]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
ca5999fd MR |
2 | #ifndef _LINUX_PGTABLE_H |
3 | #define _LINUX_PGTABLE_H | |
1da177e4 | 4 | |
f25748e3 | 5 | #include <linux/pfn.h> |
ca5999fd | 6 | #include <asm/pgtable.h> |
f25748e3 | 7 | |
673eae82 | 8 | #ifndef __ASSEMBLY__ |
9535239f | 9 | #ifdef CONFIG_MMU |
673eae82 | 10 | |
fbd71844 | 11 | #include <linux/mm_types.h> |
187f1882 | 12 | #include <linux/bug.h> |
e61ce6ad | 13 | #include <linux/errno.h> |
5a281062 | 14 | #include <asm-generic/pgtable_uffd.h> |
de8c8e52 | 15 | #include <linux/page_table_check.h> |
fbd71844 | 16 | |
c2febafc KS |
17 | #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ |
18 | defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS | |
19 | #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED | |
235a8f02 KS |
20 | #endif |
21 | ||
6ee8630e HD |
22 | /* |
23 | * On almost all architectures and configurations, 0 can be used as the | |
24 | * upper ceiling to free_pgtables(): on many architectures it has the same | |
25 | * effect as using TASK_SIZE. However, there is one configuration which | |
26 | * must impose a more careful limit, to avoid freeing kernel pgtables. | |
27 | */ | |
28 | #ifndef USER_PGTABLES_CEILING | |
29 | #define USER_PGTABLES_CEILING 0UL | |
30 | #endif | |
fac7757e AK |
31 | |
32 | /* | |
33 | * This defines the first usable user address. Platforms | |
34 | * can override its value with custom FIRST_USER_ADDRESS | |
35 | * defined in their respective <asm/pgtable.h>. | |
36 | */ | |
37 | #ifndef FIRST_USER_ADDRESS | |
38 | #define FIRST_USER_ADDRESS 0UL | |
39 | #endif | |
1c2f7d14 AK |
40 | |
41 | /* | |
42 | * This defines the generic helper for accessing PMD page | |
43 | * table page. Although platforms can still override this | |
44 | * via their respective <asm/pgtable.h>. | |
45 | */ | |
46 | #ifndef pmd_pgtable | |
47 | #define pmd_pgtable(pmd) pmd_page(pmd) | |
48 | #endif | |
6ee8630e | 49 | |
974b9b2c MR |
50 | /* |
51 | * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] | |
52 | * | |
53 | * The pXx_index() functions return the index of the entry in the page | |
54 | * table page which would control the given virtual address | |
55 | * | |
56 | * As these functions may be used by the same code for different levels of | |
57 | * the page table folding, they are always available, regardless of | |
58 | * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 | |
59 | * because in such cases PTRS_PER_PxD equals 1. | |
60 | */ | |
61 | ||
62 | static inline unsigned long pte_index(unsigned long address) | |
63 | { | |
64 | return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
65 | } | |
314c459a | 66 | #define pte_index pte_index |
974b9b2c MR |
67 | |
68 | #ifndef pmd_index | |
69 | static inline unsigned long pmd_index(unsigned long address) | |
70 | { | |
71 | return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); | |
72 | } | |
73 | #define pmd_index pmd_index | |
74 | #endif | |
75 | ||
76 | #ifndef pud_index | |
77 | static inline unsigned long pud_index(unsigned long address) | |
78 | { | |
79 | return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); | |
80 | } | |
81 | #define pud_index pud_index | |
82 | #endif | |
83 | ||
84 | #ifndef pgd_index | |
85 | /* Must be a compile-time constant, so implement it as a macro */ | |
86 | #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) | |
87 | #endif | |
88 | ||
89 | #ifndef pte_offset_kernel | |
90 | static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) | |
91 | { | |
92 | return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); | |
93 | } | |
94 | #define pte_offset_kernel pte_offset_kernel | |
95 | #endif | |
96 | ||
97 | #if defined(CONFIG_HIGHPTE) | |
98 | #define pte_offset_map(dir, address) \ | |
99 | ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ | |
100 | pte_index((address))) | |
101 | #define pte_unmap(pte) kunmap_atomic((pte)) | |
102 | #else | |
103 | #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) | |
104 | #define pte_unmap(pte) ((void)(pte)) /* NOP */ | |
105 | #endif | |
106 | ||
107 | /* Find an entry in the second-level page table.. */ | |
108 | #ifndef pmd_offset | |
109 | static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) | |
110 | { | |
9cf6fa24 | 111 | return pud_pgtable(*pud) + pmd_index(address); |
974b9b2c MR |
112 | } |
113 | #define pmd_offset pmd_offset | |
114 | #endif | |
115 | ||
116 | #ifndef pud_offset | |
117 | static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) | |
118 | { | |
dc4875f0 | 119 | return p4d_pgtable(*p4d) + pud_index(address); |
974b9b2c MR |
120 | } |
121 | #define pud_offset pud_offset | |
122 | #endif | |
123 | ||
124 | static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) | |
125 | { | |
126 | return (pgd + pgd_index(address)); | |
127 | }; | |
128 | ||
129 | /* | |
130 | * a shortcut to get a pgd_t in a given mm | |
131 | */ | |
132 | #ifndef pgd_offset | |
133 | #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) | |
134 | #endif | |
135 | ||
136 | /* | |
137 | * a shortcut which implies the use of the kernel's pgd, instead | |
138 | * of a process's | |
139 | */ | |
bd05220c | 140 | #ifndef pgd_offset_k |
974b9b2c | 141 | #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) |
bd05220c | 142 | #endif |
974b9b2c | 143 | |
e05c7b1f MR |
144 | /* |
145 | * In many cases it is known that a virtual address is mapped at PMD or PTE | |
146 | * level, so instead of traversing all the page table levels, we can get a | |
147 | * pointer to the PMD entry in user or kernel page table or translate a virtual | |
148 | * address to the pointer in the PTE in the kernel page tables with simple | |
149 | * helpers. | |
150 | */ | |
151 | static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) | |
152 | { | |
153 | return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); | |
154 | } | |
155 | ||
156 | static inline pmd_t *pmd_off_k(unsigned long va) | |
157 | { | |
158 | return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); | |
159 | } | |
160 | ||
161 | static inline pte_t *virt_to_kpte(unsigned long vaddr) | |
162 | { | |
163 | pmd_t *pmd = pmd_off_k(vaddr); | |
164 | ||
165 | return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); | |
166 | } | |
167 | ||
6617da8f JG |
168 | #ifndef pmd_young |
169 | static inline int pmd_young(pmd_t pmd) | |
170 | { | |
171 | return 0; | |
172 | } | |
173 | #endif | |
174 | ||
1da177e4 | 175 | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
e2cda322 AA |
176 | extern int ptep_set_access_flags(struct vm_area_struct *vma, |
177 | unsigned long address, pte_t *ptep, | |
178 | pte_t entry, int dirty); | |
179 | #endif | |
180 | ||
181 | #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS | |
bd5e88ad | 182 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
e2cda322 AA |
183 | extern int pmdp_set_access_flags(struct vm_area_struct *vma, |
184 | unsigned long address, pmd_t *pmdp, | |
185 | pmd_t entry, int dirty); | |
a00cc7d9 MW |
186 | extern int pudp_set_access_flags(struct vm_area_struct *vma, |
187 | unsigned long address, pud_t *pudp, | |
188 | pud_t entry, int dirty); | |
bd5e88ad VG |
189 | #else |
190 | static inline int pmdp_set_access_flags(struct vm_area_struct *vma, | |
191 | unsigned long address, pmd_t *pmdp, | |
192 | pmd_t entry, int dirty) | |
193 | { | |
194 | BUILD_BUG(); | |
195 | return 0; | |
196 | } | |
a00cc7d9 MW |
197 | static inline int pudp_set_access_flags(struct vm_area_struct *vma, |
198 | unsigned long address, pud_t *pudp, | |
199 | pud_t entry, int dirty) | |
200 | { | |
201 | BUILD_BUG(); | |
202 | return 0; | |
203 | } | |
bd5e88ad | 204 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
1da177e4 LT |
205 | #endif |
206 | ||
207 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | |
e2cda322 AA |
208 | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, |
209 | unsigned long address, | |
210 | pte_t *ptep) | |
211 | { | |
212 | pte_t pte = *ptep; | |
213 | int r = 1; | |
214 | if (!pte_young(pte)) | |
215 | r = 0; | |
216 | else | |
217 | set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); | |
218 | return r; | |
219 | } | |
220 | #endif | |
221 | ||
222 | #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG | |
eed9a328 | 223 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) |
e2cda322 AA |
224 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
225 | unsigned long address, | |
226 | pmd_t *pmdp) | |
227 | { | |
228 | pmd_t pmd = *pmdp; | |
229 | int r = 1; | |
230 | if (!pmd_young(pmd)) | |
231 | r = 0; | |
232 | else | |
233 | set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); | |
234 | return r; | |
235 | } | |
bd5e88ad | 236 | #else |
e2cda322 AA |
237 | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, |
238 | unsigned long address, | |
239 | pmd_t *pmdp) | |
240 | { | |
bd5e88ad | 241 | BUILD_BUG(); |
e2cda322 AA |
242 | return 0; |
243 | } | |
eed9a328 | 244 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ |
1da177e4 LT |
245 | #endif |
246 | ||
247 | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | |
e2cda322 AA |
248 | int ptep_clear_flush_young(struct vm_area_struct *vma, |
249 | unsigned long address, pte_t *ptep); | |
250 | #endif | |
251 | ||
252 | #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH | |
bd5e88ad VG |
253 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
254 | extern int pmdp_clear_flush_young(struct vm_area_struct *vma, | |
255 | unsigned long address, pmd_t *pmdp); | |
256 | #else | |
257 | /* | |
258 | * Despite relevant to THP only, this API is called from generic rmap code | |
259 | * under PageTransHuge(), hence needs a dummy implementation for !THP | |
260 | */ | |
261 | static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, | |
262 | unsigned long address, pmd_t *pmdp) | |
263 | { | |
264 | BUILD_BUG(); | |
265 | return 0; | |
266 | } | |
267 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
1da177e4 LT |
268 | #endif |
269 | ||
4aaf269c JG |
270 | #ifndef arch_has_hw_nonleaf_pmd_young |
271 | /* | |
272 | * Return whether the accessed bit in non-leaf PMD entries is supported on the | |
273 | * local CPU. | |
274 | */ | |
275 | static inline bool arch_has_hw_nonleaf_pmd_young(void) | |
276 | { | |
277 | return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); | |
278 | } | |
279 | #endif | |
280 | ||
e1fd09e3 YZ |
281 | #ifndef arch_has_hw_pte_young |
282 | /* | |
283 | * Return whether the accessed bit is supported on the local CPU. | |
284 | * | |
285 | * This stub assumes accessing through an old PTE triggers a page fault. | |
286 | * Architectures that automatically set the access bit should overwrite it. | |
287 | */ | |
288 | static inline bool arch_has_hw_pte_young(void) | |
289 | { | |
290 | return false; | |
291 | } | |
292 | #endif | |
293 | ||
1da177e4 | 294 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
e2cda322 AA |
295 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, |
296 | unsigned long address, | |
297 | pte_t *ptep) | |
298 | { | |
299 | pte_t pte = *ptep; | |
300 | pte_clear(mm, address, ptep); | |
de8c8e52 | 301 | page_table_check_pte_clear(mm, address, pte); |
e2cda322 AA |
302 | return pte; |
303 | } | |
304 | #endif | |
305 | ||
de8c8e52 TT |
306 | static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, |
307 | pte_t *ptep) | |
308 | { | |
309 | ptep_get_and_clear(mm, addr, ptep); | |
310 | } | |
de8c8e52 | 311 | |
2dff2c35 | 312 | #ifndef ptep_get |
481e980a CL |
313 | static inline pte_t ptep_get(pte_t *ptep) |
314 | { | |
315 | return READ_ONCE(*ptep); | |
316 | } | |
317 | #endif | |
318 | ||
2dff2c35 | 319 | #ifndef pmdp_get |
024d232a PZ |
320 | static inline pmd_t pmdp_get(pmd_t *pmdp) |
321 | { | |
322 | return READ_ONCE(*pmdp); | |
323 | } | |
324 | #endif | |
325 | ||
6ca297d4 | 326 | #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH |
2a4a06da | 327 | /* |
93b3037a PZ |
328 | * For walking the pagetables without holding any locks. Some architectures |
329 | * (eg x86-32 PAE) cannot load the entries atomically without using expensive | |
330 | * instructions. We are guaranteed that a PTE will only either go from not | |
331 | * present to present, or present to not present -- it will not switch to a | |
332 | * completely different present page without a TLB flush inbetween; which we | |
333 | * are blocking by holding interrupts off. | |
2a4a06da PZ |
334 | * |
335 | * Setting ptes from not present to present goes: | |
336 | * | |
337 | * ptep->pte_high = h; | |
338 | * smp_wmb(); | |
339 | * ptep->pte_low = l; | |
340 | * | |
341 | * And present to not present goes: | |
342 | * | |
343 | * ptep->pte_low = 0; | |
344 | * smp_wmb(); | |
345 | * ptep->pte_high = 0; | |
346 | * | |
347 | * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | |
348 | * We load pte_high *after* loading pte_low, which ensures we don't see an older | |
349 | * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't | |
350 | * picked up a changed pte high. We might have gotten rubbish values from | |
351 | * pte_low and pte_high, but we are guaranteed that pte_low will not have the | |
352 | * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | |
353 | * operates on present ptes we're safe. | |
354 | */ | |
355 | static inline pte_t ptep_get_lockless(pte_t *ptep) | |
356 | { | |
357 | pte_t pte; | |
358 | ||
359 | do { | |
360 | pte.pte_low = ptep->pte_low; | |
361 | smp_rmb(); | |
362 | pte.pte_high = ptep->pte_high; | |
363 | smp_rmb(); | |
364 | } while (unlikely(pte.pte_low != ptep->pte_low)); | |
365 | ||
366 | return pte; | |
367 | } | |
024d232a PZ |
368 | #define ptep_get_lockless ptep_get_lockless |
369 | ||
370 | #if CONFIG_PGTABLE_LEVELS > 2 | |
371 | static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) | |
372 | { | |
373 | pmd_t pmd; | |
374 | ||
375 | do { | |
376 | pmd.pmd_low = pmdp->pmd_low; | |
377 | smp_rmb(); | |
378 | pmd.pmd_high = pmdp->pmd_high; | |
379 | smp_rmb(); | |
380 | } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); | |
381 | ||
382 | return pmd; | |
383 | } | |
384 | #define pmdp_get_lockless pmdp_get_lockless | |
385 | #endif /* CONFIG_PGTABLE_LEVELS > 2 */ | |
6ca297d4 | 386 | #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ |
024d232a | 387 | |
2a4a06da PZ |
388 | /* |
389 | * We require that the PTE can be read atomically. | |
390 | */ | |
024d232a | 391 | #ifndef ptep_get_lockless |
2a4a06da PZ |
392 | static inline pte_t ptep_get_lockless(pte_t *ptep) |
393 | { | |
394 | return ptep_get(ptep); | |
395 | } | |
024d232a PZ |
396 | #endif |
397 | ||
398 | #ifndef pmdp_get_lockless | |
399 | static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) | |
400 | { | |
401 | return pmdp_get(pmdp); | |
402 | } | |
403 | #endif | |
2a4a06da | 404 | |
e2cda322 | 405 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
a00cc7d9 | 406 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR |
8809aa2d AK |
407 | static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, |
408 | unsigned long address, | |
409 | pmd_t *pmdp) | |
e2cda322 AA |
410 | { |
411 | pmd_t pmd = *pmdp; | |
de8c8e52 | 412 | |
2d28a227 | 413 | pmd_clear(pmdp); |
de8c8e52 TT |
414 | page_table_check_pmd_clear(mm, address, pmd); |
415 | ||
e2cda322 | 416 | return pmd; |
49b24d6b | 417 | } |
a00cc7d9 MW |
418 | #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ |
419 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR | |
420 | static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, | |
421 | unsigned long address, | |
422 | pud_t *pudp) | |
423 | { | |
424 | pud_t pud = *pudp; | |
425 | ||
426 | pud_clear(pudp); | |
de8c8e52 TT |
427 | page_table_check_pud_clear(mm, address, pud); |
428 | ||
a00cc7d9 MW |
429 | return pud; |
430 | } | |
431 | #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ | |
e2cda322 | 432 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
1da177e4 | 433 | |
fcbe08d6 | 434 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
a00cc7d9 | 435 | #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL |
93a98695 | 436 | static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, |
fcbe08d6 MS |
437 | unsigned long address, pmd_t *pmdp, |
438 | int full) | |
439 | { | |
93a98695 | 440 | return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); |
fcbe08d6 | 441 | } |
fcbe08d6 MS |
442 | #endif |
443 | ||
a00cc7d9 MW |
444 | #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL |
445 | static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, | |
446 | unsigned long address, pud_t *pudp, | |
447 | int full) | |
448 | { | |
449 | return pudp_huge_get_and_clear(mm, address, pudp); | |
450 | } | |
451 | #endif | |
452 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
453 | ||
a600388d | 454 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL |
e2cda322 AA |
455 | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, |
456 | unsigned long address, pte_t *ptep, | |
457 | int full) | |
458 | { | |
d3a89233 | 459 | return ptep_get_and_clear(mm, address, ptep); |
e2cda322 | 460 | } |
a600388d ZA |
461 | #endif |
462 | ||
7df67697 BM |
463 | |
464 | /* | |
465 | * If two threads concurrently fault at the same page, the thread that | |
466 | * won the race updates the PTE and its local TLB/Cache. The other thread | |
467 | * gives up, simply does nothing, and continues; on architectures where | |
468 | * software can update TLB, local TLB can be updated here to avoid next page | |
469 | * fault. This function updates TLB only, do nothing with cache or others. | |
470 | * It is the difference with function update_mmu_cache. | |
471 | */ | |
472 | #ifndef __HAVE_ARCH_UPDATE_MMU_TLB | |
473 | static inline void update_mmu_tlb(struct vm_area_struct *vma, | |
474 | unsigned long address, pte_t *ptep) | |
475 | { | |
476 | } | |
477 | #define __HAVE_ARCH_UPDATE_MMU_TLB | |
478 | #endif | |
479 | ||
9888a1ca ZA |
480 | /* |
481 | * Some architectures may be able to avoid expensive synchronization | |
482 | * primitives when modifications are made to PTE's which are already | |
483 | * not present, or in the process of an address space destruction. | |
484 | */ | |
485 | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL | |
e2cda322 AA |
486 | static inline void pte_clear_not_present_full(struct mm_struct *mm, |
487 | unsigned long address, | |
488 | pte_t *ptep, | |
489 | int full) | |
490 | { | |
491 | pte_clear(mm, address, ptep); | |
492 | } | |
a600388d ZA |
493 | #endif |
494 | ||
1da177e4 | 495 | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
e2cda322 AA |
496 | extern pte_t ptep_clear_flush(struct vm_area_struct *vma, |
497 | unsigned long address, | |
498 | pte_t *ptep); | |
499 | #endif | |
500 | ||
8809aa2d AK |
501 | #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH |
502 | extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, | |
e2cda322 AA |
503 | unsigned long address, |
504 | pmd_t *pmdp); | |
a00cc7d9 MW |
505 | extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, |
506 | unsigned long address, | |
507 | pud_t *pudp); | |
1da177e4 LT |
508 | #endif |
509 | ||
510 | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT | |
8c65b4a6 | 511 | struct mm_struct; |
1da177e4 LT |
512 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
513 | { | |
514 | pte_t old_pte = *ptep; | |
515 | set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); | |
516 | } | |
517 | #endif | |
518 | ||
44bf431b BM |
519 | /* |
520 | * On some architectures hardware does not set page access bit when accessing | |
2eb70aab | 521 | * memory page, it is responsibility of software setting this bit. It brings |
44bf431b BM |
522 | * out extra page fault penalty to track page access bit. For optimization page |
523 | * access bit can be set during all page fault flow on these arches. | |
524 | * To be differentiate with macro pte_mkyoung, this macro is used on platforms | |
525 | * where software maintains page access bit. | |
526 | */ | |
50c25ee9 TB |
527 | #ifndef pte_sw_mkyoung |
528 | static inline pte_t pte_sw_mkyoung(pte_t pte) | |
529 | { | |
530 | return pte; | |
531 | } | |
532 | #define pte_sw_mkyoung pte_sw_mkyoung | |
533 | #endif | |
534 | ||
e2cda322 AA |
535 | #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT |
536 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
537 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, | |
538 | unsigned long address, pmd_t *pmdp) | |
539 | { | |
540 | pmd_t old_pmd = *pmdp; | |
541 | set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); | |
542 | } | |
bd5e88ad | 543 | #else |
e2cda322 AA |
544 | static inline void pmdp_set_wrprotect(struct mm_struct *mm, |
545 | unsigned long address, pmd_t *pmdp) | |
546 | { | |
bd5e88ad | 547 | BUILD_BUG(); |
e2cda322 AA |
548 | } |
549 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
550 | #endif | |
a00cc7d9 MW |
551 | #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT |
552 | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | |
553 | static inline void pudp_set_wrprotect(struct mm_struct *mm, | |
554 | unsigned long address, pud_t *pudp) | |
555 | { | |
556 | pud_t old_pud = *pudp; | |
557 | ||
558 | set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); | |
559 | } | |
560 | #else | |
561 | static inline void pudp_set_wrprotect(struct mm_struct *mm, | |
562 | unsigned long address, pud_t *pudp) | |
563 | { | |
564 | BUILD_BUG(); | |
565 | } | |
566 | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | |
567 | #endif | |
e2cda322 | 568 | |
15a25b2e AK |
569 | #ifndef pmdp_collapse_flush |
570 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
f28b6ff8 AK |
571 | extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, |
572 | unsigned long address, pmd_t *pmdp); | |
15a25b2e AK |
573 | #else |
574 | static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, | |
575 | unsigned long address, | |
576 | pmd_t *pmdp) | |
577 | { | |
578 | BUILD_BUG(); | |
579 | return *pmdp; | |
580 | } | |
581 | #define pmdp_collapse_flush pmdp_collapse_flush | |
582 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
583 | #endif | |
584 | ||
e3ebcf64 | 585 | #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT |
6b0b50b0 AK |
586 | extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
587 | pgtable_t pgtable); | |
e3ebcf64 GS |
588 | #endif |
589 | ||
590 | #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW | |
6b0b50b0 | 591 | extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); |
e3ebcf64 GS |
592 | #endif |
593 | ||
c58f0bb7 KS |
594 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
595 | /* | |
596 | * This is an implementation of pmdp_establish() that is only suitable for an | |
597 | * architecture that doesn't have hardware dirty/accessed bits. In this case we | |
2eb70aab | 598 | * can't race with CPU which sets these bits and non-atomic approach is fine. |
c58f0bb7 KS |
599 | */ |
600 | static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, | |
601 | unsigned long address, pmd_t *pmdp, pmd_t pmd) | |
602 | { | |
603 | pmd_t old_pmd = *pmdp; | |
604 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); | |
605 | return old_pmd; | |
606 | } | |
607 | #endif | |
608 | ||
46dcde73 | 609 | #ifndef __HAVE_ARCH_PMDP_INVALIDATE |
d52605d7 | 610 | extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, |
46dcde73 GS |
611 | pmd_t *pmdp); |
612 | #endif | |
613 | ||
4f831457 NA |
614 | #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD |
615 | ||
616 | /* | |
617 | * pmdp_invalidate_ad() invalidates the PMD while changing a transparent | |
618 | * hugepage mapping in the page tables. This function is similar to | |
619 | * pmdp_invalidate(), but should only be used if the access and dirty bits would | |
620 | * not be cleared by the software in the new PMD value. The function ensures | |
621 | * that hardware changes of the access and dirty bits updates would not be lost. | |
622 | * | |
623 | * Doing so can allow in certain architectures to avoid a TLB flush in most | |
624 | * cases. Yet, another TLB flush might be necessary later if the PMD update | |
625 | * itself requires such flush (e.g., if protection was set to be stricter). Yet, | |
626 | * even when a TLB flush is needed because of the update, the caller may be able | |
627 | * to batch these TLB flushing operations, so fewer TLB flush operations are | |
628 | * needed. | |
629 | */ | |
630 | extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, | |
631 | unsigned long address, pmd_t *pmdp); | |
632 | #endif | |
633 | ||
1da177e4 | 634 | #ifndef __HAVE_ARCH_PTE_SAME |
e2cda322 AA |
635 | static inline int pte_same(pte_t pte_a, pte_t pte_b) |
636 | { | |
637 | return pte_val(pte_a) == pte_val(pte_b); | |
638 | } | |
639 | #endif | |
640 | ||
45961722 KW |
641 | #ifndef __HAVE_ARCH_PTE_UNUSED |
642 | /* | |
643 | * Some architectures provide facilities to virtualization guests | |
644 | * so that they can flag allocated pages as unused. This allows the | |
645 | * host to transparently reclaim unused pages. This function returns | |
646 | * whether the pte's page is unused. | |
647 | */ | |
648 | static inline int pte_unused(pte_t pte) | |
649 | { | |
650 | return 0; | |
651 | } | |
652 | #endif | |
653 | ||
e7884f8e KS |
654 | #ifndef pte_access_permitted |
655 | #define pte_access_permitted(pte, write) \ | |
656 | (pte_present(pte) && (!(write) || pte_write(pte))) | |
657 | #endif | |
658 | ||
659 | #ifndef pmd_access_permitted | |
660 | #define pmd_access_permitted(pmd, write) \ | |
661 | (pmd_present(pmd) && (!(write) || pmd_write(pmd))) | |
662 | #endif | |
663 | ||
664 | #ifndef pud_access_permitted | |
665 | #define pud_access_permitted(pud, write) \ | |
666 | (pud_present(pud) && (!(write) || pud_write(pud))) | |
667 | #endif | |
668 | ||
669 | #ifndef p4d_access_permitted | |
670 | #define p4d_access_permitted(p4d, write) \ | |
671 | (p4d_present(p4d) && (!(write) || p4d_write(p4d))) | |
672 | #endif | |
673 | ||
674 | #ifndef pgd_access_permitted | |
675 | #define pgd_access_permitted(pgd, write) \ | |
676 | (pgd_present(pgd) && (!(write) || pgd_write(pgd))) | |
677 | #endif | |
678 | ||
e2cda322 | 679 | #ifndef __HAVE_ARCH_PMD_SAME |
e2cda322 AA |
680 | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) |
681 | { | |
682 | return pmd_val(pmd_a) == pmd_val(pmd_b); | |
683 | } | |
a00cc7d9 MW |
684 | |
685 | static inline int pud_same(pud_t pud_a, pud_t pud_b) | |
686 | { | |
687 | return pud_val(pud_a) == pud_val(pud_b); | |
688 | } | |
1da177e4 LT |
689 | #endif |
690 | ||
0cebbb60 DW |
691 | #ifndef __HAVE_ARCH_P4D_SAME |
692 | static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) | |
693 | { | |
694 | return p4d_val(p4d_a) == p4d_val(p4d_b); | |
695 | } | |
696 | #endif | |
697 | ||
698 | #ifndef __HAVE_ARCH_PGD_SAME | |
699 | static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) | |
700 | { | |
701 | return pgd_val(pgd_a) == pgd_val(pgd_b); | |
702 | } | |
703 | #endif | |
704 | ||
4369deaa DW |
705 | /* |
706 | * Use set_p*_safe(), and elide TLB flushing, when confident that *no* | |
707 | * TLB flush will be required as a result of the "set". For example, use | |
708 | * in scenarios where it is known ahead of time that the routine is | |
709 | * setting non-present entries, or re-setting an existing entry to the | |
710 | * same value. Otherwise, use the typical "set" helpers and flush the | |
711 | * TLB. | |
712 | */ | |
713 | #define set_pte_safe(ptep, pte) \ | |
714 | ({ \ | |
715 | WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ | |
716 | set_pte(ptep, pte); \ | |
717 | }) | |
718 | ||
719 | #define set_pmd_safe(pmdp, pmd) \ | |
720 | ({ \ | |
721 | WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ | |
722 | set_pmd(pmdp, pmd); \ | |
723 | }) | |
724 | ||
725 | #define set_pud_safe(pudp, pud) \ | |
726 | ({ \ | |
727 | WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ | |
728 | set_pud(pudp, pud); \ | |
729 | }) | |
730 | ||
731 | #define set_p4d_safe(p4dp, p4d) \ | |
732 | ({ \ | |
733 | WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ | |
734 | set_p4d(p4dp, p4d); \ | |
735 | }) | |
736 | ||
737 | #define set_pgd_safe(pgdp, pgd) \ | |
738 | ({ \ | |
739 | WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ | |
740 | set_pgd(pgdp, pgd); \ | |
741 | }) | |
742 | ||
ca827d55 KA |
743 | #ifndef __HAVE_ARCH_DO_SWAP_PAGE |
744 | /* | |
745 | * Some architectures support metadata associated with a page. When a | |
746 | * page is being swapped out, this metadata must be saved so it can be | |
747 | * restored when the page is swapped back in. SPARC M7 and newer | |
748 | * processors support an ADI (Application Data Integrity) tag for the | |
749 | * page as metadata for the page. arch_do_swap_page() can restore this | |
750 | * metadata when a page is swapped back in. | |
751 | */ | |
752 | static inline void arch_do_swap_page(struct mm_struct *mm, | |
753 | struct vm_area_struct *vma, | |
754 | unsigned long addr, | |
755 | pte_t pte, pte_t oldpte) | |
756 | { | |
757 | ||
758 | } | |
759 | #endif | |
760 | ||
761 | #ifndef __HAVE_ARCH_UNMAP_ONE | |
762 | /* | |
763 | * Some architectures support metadata associated with a page. When a | |
764 | * page is being swapped out, this metadata must be saved so it can be | |
765 | * restored when the page is swapped back in. SPARC M7 and newer | |
766 | * processors support an ADI (Application Data Integrity) tag for the | |
767 | * page as metadata for the page. arch_unmap_one() can save this | |
768 | * metadata on a swap-out of a page. | |
769 | */ | |
770 | static inline int arch_unmap_one(struct mm_struct *mm, | |
771 | struct vm_area_struct *vma, | |
772 | unsigned long addr, | |
773 | pte_t orig_pte) | |
774 | { | |
775 | return 0; | |
776 | } | |
777 | #endif | |
778 | ||
8a84802e SP |
779 | /* |
780 | * Allow architectures to preserve additional metadata associated with | |
781 | * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function | |
782 | * prototypes must be defined in the arch-specific asm/pgtable.h file. | |
783 | */ | |
784 | #ifndef __HAVE_ARCH_PREPARE_TO_SWAP | |
785 | static inline int arch_prepare_to_swap(struct page *page) | |
786 | { | |
787 | return 0; | |
788 | } | |
789 | #endif | |
790 | ||
791 | #ifndef __HAVE_ARCH_SWAP_INVALIDATE | |
792 | static inline void arch_swap_invalidate_page(int type, pgoff_t offset) | |
793 | { | |
794 | } | |
795 | ||
796 | static inline void arch_swap_invalidate_area(int type) | |
797 | { | |
798 | } | |
799 | #endif | |
800 | ||
801 | #ifndef __HAVE_ARCH_SWAP_RESTORE | |
da08e9b7 | 802 | static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) |
8a84802e SP |
803 | { |
804 | } | |
805 | #endif | |
806 | ||
1da177e4 LT |
807 | #ifndef __HAVE_ARCH_PGD_OFFSET_GATE |
808 | #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) | |
809 | #endif | |
810 | ||
0b0968a3 | 811 | #ifndef __HAVE_ARCH_MOVE_PTE |
8b1f3124 | 812 | #define move_pte(pte, prot, old_addr, new_addr) (pte) |
8b1f3124 NP |
813 | #endif |
814 | ||
2c3cf556 | 815 | #ifndef pte_accessible |
20841405 | 816 | # define pte_accessible(mm, pte) ((void)(pte), 1) |
2c3cf556 RR |
817 | #endif |
818 | ||
61c77326 SL |
819 | #ifndef flush_tlb_fix_spurious_fault |
820 | #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) | |
821 | #endif | |
822 | ||
1da177e4 | 823 | /* |
8f6c99c1 HD |
824 | * When walking page tables, get the address of the next boundary, |
825 | * or the end address of the range if that comes earlier. Although no | |
826 | * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. | |
1da177e4 LT |
827 | */ |
828 | ||
1da177e4 LT |
829 | #define pgd_addr_end(addr, end) \ |
830 | ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ | |
831 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ | |
832 | }) | |
1da177e4 | 833 | |
c2febafc KS |
834 | #ifndef p4d_addr_end |
835 | #define p4d_addr_end(addr, end) \ | |
836 | ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ | |
837 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ | |
838 | }) | |
839 | #endif | |
840 | ||
1da177e4 LT |
841 | #ifndef pud_addr_end |
842 | #define pud_addr_end(addr, end) \ | |
843 | ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ | |
844 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ | |
845 | }) | |
846 | #endif | |
847 | ||
848 | #ifndef pmd_addr_end | |
849 | #define pmd_addr_end(addr, end) \ | |
850 | ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ | |
851 | (__boundary - 1 < (end) - 1)? __boundary: (end); \ | |
852 | }) | |
853 | #endif | |
854 | ||
1da177e4 LT |
855 | /* |
856 | * When walking page tables, we usually want to skip any p?d_none entries; | |
857 | * and any p?d_bad entries - reporting the error before resetting to none. | |
858 | * Do the tests inline, but report and clear the bad entry in mm/memory.c. | |
859 | */ | |
860 | void pgd_clear_bad(pgd_t *); | |
f2400abc VG |
861 | |
862 | #ifndef __PAGETABLE_P4D_FOLDED | |
c2febafc | 863 | void p4d_clear_bad(p4d_t *); |
f2400abc VG |
864 | #else |
865 | #define p4d_clear_bad(p4d) do { } while (0) | |
866 | #endif | |
867 | ||
868 | #ifndef __PAGETABLE_PUD_FOLDED | |
1da177e4 | 869 | void pud_clear_bad(pud_t *); |
f2400abc VG |
870 | #else |
871 | #define pud_clear_bad(p4d) do { } while (0) | |
872 | #endif | |
873 | ||
1da177e4 LT |
874 | void pmd_clear_bad(pmd_t *); |
875 | ||
876 | static inline int pgd_none_or_clear_bad(pgd_t *pgd) | |
877 | { | |
878 | if (pgd_none(*pgd)) | |
879 | return 1; | |
880 | if (unlikely(pgd_bad(*pgd))) { | |
881 | pgd_clear_bad(pgd); | |
882 | return 1; | |
883 | } | |
884 | return 0; | |
885 | } | |
886 | ||
c2febafc KS |
887 | static inline int p4d_none_or_clear_bad(p4d_t *p4d) |
888 | { | |
889 | if (p4d_none(*p4d)) | |
890 | return 1; | |
891 | if (unlikely(p4d_bad(*p4d))) { | |
892 | p4d_clear_bad(p4d); | |
893 | return 1; | |
894 | } | |
895 | return 0; | |
896 | } | |
897 | ||
1da177e4 LT |
898 | static inline int pud_none_or_clear_bad(pud_t *pud) |
899 | { | |
900 | if (pud_none(*pud)) | |
901 | return 1; | |
902 | if (unlikely(pud_bad(*pud))) { | |
903 | pud_clear_bad(pud); | |
904 | return 1; | |
905 | } | |
906 | return 0; | |
907 | } | |
908 | ||
909 | static inline int pmd_none_or_clear_bad(pmd_t *pmd) | |
910 | { | |
911 | if (pmd_none(*pmd)) | |
912 | return 1; | |
913 | if (unlikely(pmd_bad(*pmd))) { | |
914 | pmd_clear_bad(pmd); | |
915 | return 1; | |
916 | } | |
917 | return 0; | |
918 | } | |
9535239f | 919 | |
0cbe3e26 | 920 | static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, |
1ea0704e JF |
921 | unsigned long addr, |
922 | pte_t *ptep) | |
923 | { | |
924 | /* | |
925 | * Get the current pte state, but zero it out to make it | |
926 | * non-present, preventing the hardware from asynchronously | |
927 | * updating it. | |
928 | */ | |
0cbe3e26 | 929 | return ptep_get_and_clear(vma->vm_mm, addr, ptep); |
1ea0704e JF |
930 | } |
931 | ||
0cbe3e26 | 932 | static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, |
1ea0704e JF |
933 | unsigned long addr, |
934 | pte_t *ptep, pte_t pte) | |
935 | { | |
936 | /* | |
937 | * The pte is non-present, so there's no hardware state to | |
938 | * preserve. | |
939 | */ | |
0cbe3e26 | 940 | set_pte_at(vma->vm_mm, addr, ptep, pte); |
1ea0704e JF |
941 | } |
942 | ||
943 | #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION | |
944 | /* | |
945 | * Start a pte protection read-modify-write transaction, which | |
946 | * protects against asynchronous hardware modifications to the pte. | |
947 | * The intention is not to prevent the hardware from making pte | |
948 | * updates, but to prevent any updates it may make from being lost. | |
949 | * | |
950 | * This does not protect against other software modifications of the | |
2eb70aab | 951 | * pte; the appropriate pte lock must be held over the transaction. |
1ea0704e JF |
952 | * |
953 | * Note that this interface is intended to be batchable, meaning that | |
954 | * ptep_modify_prot_commit may not actually update the pte, but merely | |
955 | * queue the update to be done at some later time. The update must be | |
956 | * actually committed before the pte lock is released, however. | |
957 | */ | |
0cbe3e26 | 958 | static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, |
1ea0704e JF |
959 | unsigned long addr, |
960 | pte_t *ptep) | |
961 | { | |
0cbe3e26 | 962 | return __ptep_modify_prot_start(vma, addr, ptep); |
1ea0704e JF |
963 | } |
964 | ||
965 | /* | |
966 | * Commit an update to a pte, leaving any hardware-controlled bits in | |
967 | * the PTE unmodified. | |
968 | */ | |
0cbe3e26 | 969 | static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, |
1ea0704e | 970 | unsigned long addr, |
04a86453 | 971 | pte_t *ptep, pte_t old_pte, pte_t pte) |
1ea0704e | 972 | { |
0cbe3e26 | 973 | __ptep_modify_prot_commit(vma, addr, ptep, pte); |
1ea0704e JF |
974 | } |
975 | #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ | |
fe1a6875 | 976 | #endif /* CONFIG_MMU */ |
1ea0704e | 977 | |
21729f81 TL |
978 | /* |
979 | * No-op macros that just return the current protection value. Defined here | |
1067b261 | 980 | * because these macros can be used even if CONFIG_MMU is not defined. |
21729f81 | 981 | */ |
63bb76de PE |
982 | |
983 | #ifndef pgprot_nx | |
984 | #define pgprot_nx(prot) (prot) | |
985 | #endif | |
986 | ||
987 | #ifndef pgprot_noncached | |
988 | #define pgprot_noncached(prot) (prot) | |
989 | #endif | |
990 | ||
991 | #ifndef pgprot_writecombine | |
992 | #define pgprot_writecombine pgprot_noncached | |
993 | #endif | |
994 | ||
995 | #ifndef pgprot_writethrough | |
996 | #define pgprot_writethrough pgprot_noncached | |
997 | #endif | |
998 | ||
999 | #ifndef pgprot_device | |
1000 | #define pgprot_device pgprot_noncached | |
1001 | #endif | |
1002 | ||
d15dfd31 CM |
1003 | #ifndef pgprot_mhp |
1004 | #define pgprot_mhp(prot) (prot) | |
1005 | #endif | |
1006 | ||
63bb76de PE |
1007 | #ifdef CONFIG_MMU |
1008 | #ifndef pgprot_modify | |
1009 | #define pgprot_modify pgprot_modify | |
1010 | static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) | |
1011 | { | |
1012 | if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) | |
1013 | newprot = pgprot_noncached(newprot); | |
1014 | if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) | |
1015 | newprot = pgprot_writecombine(newprot); | |
1016 | if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) | |
1017 | newprot = pgprot_device(newprot); | |
1018 | return newprot; | |
1019 | } | |
1020 | #endif | |
1021 | #endif /* CONFIG_MMU */ | |
1022 | ||
21729f81 TL |
1023 | #ifndef pgprot_encrypted |
1024 | #define pgprot_encrypted(prot) (prot) | |
1025 | #endif | |
1026 | ||
1027 | #ifndef pgprot_decrypted | |
1028 | #define pgprot_decrypted(prot) (prot) | |
1029 | #endif | |
1030 | ||
9535239f GU |
1031 | /* |
1032 | * A facility to provide lazy MMU batching. This allows PTE updates and | |
1033 | * page invalidations to be delayed until a call to leave lazy MMU mode | |
1034 | * is issued. Some architectures may benefit from doing this, and it is | |
1035 | * beneficial for both shadow and direct mode hypervisors, which may batch | |
1036 | * the PTE updates which happen during this window. Note that using this | |
1037 | * interface requires that read hazards be removed from the code. A read | |
1038 | * hazard could result in the direct mode hypervisor case, since the actual | |
1039 | * write to the page tables may not yet have taken place, so reads though | |
1040 | * a raw PTE pointer after it has been modified are not guaranteed to be | |
1041 | * up to date. This mode can only be entered and left under the protection of | |
1042 | * the page table locks for all page tables which may be modified. In the UP | |
1043 | * case, this is required so that preemption is disabled, and in the SMP case, | |
1044 | * it must synchronize the delayed page table writes properly on other CPUs. | |
1045 | */ | |
1046 | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE | |
1047 | #define arch_enter_lazy_mmu_mode() do {} while (0) | |
1048 | #define arch_leave_lazy_mmu_mode() do {} while (0) | |
1049 | #define arch_flush_lazy_mmu_mode() do {} while (0) | |
1050 | #endif | |
1051 | ||
1052 | /* | |
7fd7d83d JF |
1053 | * A facility to provide batching of the reload of page tables and |
1054 | * other process state with the actual context switch code for | |
1055 | * paravirtualized guests. By convention, only one of the batched | |
1056 | * update (lazy) modes (CPU, MMU) should be active at any given time, | |
1057 | * entry should never be nested, and entry and exits should always be | |
1058 | * paired. This is for sanity of maintaining and reasoning about the | |
1059 | * kernel code. In this case, the exit (end of the context switch) is | |
1060 | * in architecture-specific code, and so doesn't need a generic | |
1061 | * definition. | |
9535239f | 1062 | */ |
7fd7d83d | 1063 | #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH |
224101ed | 1064 | #define arch_start_context_switch(prev) do {} while (0) |
9535239f GU |
1065 | #endif |
1066 | ||
ab6e3d09 NH |
1067 | #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY |
1068 | #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1069 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) | |
1070 | { | |
1071 | return pmd; | |
1072 | } | |
1073 | ||
1074 | static inline int pmd_swp_soft_dirty(pmd_t pmd) | |
1075 | { | |
1076 | return 0; | |
1077 | } | |
1078 | ||
1079 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) | |
1080 | { | |
1081 | return pmd; | |
1082 | } | |
1083 | #endif | |
1084 | #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ | |
0f8975ec PE |
1085 | static inline int pte_soft_dirty(pte_t pte) |
1086 | { | |
1087 | return 0; | |
1088 | } | |
1089 | ||
1090 | static inline int pmd_soft_dirty(pmd_t pmd) | |
1091 | { | |
1092 | return 0; | |
1093 | } | |
1094 | ||
1095 | static inline pte_t pte_mksoft_dirty(pte_t pte) | |
1096 | { | |
1097 | return pte; | |
1098 | } | |
1099 | ||
1100 | static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) | |
1101 | { | |
1102 | return pmd; | |
1103 | } | |
179ef71c | 1104 | |
a7b76174 MS |
1105 | static inline pte_t pte_clear_soft_dirty(pte_t pte) |
1106 | { | |
1107 | return pte; | |
1108 | } | |
1109 | ||
1110 | static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) | |
1111 | { | |
1112 | return pmd; | |
1113 | } | |
1114 | ||
179ef71c CG |
1115 | static inline pte_t pte_swp_mksoft_dirty(pte_t pte) |
1116 | { | |
1117 | return pte; | |
1118 | } | |
1119 | ||
1120 | static inline int pte_swp_soft_dirty(pte_t pte) | |
1121 | { | |
1122 | return 0; | |
1123 | } | |
1124 | ||
1125 | static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) | |
1126 | { | |
1127 | return pte; | |
1128 | } | |
ab6e3d09 NH |
1129 | |
1130 | static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) | |
1131 | { | |
1132 | return pmd; | |
1133 | } | |
1134 | ||
1135 | static inline int pmd_swp_soft_dirty(pmd_t pmd) | |
1136 | { | |
1137 | return 0; | |
1138 | } | |
1139 | ||
1140 | static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) | |
1141 | { | |
1142 | return pmd; | |
1143 | } | |
0f8975ec PE |
1144 | #endif |
1145 | ||
34801ba9 | 1146 | #ifndef __HAVE_PFNMAP_TRACKING |
1147 | /* | |
5180da41 SS |
1148 | * Interfaces that can be used by architecture code to keep track of |
1149 | * memory type of pfn mappings specified by the remap_pfn_range, | |
67fa1666 | 1150 | * vmf_insert_pfn. |
5180da41 SS |
1151 | */ |
1152 | ||
1153 | /* | |
1154 | * track_pfn_remap is called when a _new_ pfn mapping is being established | |
1155 | * by remap_pfn_range() for physical range indicated by pfn and size. | |
34801ba9 | 1156 | */ |
5180da41 | 1157 | static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
b3b9c293 KK |
1158 | unsigned long pfn, unsigned long addr, |
1159 | unsigned long size) | |
34801ba9 | 1160 | { |
1161 | return 0; | |
1162 | } | |
1163 | ||
1164 | /* | |
5180da41 | 1165 | * track_pfn_insert is called when a _new_ single pfn is established |
67fa1666 | 1166 | * by vmf_insert_pfn(). |
5180da41 | 1167 | */ |
308a047c BP |
1168 | static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
1169 | pfn_t pfn) | |
5180da41 | 1170 | { |
5180da41 SS |
1171 | } |
1172 | ||
1173 | /* | |
1174 | * track_pfn_copy is called when vma that is covering the pfnmap gets | |
34801ba9 | 1175 | * copied through copy_page_range(). |
1176 | */ | |
5180da41 | 1177 | static inline int track_pfn_copy(struct vm_area_struct *vma) |
34801ba9 | 1178 | { |
1179 | return 0; | |
1180 | } | |
1181 | ||
1182 | /* | |
d9fe4fab | 1183 | * untrack_pfn is called while unmapping a pfnmap for a region. |
34801ba9 | 1184 | * untrack can be called for a specific region indicated by pfn and size or |
5180da41 | 1185 | * can be for the entire vma (in which case pfn, size are zero). |
34801ba9 | 1186 | */ |
5180da41 | 1187 | static inline void untrack_pfn(struct vm_area_struct *vma, |
68f48381 SB |
1188 | unsigned long pfn, unsigned long size, |
1189 | bool mm_wr_locked) | |
34801ba9 | 1190 | { |
1191 | } | |
d9fe4fab TK |
1192 | |
1193 | /* | |
1194 | * untrack_pfn_moved is called while mremapping a pfnmap for a new region. | |
1195 | */ | |
1196 | static inline void untrack_pfn_moved(struct vm_area_struct *vma) | |
1197 | { | |
1198 | } | |
34801ba9 | 1199 | #else |
5180da41 | 1200 | extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, |
b3b9c293 KK |
1201 | unsigned long pfn, unsigned long addr, |
1202 | unsigned long size); | |
308a047c BP |
1203 | extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, |
1204 | pfn_t pfn); | |
5180da41 SS |
1205 | extern int track_pfn_copy(struct vm_area_struct *vma); |
1206 | extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, | |
68f48381 | 1207 | unsigned long size, bool mm_wr_locked); |
d9fe4fab | 1208 | extern void untrack_pfn_moved(struct vm_area_struct *vma); |
34801ba9 | 1209 | #endif |
1210 | ||
9afaf30f | 1211 | #ifdef CONFIG_MMU |
816422ad KS |
1212 | #ifdef __HAVE_COLOR_ZERO_PAGE |
1213 | static inline int is_zero_pfn(unsigned long pfn) | |
1214 | { | |
1215 | extern unsigned long zero_pfn; | |
1216 | unsigned long offset_from_zero_pfn = pfn - zero_pfn; | |
1217 | return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); | |
1218 | } | |
1219 | ||
2f91ec8c KS |
1220 | #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) |
1221 | ||
816422ad KS |
1222 | #else |
1223 | static inline int is_zero_pfn(unsigned long pfn) | |
1224 | { | |
1225 | extern unsigned long zero_pfn; | |
1226 | return pfn == zero_pfn; | |
1227 | } | |
1228 | ||
1229 | static inline unsigned long my_zero_pfn(unsigned long addr) | |
1230 | { | |
1231 | extern unsigned long zero_pfn; | |
1232 | return zero_pfn; | |
1233 | } | |
1234 | #endif | |
9afaf30f PT |
1235 | #else |
1236 | static inline int is_zero_pfn(unsigned long pfn) | |
1237 | { | |
1238 | return 0; | |
1239 | } | |
1240 | ||
1241 | static inline unsigned long my_zero_pfn(unsigned long addr) | |
1242 | { | |
1243 | return 0; | |
1244 | } | |
1245 | #endif /* CONFIG_MMU */ | |
816422ad | 1246 | |
1a5a9906 AA |
1247 | #ifdef CONFIG_MMU |
1248 | ||
5f6e8da7 AA |
1249 | #ifndef CONFIG_TRANSPARENT_HUGEPAGE |
1250 | static inline int pmd_trans_huge(pmd_t pmd) | |
1251 | { | |
1252 | return 0; | |
1253 | } | |
e4e40e02 | 1254 | #ifndef pmd_write |
e2cda322 AA |
1255 | static inline int pmd_write(pmd_t pmd) |
1256 | { | |
1257 | BUG(); | |
1258 | return 0; | |
1259 | } | |
e4e40e02 | 1260 | #endif /* pmd_write */ |
1a5a9906 AA |
1261 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
1262 | ||
1501899a DW |
1263 | #ifndef pud_write |
1264 | static inline int pud_write(pud_t pud) | |
1265 | { | |
1266 | BUG(); | |
1267 | return 0; | |
1268 | } | |
1269 | #endif /* pud_write */ | |
1270 | ||
bf1a12a8 TH |
1271 | #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) |
1272 | static inline int pmd_devmap(pmd_t pmd) | |
1273 | { | |
1274 | return 0; | |
1275 | } | |
1276 | static inline int pud_devmap(pud_t pud) | |
1277 | { | |
1278 | return 0; | |
1279 | } | |
1280 | static inline int pgd_devmap(pgd_t pgd) | |
1281 | { | |
1282 | return 0; | |
1283 | } | |
1284 | #endif | |
1285 | ||
a00cc7d9 | 1286 | #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ |
bcd0dea5 | 1287 | !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
a00cc7d9 MW |
1288 | static inline int pud_trans_huge(pud_t pud) |
1289 | { | |
1290 | return 0; | |
1291 | } | |
1292 | #endif | |
1293 | ||
625110b5 TH |
1294 | /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ |
1295 | static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) | |
1296 | { | |
1297 | pud_t pudval = READ_ONCE(*pud); | |
1298 | ||
1299 | if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) | |
1300 | return 1; | |
1301 | if (unlikely(pud_bad(pudval))) { | |
1302 | pud_clear_bad(pud); | |
1303 | return 1; | |
1304 | } | |
1305 | return 0; | |
1306 | } | |
1307 | ||
1308 | /* See pmd_trans_unstable for discussion. */ | |
1309 | static inline int pud_trans_unstable(pud_t *pud) | |
1310 | { | |
1311 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ | |
1312 | defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | |
1313 | return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); | |
1314 | #else | |
1315 | return 0; | |
1316 | #endif | |
1317 | } | |
1318 | ||
953c66c2 AK |
1319 | #ifndef arch_needs_pgtable_deposit |
1320 | #define arch_needs_pgtable_deposit() (false) | |
1321 | #endif | |
1a5a9906 AA |
1322 | /* |
1323 | * This function is meant to be used by sites walking pagetables with | |
c1e8d7c6 | 1324 | * the mmap_lock held in read mode to protect against MADV_DONTNEED and |
1a5a9906 AA |
1325 | * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd |
1326 | * into a null pmd and the transhuge page fault can convert a null pmd | |
1327 | * into an hugepmd or into a regular pmd (if the hugepage allocation | |
c1e8d7c6 | 1328 | * fails). While holding the mmap_lock in read mode the pmd becomes |
1a5a9906 AA |
1329 | * stable and stops changing under us only if it's not null and not a |
1330 | * transhuge pmd. When those races occurs and this function makes a | |
1331 | * difference vs the standard pmd_none_or_clear_bad, the result is | |
1332 | * undefined so behaving like if the pmd was none is safe (because it | |
1333 | * can return none anyway). The compiler level barrier() is critically | |
1334 | * important to compute the two checks atomically on the same pmdval. | |
26c19178 AA |
1335 | * |
1336 | * For 32bit kernels with a 64bit large pmd_t this automatically takes | |
1337 | * care of reading the pmd atomically to avoid SMP race conditions | |
c1e8d7c6 | 1338 | * against pmd_populate() when the mmap_lock is hold for reading by the |
26c19178 AA |
1339 | * caller (a special atomic read not done by "gcc" as in the generic |
1340 | * version above, is also needed when THP is disabled because the page | |
1341 | * fault can populate the pmd from under us). | |
1a5a9906 AA |
1342 | */ |
1343 | static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) | |
1344 | { | |
dab6e717 | 1345 | pmd_t pmdval = pmdp_get_lockless(pmd); |
1a5a9906 AA |
1346 | /* |
1347 | * The barrier will stabilize the pmdval in a register or on | |
1348 | * the stack so that it will stop changing under the code. | |
e4eed03f AA |
1349 | * |
1350 | * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, | |
dab6e717 | 1351 | * pmdp_get_lockless is allowed to return a not atomic pmdval |
e4eed03f AA |
1352 | * (for example pointing to an hugepage that has never been |
1353 | * mapped in the pmd). The below checks will only care about | |
1354 | * the low part of the pmd with 32bit PAE x86 anyway, with the | |
1355 | * exception of pmd_none(). So the important thing is that if | |
1356 | * the low part of the pmd is found null, the high part will | |
1357 | * be also null or the pmd_none() check below would be | |
1358 | * confused. | |
1a5a9906 AA |
1359 | */ |
1360 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1361 | barrier(); | |
1362 | #endif | |
84c3fc4e ZY |
1363 | /* |
1364 | * !pmd_present() checks for pmd migration entries | |
1365 | * | |
1366 | * The complete check uses is_pmd_migration_entry() in linux/swapops.h | |
1367 | * But using that requires moving current function and pmd_trans_unstable() | |
2eb70aab | 1368 | * to linux/swapops.h to resolve dependency, which is too much code move. |
84c3fc4e ZY |
1369 | * |
1370 | * !pmd_present() is equivalent to is_pmd_migration_entry() currently, | |
1371 | * because !pmd_present() pages can only be under migration not swapped | |
1372 | * out. | |
1373 | * | |
2eb70aab | 1374 | * pmd_none() is preserved for future condition checks on pmd migration |
84c3fc4e ZY |
1375 | * entries and not confusing with this function name, although it is |
1376 | * redundant with !pmd_present(). | |
1377 | */ | |
1378 | if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || | |
1379 | (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) | |
1a5a9906 AA |
1380 | return 1; |
1381 | if (unlikely(pmd_bad(pmdval))) { | |
ee53664b | 1382 | pmd_clear_bad(pmd); |
1a5a9906 AA |
1383 | return 1; |
1384 | } | |
1385 | return 0; | |
1386 | } | |
1387 | ||
1388 | /* | |
1389 | * This is a noop if Transparent Hugepage Support is not built into | |
1390 | * the kernel. Otherwise it is equivalent to | |
1391 | * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in | |
1392 | * places that already verified the pmd is not none and they want to | |
1393 | * walk ptes while holding the mmap sem in read mode (write mode don't | |
1394 | * need this). If THP is not enabled, the pmd can't go away under the | |
1395 | * code even if MADV_DONTNEED runs, but if THP is enabled we need to | |
1396 | * run a pmd_trans_unstable before walking the ptes after | |
9ef258ba KW |
1397 | * split_huge_pmd returns (because it may have run when the pmd become |
1398 | * null, but then a page fault can map in a THP and not a regular page). | |
1a5a9906 AA |
1399 | */ |
1400 | static inline int pmd_trans_unstable(pmd_t *pmd) | |
1401 | { | |
1402 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1403 | return pmd_none_or_trans_huge_or_clear_bad(pmd); | |
1404 | #else | |
1405 | return 0; | |
5f6e8da7 | 1406 | #endif |
1a5a9906 AA |
1407 | } |
1408 | ||
f9ce0be7 KS |
1409 | /* |
1410 | * the ordering of these checks is important for pmds with _page_devmap set. | |
1411 | * if we check pmd_trans_unstable() first we will trip the bad_pmd() check | |
1412 | * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly | |
1413 | * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. | |
1414 | */ | |
1415 | static inline int pmd_devmap_trans_unstable(pmd_t *pmd) | |
1416 | { | |
1417 | return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); | |
1418 | } | |
1419 | ||
e7bb4b6d MG |
1420 | #ifndef CONFIG_NUMA_BALANCING |
1421 | /* | |
1422 | * Technically a PTE can be PROTNONE even when not doing NUMA balancing but | |
1423 | * the only case the kernel cares is for NUMA balancing and is only ever set | |
1424 | * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked | |
1067b261 | 1425 | * _PAGE_PROTNONE so by default, implement the helper as "always no". It |
e7bb4b6d MG |
1426 | * is the responsibility of the caller to distinguish between PROT_NONE |
1427 | * protections and NUMA hinting fault protections. | |
1428 | */ | |
1429 | static inline int pte_protnone(pte_t pte) | |
1430 | { | |
1431 | return 0; | |
1432 | } | |
1433 | ||
1434 | static inline int pmd_protnone(pmd_t pmd) | |
1435 | { | |
1436 | return 0; | |
1437 | } | |
1438 | #endif /* CONFIG_NUMA_BALANCING */ | |
1439 | ||
1a5a9906 | 1440 | #endif /* CONFIG_MMU */ |
5f6e8da7 | 1441 | |
e61ce6ad | 1442 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
c2febafc KS |
1443 | |
1444 | #ifndef __PAGETABLE_P4D_FOLDED | |
1445 | int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); | |
c8db8c26 | 1446 | void p4d_clear_huge(p4d_t *p4d); |
c2febafc KS |
1447 | #else |
1448 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) | |
1449 | { | |
1450 | return 0; | |
1451 | } | |
c8db8c26 | 1452 | static inline void p4d_clear_huge(p4d_t *p4d) { } |
c2febafc KS |
1453 | #endif /* !__PAGETABLE_P4D_FOLDED */ |
1454 | ||
e61ce6ad | 1455 | int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); |
c742199a | 1456 | int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); |
d8a71905 | 1457 | int pud_clear_huge(pud_t *pud); |
b9820d8f | 1458 | int pmd_clear_huge(pmd_t *pmd); |
8e2d4340 | 1459 | int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); |
785a19f9 CP |
1460 | int pud_free_pmd_page(pud_t *pud, unsigned long addr); |
1461 | int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); | |
e61ce6ad | 1462 | #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ |
c2febafc KS |
1463 | static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) |
1464 | { | |
1465 | return 0; | |
1466 | } | |
e61ce6ad TK |
1467 | static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) |
1468 | { | |
1469 | return 0; | |
1470 | } | |
1471 | static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) | |
1472 | { | |
1473 | return 0; | |
1474 | } | |
c8db8c26 | 1475 | static inline void p4d_clear_huge(p4d_t *p4d) { } |
b9820d8f TK |
1476 | static inline int pud_clear_huge(pud_t *pud) |
1477 | { | |
1478 | return 0; | |
1479 | } | |
1480 | static inline int pmd_clear_huge(pmd_t *pmd) | |
1481 | { | |
1482 | return 0; | |
1483 | } | |
8e2d4340 WD |
1484 | static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) |
1485 | { | |
1486 | return 0; | |
1487 | } | |
785a19f9 | 1488 | static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) |
b6bdb751 TK |
1489 | { |
1490 | return 0; | |
1491 | } | |
785a19f9 | 1492 | static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) |
b6bdb751 TK |
1493 | { |
1494 | return 0; | |
1495 | } | |
e61ce6ad TK |
1496 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ |
1497 | ||
458aa76d AK |
1498 | #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE |
1499 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
1500 | /* | |
1501 | * ARCHes with special requirements for evicting THP backing TLB entries can | |
1502 | * implement this. Otherwise also, it can help optimize normal TLB flush in | |
1067b261 RD |
1503 | * THP regime. Stock flush_tlb_range() typically has optimization to nuke the |
1504 | * entire TLB if flush span is greater than a threshold, which will | |
1505 | * likely be true for a single huge page. Thus a single THP flush will | |
1506 | * invalidate the entire TLB which is not desirable. | |
458aa76d AK |
1507 | * e.g. see arch/arc: flush_pmd_tlb_range |
1508 | */ | |
1509 | #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) | |
a00cc7d9 | 1510 | #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) |
458aa76d AK |
1511 | #else |
1512 | #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() | |
a00cc7d9 | 1513 | #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() |
458aa76d AK |
1514 | #endif |
1515 | #endif | |
1516 | ||
08ea8c07 BX |
1517 | struct file; |
1518 | int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, | |
1519 | unsigned long size, pgprot_t *vma_prot); | |
613e396b TG |
1520 | |
1521 | #ifndef CONFIG_X86_ESPFIX64 | |
1522 | static inline void init_espfix_bsp(void) { } | |
1523 | #endif | |
1524 | ||
782de70c | 1525 | extern void __init pgtable_cache_init(void); |
caa84136 | 1526 | |
6c26fcd2 JK |
1527 | #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED |
1528 | static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) | |
1529 | { | |
1530 | return true; | |
1531 | } | |
1532 | ||
1533 | static inline bool arch_has_pfn_modify_check(void) | |
1534 | { | |
1535 | return false; | |
1536 | } | |
1537 | #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ | |
1538 | ||
a3266bd4 LR |
1539 | /* |
1540 | * Architecture PAGE_KERNEL_* fallbacks | |
1541 | * | |
1542 | * Some architectures don't define certain PAGE_KERNEL_* flags. This is either | |
1543 | * because they really don't support them, or the port needs to be updated to | |
1544 | * reflect the required functionality. Below are a set of relatively safe | |
1545 | * fallbacks, as best effort, which we can count on in lieu of the architectures | |
1546 | * not defining them on their own yet. | |
1547 | */ | |
1548 | ||
1549 | #ifndef PAGE_KERNEL_RO | |
1550 | # define PAGE_KERNEL_RO PAGE_KERNEL | |
1551 | #endif | |
1552 | ||
1a9b4b3d LR |
1553 | #ifndef PAGE_KERNEL_EXEC |
1554 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1555 | #endif | |
1556 | ||
d8626138 JR |
1557 | /* |
1558 | * Page Table Modification bits for pgtbl_mod_mask. | |
1559 | * | |
1560 | * These are used by the p?d_alloc_track*() set of functions an in the generic | |
1561 | * vmalloc/ioremap code to track at which page-table levels entries have been | |
1562 | * modified. Based on that the code can better decide when vmalloc and ioremap | |
1563 | * mapping changes need to be synchronized to other page-tables in the system. | |
1564 | */ | |
1565 | #define __PGTBL_PGD_MODIFIED 0 | |
1566 | #define __PGTBL_P4D_MODIFIED 1 | |
1567 | #define __PGTBL_PUD_MODIFIED 2 | |
1568 | #define __PGTBL_PMD_MODIFIED 3 | |
1569 | #define __PGTBL_PTE_MODIFIED 4 | |
1570 | ||
1571 | #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) | |
1572 | #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) | |
1573 | #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) | |
1574 | #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) | |
1575 | #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) | |
1576 | ||
1577 | /* Page-Table Modification Mask */ | |
1578 | typedef unsigned int pgtbl_mod_mask; | |
1579 | ||
1da177e4 LT |
1580 | #endif /* !__ASSEMBLY__ */ |
1581 | ||
cef39703 AB |
1582 | #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) |
1583 | #ifdef CONFIG_PHYS_ADDR_T_64BIT | |
1584 | /* | |
1585 | * ZSMALLOC needs to know the highest PFN on 32-bit architectures | |
1586 | * with physical address space extension, but falls back to | |
1587 | * BITS_PER_LONG otherwise. | |
1588 | */ | |
1589 | #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition | |
1590 | #else | |
1591 | #define MAX_POSSIBLE_PHYSMEM_BITS 32 | |
1592 | #endif | |
1593 | #endif | |
1594 | ||
fd8cfd30 | 1595 | #ifndef has_transparent_hugepage |
a38c94ed | 1596 | #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) |
fd8cfd30 HD |
1597 | #endif |
1598 | ||
1071fc57 MS |
1599 | /* |
1600 | * On some architectures it depends on the mm if the p4d/pud or pmd | |
1601 | * layer of the page table hierarchy is folded or not. | |
1602 | */ | |
1603 | #ifndef mm_p4d_folded | |
1604 | #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) | |
1605 | #endif | |
1606 | ||
1607 | #ifndef mm_pud_folded | |
1608 | #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) | |
1609 | #endif | |
1610 | ||
1611 | #ifndef mm_pmd_folded | |
1612 | #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) | |
1613 | #endif | |
1614 | ||
d3f7b1bb VG |
1615 | #ifndef p4d_offset_lockless |
1616 | #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) | |
1617 | #endif | |
1618 | #ifndef pud_offset_lockless | |
1619 | #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) | |
1620 | #endif | |
1621 | #ifndef pmd_offset_lockless | |
1622 | #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) | |
1623 | #endif | |
1624 | ||
93fab1b2 SP |
1625 | /* |
1626 | * p?d_leaf() - true if this entry is a final mapping to a physical address. | |
1627 | * This differs from p?d_huge() by the fact that they are always available (if | |
1628 | * the architecture supports large pages at the appropriate level) even | |
1629 | * if CONFIG_HUGETLB_PAGE is not defined. | |
1630 | * Only meaningful when called on a valid entry. | |
1631 | */ | |
1632 | #ifndef pgd_leaf | |
1633 | #define pgd_leaf(x) 0 | |
1634 | #endif | |
1635 | #ifndef p4d_leaf | |
1636 | #define p4d_leaf(x) 0 | |
1637 | #endif | |
1638 | #ifndef pud_leaf | |
1639 | #define pud_leaf(x) 0 | |
1640 | #endif | |
1641 | #ifndef pmd_leaf | |
1642 | #define pmd_leaf(x) 0 | |
1643 | #endif | |
1644 | ||
560dabbd PZ |
1645 | #ifndef pgd_leaf_size |
1646 | #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) | |
1647 | #endif | |
1648 | #ifndef p4d_leaf_size | |
1649 | #define p4d_leaf_size(x) P4D_SIZE | |
1650 | #endif | |
1651 | #ifndef pud_leaf_size | |
1652 | #define pud_leaf_size(x) PUD_SIZE | |
1653 | #endif | |
1654 | #ifndef pmd_leaf_size | |
1655 | #define pmd_leaf_size(x) PMD_SIZE | |
1656 | #endif | |
1657 | #ifndef pte_leaf_size | |
1658 | #define pte_leaf_size(x) PAGE_SIZE | |
1659 | #endif | |
1660 | ||
c0f8aa4f DA |
1661 | /* |
1662 | * Some architectures have MMUs that are configurable or selectable at boot | |
1663 | * time. These lead to variable PTRS_PER_x. For statically allocated arrays it | |
1664 | * helps to have a static maximum value. | |
1665 | */ | |
1666 | ||
1667 | #ifndef MAX_PTRS_PER_PTE | |
1668 | #define MAX_PTRS_PER_PTE PTRS_PER_PTE | |
1669 | #endif | |
1670 | ||
1671 | #ifndef MAX_PTRS_PER_PMD | |
1672 | #define MAX_PTRS_PER_PMD PTRS_PER_PMD | |
1673 | #endif | |
1674 | ||
1675 | #ifndef MAX_PTRS_PER_PUD | |
1676 | #define MAX_PTRS_PER_PUD PTRS_PER_PUD | |
1677 | #endif | |
1678 | ||
1679 | #ifndef MAX_PTRS_PER_P4D | |
1680 | #define MAX_PTRS_PER_P4D PTRS_PER_P4D | |
1681 | #endif | |
1682 | ||
43957b5d AK |
1683 | /* description of effects of mapping type and prot in current implementation. |
1684 | * this is due to the limited x86 page protection hardware. The expected | |
1685 | * behavior is in parens: | |
1686 | * | |
1687 | * map_type prot | |
1688 | * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC | |
1689 | * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes | |
1690 | * w: (no) no w: (no) no w: (yes) yes w: (no) no | |
1691 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
1692 | * | |
1693 | * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes | |
1694 | * w: (no) no w: (no) no w: (copy) copy w: (no) no | |
1695 | * x: (no) no x: (no) yes x: (no) yes x: (yes) yes | |
1696 | * | |
1697 | * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and | |
1698 | * MAP_PRIVATE (with Enhanced PAN supported): | |
1699 | * r: (no) no | |
1700 | * w: (no) no | |
1701 | * x: (yes) yes | |
1702 | */ | |
1703 | #define DECLARE_VM_GET_PAGE_PROT \ | |
1704 | pgprot_t vm_get_page_prot(unsigned long vm_flags) \ | |
1705 | { \ | |
1706 | return protection_map[vm_flags & \ | |
1707 | (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ | |
1708 | } \ | |
1709 | EXPORT_SYMBOL(vm_get_page_prot); | |
1710 | ||
ca5999fd | 1711 | #endif /* _LINUX_PGTABLE_H */ |