]>
Commit | Line | Data |
---|---|---|
eefa864b JK |
1 | #include <linux/mm.h> |
2 | #include <linux/mmzone.h> | |
3 | #include <linux/bootmem.h> | |
4 | #include <linux/page_ext.h> | |
5 | #include <linux/memory.h> | |
6 | #include <linux/vmalloc.h> | |
7 | #include <linux/kmemleak.h> | |
48c96a36 | 8 | #include <linux/page_owner.h> |
33c3fc71 | 9 | #include <linux/page_idle.h> |
eefa864b JK |
10 | |
11 | /* | |
12 | * struct page extension | |
13 | * | |
14 | * This is the feature to manage memory for extended data per page. | |
15 | * | |
16 | * Until now, we must modify struct page itself to store extra data per page. | |
17 | * This requires rebuilding the kernel and it is really time consuming process. | |
18 | * And, sometimes, rebuild is impossible due to third party module dependency. | |
19 | * At last, enlarging struct page could cause un-wanted system behaviour change. | |
20 | * | |
21 | * This feature is intended to overcome above mentioned problems. This feature | |
22 | * allocates memory for extended data per page in certain place rather than | |
23 | * the struct page itself. This memory can be accessed by the accessor | |
24 | * functions provided by this code. During the boot process, it checks whether | |
25 | * allocation of huge chunk of memory is needed or not. If not, it avoids | |
26 | * allocating memory at all. With this advantage, we can include this feature | |
27 | * into the kernel in default and can avoid rebuild and solve related problems. | |
28 | * | |
29 | * To help these things to work well, there are two callbacks for clients. One | |
30 | * is the need callback which is mandatory if user wants to avoid useless | |
31 | * memory allocation at boot-time. The other is optional, init callback, which | |
32 | * is used to do proper initialization after memory is allocated. | |
33 | * | |
34 | * The need callback is used to decide whether extended memory allocation is | |
35 | * needed or not. Sometimes users want to deactivate some features in this | |
36 | * boot and extra memory would be unneccessary. In this case, to avoid | |
37 | * allocating huge chunk of memory, each clients represent their need of | |
38 | * extra memory through the need callback. If one of the need callbacks | |
39 | * returns true, it means that someone needs extra memory so that | |
40 | * page extension core should allocates memory for page extension. If | |
41 | * none of need callbacks return true, memory isn't needed at all in this boot | |
42 | * and page extension core can skip to allocate memory. As result, | |
43 | * none of memory is wasted. | |
44 | * | |
980ac167 JK |
45 | * When need callback returns true, page_ext checks if there is a request for |
46 | * extra memory through size in struct page_ext_operations. If it is non-zero, | |
47 | * extra space is allocated for each page_ext entry and offset is returned to | |
48 | * user through offset in struct page_ext_operations. | |
49 | * | |
eefa864b JK |
50 | * The init callback is used to do proper initialization after page extension |
51 | * is completely initialized. In sparse memory system, extra memory is | |
52 | * allocated some time later than memmap is allocated. In other words, lifetime | |
53 | * of memory for page extension isn't same with memmap for struct page. | |
54 | * Therefore, clients can't store extra data until page extension is | |
55 | * initialized, even if pages are allocated and used freely. This could | |
56 | * cause inadequate state of extra data per page, so, to prevent it, client | |
57 | * can utilize this callback to initialize the state of it correctly. | |
58 | */ | |
59 | ||
60 | static struct page_ext_operations *page_ext_ops[] = { | |
e30825f1 | 61 | &debug_guardpage_ops, |
48c96a36 JK |
62 | #ifdef CONFIG_PAGE_OWNER |
63 | &page_owner_ops, | |
64 | #endif | |
33c3fc71 VD |
65 | #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) |
66 | &page_idle_ops, | |
67 | #endif | |
eefa864b JK |
68 | }; |
69 | ||
70 | static unsigned long total_usage; | |
980ac167 | 71 | static unsigned long extra_mem; |
eefa864b JK |
72 | |
73 | static bool __init invoke_need_callbacks(void) | |
74 | { | |
75 | int i; | |
76 | int entries = ARRAY_SIZE(page_ext_ops); | |
980ac167 | 77 | bool need = false; |
eefa864b JK |
78 | |
79 | for (i = 0; i < entries; i++) { | |
980ac167 JK |
80 | if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { |
81 | page_ext_ops[i]->offset = sizeof(struct page_ext) + | |
82 | extra_mem; | |
83 | extra_mem += page_ext_ops[i]->size; | |
84 | need = true; | |
85 | } | |
eefa864b JK |
86 | } |
87 | ||
980ac167 | 88 | return need; |
eefa864b JK |
89 | } |
90 | ||
91 | static void __init invoke_init_callbacks(void) | |
92 | { | |
93 | int i; | |
94 | int entries = ARRAY_SIZE(page_ext_ops); | |
95 | ||
96 | for (i = 0; i < entries; i++) { | |
97 | if (page_ext_ops[i]->init) | |
98 | page_ext_ops[i]->init(); | |
99 | } | |
100 | } | |
101 | ||
980ac167 JK |
102 | static unsigned long get_entry_size(void) |
103 | { | |
104 | return sizeof(struct page_ext) + extra_mem; | |
105 | } | |
106 | ||
107 | static inline struct page_ext *get_entry(void *base, unsigned long index) | |
108 | { | |
109 | return base + get_entry_size() * index; | |
110 | } | |
111 | ||
eefa864b JK |
112 | #if !defined(CONFIG_SPARSEMEM) |
113 | ||
114 | ||
115 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | |
116 | { | |
117 | pgdat->node_page_ext = NULL; | |
118 | } | |
119 | ||
120 | struct page_ext *lookup_page_ext(struct page *page) | |
121 | { | |
122 | unsigned long pfn = page_to_pfn(page); | |
0b06bb3f | 123 | unsigned long index; |
eefa864b JK |
124 | struct page_ext *base; |
125 | ||
126 | base = NODE_DATA(page_to_nid(page))->node_page_ext; | |
bd33ef36 | 127 | #if defined(CONFIG_DEBUG_VM) |
eefa864b JK |
128 | /* |
129 | * The sanity checks the page allocator does upon freeing a | |
130 | * page can reach here before the page_ext arrays are | |
131 | * allocated when feeding a range of pages to the allocator | |
132 | * for the first time during bootup or memory hotplug. | |
133 | */ | |
134 | if (unlikely(!base)) | |
135 | return NULL; | |
136 | #endif | |
0b06bb3f | 137 | index = pfn - round_down(node_start_pfn(page_to_nid(page)), |
eefa864b | 138 | MAX_ORDER_NR_PAGES); |
980ac167 | 139 | return get_entry(base, index); |
eefa864b JK |
140 | } |
141 | ||
142 | static int __init alloc_node_page_ext(int nid) | |
143 | { | |
144 | struct page_ext *base; | |
145 | unsigned long table_size; | |
146 | unsigned long nr_pages; | |
147 | ||
148 | nr_pages = NODE_DATA(nid)->node_spanned_pages; | |
149 | if (!nr_pages) | |
150 | return 0; | |
151 | ||
152 | /* | |
153 | * Need extra space if node range is not aligned with | |
154 | * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm | |
155 | * checks buddy's status, range could be out of exact node range. | |
156 | */ | |
157 | if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || | |
158 | !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) | |
159 | nr_pages += MAX_ORDER_NR_PAGES; | |
160 | ||
980ac167 | 161 | table_size = get_entry_size() * nr_pages; |
eefa864b JK |
162 | |
163 | base = memblock_virt_alloc_try_nid_nopanic( | |
164 | table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), | |
165 | BOOTMEM_ALLOC_ACCESSIBLE, nid); | |
166 | if (!base) | |
167 | return -ENOMEM; | |
168 | NODE_DATA(nid)->node_page_ext = base; | |
169 | total_usage += table_size; | |
170 | return 0; | |
171 | } | |
172 | ||
173 | void __init page_ext_init_flatmem(void) | |
174 | { | |
175 | ||
176 | int nid, fail; | |
177 | ||
178 | if (!invoke_need_callbacks()) | |
179 | return; | |
180 | ||
181 | for_each_online_node(nid) { | |
182 | fail = alloc_node_page_ext(nid); | |
183 | if (fail) | |
184 | goto fail; | |
185 | } | |
186 | pr_info("allocated %ld bytes of page_ext\n", total_usage); | |
187 | invoke_init_callbacks(); | |
188 | return; | |
189 | ||
190 | fail: | |
191 | pr_crit("allocation of page_ext failed.\n"); | |
192 | panic("Out of memory"); | |
193 | } | |
194 | ||
195 | #else /* CONFIG_FLAT_NODE_MEM_MAP */ | |
196 | ||
197 | struct page_ext *lookup_page_ext(struct page *page) | |
198 | { | |
199 | unsigned long pfn = page_to_pfn(page); | |
200 | struct mem_section *section = __pfn_to_section(pfn); | |
bd33ef36 | 201 | #if defined(CONFIG_DEBUG_VM) |
eefa864b JK |
202 | /* |
203 | * The sanity checks the page allocator does upon freeing a | |
204 | * page can reach here before the page_ext arrays are | |
205 | * allocated when feeding a range of pages to the allocator | |
206 | * for the first time during bootup or memory hotplug. | |
207 | */ | |
208 | if (!section->page_ext) | |
209 | return NULL; | |
210 | #endif | |
980ac167 | 211 | return get_entry(section->page_ext, pfn); |
eefa864b JK |
212 | } |
213 | ||
214 | static void *__meminit alloc_page_ext(size_t size, int nid) | |
215 | { | |
216 | gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; | |
217 | void *addr = NULL; | |
218 | ||
219 | addr = alloc_pages_exact_nid(nid, size, flags); | |
220 | if (addr) { | |
221 | kmemleak_alloc(addr, size, 1, flags); | |
222 | return addr; | |
223 | } | |
224 | ||
225 | if (node_state(nid, N_HIGH_MEMORY)) | |
226 | addr = vzalloc_node(size, nid); | |
227 | else | |
228 | addr = vzalloc(size); | |
229 | ||
230 | return addr; | |
231 | } | |
232 | ||
233 | static int __meminit init_section_page_ext(unsigned long pfn, int nid) | |
234 | { | |
235 | struct mem_section *section; | |
236 | struct page_ext *base; | |
237 | unsigned long table_size; | |
238 | ||
239 | section = __pfn_to_section(pfn); | |
240 | ||
241 | if (section->page_ext) | |
242 | return 0; | |
243 | ||
980ac167 | 244 | table_size = get_entry_size() * PAGES_PER_SECTION; |
eefa864b JK |
245 | base = alloc_page_ext(table_size, nid); |
246 | ||
247 | /* | |
248 | * The value stored in section->page_ext is (base - pfn) | |
249 | * and it does not point to the memory block allocated above, | |
250 | * causing kmemleak false positives. | |
251 | */ | |
252 | kmemleak_not_leak(base); | |
253 | ||
254 | if (!base) { | |
255 | pr_err("page ext allocation failure\n"); | |
256 | return -ENOMEM; | |
257 | } | |
258 | ||
259 | /* | |
260 | * The passed "pfn" may not be aligned to SECTION. For the calculation | |
261 | * we need to apply a mask. | |
262 | */ | |
263 | pfn &= PAGE_SECTION_MASK; | |
980ac167 | 264 | section->page_ext = (void *)base - get_entry_size() * pfn; |
eefa864b JK |
265 | total_usage += table_size; |
266 | return 0; | |
267 | } | |
268 | #ifdef CONFIG_MEMORY_HOTPLUG | |
269 | static void free_page_ext(void *addr) | |
270 | { | |
271 | if (is_vmalloc_addr(addr)) { | |
272 | vfree(addr); | |
273 | } else { | |
274 | struct page *page = virt_to_page(addr); | |
275 | size_t table_size; | |
276 | ||
980ac167 | 277 | table_size = get_entry_size() * PAGES_PER_SECTION; |
eefa864b JK |
278 | |
279 | BUG_ON(PageReserved(page)); | |
280 | free_pages_exact(addr, table_size); | |
281 | } | |
282 | } | |
283 | ||
284 | static void __free_page_ext(unsigned long pfn) | |
285 | { | |
286 | struct mem_section *ms; | |
287 | struct page_ext *base; | |
288 | ||
289 | ms = __pfn_to_section(pfn); | |
290 | if (!ms || !ms->page_ext) | |
291 | return; | |
980ac167 | 292 | base = get_entry(ms->page_ext, pfn); |
eefa864b JK |
293 | free_page_ext(base); |
294 | ms->page_ext = NULL; | |
295 | } | |
296 | ||
297 | static int __meminit online_page_ext(unsigned long start_pfn, | |
298 | unsigned long nr_pages, | |
299 | int nid) | |
300 | { | |
301 | unsigned long start, end, pfn; | |
302 | int fail = 0; | |
303 | ||
304 | start = SECTION_ALIGN_DOWN(start_pfn); | |
305 | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | |
306 | ||
307 | if (nid == -1) { | |
308 | /* | |
309 | * In this case, "nid" already exists and contains valid memory. | |
310 | * "start_pfn" passed to us is a pfn which is an arg for | |
311 | * online__pages(), and start_pfn should exist. | |
312 | */ | |
313 | nid = pfn_to_nid(start_pfn); | |
314 | VM_BUG_ON(!node_state(nid, N_ONLINE)); | |
315 | } | |
316 | ||
317 | for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { | |
318 | if (!pfn_present(pfn)) | |
319 | continue; | |
320 | fail = init_section_page_ext(pfn, nid); | |
321 | } | |
322 | if (!fail) | |
323 | return 0; | |
324 | ||
325 | /* rollback */ | |
326 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | |
327 | __free_page_ext(pfn); | |
328 | ||
329 | return -ENOMEM; | |
330 | } | |
331 | ||
332 | static int __meminit offline_page_ext(unsigned long start_pfn, | |
333 | unsigned long nr_pages, int nid) | |
334 | { | |
335 | unsigned long start, end, pfn; | |
336 | ||
337 | start = SECTION_ALIGN_DOWN(start_pfn); | |
338 | end = SECTION_ALIGN_UP(start_pfn + nr_pages); | |
339 | ||
340 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) | |
341 | __free_page_ext(pfn); | |
342 | return 0; | |
343 | ||
344 | } | |
345 | ||
346 | static int __meminit page_ext_callback(struct notifier_block *self, | |
347 | unsigned long action, void *arg) | |
348 | { | |
349 | struct memory_notify *mn = arg; | |
350 | int ret = 0; | |
351 | ||
352 | switch (action) { | |
353 | case MEM_GOING_ONLINE: | |
354 | ret = online_page_ext(mn->start_pfn, | |
355 | mn->nr_pages, mn->status_change_nid); | |
356 | break; | |
357 | case MEM_OFFLINE: | |
358 | offline_page_ext(mn->start_pfn, | |
359 | mn->nr_pages, mn->status_change_nid); | |
360 | break; | |
361 | case MEM_CANCEL_ONLINE: | |
362 | offline_page_ext(mn->start_pfn, | |
363 | mn->nr_pages, mn->status_change_nid); | |
364 | break; | |
365 | case MEM_GOING_OFFLINE: | |
366 | break; | |
367 | case MEM_ONLINE: | |
368 | case MEM_CANCEL_OFFLINE: | |
369 | break; | |
370 | } | |
371 | ||
372 | return notifier_from_errno(ret); | |
373 | } | |
374 | ||
375 | #endif | |
376 | ||
377 | void __init page_ext_init(void) | |
378 | { | |
379 | unsigned long pfn; | |
380 | int nid; | |
381 | ||
382 | if (!invoke_need_callbacks()) | |
383 | return; | |
384 | ||
385 | for_each_node_state(nid, N_MEMORY) { | |
386 | unsigned long start_pfn, end_pfn; | |
387 | ||
388 | start_pfn = node_start_pfn(nid); | |
389 | end_pfn = node_end_pfn(nid); | |
390 | /* | |
391 | * start_pfn and end_pfn may not be aligned to SECTION and the | |
392 | * page->flags of out of node pages are not initialized. So we | |
393 | * scan [start_pfn, the biggest section's pfn < end_pfn) here. | |
394 | */ | |
395 | for (pfn = start_pfn; pfn < end_pfn; | |
396 | pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { | |
397 | ||
398 | if (!pfn_valid(pfn)) | |
399 | continue; | |
400 | /* | |
401 | * Nodes's pfns can be overlapping. | |
402 | * We know some arch can have a nodes layout such as | |
403 | * -------------pfn--------------> | |
404 | * N0 | N1 | N2 | N0 | N1 | N2|.... | |
fe53ca54 YS |
405 | * |
406 | * Take into account DEFERRED_STRUCT_PAGE_INIT. | |
eefa864b | 407 | */ |
fe53ca54 | 408 | if (early_pfn_to_nid(pfn) != nid) |
eefa864b JK |
409 | continue; |
410 | if (init_section_page_ext(pfn, nid)) | |
411 | goto oom; | |
412 | } | |
413 | } | |
414 | hotplug_memory_notifier(page_ext_callback, 0); | |
415 | pr_info("allocated %ld bytes of page_ext\n", total_usage); | |
416 | invoke_init_callbacks(); | |
417 | return; | |
418 | ||
419 | oom: | |
420 | panic("Out of memory"); | |
421 | } | |
422 | ||
423 | void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) | |
424 | { | |
425 | } | |
426 | ||
427 | #endif |