | |
370 | struct page *page; | |
371 | unsigned long nr_pages; | |
372 | ||
373 | nr_pages = min(unused_resv_pages, surplus_huge_pages); | |
374 | ||
375 | while (nr_pages) { | |
376 | nid = next_node(nid, node_online_map); | |
377 | if (nid == MAX_NUMNODES) | |
378 | nid = first_node(node_online_map); | |
379 | ||
380 | if (!surplus_huge_pages_node[nid]) | |
381 | continue; | |
382 | ||
383 | if (!list_empty(&hugepage_freelists[nid])) { | |
384 | page = list_entry(hugepage_freelists[nid].next, | |
385 | struct page, lru); | |
386 | list_del(&page->lru); | |
387 | update_and_free_page(page); | |
388 | free_huge_pages--; | |
389 | free_huge_pages_node[nid]--; | |
390 | surplus_huge_pages--; | |
391 | surplus_huge_pages_node[nid]--; | |
392 | nr_pages--; | |
393 | } | |
394 | } | |
395 | } | |
396 | ||
348ea204 AL |
397 | |
398 | static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, | |
399 | unsigned long addr) | |
1da177e4 | 400 | { |
348ea204 | 401 | struct page *page; |
1da177e4 LT |
402 | |
403 | spin_lock(&hugetlb_lock); | |
b45b5bd6 | 404 | page = dequeue_huge_page(vma, addr); |
1da177e4 | 405 | spin_unlock(&hugetlb_lock); |
90d8b7e6 | 406 | return page ? page : ERR_PTR(-VM_FAULT_OOM); |
348ea204 | 407 | } |
b45b5bd6 | 408 | |
348ea204 AL |
409 | static struct page *alloc_huge_page_private(struct vm_area_struct *vma, |
410 | unsigned long addr) | |
411 | { | |
412 | struct page *page = NULL; | |
7893d1d5 | 413 | |
90d8b7e6 AL |
414 | if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) |
415 | return ERR_PTR(-VM_FAULT_SIGBUS); | |
416 | ||
348ea204 AL |
417 | spin_lock(&hugetlb_lock); |
418 | if (free_huge_pages > resv_huge_pages) | |
419 | page = dequeue_huge_page(vma, addr); | |
420 | spin_unlock(&hugetlb_lock); | |
68842c9b | 421 | if (!page) { |
7893d1d5 | 422 | page = alloc_buddy_huge_page(vma, addr); |
68842c9b KC |
423 | if (!page) { |
424 | hugetlb_put_quota(vma->vm_file->f_mapping, 1); | |
425 | return ERR_PTR(-VM_FAULT_OOM); | |
426 | } | |
427 | } | |
428 | return page; | |
348ea204 AL |
429 | } |
430 | ||
431 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | |
432 | unsigned long addr) | |
433 | { | |
434 | struct page *page; | |
2fc39cec AL |
435 | struct address_space *mapping = vma->vm_file->f_mapping; |
436 | ||
348ea204 AL |
437 | if (vma->vm_flags & VM_MAYSHARE) |
438 | page = alloc_huge_page_shared(vma, addr); | |
439 | else | |
440 | page = alloc_huge_page_private(vma, addr); | |
90d8b7e6 AL |
441 | |
442 | if (!IS_ERR(page)) { | |
348ea204 | 443 | set_page_refcounted(page); |
2fc39cec | 444 | set_page_private(page, (unsigned long) mapping); |
90d8b7e6 AL |
445 | } |
446 | return page; | |
b45b5bd6 DG |
447 | } |
448 | ||
1da177e4 LT |
449 | static int __init hugetlb_init(void) |
450 | { | |
451 | unsigned long i; | |
1da177e4 | 452 | |
3c726f8d BH |
453 | if (HPAGE_SHIFT == 0) |
454 | return 0; | |
455 | ||
1da177e4 LT |
456 | for (i = 0; i < MAX_NUMNODES; ++i) |
457 | INIT_LIST_HEAD(&hugepage_freelists[i]); | |
458 | ||
63b4613c NA |
459 | hugetlb_next_nid = first_node(node_online_map); |
460 | ||
1da177e4 | 461 | for (i = 0; i < max_huge_pages; ++i) { |
a482289d | 462 | if (!alloc_fresh_huge_page()) |
1da177e4 | 463 | break; |
1da177e4 LT |
464 | } |
465 | max_huge_pages = free_huge_pages = nr_huge_pages = i; | |
466 | printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); | |
467 | return 0; | |
468 | } | |
469 | module_init(hugetlb_init); | |
470 | ||
471 | static int __init hugetlb_setup(char *s) | |
472 | { | |
473 | if (sscanf(s, "%lu", &max_huge_pages) <= 0) | |
474 | max_huge_pages = 0; | |
475 | return 1; | |
476 | } | |
477 | __setup("hugepages=", hugetlb_setup); | |
478 | ||
8a630112 KC |
479 | static unsigned int cpuset_mems_nr(unsigned int *array) |
480 | { | |
481 | int node; | |
482 | unsigned int nr = 0; | |
483 | ||
484 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
485 | nr += array[node]; | |
486 | ||
487 | return nr; | |
488 | } | |
489 | ||
1da177e4 | 490 | #ifdef CONFIG_SYSCTL |
1da177e4 LT |
491 | #ifdef CONFIG_HIGHMEM |
492 | static void try_to_free_low(unsigned long count) | |
493 | { | |
4415cc8d CL |
494 | int i; |
495 | ||
1da177e4 LT |
496 | for (i = 0; i < MAX_NUMNODES; ++i) { |
497 | struct page *page, *next; | |
498 | list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { | |
6b0c880d AL |
499 | if (count >= nr_huge_pages) |
500 | return; | |
1da177e4 LT |
501 | if (PageHighMem(page)) |
502 | continue; | |
503 | list_del(&page->lru); | |
504 | update_and_free_page(page); | |
1da177e4 | 505 | free_huge_pages--; |
4415cc8d | 506 | free_huge_pages_node[page_to_nid(page)]--; |
1da177e4 LT |
507 | } |
508 | } | |
509 | } | |
510 | #else | |
511 | static inline void try_to_free_low(unsigned long count) | |
512 | { | |
513 | } | |
514 | #endif | |
515 | ||
7893d1d5 | 516 | #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) |
1da177e4 LT |
517 | static unsigned long set_max_huge_pages(unsigned long count) |
518 | { | |
7893d1d5 | 519 | unsigned long min_count, ret; |
1da177e4 | 520 | |
7893d1d5 AL |
521 | /* |
522 | * Increase the pool size | |
523 | * First take pages out of surplus state. Then make up the | |
524 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
525 | * |
526 | * We might race with alloc_buddy_huge_page() here and be unable | |
527 | * to convert a surplus huge page to a normal huge page. That is | |
528 | * not critical, though, it just means the overall size of the | |
529 | * pool might be one hugepage larger than it needs to be, but | |
530 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 531 | */ |
1da177e4 | 532 | spin_lock(&hugetlb_lock); |
7893d1d5 AL |
533 | while (surplus_huge_pages && count > persistent_huge_pages) { |
534 | if (!adjust_pool_surplus(-1)) | |
535 | break; | |
536 | } | |
537 | ||
538 | while (count > persistent_huge_pages) { | |
539 | int ret; | |
540 | /* | |
541 | * If this allocation races such that we no longer need the | |
542 | * page, free_huge_page will handle it by freeing the page | |
543 | * and reducing the surplus. | |
544 | */ | |
545 | spin_unlock(&hugetlb_lock); | |
546 | ret = alloc_fresh_huge_page(); | |
547 | spin_lock(&hugetlb_lock); | |
548 | if (!ret) | |
549 | goto out; | |
550 | ||
551 | } | |
7893d1d5 AL |
552 | |
553 | /* | |
554 | * Decrease the pool size | |
555 | * First return free pages to the buddy allocator (being careful | |
556 | * to keep enough around to satisfy reservations). Then place | |
557 | * pages into surplus state as needed so the pool will shrink | |
558 | * to the desired size as pages become free. | |
d1c3fb1f NA |
559 | * |
560 | * By placing pages into the surplus state independent of the | |
561 | * overcommit value, we are allowing the surplus pool size to | |
562 | * exceed overcommit. There are few sane options here. Since | |
563 | * alloc_buddy_huge_page() is checking the global counter, | |
564 | * though, we'll note that we're not allowed to exceed surplus | |
565 | * and won't grow the pool anywhere else. Not until one of the | |
566 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 567 | */ |
6b0c880d AL |
568 | min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; |
569 | min_count = max(count, min_count); | |
7893d1d5 AL |
570 | try_to_free_low(min_count); |
571 | while (min_count < persistent_huge_pages) { | |
5da7ca86 | 572 | struct page *page = dequeue_huge_page(NULL, 0); |
1da177e4 LT |
573 | if (!page) |
574 | break; | |
575 | update_and_free_page(page); | |
576 | } | |
7893d1d5 AL |
577 | while (count < persistent_huge_pages) { |
578 | if (!adjust_pool_surplus(1)) | |
579 | break; | |
580 | } | |
581 | out: | |
582 | ret = persistent_huge_pages; | |
1da177e4 | 583 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 584 | return ret; |
1da177e4 LT |
585 | } |
586 | ||
587 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | |
588 | struct file *file, void __user *buffer, | |
589 | size_t *length, loff_t *ppos) | |
590 | { | |
591 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | |
592 | max_huge_pages = set_max_huge_pages(max_huge_pages); | |
593 | return 0; | |
594 | } | |
396faf03 MG |
595 | |
596 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | |
597 | struct file *file, void __user *buffer, | |
598 | size_t *length, loff_t *ppos) | |
599 | { | |
600 | proc_dointvec(table, write, file, buffer, length, ppos); | |
601 | if (hugepages_treat_as_movable) | |
602 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
603 | else | |
604 | htlb_alloc_mask = GFP_HIGHUSER; | |
605 | return 0; | |
606 | } | |
607 | ||
1da177e4 LT |
608 | #endif /* CONFIG_SYSCTL */ |
609 | ||
610 | int hugetlb_report_meminfo(char *buf) | |
611 | { | |
612 | return sprintf(buf, | |
613 | "HugePages_Total: %5lu\n" | |
614 | "HugePages_Free: %5lu\n" | |
a43a8c39 | 615 | "HugePages_Rsvd: %5lu\n" |
7893d1d5 | 616 | "HugePages_Surp: %5lu\n" |
1da177e4 LT |
617 | "Hugepagesize: %5lu kB\n", |
618 | nr_huge_pages, | |
619 | free_huge_pages, | |
a43a8c39 | 620 | resv_huge_pages, |
7893d1d5 | 621 | surplus_huge_pages, |
1da177e4 LT |
622 | HPAGE_SIZE/1024); |
623 | } | |
624 | ||
625 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
626 | { | |
627 | return sprintf(buf, | |
628 | "Node %d HugePages_Total: %5u\n" | |
629 | "Node %d HugePages_Free: %5u\n", | |
630 | nid, nr_huge_pages_node[nid], | |
631 | nid, free_huge_pages_node[nid]); | |
632 | } | |
633 | ||
1da177e4 LT |
634 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
635 | unsigned long hugetlb_total_pages(void) | |
636 | { | |
637 | return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); | |
638 | } | |
1da177e4 LT |
639 | |
640 | /* | |
641 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
642 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
643 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
644 | * this far. | |
645 | */ | |
d0217ac0 | 646 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
647 | { |
648 | BUG(); | |
d0217ac0 | 649 | return 0; |
1da177e4 LT |
650 | } |
651 | ||
652 | struct vm_operations_struct hugetlb_vm_ops = { | |
d0217ac0 | 653 | .fault = hugetlb_vm_op_fault, |
1da177e4 LT |
654 | }; |
655 | ||
1e8f889b DG |
656 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
657 | int writable) | |
63551ae0 DG |
658 | { |
659 | pte_t entry; | |
660 | ||
1e8f889b | 661 | if (writable) { |
63551ae0 DG |
662 | entry = |
663 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | |
664 | } else { | |
665 | entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | |
666 | } | |
667 | entry = pte_mkyoung(entry); | |
668 | entry = pte_mkhuge(entry); | |
669 | ||
670 | return entry; | |
671 | } | |
672 | ||
1e8f889b DG |
673 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
674 | unsigned long address, pte_t *ptep) | |
675 | { | |
676 | pte_t entry; | |
677 | ||
678 | entry = pte_mkwrite(pte_mkdirty(*ptep)); | |
8dab5241 BH |
679 | if (ptep_set_access_flags(vma, address, ptep, entry, 1)) { |
680 | update_mmu_cache(vma, address, entry); | |
8dab5241 | 681 | } |
1e8f889b DG |
682 | } |
683 | ||
684 | ||
63551ae0 DG |
685 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
686 | struct vm_area_struct *vma) | |
687 | { | |
688 | pte_t *src_pte, *dst_pte, entry; | |
689 | struct page *ptepage; | |
1c59827d | 690 | unsigned long addr; |
1e8f889b DG |
691 | int cow; |
692 | ||
693 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 694 | |
1c59827d | 695 | for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { |
c74df32c HD |
696 | src_pte = huge_pte_offset(src, addr); |
697 | if (!src_pte) | |
698 | continue; | |
63551ae0 DG |
699 | dst_pte = huge_pte_alloc(dst, addr); |
700 | if (!dst_pte) | |
701 | goto nomem; | |
c5c99429 LW |
702 | |
703 | /* If the pagetables are shared don't copy or take references */ | |
704 | if (dst_pte == src_pte) | |
705 | continue; | |
706 | ||
c74df32c | 707 | spin_lock(&dst->page_table_lock); |
1c59827d | 708 | spin_lock(&src->page_table_lock); |
c74df32c | 709 | if (!pte_none(*src_pte)) { |
1e8f889b DG |
710 | if (cow) |
711 | ptep_set_wrprotect(src, addr, src_pte); | |
1c59827d HD |
712 | entry = *src_pte; |
713 | ptepage = pte_page(entry); | |
714 | get_page(ptepage); | |
1c59827d HD |
715 | set_huge_pte_at(dst, addr, dst_pte, entry); |
716 | } | |
717 | spin_unlock(&src->page_table_lock); | |
c74df32c | 718 | spin_unlock(&dst->page_table_lock); |
63551ae0 DG |
719 | } |
720 | return 0; | |
721 | ||
722 | nomem: | |
723 | return -ENOMEM; | |
724 | } | |
725 | ||
502717f4 KC |
726 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
727 | unsigned long end) | |
63551ae0 DG |
728 | { |
729 | struct mm_struct *mm = vma->vm_mm; | |
730 | unsigned long address; | |
c7546f8f | 731 | pte_t *ptep; |
63551ae0 DG |
732 | pte_t pte; |
733 | struct page *page; | |
fe1668ae | 734 | struct page *tmp; |
c0a499c2 KC |
735 | /* |
736 | * A page gathering list, protected by per file i_mmap_lock. The | |
737 | * lock is used to avoid list corruption from multiple unmapping | |
738 | * of the same page since we are using page->lru. | |
739 | */ | |
fe1668ae | 740 | LIST_HEAD(page_list); |
63551ae0 DG |
741 | |
742 | WARN_ON(!is_vm_hugetlb_page(vma)); | |
743 | BUG_ON(start & ~HPAGE_MASK); | |
744 | BUG_ON(end & ~HPAGE_MASK); | |
745 | ||
508034a3 | 746 | spin_lock(&mm->page_table_lock); |
63551ae0 | 747 | for (address = start; address < end; address += HPAGE_SIZE) { |
c7546f8f | 748 | ptep = huge_pte_offset(mm, address); |
4c887265 | 749 | if (!ptep) |
c7546f8f DG |
750 | continue; |
751 | ||
39dde65c KC |
752 | if (huge_pmd_unshare(mm, &address, ptep)) |
753 | continue; | |
754 | ||
c7546f8f | 755 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
63551ae0 DG |
756 | if (pte_none(pte)) |
757 | continue; | |
c7546f8f | 758 | |
63551ae0 | 759 | page = pte_page(pte); |
6649a386 KC |
760 | if (pte_dirty(pte)) |
761 | set_page_dirty(page); | |
fe1668ae | 762 | list_add(&page->lru, &page_list); |
63551ae0 | 763 | } |
1da177e4 | 764 | spin_unlock(&mm->page_table_lock); |
508034a3 | 765 | flush_tlb_range(vma, start, end); |
fe1668ae KC |
766 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
767 | list_del(&page->lru); | |
768 | put_page(page); | |
769 | } | |
1da177e4 | 770 | } |
63551ae0 | 771 | |
502717f4 KC |
772 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
773 | unsigned long end) | |
774 | { | |
775 | /* | |
776 | * It is undesirable to test vma->vm_file as it should be non-null | |
777 | * for valid hugetlb area. However, vm_file will be NULL in the error | |
778 | * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, | |
779 | * do_mmap_pgoff() nullifies vma->vm_file before calling this function | |
780 | * to clean up. Since no pte has actually been setup, it is safe to | |
781 | * do nothing in this case. | |
782 | */ | |
783 | if (vma->vm_file) { | |
784 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); | |
785 | __unmap_hugepage_range(vma, start, end); | |
786 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
787 | } | |
788 | } | |
789 | ||
1e8f889b DG |
790 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
791 | unsigned long address, pte_t *ptep, pte_t pte) | |
792 | { | |
793 | struct page *old_page, *new_page; | |
79ac6ba4 | 794 | int avoidcopy; |
1e8f889b DG |
795 | |
796 | old_page = pte_page(pte); | |
797 | ||
798 | /* If no-one else is actually using this page, avoid the copy | |
799 | * and just make the page writable */ | |
800 | avoidcopy = (page_count(old_page) == 1); | |
801 | if (avoidcopy) { | |
802 | set_huge_ptep_writable(vma, address, ptep); | |
83c54070 | 803 | return 0; |
1e8f889b DG |
804 | } |
805 | ||
806 | page_cache_get(old_page); | |
5da7ca86 | 807 | new_page = alloc_huge_page(vma, address); |
1e8f889b | 808 | |
2fc39cec | 809 | if (IS_ERR(new_page)) { |
1e8f889b | 810 | page_cache_release(old_page); |
2fc39cec | 811 | return -PTR_ERR(new_page); |
1e8f889b DG |
812 | } |
813 | ||
814 | spin_unlock(&mm->page_table_lock); | |
9de455b2 | 815 | copy_huge_page(new_page, old_page, address, vma); |
0ed361de | 816 | __SetPageUptodate(new_page); |
1e8f889b DG |
817 | spin_lock(&mm->page_table_lock); |
818 | ||
819 | ptep = huge_pte_offset(mm, address & HPAGE_MASK); | |
820 | if (likely(pte_same(*ptep, pte))) { | |
821 | /* Break COW */ | |
822 | set_huge_pte_at(mm, address, ptep, | |
823 | make_huge_pte(vma, new_page, 1)); | |
824 | /* Make the old page be freed below */ | |
825 | new_page = old_page; | |
826 | } | |
827 | page_cache_release(new_page); | |
828 | page_cache_release(old_page); | |
83c54070 | 829 | return 0; |
1e8f889b DG |
830 | } |
831 | ||
a1ed3dda | 832 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1e8f889b | 833 | unsigned long address, pte_t *ptep, int write_access) |
ac9b9c66 HD |
834 | { |
835 | int ret = VM_FAULT_SIGBUS; | |
4c887265 AL |
836 | unsigned long idx; |
837 | unsigned long size; | |
4c887265 AL |
838 | struct page *page; |
839 | struct address_space *mapping; | |
1e8f889b | 840 | pte_t new_pte; |
4c887265 | 841 | |
4c887265 AL |
842 | mapping = vma->vm_file->f_mapping; |
843 | idx = ((address - vma->vm_start) >> HPAGE_SHIFT) | |
844 | + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); | |
845 | ||
846 | /* | |
847 | * Use page lock to guard against racing truncation | |
848 | * before we get page_table_lock. | |
849 | */ | |
6bda666a CL |
850 | retry: |
851 | page = find_lock_page(mapping, idx); | |
852 | if (!page) { | |
ebed4bfc HD |
853 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; |
854 | if (idx >= size) | |
855 | goto out; | |
6bda666a | 856 | page = alloc_huge_page(vma, address); |
2fc39cec AL |
857 | if (IS_ERR(page)) { |
858 | ret = -PTR_ERR(page); | |
6bda666a CL |
859 | goto out; |
860 | } | |
79ac6ba4 | 861 | clear_huge_page(page, address); |
0ed361de | 862 | __SetPageUptodate(page); |
ac9b9c66 | 863 | |
6bda666a CL |
864 | if (vma->vm_flags & VM_SHARED) { |
865 | int err; | |
45c682a6 | 866 | struct inode *inode = mapping->host; |
6bda666a CL |
867 | |
868 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
869 | if (err) { | |
870 | put_page(page); | |
6bda666a CL |
871 | if (err == -EEXIST) |
872 | goto retry; | |
873 | goto out; | |
874 | } | |
45c682a6 KC |
875 | |
876 | spin_lock(&inode->i_lock); | |
877 | inode->i_blocks += BLOCKS_PER_HUGEPAGE; | |
878 | spin_unlock(&inode->i_lock); | |
6bda666a CL |
879 | } else |
880 | lock_page(page); | |
881 | } | |
1e8f889b | 882 | |
ac9b9c66 | 883 | spin_lock(&mm->page_table_lock); |
4c887265 AL |
884 | size = i_size_read(mapping->host) >> HPAGE_SHIFT; |
885 | if (idx >= size) | |
886 | goto backout; | |
887 | ||
83c54070 | 888 | ret = 0; |
86e5216f | 889 | if (!pte_none(*ptep)) |
4c887265 AL |
890 | goto backout; |
891 | ||
1e8f889b DG |
892 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
893 | && (vma->vm_flags & VM_SHARED))); | |
894 | set_huge_pte_at(mm, address, ptep, new_pte); | |
895 | ||
896 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | |
897 | /* Optimization, do the COW without a second fault */ | |
898 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte); | |
899 | } | |
900 | ||
ac9b9c66 | 901 | spin_unlock(&mm->page_table_lock); |
4c887265 AL |
902 | unlock_page(page); |
903 | out: | |
ac9b9c66 | 904 | return ret; |
4c887265 AL |
905 | |
906 | backout: | |
907 | spin_unlock(&mm->page_table_lock); | |
4c887265 AL |
908 | unlock_page(page); |
909 | put_page(page); | |
910 | goto out; | |
ac9b9c66 HD |
911 | } |
912 | ||
86e5216f AL |
913 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
914 | unsigned long address, int write_access) | |
915 | { | |
916 | pte_t *ptep; | |
917 | pte_t entry; | |
1e8f889b | 918 | int ret; |
3935baa9 | 919 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
86e5216f AL |
920 | |
921 | ptep = huge_pte_alloc(mm, address); | |
922 | if (!ptep) | |
923 | return VM_FAULT_OOM; | |
924 | ||
3935baa9 DG |
925 | /* |
926 | * Serialize hugepage allocation and instantiation, so that we don't | |
927 | * get spurious allocation failures if two CPUs race to instantiate | |
928 | * the same page in the page cache. | |
929 | */ | |
930 | mutex_lock(&hugetlb_instantiation_mutex); | |
86e5216f | 931 | entry = *ptep; |
3935baa9 DG |
932 | if (pte_none(entry)) { |
933 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); | |
934 | mutex_unlock(&hugetlb_instantiation_mutex); | |
935 | return ret; | |
936 | } | |
86e5216f | 937 | |
83c54070 | 938 | ret = 0; |
1e8f889b DG |
939 | |
940 | spin_lock(&mm->page_table_lock); | |
941 | /* Check for a racing update before calling hugetlb_cow */ | |
942 | if (likely(pte_same(entry, *ptep))) | |
943 | if (write_access && !pte_write(entry)) | |
944 | ret = hugetlb_cow(mm, vma, address, ptep, entry); | |
945 | spin_unlock(&mm->page_table_lock); | |
3935baa9 | 946 | mutex_unlock(&hugetlb_instantiation_mutex); |
1e8f889b DG |
947 | |
948 | return ret; | |
86e5216f AL |
949 | } |
950 | ||
63551ae0 DG |
951 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
952 | struct page **pages, struct vm_area_struct **vmas, | |
5b23dbe8 AL |
953 | unsigned long *position, int *length, int i, |
954 | int write) | |
63551ae0 | 955 | { |
d5d4b0aa KC |
956 | unsigned long pfn_offset; |
957 | unsigned long vaddr = *position; | |
63551ae0 DG |
958 | int remainder = *length; |
959 | ||
1c59827d | 960 | spin_lock(&mm->page_table_lock); |
63551ae0 | 961 | while (vaddr < vma->vm_end && remainder) { |
4c887265 AL |
962 | pte_t *pte; |
963 | struct page *page; | |
63551ae0 | 964 | |
4c887265 AL |
965 | /* |
966 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
967 | * each hugepage. We have to make * sure we get the | |
968 | * first, for the page indexing below to work. | |
969 | */ | |
970 | pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); | |
63551ae0 | 971 | |
72fad713 | 972 | if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) { |
4c887265 | 973 | int ret; |
63551ae0 | 974 | |
4c887265 | 975 | spin_unlock(&mm->page_table_lock); |
5b23dbe8 | 976 | ret = hugetlb_fault(mm, vma, vaddr, write); |
4c887265 | 977 | spin_lock(&mm->page_table_lock); |
a89182c7 | 978 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 979 | continue; |
63551ae0 | 980 | |
4c887265 AL |
981 | remainder = 0; |
982 | if (!i) | |
983 | i = -EFAULT; | |
984 | break; | |
985 | } | |
986 | ||
d5d4b0aa KC |
987 | pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; |
988 | page = pte_page(*pte); | |
989 | same_page: | |
d6692183 KC |
990 | if (pages) { |
991 | get_page(page); | |
d5d4b0aa | 992 | pages[i] = page + pfn_offset; |
d6692183 | 993 | } |
63551ae0 DG |
994 | |
995 | if (vmas) | |
996 | vmas[i] = vma; | |
997 | ||
998 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 999 | ++pfn_offset; |
63551ae0 DG |
1000 | --remainder; |
1001 | ++i; | |
d5d4b0aa KC |
1002 | if (vaddr < vma->vm_end && remainder && |
1003 | pfn_offset < HPAGE_SIZE/PAGE_SIZE) { | |
1004 | /* | |
1005 | * We use pfn_offset to avoid touching the pageframes | |
1006 | * of this compound page. | |
1007 | */ | |
1008 | goto same_page; | |
1009 | } | |
63551ae0 | 1010 | } |
1c59827d | 1011 | spin_unlock(&mm->page_table_lock); |
63551ae0 DG |
1012 | *length = remainder; |
1013 | *position = vaddr; | |
1014 | ||
1015 | return i; | |
1016 | } | |
8f860591 ZY |
1017 | |
1018 | void hugetlb_change_protection(struct vm_area_struct *vma, | |
1019 | unsigned long address, unsigned long end, pgprot_t newprot) | |
1020 | { | |
1021 | struct mm_struct *mm = vma->vm_mm; | |
1022 | unsigned long start = address; | |
1023 | pte_t *ptep; | |
1024 | pte_t pte; | |
1025 | ||
1026 | BUG_ON(address >= end); | |
1027 | flush_cache_range(vma, address, end); | |
1028 | ||
39dde65c | 1029 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 ZY |
1030 | spin_lock(&mm->page_table_lock); |
1031 | for (; address < end; address += HPAGE_SIZE) { | |
1032 | ptep = huge_pte_offset(mm, address); | |
1033 | if (!ptep) | |
1034 | continue; | |
39dde65c KC |
1035 | if (huge_pmd_unshare(mm, &address, ptep)) |
1036 | continue; | |
8f860591 ZY |
1037 | if (!pte_none(*ptep)) { |
1038 | pte = huge_ptep_get_and_clear(mm, address, ptep); | |
1039 | pte = pte_mkhuge(pte_modify(pte, newprot)); | |
1040 | set_huge_pte_at(mm, address, ptep, pte); | |
8f860591 ZY |
1041 | } |
1042 | } | |
1043 | spin_unlock(&mm->page_table_lock); | |
39dde65c | 1044 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 ZY |
1045 | |
1046 | flush_tlb_range(vma, start, end); | |
1047 | } | |
1048 | ||
a43a8c39 KC |
1049 | struct file_region { |
1050 | struct list_head link; | |
1051 | long from; | |
1052 | long to; | |
1053 | }; | |
1054 | ||
1055 | static long region_add(struct list_head *head, long f, long t) | |
1056 | { | |
1057 | struct file_region *rg, *nrg, *trg; | |
1058 | ||
1059 | /* Locate the region we are either in or before. */ | |
1060 | list_for_each_entry(rg, head, link) | |
1061 | if (f <= rg->to) | |
1062 | break; | |
1063 | ||
1064 | /* Round our left edge to the current segment if it encloses us. */ | |
1065 | if (f > rg->from) | |
1066 | f = rg->from; | |
1067 | ||
1068 | /* Check for and consume any regions we now overlap with. */ | |
1069 | nrg = rg; | |
1070 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
1071 | if (&rg->link == head) | |
1072 | break; | |
1073 | if (rg->from > t) | |
1074 | break; | |
1075 | ||
1076 | /* If this area reaches higher then extend our area to | |
1077 | * include it completely. If this is not the first area | |
1078 | * which we intend to reuse, free it. */ | |
1079 | if (rg->to > t) | |
1080 | t = rg->to; | |
1081 | if (rg != nrg) { | |
1082 | list_del(&rg->link); | |
1083 | kfree(rg); | |
1084 | } | |
1085 | } | |
1086 | nrg->from = f; | |
1087 | nrg->to = t; | |
1088 | return 0; | |
1089 | } | |
1090 | ||
1091 | static long region_chg(struct list_head *head, long f, long t) | |
1092 | { | |
1093 | struct file_region *rg, *nrg; | |
1094 | long chg = 0; | |
1095 | ||
1096 | /* Locate the region we are before or in. */ | |
1097 | list_for_each_entry(rg, head, link) | |
1098 | if (f <= rg->to) | |
1099 | break; | |
1100 | ||
1101 | /* If we are below the current region then a new region is required. | |
1102 | * Subtle, allocate a new region at the position but make it zero | |
183ff22b | 1103 | * size such that we can guarantee to record the reservation. */ |
a43a8c39 KC |
1104 | if (&rg->link == head || t < rg->from) { |
1105 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
c80544dc | 1106 | if (!nrg) |
a43a8c39 KC |
1107 | return -ENOMEM; |
1108 | nrg->from = f; | |
1109 | nrg->to = f; | |
1110 | INIT_LIST_HEAD(&nrg->link); | |
1111 | list_add(&nrg->link, rg->link.prev); | |
1112 | ||
1113 | return t - f; | |
1114 | } | |
1115 | ||
1116 | /* Round our left edge to the current segment if it encloses us. */ | |
1117 | if (f > rg->from) | |
1118 | f = rg->from; | |
1119 | chg = t - f; | |
1120 | ||
1121 | /* Check for and consume any regions we now overlap with. */ | |
1122 | list_for_each_entry(rg, rg->link.prev, link) { | |
1123 | if (&rg->link == head) | |
1124 | break; | |
1125 | if (rg->from > t) | |
1126 | return chg; | |
1127 | ||
1128 | /* We overlap with this area, if it extends futher than | |
1129 | * us then we must extend ourselves. Account for its | |
1130 | * existing reservation. */ | |
1131 | if (rg->to > t) { | |
1132 | chg += rg->to - t; | |
1133 | t = rg->to; | |
1134 | } | |
1135 | chg -= rg->to - rg->from; | |
1136 | } | |
1137 | return chg; | |
1138 | } | |
1139 | ||
1140 | static long region_truncate(struct list_head *head, long end) | |
1141 | { | |
1142 | struct file_region *rg, *trg; | |
1143 | long chg = 0; | |
1144 | ||
1145 | /* Locate the region we are either in or before. */ | |
1146 | list_for_each_entry(rg, head, link) | |
1147 | if (end <= rg->to) | |
1148 | break; | |
1149 | if (&rg->link == head) | |
1150 | return 0; | |
1151 | ||
1152 | /* If we are in the middle of a region then adjust it. */ | |
1153 | if (end > rg->from) { | |
1154 | chg = rg->to - end; | |
1155 | rg->to = end; | |
1156 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
1157 | } | |
1158 | ||
1159 | /* Drop any remaining regions. */ | |
1160 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
1161 | if (&rg->link == head) | |
1162 | break; | |
1163 | chg += rg->to - rg->from; | |
1164 | list_del(&rg->link); | |
1165 | kfree(rg); | |
1166 | } | |
1167 | return chg; | |
1168 | } | |
1169 | ||
1170 | static int hugetlb_acct_memory(long delta) | |
1171 | { | |
1172 | int ret = -ENOMEM; | |
1173 | ||
1174 | spin_lock(&hugetlb_lock); | |
8a630112 KC |
1175 | /* |
1176 | * When cpuset is configured, it breaks the strict hugetlb page | |
1177 | * reservation as the accounting is done on a global variable. Such | |
1178 | * reservation is completely rubbish in the presence of cpuset because | |
1179 | * the reservation is not checked against page availability for the | |
1180 | * current cpuset. Application can still potentially OOM'ed by kernel | |
1181 | * with lack of free htlb page in cpuset that the task is in. | |
1182 | * Attempt to enforce strict accounting with cpuset is almost | |
1183 | * impossible (or too ugly) because cpuset is too fluid that | |
1184 | * task or memory node can be dynamically moved between cpusets. | |
1185 | * | |
1186 | * The change of semantics for shared hugetlb mapping with cpuset is | |
1187 | * undesirable. However, in order to preserve some of the semantics, | |
1188 | * we fall back to check against current free page availability as | |
1189 | * a best attempt and hopefully to minimize the impact of changing | |
1190 | * semantics that cpuset has. | |
1191 | */ | |
e4e574b7 AL |
1192 | if (delta > 0) { |
1193 | if (gather_surplus_pages(delta) < 0) | |
1194 | goto out; | |
1195 | ||
1196 | if (delta > cpuset_mems_nr(free_huge_pages_node)) | |
1197 | goto out; | |
1198 | } | |
1199 | ||
1200 | ret = 0; | |
1201 | resv_huge_pages += delta; | |
1202 | if (delta < 0) | |
1203 | return_unused_surplus_pages((unsigned long) -delta); | |
1204 | ||
1205 | out: | |
1206 | spin_unlock(&hugetlb_lock); | |
1207 | return ret; | |
1208 | } | |
1209 | ||
1210 | int hugetlb_reserve_pages(struct inode *inode, long from, long to) | |
1211 | { | |
1212 | long ret, chg; | |
1213 | ||
1214 | chg = region_chg(&inode->i_mapping->private_list, from, to); | |
1215 | if (chg < 0) | |
1216 | return chg; | |
8a630112 | 1217 | |
90d8b7e6 AL |
1218 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1219 | return -ENOSPC; | |
a43a8c39 | 1220 | ret = hugetlb_acct_memory(chg); |
68842c9b KC |
1221 | if (ret < 0) { |
1222 | hugetlb_put_quota(inode->i_mapping, chg); | |
a43a8c39 | 1223 | return ret; |
68842c9b | 1224 | } |
a43a8c39 KC |
1225 | region_add(&inode->i_mapping->private_list, from, to); |
1226 | return 0; | |
1227 | } | |
1228 | ||
1229 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
1230 | { | |
1231 | long chg = region_truncate(&inode->i_mapping->private_list, offset); | |
45c682a6 KC |
1232 | |
1233 | spin_lock(&inode->i_lock); | |
1234 | inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; | |
1235 | spin_unlock(&inode->i_lock); | |
1236 | ||
90d8b7e6 AL |
1237 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
1238 | hugetlb_acct_memory(-(chg - freed)); | |
a43a8c39 | 1239 | } |