]> Git Repo - linux.git/blame - include/linux/pgtable.h
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof...
[linux.git] / include / linux / pgtable.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
ca5999fd
MR
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
1da177e4 4
f25748e3 5#include <linux/pfn.h>
ca5999fd 6#include <asm/pgtable.h>
f25748e3 7
673eae82 8#ifndef __ASSEMBLY__
9535239f 9#ifdef CONFIG_MMU
673eae82 10
fbd71844 11#include <linux/mm_types.h>
187f1882 12#include <linux/bug.h>
e61ce6ad 13#include <linux/errno.h>
5a281062 14#include <asm-generic/pgtable_uffd.h>
de8c8e52 15#include <linux/page_table_check.h>
fbd71844 16
c2febafc
KS
17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
235a8f02
KS
20#endif
21
6ee8630e
HD
22/*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28#ifndef USER_PGTABLES_CEILING
29#define USER_PGTABLES_CEILING 0UL
30#endif
fac7757e
AK
31
32/*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37#ifndef FIRST_USER_ADDRESS
38#define FIRST_USER_ADDRESS 0UL
39#endif
1c2f7d14
AK
40
41/*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46#ifndef pmd_pgtable
47#define pmd_pgtable(pmd) pmd_page(pmd)
48#endif
6ee8630e 49
974b9b2c
MR
50/*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
62static inline unsigned long pte_index(unsigned long address)
63{
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65}
314c459a 66#define pte_index pte_index
974b9b2c
MR
67
68#ifndef pmd_index
69static inline unsigned long pmd_index(unsigned long address)
70{
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72}
73#define pmd_index pmd_index
74#endif
75
76#ifndef pud_index
77static inline unsigned long pud_index(unsigned long address)
78{
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80}
81#define pud_index pud_index
82#endif
83
84#ifndef pgd_index
85/* Must be a compile-time constant, so implement it as a macro */
86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87#endif
88
89#ifndef pte_offset_kernel
90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91{
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93}
94#define pte_offset_kernel pte_offset_kernel
95#endif
96
97#if defined(CONFIG_HIGHPTE)
98#define pte_offset_map(dir, address) \
99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
100 pte_index((address)))
101#define pte_unmap(pte) kunmap_atomic((pte))
102#else
103#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
104#define pte_unmap(pte) ((void)(pte)) /* NOP */
105#endif
106
107/* Find an entry in the second-level page table.. */
108#ifndef pmd_offset
109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110{
9cf6fa24 111 return pud_pgtable(*pud) + pmd_index(address);
974b9b2c
MR
112}
113#define pmd_offset pmd_offset
114#endif
115
116#ifndef pud_offset
117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118{
dc4875f0 119 return p4d_pgtable(*p4d) + pud_index(address);
974b9b2c
MR
120}
121#define pud_offset pud_offset
122#endif
123
124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125{
126 return (pgd + pgd_index(address));
127};
128
129/*
130 * a shortcut to get a pgd_t in a given mm
131 */
132#ifndef pgd_offset
133#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
134#endif
135
136/*
137 * a shortcut which implies the use of the kernel's pgd, instead
138 * of a process's
139 */
bd05220c 140#ifndef pgd_offset_k
974b9b2c 141#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
bd05220c 142#endif
974b9b2c 143
e05c7b1f
MR
144/*
145 * In many cases it is known that a virtual address is mapped at PMD or PTE
146 * level, so instead of traversing all the page table levels, we can get a
147 * pointer to the PMD entry in user or kernel page table or translate a virtual
148 * address to the pointer in the PTE in the kernel page tables with simple
149 * helpers.
150 */
151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152{
153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154}
155
156static inline pmd_t *pmd_off_k(unsigned long va)
157{
158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159}
160
161static inline pte_t *virt_to_kpte(unsigned long vaddr)
162{
163 pmd_t *pmd = pmd_off_k(vaddr);
164
165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166}
167
6617da8f
JG
168#ifndef pmd_young
169static inline int pmd_young(pmd_t pmd)
170{
171 return 0;
172}
173#endif
174
1da177e4 175#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
176extern int ptep_set_access_flags(struct vm_area_struct *vma,
177 unsigned long address, pte_t *ptep,
178 pte_t entry, int dirty);
179#endif
180
181#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
bd5e88ad 182#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e2cda322
AA
183extern int pmdp_set_access_flags(struct vm_area_struct *vma,
184 unsigned long address, pmd_t *pmdp,
185 pmd_t entry, int dirty);
a00cc7d9
MW
186extern int pudp_set_access_flags(struct vm_area_struct *vma,
187 unsigned long address, pud_t *pudp,
188 pud_t entry, int dirty);
bd5e88ad
VG
189#else
190static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
191 unsigned long address, pmd_t *pmdp,
192 pmd_t entry, int dirty)
193{
194 BUILD_BUG();
195 return 0;
196}
a00cc7d9
MW
197static inline int pudp_set_access_flags(struct vm_area_struct *vma,
198 unsigned long address, pud_t *pudp,
199 pud_t entry, int dirty)
200{
201 BUILD_BUG();
202 return 0;
203}
bd5e88ad 204#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
205#endif
206
207#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
208static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
209 unsigned long address,
210 pte_t *ptep)
211{
212 pte_t pte = *ptep;
213 int r = 1;
214 if (!pte_young(pte))
215 r = 0;
216 else
217 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
218 return r;
219}
220#endif
221
222#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
eed9a328 223#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
e2cda322
AA
224static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
225 unsigned long address,
226 pmd_t *pmdp)
227{
228 pmd_t pmd = *pmdp;
229 int r = 1;
230 if (!pmd_young(pmd))
231 r = 0;
232 else
233 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
234 return r;
235}
bd5e88ad 236#else
e2cda322
AA
237static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
238 unsigned long address,
239 pmd_t *pmdp)
240{
bd5e88ad 241 BUILD_BUG();
e2cda322
AA
242 return 0;
243}
eed9a328 244#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1da177e4
LT
245#endif
246
247#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
248int ptep_clear_flush_young(struct vm_area_struct *vma,
249 unsigned long address, pte_t *ptep);
250#endif
251
252#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
bd5e88ad
VG
253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
254extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp);
256#else
257/*
258 * Despite relevant to THP only, this API is called from generic rmap code
259 * under PageTransHuge(), hence needs a dummy implementation for !THP
260 */
261static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
262 unsigned long address, pmd_t *pmdp)
263{
264 BUILD_BUG();
265 return 0;
266}
267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
268#endif
269
4aaf269c
JG
270#ifndef arch_has_hw_nonleaf_pmd_young
271/*
272 * Return whether the accessed bit in non-leaf PMD entries is supported on the
273 * local CPU.
274 */
275static inline bool arch_has_hw_nonleaf_pmd_young(void)
276{
277 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
278}
279#endif
280
e1fd09e3
YZ
281#ifndef arch_has_hw_pte_young
282/*
283 * Return whether the accessed bit is supported on the local CPU.
284 *
285 * This stub assumes accessing through an old PTE triggers a page fault.
286 * Architectures that automatically set the access bit should overwrite it.
287 */
288static inline bool arch_has_hw_pte_young(void)
289{
290 return false;
291}
292#endif
293
1da177e4 294#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
295static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
296 unsigned long address,
297 pte_t *ptep)
298{
299 pte_t pte = *ptep;
300 pte_clear(mm, address, ptep);
de8c8e52 301 page_table_check_pte_clear(mm, address, pte);
e2cda322
AA
302 return pte;
303}
304#endif
305
de8c8e52
TT
306static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
307 pte_t *ptep)
308{
309 ptep_get_and_clear(mm, addr, ptep);
310}
de8c8e52 311
2dff2c35 312#ifndef ptep_get
481e980a
CL
313static inline pte_t ptep_get(pte_t *ptep)
314{
315 return READ_ONCE(*ptep);
316}
317#endif
318
2dff2c35 319#ifndef pmdp_get
024d232a
PZ
320static inline pmd_t pmdp_get(pmd_t *pmdp)
321{
322 return READ_ONCE(*pmdp);
323}
324#endif
325
6ca297d4 326#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
2a4a06da 327/*
93b3037a
PZ
328 * For walking the pagetables without holding any locks. Some architectures
329 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
330 * instructions. We are guaranteed that a PTE will only either go from not
331 * present to present, or present to not present -- it will not switch to a
332 * completely different present page without a TLB flush inbetween; which we
333 * are blocking by holding interrupts off.
2a4a06da
PZ
334 *
335 * Setting ptes from not present to present goes:
336 *
337 * ptep->pte_high = h;
338 * smp_wmb();
339 * ptep->pte_low = l;
340 *
341 * And present to not present goes:
342 *
343 * ptep->pte_low = 0;
344 * smp_wmb();
345 * ptep->pte_high = 0;
346 *
347 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
348 * We load pte_high *after* loading pte_low, which ensures we don't see an older
349 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
350 * picked up a changed pte high. We might have gotten rubbish values from
351 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
352 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
353 * operates on present ptes we're safe.
354 */
355static inline pte_t ptep_get_lockless(pte_t *ptep)
356{
357 pte_t pte;
358
359 do {
360 pte.pte_low = ptep->pte_low;
361 smp_rmb();
362 pte.pte_high = ptep->pte_high;
363 smp_rmb();
364 } while (unlikely(pte.pte_low != ptep->pte_low));
365
366 return pte;
367}
024d232a
PZ
368#define ptep_get_lockless ptep_get_lockless
369
370#if CONFIG_PGTABLE_LEVELS > 2
371static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
372{
373 pmd_t pmd;
374
375 do {
376 pmd.pmd_low = pmdp->pmd_low;
377 smp_rmb();
378 pmd.pmd_high = pmdp->pmd_high;
379 smp_rmb();
380 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
381
382 return pmd;
383}
384#define pmdp_get_lockless pmdp_get_lockless
385#endif /* CONFIG_PGTABLE_LEVELS > 2 */
6ca297d4 386#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
024d232a 387
2a4a06da
PZ
388/*
389 * We require that the PTE can be read atomically.
390 */
024d232a 391#ifndef ptep_get_lockless
2a4a06da
PZ
392static inline pte_t ptep_get_lockless(pte_t *ptep)
393{
394 return ptep_get(ptep);
395}
024d232a
PZ
396#endif
397
398#ifndef pmdp_get_lockless
399static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
400{
401 return pmdp_get(pmdp);
402}
403#endif
2a4a06da 404
e2cda322 405#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 406#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
8809aa2d
AK
407static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
408 unsigned long address,
409 pmd_t *pmdp)
e2cda322
AA
410{
411 pmd_t pmd = *pmdp;
de8c8e52 412
2d28a227 413 pmd_clear(pmdp);
de8c8e52
TT
414 page_table_check_pmd_clear(mm, address, pmd);
415
e2cda322 416 return pmd;
49b24d6b 417}
a00cc7d9
MW
418#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
419#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
420static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
421 unsigned long address,
422 pud_t *pudp)
423{
424 pud_t pud = *pudp;
425
426 pud_clear(pudp);
de8c8e52
TT
427 page_table_check_pud_clear(mm, address, pud);
428
a00cc7d9
MW
429 return pud;
430}
431#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
e2cda322 432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4 433
fcbe08d6 434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
a00cc7d9 435#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
93a98695 436static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
fcbe08d6
MS
437 unsigned long address, pmd_t *pmdp,
438 int full)
439{
93a98695 440 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
fcbe08d6 441}
fcbe08d6
MS
442#endif
443
a00cc7d9
MW
444#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
445static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
446 unsigned long address, pud_t *pudp,
447 int full)
448{
449 return pudp_huge_get_and_clear(mm, address, pudp);
450}
451#endif
452#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
453
a600388d 454#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
455static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
456 unsigned long address, pte_t *ptep,
457 int full)
458{
d3a89233 459 return ptep_get_and_clear(mm, address, ptep);
e2cda322 460}
a600388d
ZA
461#endif
462
7df67697
BM
463
464/*
465 * If two threads concurrently fault at the same page, the thread that
466 * won the race updates the PTE and its local TLB/Cache. The other thread
467 * gives up, simply does nothing, and continues; on architectures where
468 * software can update TLB, local TLB can be updated here to avoid next page
469 * fault. This function updates TLB only, do nothing with cache or others.
470 * It is the difference with function update_mmu_cache.
471 */
472#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
473static inline void update_mmu_tlb(struct vm_area_struct *vma,
474 unsigned long address, pte_t *ptep)
475{
476}
477#define __HAVE_ARCH_UPDATE_MMU_TLB
478#endif
479
9888a1ca
ZA
480/*
481 * Some architectures may be able to avoid expensive synchronization
482 * primitives when modifications are made to PTE's which are already
483 * not present, or in the process of an address space destruction.
484 */
485#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
486static inline void pte_clear_not_present_full(struct mm_struct *mm,
487 unsigned long address,
488 pte_t *ptep,
489 int full)
490{
491 pte_clear(mm, address, ptep);
492}
a600388d
ZA
493#endif
494
1da177e4 495#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
496extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
497 unsigned long address,
498 pte_t *ptep);
499#endif
500
8809aa2d
AK
501#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
502extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
e2cda322
AA
503 unsigned long address,
504 pmd_t *pmdp);
a00cc7d9
MW
505extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
506 unsigned long address,
507 pud_t *pudp);
1da177e4
LT
508#endif
509
510#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 511struct mm_struct;
1da177e4
LT
512static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
513{
514 pte_t old_pte = *ptep;
515 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
516}
517#endif
518
44bf431b
BM
519/*
520 * On some architectures hardware does not set page access bit when accessing
2eb70aab 521 * memory page, it is responsibility of software setting this bit. It brings
44bf431b
BM
522 * out extra page fault penalty to track page access bit. For optimization page
523 * access bit can be set during all page fault flow on these arches.
524 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
525 * where software maintains page access bit.
526 */
50c25ee9
TB
527#ifndef pte_sw_mkyoung
528static inline pte_t pte_sw_mkyoung(pte_t pte)
529{
530 return pte;
531}
532#define pte_sw_mkyoung pte_sw_mkyoung
533#endif
534
e2cda322
AA
535#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
537static inline void pmdp_set_wrprotect(struct mm_struct *mm,
538 unsigned long address, pmd_t *pmdp)
539{
540 pmd_t old_pmd = *pmdp;
541 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
542}
bd5e88ad 543#else
e2cda322
AA
544static inline void pmdp_set_wrprotect(struct mm_struct *mm,
545 unsigned long address, pmd_t *pmdp)
546{
bd5e88ad 547 BUILD_BUG();
e2cda322
AA
548}
549#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
550#endif
a00cc7d9
MW
551#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
552#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
553static inline void pudp_set_wrprotect(struct mm_struct *mm,
554 unsigned long address, pud_t *pudp)
555{
556 pud_t old_pud = *pudp;
557
558 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
559}
560#else
561static inline void pudp_set_wrprotect(struct mm_struct *mm,
562 unsigned long address, pud_t *pudp)
563{
564 BUILD_BUG();
565}
566#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
567#endif
e2cda322 568
15a25b2e
AK
569#ifndef pmdp_collapse_flush
570#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f28b6ff8
AK
571extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
572 unsigned long address, pmd_t *pmdp);
15a25b2e
AK
573#else
574static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
575 unsigned long address,
576 pmd_t *pmdp)
577{
578 BUILD_BUG();
579 return *pmdp;
580}
581#define pmdp_collapse_flush pmdp_collapse_flush
582#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
583#endif
584
e3ebcf64 585#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
6b0b50b0
AK
586extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
587 pgtable_t pgtable);
e3ebcf64
GS
588#endif
589
590#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
6b0b50b0 591extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
e3ebcf64
GS
592#endif
593
c58f0bb7
KS
594#ifdef CONFIG_TRANSPARENT_HUGEPAGE
595/*
596 * This is an implementation of pmdp_establish() that is only suitable for an
597 * architecture that doesn't have hardware dirty/accessed bits. In this case we
2eb70aab 598 * can't race with CPU which sets these bits and non-atomic approach is fine.
c58f0bb7
KS
599 */
600static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
601 unsigned long address, pmd_t *pmdp, pmd_t pmd)
602{
603 pmd_t old_pmd = *pmdp;
604 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
605 return old_pmd;
606}
607#endif
608
46dcde73 609#ifndef __HAVE_ARCH_PMDP_INVALIDATE
d52605d7 610extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
46dcde73
GS
611 pmd_t *pmdp);
612#endif
613
4f831457
NA
614#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
615
616/*
617 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
618 * hugepage mapping in the page tables. This function is similar to
619 * pmdp_invalidate(), but should only be used if the access and dirty bits would
620 * not be cleared by the software in the new PMD value. The function ensures
621 * that hardware changes of the access and dirty bits updates would not be lost.
622 *
623 * Doing so can allow in certain architectures to avoid a TLB flush in most
624 * cases. Yet, another TLB flush might be necessary later if the PMD update
625 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
626 * even when a TLB flush is needed because of the update, the caller may be able
627 * to batch these TLB flushing operations, so fewer TLB flush operations are
628 * needed.
629 */
630extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
631 unsigned long address, pmd_t *pmdp);
632#endif
633
1da177e4 634#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
635static inline int pte_same(pte_t pte_a, pte_t pte_b)
636{
637 return pte_val(pte_a) == pte_val(pte_b);
638}
639#endif
640
45961722
KW
641#ifndef __HAVE_ARCH_PTE_UNUSED
642/*
643 * Some architectures provide facilities to virtualization guests
644 * so that they can flag allocated pages as unused. This allows the
645 * host to transparently reclaim unused pages. This function returns
646 * whether the pte's page is unused.
647 */
648static inline int pte_unused(pte_t pte)
649{
650 return 0;
651}
652#endif
653
e7884f8e
KS
654#ifndef pte_access_permitted
655#define pte_access_permitted(pte, write) \
656 (pte_present(pte) && (!(write) || pte_write(pte)))
657#endif
658
659#ifndef pmd_access_permitted
660#define pmd_access_permitted(pmd, write) \
661 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
662#endif
663
664#ifndef pud_access_permitted
665#define pud_access_permitted(pud, write) \
666 (pud_present(pud) && (!(write) || pud_write(pud)))
667#endif
668
669#ifndef p4d_access_permitted
670#define p4d_access_permitted(p4d, write) \
671 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
672#endif
673
674#ifndef pgd_access_permitted
675#define pgd_access_permitted(pgd, write) \
676 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
677#endif
678
e2cda322 679#ifndef __HAVE_ARCH_PMD_SAME
e2cda322
AA
680static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
681{
682 return pmd_val(pmd_a) == pmd_val(pmd_b);
683}
a00cc7d9
MW
684
685static inline int pud_same(pud_t pud_a, pud_t pud_b)
686{
687 return pud_val(pud_a) == pud_val(pud_b);
688}
1da177e4
LT
689#endif
690
0cebbb60
DW
691#ifndef __HAVE_ARCH_P4D_SAME
692static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
693{
694 return p4d_val(p4d_a) == p4d_val(p4d_b);
695}
696#endif
697
698#ifndef __HAVE_ARCH_PGD_SAME
699static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
700{
701 return pgd_val(pgd_a) == pgd_val(pgd_b);
702}
703#endif
704
4369deaa
DW
705/*
706 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
707 * TLB flush will be required as a result of the "set". For example, use
708 * in scenarios where it is known ahead of time that the routine is
709 * setting non-present entries, or re-setting an existing entry to the
710 * same value. Otherwise, use the typical "set" helpers and flush the
711 * TLB.
712 */
713#define set_pte_safe(ptep, pte) \
714({ \
715 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
716 set_pte(ptep, pte); \
717})
718
719#define set_pmd_safe(pmdp, pmd) \
720({ \
721 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
722 set_pmd(pmdp, pmd); \
723})
724
725#define set_pud_safe(pudp, pud) \
726({ \
727 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
728 set_pud(pudp, pud); \
729})
730
731#define set_p4d_safe(p4dp, p4d) \
732({ \
733 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
734 set_p4d(p4dp, p4d); \
735})
736
737#define set_pgd_safe(pgdp, pgd) \
738({ \
739 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
740 set_pgd(pgdp, pgd); \
741})
742
ca827d55
KA
743#ifndef __HAVE_ARCH_DO_SWAP_PAGE
744/*
745 * Some architectures support metadata associated with a page. When a
746 * page is being swapped out, this metadata must be saved so it can be
747 * restored when the page is swapped back in. SPARC M7 and newer
748 * processors support an ADI (Application Data Integrity) tag for the
749 * page as metadata for the page. arch_do_swap_page() can restore this
750 * metadata when a page is swapped back in.
751 */
752static inline void arch_do_swap_page(struct mm_struct *mm,
753 struct vm_area_struct *vma,
754 unsigned long addr,
755 pte_t pte, pte_t oldpte)
756{
757
758}
759#endif
760
761#ifndef __HAVE_ARCH_UNMAP_ONE
762/*
763 * Some architectures support metadata associated with a page. When a
764 * page is being swapped out, this metadata must be saved so it can be
765 * restored when the page is swapped back in. SPARC M7 and newer
766 * processors support an ADI (Application Data Integrity) tag for the
767 * page as metadata for the page. arch_unmap_one() can save this
768 * metadata on a swap-out of a page.
769 */
770static inline int arch_unmap_one(struct mm_struct *mm,
771 struct vm_area_struct *vma,
772 unsigned long addr,
773 pte_t orig_pte)
774{
775 return 0;
776}
777#endif
778
8a84802e
SP
779/*
780 * Allow architectures to preserve additional metadata associated with
781 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
782 * prototypes must be defined in the arch-specific asm/pgtable.h file.
783 */
784#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
785static inline int arch_prepare_to_swap(struct page *page)
786{
787 return 0;
788}
789#endif
790
791#ifndef __HAVE_ARCH_SWAP_INVALIDATE
792static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
793{
794}
795
796static inline void arch_swap_invalidate_area(int type)
797{
798}
799#endif
800
801#ifndef __HAVE_ARCH_SWAP_RESTORE
da08e9b7 802static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
8a84802e
SP
803{
804}
805#endif
806
1da177e4
LT
807#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
808#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
809#endif
810
0b0968a3 811#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 812#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
813#endif
814
2c3cf556 815#ifndef pte_accessible
20841405 816# define pte_accessible(mm, pte) ((void)(pte), 1)
2c3cf556
RR
817#endif
818
61c77326
SL
819#ifndef flush_tlb_fix_spurious_fault
820#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
821#endif
822
1da177e4 823/*
8f6c99c1
HD
824 * When walking page tables, get the address of the next boundary,
825 * or the end address of the range if that comes earlier. Although no
826 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
827 */
828
1da177e4
LT
829#define pgd_addr_end(addr, end) \
830({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
831 (__boundary - 1 < (end) - 1)? __boundary: (end); \
832})
1da177e4 833
c2febafc
KS
834#ifndef p4d_addr_end
835#define p4d_addr_end(addr, end) \
836({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
837 (__boundary - 1 < (end) - 1)? __boundary: (end); \
838})
839#endif
840
1da177e4
LT
841#ifndef pud_addr_end
842#define pud_addr_end(addr, end) \
843({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
844 (__boundary - 1 < (end) - 1)? __boundary: (end); \
845})
846#endif
847
848#ifndef pmd_addr_end
849#define pmd_addr_end(addr, end) \
850({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
851 (__boundary - 1 < (end) - 1)? __boundary: (end); \
852})
853#endif
854
1da177e4
LT
855/*
856 * When walking page tables, we usually want to skip any p?d_none entries;
857 * and any p?d_bad entries - reporting the error before resetting to none.
858 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
859 */
860void pgd_clear_bad(pgd_t *);
f2400abc
VG
861
862#ifndef __PAGETABLE_P4D_FOLDED
c2febafc 863void p4d_clear_bad(p4d_t *);
f2400abc
VG
864#else
865#define p4d_clear_bad(p4d) do { } while (0)
866#endif
867
868#ifndef __PAGETABLE_PUD_FOLDED
1da177e4 869void pud_clear_bad(pud_t *);
f2400abc
VG
870#else
871#define pud_clear_bad(p4d) do { } while (0)
872#endif
873
1da177e4
LT
874void pmd_clear_bad(pmd_t *);
875
876static inline int pgd_none_or_clear_bad(pgd_t *pgd)
877{
878 if (pgd_none(*pgd))
879 return 1;
880 if (unlikely(pgd_bad(*pgd))) {
881 pgd_clear_bad(pgd);
882 return 1;
883 }
884 return 0;
885}
886
c2febafc
KS
887static inline int p4d_none_or_clear_bad(p4d_t *p4d)
888{
889 if (p4d_none(*p4d))
890 return 1;
891 if (unlikely(p4d_bad(*p4d))) {
892 p4d_clear_bad(p4d);
893 return 1;
894 }
895 return 0;
896}
897
1da177e4
LT
898static inline int pud_none_or_clear_bad(pud_t *pud)
899{
900 if (pud_none(*pud))
901 return 1;
902 if (unlikely(pud_bad(*pud))) {
903 pud_clear_bad(pud);
904 return 1;
905 }
906 return 0;
907}
908
909static inline int pmd_none_or_clear_bad(pmd_t *pmd)
910{
911 if (pmd_none(*pmd))
912 return 1;
913 if (unlikely(pmd_bad(*pmd))) {
914 pmd_clear_bad(pmd);
915 return 1;
916 }
917 return 0;
918}
9535239f 919
0cbe3e26 920static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
921 unsigned long addr,
922 pte_t *ptep)
923{
924 /*
925 * Get the current pte state, but zero it out to make it
926 * non-present, preventing the hardware from asynchronously
927 * updating it.
928 */
0cbe3e26 929 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1ea0704e
JF
930}
931
0cbe3e26 932static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e
JF
933 unsigned long addr,
934 pte_t *ptep, pte_t pte)
935{
936 /*
937 * The pte is non-present, so there's no hardware state to
938 * preserve.
939 */
0cbe3e26 940 set_pte_at(vma->vm_mm, addr, ptep, pte);
1ea0704e
JF
941}
942
943#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
944/*
945 * Start a pte protection read-modify-write transaction, which
946 * protects against asynchronous hardware modifications to the pte.
947 * The intention is not to prevent the hardware from making pte
948 * updates, but to prevent any updates it may make from being lost.
949 *
950 * This does not protect against other software modifications of the
2eb70aab 951 * pte; the appropriate pte lock must be held over the transaction.
1ea0704e
JF
952 *
953 * Note that this interface is intended to be batchable, meaning that
954 * ptep_modify_prot_commit may not actually update the pte, but merely
955 * queue the update to be done at some later time. The update must be
956 * actually committed before the pte lock is released, however.
957 */
0cbe3e26 958static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1ea0704e
JF
959 unsigned long addr,
960 pte_t *ptep)
961{
0cbe3e26 962 return __ptep_modify_prot_start(vma, addr, ptep);
1ea0704e
JF
963}
964
965/*
966 * Commit an update to a pte, leaving any hardware-controlled bits in
967 * the PTE unmodified.
968 */
0cbe3e26 969static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1ea0704e 970 unsigned long addr,
04a86453 971 pte_t *ptep, pte_t old_pte, pte_t pte)
1ea0704e 972{
0cbe3e26 973 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1ea0704e
JF
974}
975#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 976#endif /* CONFIG_MMU */
1ea0704e 977
21729f81
TL
978/*
979 * No-op macros that just return the current protection value. Defined here
1067b261 980 * because these macros can be used even if CONFIG_MMU is not defined.
21729f81 981 */
63bb76de
PE
982
983#ifndef pgprot_nx
984#define pgprot_nx(prot) (prot)
985#endif
986
987#ifndef pgprot_noncached
988#define pgprot_noncached(prot) (prot)
989#endif
990
991#ifndef pgprot_writecombine
992#define pgprot_writecombine pgprot_noncached
993#endif
994
995#ifndef pgprot_writethrough
996#define pgprot_writethrough pgprot_noncached
997#endif
998
999#ifndef pgprot_device
1000#define pgprot_device pgprot_noncached
1001#endif
1002
d15dfd31
CM
1003#ifndef pgprot_mhp
1004#define pgprot_mhp(prot) (prot)
1005#endif
1006
63bb76de
PE
1007#ifdef CONFIG_MMU
1008#ifndef pgprot_modify
1009#define pgprot_modify pgprot_modify
1010static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1011{
1012 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1013 newprot = pgprot_noncached(newprot);
1014 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1015 newprot = pgprot_writecombine(newprot);
1016 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1017 newprot = pgprot_device(newprot);
1018 return newprot;
1019}
1020#endif
1021#endif /* CONFIG_MMU */
1022
21729f81
TL
1023#ifndef pgprot_encrypted
1024#define pgprot_encrypted(prot) (prot)
1025#endif
1026
1027#ifndef pgprot_decrypted
1028#define pgprot_decrypted(prot) (prot)
1029#endif
1030
9535239f
GU
1031/*
1032 * A facility to provide lazy MMU batching. This allows PTE updates and
1033 * page invalidations to be delayed until a call to leave lazy MMU mode
1034 * is issued. Some architectures may benefit from doing this, and it is
1035 * beneficial for both shadow and direct mode hypervisors, which may batch
1036 * the PTE updates which happen during this window. Note that using this
1037 * interface requires that read hazards be removed from the code. A read
1038 * hazard could result in the direct mode hypervisor case, since the actual
1039 * write to the page tables may not yet have taken place, so reads though
1040 * a raw PTE pointer after it has been modified are not guaranteed to be
1041 * up to date. This mode can only be entered and left under the protection of
1042 * the page table locks for all page tables which may be modified. In the UP
1043 * case, this is required so that preemption is disabled, and in the SMP case,
1044 * it must synchronize the delayed page table writes properly on other CPUs.
1045 */
1046#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1047#define arch_enter_lazy_mmu_mode() do {} while (0)
1048#define arch_leave_lazy_mmu_mode() do {} while (0)
1049#define arch_flush_lazy_mmu_mode() do {} while (0)
1050#endif
1051
1052/*
7fd7d83d
JF
1053 * A facility to provide batching of the reload of page tables and
1054 * other process state with the actual context switch code for
1055 * paravirtualized guests. By convention, only one of the batched
1056 * update (lazy) modes (CPU, MMU) should be active at any given time,
1057 * entry should never be nested, and entry and exits should always be
1058 * paired. This is for sanity of maintaining and reasoning about the
1059 * kernel code. In this case, the exit (end of the context switch) is
1060 * in architecture-specific code, and so doesn't need a generic
1061 * definition.
9535239f 1062 */
7fd7d83d 1063#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 1064#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
1065#endif
1066
ab6e3d09
NH
1067#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1068#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1069static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1070{
1071 return pmd;
1072}
1073
1074static inline int pmd_swp_soft_dirty(pmd_t pmd)
1075{
1076 return 0;
1077}
1078
1079static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1080{
1081 return pmd;
1082}
1083#endif
1084#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
0f8975ec
PE
1085static inline int pte_soft_dirty(pte_t pte)
1086{
1087 return 0;
1088}
1089
1090static inline int pmd_soft_dirty(pmd_t pmd)
1091{
1092 return 0;
1093}
1094
1095static inline pte_t pte_mksoft_dirty(pte_t pte)
1096{
1097 return pte;
1098}
1099
1100static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1101{
1102 return pmd;
1103}
179ef71c 1104
a7b76174
MS
1105static inline pte_t pte_clear_soft_dirty(pte_t pte)
1106{
1107 return pte;
1108}
1109
1110static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1111{
1112 return pmd;
1113}
1114
179ef71c
CG
1115static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1116{
1117 return pte;
1118}
1119
1120static inline int pte_swp_soft_dirty(pte_t pte)
1121{
1122 return 0;
1123}
1124
1125static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1126{
1127 return pte;
1128}
ab6e3d09
NH
1129
1130static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1131{
1132 return pmd;
1133}
1134
1135static inline int pmd_swp_soft_dirty(pmd_t pmd)
1136{
1137 return 0;
1138}
1139
1140static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1141{
1142 return pmd;
1143}
0f8975ec
PE
1144#endif
1145
34801ba9 1146#ifndef __HAVE_PFNMAP_TRACKING
1147/*
5180da41
SS
1148 * Interfaces that can be used by architecture code to keep track of
1149 * memory type of pfn mappings specified by the remap_pfn_range,
67fa1666 1150 * vmf_insert_pfn.
5180da41
SS
1151 */
1152
1153/*
1154 * track_pfn_remap is called when a _new_ pfn mapping is being established
1155 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 1156 */
5180da41 1157static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1158 unsigned long pfn, unsigned long addr,
1159 unsigned long size)
34801ba9 1160{
1161 return 0;
1162}
1163
1164/*
5180da41 1165 * track_pfn_insert is called when a _new_ single pfn is established
67fa1666 1166 * by vmf_insert_pfn().
5180da41 1167 */
308a047c
BP
1168static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1169 pfn_t pfn)
5180da41 1170{
5180da41
SS
1171}
1172
1173/*
1174 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 1175 * copied through copy_page_range().
1176 */
5180da41 1177static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 1178{
1179 return 0;
1180}
1181
1182/*
d9fe4fab 1183 * untrack_pfn is called while unmapping a pfnmap for a region.
34801ba9 1184 * untrack can be called for a specific region indicated by pfn and size or
5180da41 1185 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 1186 */
5180da41 1187static inline void untrack_pfn(struct vm_area_struct *vma,
68f48381
SB
1188 unsigned long pfn, unsigned long size,
1189 bool mm_wr_locked)
34801ba9 1190{
1191}
d9fe4fab
TK
1192
1193/*
1194 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1195 */
1196static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1197{
1198}
34801ba9 1199#else
5180da41 1200extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
1201 unsigned long pfn, unsigned long addr,
1202 unsigned long size);
308a047c
BP
1203extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1204 pfn_t pfn);
5180da41
SS
1205extern int track_pfn_copy(struct vm_area_struct *vma);
1206extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
68f48381 1207 unsigned long size, bool mm_wr_locked);
d9fe4fab 1208extern void untrack_pfn_moved(struct vm_area_struct *vma);
34801ba9 1209#endif
1210
9afaf30f 1211#ifdef CONFIG_MMU
816422ad
KS
1212#ifdef __HAVE_COLOR_ZERO_PAGE
1213static inline int is_zero_pfn(unsigned long pfn)
1214{
1215 extern unsigned long zero_pfn;
1216 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1217 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1218}
1219
2f91ec8c
KS
1220#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1221
816422ad
KS
1222#else
1223static inline int is_zero_pfn(unsigned long pfn)
1224{
1225 extern unsigned long zero_pfn;
1226 return pfn == zero_pfn;
1227}
1228
1229static inline unsigned long my_zero_pfn(unsigned long addr)
1230{
1231 extern unsigned long zero_pfn;
1232 return zero_pfn;
1233}
1234#endif
9afaf30f
PT
1235#else
1236static inline int is_zero_pfn(unsigned long pfn)
1237{
1238 return 0;
1239}
1240
1241static inline unsigned long my_zero_pfn(unsigned long addr)
1242{
1243 return 0;
1244}
1245#endif /* CONFIG_MMU */
816422ad 1246
1a5a9906
AA
1247#ifdef CONFIG_MMU
1248
5f6e8da7
AA
1249#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1250static inline int pmd_trans_huge(pmd_t pmd)
1251{
1252 return 0;
1253}
e4e40e02 1254#ifndef pmd_write
e2cda322
AA
1255static inline int pmd_write(pmd_t pmd)
1256{
1257 BUG();
1258 return 0;
1259}
e4e40e02 1260#endif /* pmd_write */
1a5a9906
AA
1261#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1262
1501899a
DW
1263#ifndef pud_write
1264static inline int pud_write(pud_t pud)
1265{
1266 BUG();
1267 return 0;
1268}
1269#endif /* pud_write */
1270
bf1a12a8
TH
1271#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1272static inline int pmd_devmap(pmd_t pmd)
1273{
1274 return 0;
1275}
1276static inline int pud_devmap(pud_t pud)
1277{
1278 return 0;
1279}
1280static inline int pgd_devmap(pgd_t pgd)
1281{
1282 return 0;
1283}
1284#endif
1285
a00cc7d9 1286#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
bcd0dea5 1287 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
1288static inline int pud_trans_huge(pud_t pud)
1289{
1290 return 0;
1291}
1292#endif
1293
625110b5
TH
1294/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1295static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1296{
1297 pud_t pudval = READ_ONCE(*pud);
1298
1299 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1300 return 1;
1301 if (unlikely(pud_bad(pudval))) {
1302 pud_clear_bad(pud);
1303 return 1;
1304 }
1305 return 0;
1306}
1307
1308/* See pmd_trans_unstable for discussion. */
1309static inline int pud_trans_unstable(pud_t *pud)
1310{
1311#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1312 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1313 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1314#else
1315 return 0;
1316#endif
1317}
1318
953c66c2
AK
1319#ifndef arch_needs_pgtable_deposit
1320#define arch_needs_pgtable_deposit() (false)
1321#endif
1a5a9906
AA
1322/*
1323 * This function is meant to be used by sites walking pagetables with
c1e8d7c6 1324 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1a5a9906
AA
1325 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1326 * into a null pmd and the transhuge page fault can convert a null pmd
1327 * into an hugepmd or into a regular pmd (if the hugepage allocation
c1e8d7c6 1328 * fails). While holding the mmap_lock in read mode the pmd becomes
1a5a9906
AA
1329 * stable and stops changing under us only if it's not null and not a
1330 * transhuge pmd. When those races occurs and this function makes a
1331 * difference vs the standard pmd_none_or_clear_bad, the result is
1332 * undefined so behaving like if the pmd was none is safe (because it
1333 * can return none anyway). The compiler level barrier() is critically
1334 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
1335 *
1336 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1337 * care of reading the pmd atomically to avoid SMP race conditions
c1e8d7c6 1338 * against pmd_populate() when the mmap_lock is hold for reading by the
26c19178
AA
1339 * caller (a special atomic read not done by "gcc" as in the generic
1340 * version above, is also needed when THP is disabled because the page
1341 * fault can populate the pmd from under us).
1a5a9906
AA
1342 */
1343static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1344{
dab6e717 1345 pmd_t pmdval = pmdp_get_lockless(pmd);
1a5a9906
AA
1346 /*
1347 * The barrier will stabilize the pmdval in a register or on
1348 * the stack so that it will stop changing under the code.
e4eed03f
AA
1349 *
1350 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
dab6e717 1351 * pmdp_get_lockless is allowed to return a not atomic pmdval
e4eed03f
AA
1352 * (for example pointing to an hugepage that has never been
1353 * mapped in the pmd). The below checks will only care about
1354 * the low part of the pmd with 32bit PAE x86 anyway, with the
1355 * exception of pmd_none(). So the important thing is that if
1356 * the low part of the pmd is found null, the high part will
1357 * be also null or the pmd_none() check below would be
1358 * confused.
1a5a9906
AA
1359 */
1360#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1361 barrier();
1362#endif
84c3fc4e
ZY
1363 /*
1364 * !pmd_present() checks for pmd migration entries
1365 *
1366 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1367 * But using that requires moving current function and pmd_trans_unstable()
2eb70aab 1368 * to linux/swapops.h to resolve dependency, which is too much code move.
84c3fc4e
ZY
1369 *
1370 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1371 * because !pmd_present() pages can only be under migration not swapped
1372 * out.
1373 *
2eb70aab 1374 * pmd_none() is preserved for future condition checks on pmd migration
84c3fc4e
ZY
1375 * entries and not confusing with this function name, although it is
1376 * redundant with !pmd_present().
1377 */
1378 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1379 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1a5a9906
AA
1380 return 1;
1381 if (unlikely(pmd_bad(pmdval))) {
ee53664b 1382 pmd_clear_bad(pmd);
1a5a9906
AA
1383 return 1;
1384 }
1385 return 0;
1386}
1387
1388/*
1389 * This is a noop if Transparent Hugepage Support is not built into
1390 * the kernel. Otherwise it is equivalent to
1391 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1392 * places that already verified the pmd is not none and they want to
1393 * walk ptes while holding the mmap sem in read mode (write mode don't
1394 * need this). If THP is not enabled, the pmd can't go away under the
1395 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1396 * run a pmd_trans_unstable before walking the ptes after
9ef258ba
KW
1397 * split_huge_pmd returns (because it may have run when the pmd become
1398 * null, but then a page fault can map in a THP and not a regular page).
1a5a9906
AA
1399 */
1400static inline int pmd_trans_unstable(pmd_t *pmd)
1401{
1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1403 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1404#else
1405 return 0;
5f6e8da7 1406#endif
1a5a9906
AA
1407}
1408
f9ce0be7
KS
1409/*
1410 * the ordering of these checks is important for pmds with _page_devmap set.
1411 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1412 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1413 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1414 */
1415static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1416{
1417 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1418}
1419
e7bb4b6d
MG
1420#ifndef CONFIG_NUMA_BALANCING
1421/*
1422 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1423 * the only case the kernel cares is for NUMA balancing and is only ever set
1424 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1067b261 1425 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
e7bb4b6d
MG
1426 * is the responsibility of the caller to distinguish between PROT_NONE
1427 * protections and NUMA hinting fault protections.
1428 */
1429static inline int pte_protnone(pte_t pte)
1430{
1431 return 0;
1432}
1433
1434static inline int pmd_protnone(pmd_t pmd)
1435{
1436 return 0;
1437}
1438#endif /* CONFIG_NUMA_BALANCING */
1439
1a5a9906 1440#endif /* CONFIG_MMU */
5f6e8da7 1441
e61ce6ad 1442#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
c2febafc
KS
1443
1444#ifndef __PAGETABLE_P4D_FOLDED
1445int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
c8db8c26 1446void p4d_clear_huge(p4d_t *p4d);
c2febafc
KS
1447#else
1448static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1449{
1450 return 0;
1451}
c8db8c26 1452static inline void p4d_clear_huge(p4d_t *p4d) { }
c2febafc
KS
1453#endif /* !__PAGETABLE_P4D_FOLDED */
1454
e61ce6ad 1455int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
c742199a 1456int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
d8a71905 1457int pud_clear_huge(pud_t *pud);
b9820d8f 1458int pmd_clear_huge(pmd_t *pmd);
8e2d4340 1459int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
785a19f9
CP
1460int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1461int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
e61ce6ad 1462#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
c2febafc
KS
1463static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1464{
1465 return 0;
1466}
e61ce6ad
TK
1467static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1468{
1469 return 0;
1470}
1471static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1472{
1473 return 0;
1474}
c8db8c26 1475static inline void p4d_clear_huge(p4d_t *p4d) { }
b9820d8f
TK
1476static inline int pud_clear_huge(pud_t *pud)
1477{
1478 return 0;
1479}
1480static inline int pmd_clear_huge(pmd_t *pmd)
1481{
1482 return 0;
1483}
8e2d4340
WD
1484static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1485{
1486 return 0;
1487}
785a19f9 1488static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
b6bdb751
TK
1489{
1490 return 0;
1491}
785a19f9 1492static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
b6bdb751
TK
1493{
1494 return 0;
1495}
e61ce6ad
TK
1496#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1497
458aa76d
AK
1498#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1500/*
1501 * ARCHes with special requirements for evicting THP backing TLB entries can
1502 * implement this. Otherwise also, it can help optimize normal TLB flush in
1067b261
RD
1503 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1504 * entire TLB if flush span is greater than a threshold, which will
1505 * likely be true for a single huge page. Thus a single THP flush will
1506 * invalidate the entire TLB which is not desirable.
458aa76d
AK
1507 * e.g. see arch/arc: flush_pmd_tlb_range
1508 */
1509#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
a00cc7d9 1510#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
458aa76d
AK
1511#else
1512#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
a00cc7d9 1513#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
458aa76d
AK
1514#endif
1515#endif
1516
08ea8c07
BX
1517struct file;
1518int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1519 unsigned long size, pgprot_t *vma_prot);
613e396b
TG
1520
1521#ifndef CONFIG_X86_ESPFIX64
1522static inline void init_espfix_bsp(void) { }
1523#endif
1524
782de70c 1525extern void __init pgtable_cache_init(void);
caa84136 1526
6c26fcd2
JK
1527#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1528static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1529{
1530 return true;
1531}
1532
1533static inline bool arch_has_pfn_modify_check(void)
1534{
1535 return false;
1536}
1537#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1538
a3266bd4
LR
1539/*
1540 * Architecture PAGE_KERNEL_* fallbacks
1541 *
1542 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1543 * because they really don't support them, or the port needs to be updated to
1544 * reflect the required functionality. Below are a set of relatively safe
1545 * fallbacks, as best effort, which we can count on in lieu of the architectures
1546 * not defining them on their own yet.
1547 */
1548
1549#ifndef PAGE_KERNEL_RO
1550# define PAGE_KERNEL_RO PAGE_KERNEL
1551#endif
1552
1a9b4b3d
LR
1553#ifndef PAGE_KERNEL_EXEC
1554# define PAGE_KERNEL_EXEC PAGE_KERNEL
1555#endif
1556
d8626138
JR
1557/*
1558 * Page Table Modification bits for pgtbl_mod_mask.
1559 *
1560 * These are used by the p?d_alloc_track*() set of functions an in the generic
1561 * vmalloc/ioremap code to track at which page-table levels entries have been
1562 * modified. Based on that the code can better decide when vmalloc and ioremap
1563 * mapping changes need to be synchronized to other page-tables in the system.
1564 */
1565#define __PGTBL_PGD_MODIFIED 0
1566#define __PGTBL_P4D_MODIFIED 1
1567#define __PGTBL_PUD_MODIFIED 2
1568#define __PGTBL_PMD_MODIFIED 3
1569#define __PGTBL_PTE_MODIFIED 4
1570
1571#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1572#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1573#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1574#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1575#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1576
1577/* Page-Table Modification Mask */
1578typedef unsigned int pgtbl_mod_mask;
1579
1da177e4
LT
1580#endif /* !__ASSEMBLY__ */
1581
cef39703
AB
1582#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1583#ifdef CONFIG_PHYS_ADDR_T_64BIT
1584/*
1585 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1586 * with physical address space extension, but falls back to
1587 * BITS_PER_LONG otherwise.
1588 */
1589#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1590#else
1591#define MAX_POSSIBLE_PHYSMEM_BITS 32
1592#endif
1593#endif
1594
fd8cfd30 1595#ifndef has_transparent_hugepage
a38c94ed 1596#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
fd8cfd30
HD
1597#endif
1598
1071fc57
MS
1599/*
1600 * On some architectures it depends on the mm if the p4d/pud or pmd
1601 * layer of the page table hierarchy is folded or not.
1602 */
1603#ifndef mm_p4d_folded
1604#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1605#endif
1606
1607#ifndef mm_pud_folded
1608#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1609#endif
1610
1611#ifndef mm_pmd_folded
1612#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1613#endif
1614
d3f7b1bb
VG
1615#ifndef p4d_offset_lockless
1616#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1617#endif
1618#ifndef pud_offset_lockless
1619#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1620#endif
1621#ifndef pmd_offset_lockless
1622#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1623#endif
1624
93fab1b2
SP
1625/*
1626 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1627 * This differs from p?d_huge() by the fact that they are always available (if
1628 * the architecture supports large pages at the appropriate level) even
1629 * if CONFIG_HUGETLB_PAGE is not defined.
1630 * Only meaningful when called on a valid entry.
1631 */
1632#ifndef pgd_leaf
1633#define pgd_leaf(x) 0
1634#endif
1635#ifndef p4d_leaf
1636#define p4d_leaf(x) 0
1637#endif
1638#ifndef pud_leaf
1639#define pud_leaf(x) 0
1640#endif
1641#ifndef pmd_leaf
1642#define pmd_leaf(x) 0
1643#endif
1644
560dabbd
PZ
1645#ifndef pgd_leaf_size
1646#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1647#endif
1648#ifndef p4d_leaf_size
1649#define p4d_leaf_size(x) P4D_SIZE
1650#endif
1651#ifndef pud_leaf_size
1652#define pud_leaf_size(x) PUD_SIZE
1653#endif
1654#ifndef pmd_leaf_size
1655#define pmd_leaf_size(x) PMD_SIZE
1656#endif
1657#ifndef pte_leaf_size
1658#define pte_leaf_size(x) PAGE_SIZE
1659#endif
1660
c0f8aa4f
DA
1661/*
1662 * Some architectures have MMUs that are configurable or selectable at boot
1663 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1664 * helps to have a static maximum value.
1665 */
1666
1667#ifndef MAX_PTRS_PER_PTE
1668#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1669#endif
1670
1671#ifndef MAX_PTRS_PER_PMD
1672#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1673#endif
1674
1675#ifndef MAX_PTRS_PER_PUD
1676#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1677#endif
1678
1679#ifndef MAX_PTRS_PER_P4D
1680#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1681#endif
1682
43957b5d
AK
1683/* description of effects of mapping type and prot in current implementation.
1684 * this is due to the limited x86 page protection hardware. The expected
1685 * behavior is in parens:
1686 *
1687 * map_type prot
1688 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1689 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1690 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1691 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1692 *
1693 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1694 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1695 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1696 *
1697 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1698 * MAP_PRIVATE (with Enhanced PAN supported):
1699 * r: (no) no
1700 * w: (no) no
1701 * x: (yes) yes
1702 */
1703#define DECLARE_VM_GET_PAGE_PROT \
1704pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1705{ \
1706 return protection_map[vm_flags & \
1707 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1708} \
1709EXPORT_SYMBOL(vm_get_page_prot);
1710
ca5999fd 1711#endif /* _LINUX_PGTABLE_H */
This page took 2.061009 seconds and 4 git commands to generate.