]> Git Repo - linux.git/blame - fs/btrfs/send.c
Btrfs: remove unnecessary code in btree_get_extent()
[linux.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/crc32c.h>
a1857ebe 28#include <linux/vmalloc.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
32#include "locking.h"
33#include "disk-io.h"
34#include "btrfs_inode.h"
35#include "transaction.h"
36
37static int g_verbose = 0;
38
39#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40
41/*
42 * A fs_path is a helper to dynamically build path names with unknown size.
43 * It reallocates the internal buffer on demand.
44 * It allows fast adding of path elements on the right side (normal path) and
45 * fast adding to the left side (reversed path). A reversed path can also be
46 * unreversed if needed.
47 */
48struct fs_path {
49 union {
50 struct {
51 char *start;
52 char *end;
53 char *prepared;
54
55 char *buf;
56 int buf_len;
57 int reversed:1;
58 int virtual_mem:1;
59 char inline_buf[];
60 };
61 char pad[PAGE_SIZE];
62 };
63};
64#define FS_PATH_INLINE_SIZE \
65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66
67
68/* reused for each extent */
69struct clone_root {
70 struct btrfs_root *root;
71 u64 ino;
72 u64 offset;
73
74 u64 found_refs;
75};
76
77#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79
80struct send_ctx {
81 struct file *send_filp;
82 loff_t send_off;
83 char *send_buf;
84 u32 send_size;
85 u32 send_max_size;
86 u64 total_send_size;
87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88
89 struct vfsmount *mnt;
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
31db9f7c
AB
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112
113 u64 send_progress;
114
115 struct list_head new_refs;
116 struct list_head deleted_refs;
117
118 struct radix_tree_root name_cache;
119 struct list_head name_cache_list;
120 int name_cache_size;
121
122 struct file *cur_inode_filp;
123 char *read_buf;
124};
125
126struct name_cache_entry {
127 struct list_head list;
7e0926fe
AB
128 /*
129 * radix_tree has only 32bit entries but we need to handle 64bit inums.
130 * We use the lower 32bit of the 64bit inum to store it in the tree. If
131 * more then one inum would fall into the same entry, we use radix_list
132 * to store the additional entries. radix_list is also used to store
133 * entries where two entries have the same inum but different
134 * generations.
135 */
136 struct list_head radix_list;
31db9f7c
AB
137 u64 ino;
138 u64 gen;
139 u64 parent_ino;
140 u64 parent_gen;
141 int ret;
142 int need_later_update;
143 int name_len;
144 char name[];
145};
146
147static void fs_path_reset(struct fs_path *p)
148{
149 if (p->reversed) {
150 p->start = p->buf + p->buf_len - 1;
151 p->end = p->start;
152 *p->start = 0;
153 } else {
154 p->start = p->buf;
155 p->end = p->start;
156 *p->start = 0;
157 }
158}
159
160static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
161{
162 struct fs_path *p;
163
164 p = kmalloc(sizeof(*p), GFP_NOFS);
165 if (!p)
166 return NULL;
167 p->reversed = 0;
168 p->virtual_mem = 0;
169 p->buf = p->inline_buf;
170 p->buf_len = FS_PATH_INLINE_SIZE;
171 fs_path_reset(p);
172 return p;
173}
174
175static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
176{
177 struct fs_path *p;
178
179 p = fs_path_alloc(sctx);
180 if (!p)
181 return NULL;
182 p->reversed = 1;
183 fs_path_reset(p);
184 return p;
185}
186
187static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
188{
189 if (!p)
190 return;
191 if (p->buf != p->inline_buf) {
192 if (p->virtual_mem)
193 vfree(p->buf);
194 else
195 kfree(p->buf);
196 }
197 kfree(p);
198}
199
200static int fs_path_len(struct fs_path *p)
201{
202 return p->end - p->start;
203}
204
205static int fs_path_ensure_buf(struct fs_path *p, int len)
206{
207 char *tmp_buf;
208 int path_len;
209 int old_buf_len;
210
211 len++;
212
213 if (p->buf_len >= len)
214 return 0;
215
216 path_len = p->end - p->start;
217 old_buf_len = p->buf_len;
218 len = PAGE_ALIGN(len);
219
220 if (p->buf == p->inline_buf) {
221 tmp_buf = kmalloc(len, GFP_NOFS);
222 if (!tmp_buf) {
223 tmp_buf = vmalloc(len);
224 if (!tmp_buf)
225 return -ENOMEM;
226 p->virtual_mem = 1;
227 }
228 memcpy(tmp_buf, p->buf, p->buf_len);
229 p->buf = tmp_buf;
230 p->buf_len = len;
231 } else {
232 if (p->virtual_mem) {
233 tmp_buf = vmalloc(len);
234 if (!tmp_buf)
235 return -ENOMEM;
236 memcpy(tmp_buf, p->buf, p->buf_len);
237 vfree(p->buf);
238 } else {
239 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
240 if (!tmp_buf) {
241 tmp_buf = vmalloc(len);
242 if (!tmp_buf)
243 return -ENOMEM;
244 memcpy(tmp_buf, p->buf, p->buf_len);
245 kfree(p->buf);
246 p->virtual_mem = 1;
247 }
248 }
249 p->buf = tmp_buf;
250 p->buf_len = len;
251 }
252 if (p->reversed) {
253 tmp_buf = p->buf + old_buf_len - path_len - 1;
254 p->end = p->buf + p->buf_len - 1;
255 p->start = p->end - path_len;
256 memmove(p->start, tmp_buf, path_len + 1);
257 } else {
258 p->start = p->buf;
259 p->end = p->start + path_len;
260 }
261 return 0;
262}
263
264static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
265{
266 int ret;
267 int new_len;
268
269 new_len = p->end - p->start + name_len;
270 if (p->start != p->end)
271 new_len++;
272 ret = fs_path_ensure_buf(p, new_len);
273 if (ret < 0)
274 goto out;
275
276 if (p->reversed) {
277 if (p->start != p->end)
278 *--p->start = '/';
279 p->start -= name_len;
280 p->prepared = p->start;
281 } else {
282 if (p->start != p->end)
283 *p->end++ = '/';
284 p->prepared = p->end;
285 p->end += name_len;
286 *p->end = 0;
287 }
288
289out:
290 return ret;
291}
292
293static int fs_path_add(struct fs_path *p, const char *name, int name_len)
294{
295 int ret;
296
297 ret = fs_path_prepare_for_add(p, name_len);
298 if (ret < 0)
299 goto out;
300 memcpy(p->prepared, name, name_len);
301 p->prepared = NULL;
302
303out:
304 return ret;
305}
306
307static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
308{
309 int ret;
310
311 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
312 if (ret < 0)
313 goto out;
314 memcpy(p->prepared, p2->start, p2->end - p2->start);
315 p->prepared = NULL;
316
317out:
318 return ret;
319}
320
321static int fs_path_add_from_extent_buffer(struct fs_path *p,
322 struct extent_buffer *eb,
323 unsigned long off, int len)
324{
325 int ret;
326
327 ret = fs_path_prepare_for_add(p, len);
328 if (ret < 0)
329 goto out;
330
331 read_extent_buffer(eb, p->prepared, off, len);
332 p->prepared = NULL;
333
334out:
335 return ret;
336}
337
9ea3ef51 338#if 0
31db9f7c
AB
339static void fs_path_remove(struct fs_path *p)
340{
341 BUG_ON(p->reversed);
342 while (p->start != p->end && *p->end != '/')
343 p->end--;
344 *p->end = 0;
345}
9ea3ef51 346#endif
31db9f7c
AB
347
348static int fs_path_copy(struct fs_path *p, struct fs_path *from)
349{
350 int ret;
351
352 p->reversed = from->reversed;
353 fs_path_reset(p);
354
355 ret = fs_path_add_path(p, from);
356
357 return ret;
358}
359
360
361static void fs_path_unreverse(struct fs_path *p)
362{
363 char *tmp;
364 int len;
365
366 if (!p->reversed)
367 return;
368
369 tmp = p->start;
370 len = p->end - p->start;
371 p->start = p->buf;
372 p->end = p->start + len;
373 memmove(p->start, tmp, len + 1);
374 p->reversed = 0;
375}
376
377static struct btrfs_path *alloc_path_for_send(void)
378{
379 struct btrfs_path *path;
380
381 path = btrfs_alloc_path();
382 if (!path)
383 return NULL;
384 path->search_commit_root = 1;
385 path->skip_locking = 1;
386 return path;
387}
388
389static int write_buf(struct send_ctx *sctx, const void *buf, u32 len)
390{
391 int ret;
392 mm_segment_t old_fs;
393 u32 pos = 0;
394
395 old_fs = get_fs();
396 set_fs(KERNEL_DS);
397
398 while (pos < len) {
399 ret = vfs_write(sctx->send_filp, (char *)buf + pos, len - pos,
400 &sctx->send_off);
401 /* TODO handle that correctly */
402 /*if (ret == -ERESTARTSYS) {
403 continue;
404 }*/
405 if (ret < 0)
406 goto out;
407 if (ret == 0) {
408 ret = -EIO;
409 goto out;
410 }
411 pos += ret;
412 }
413
414 ret = 0;
415
416out:
417 set_fs(old_fs);
418 return ret;
419}
420
421static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
422{
423 struct btrfs_tlv_header *hdr;
424 int total_len = sizeof(*hdr) + len;
425 int left = sctx->send_max_size - sctx->send_size;
426
427 if (unlikely(left < total_len))
428 return -EOVERFLOW;
429
430 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 hdr->tlv_type = cpu_to_le16(attr);
432 hdr->tlv_len = cpu_to_le16(len);
433 memcpy(hdr + 1, data, len);
434 sctx->send_size += total_len;
435
436 return 0;
437}
438
439#if 0
440static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
441{
442 return tlv_put(sctx, attr, &value, sizeof(value));
443}
444
445static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
446{
447 __le16 tmp = cpu_to_le16(value);
448 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
449}
450
451static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
452{
453 __le32 tmp = cpu_to_le32(value);
454 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
455}
456#endif
457
458static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
459{
460 __le64 tmp = cpu_to_le64(value);
461 return tlv_put(sctx, attr, &tmp, sizeof(tmp));
462}
463
464static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 const char *str, int len)
466{
467 if (len == -1)
468 len = strlen(str);
469 return tlv_put(sctx, attr, str, len);
470}
471
472static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 const u8 *uuid)
474{
475 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
476}
477
478#if 0
479static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 struct timespec *ts)
481{
482 struct btrfs_timespec bts;
483 bts.sec = cpu_to_le64(ts->tv_sec);
484 bts.nsec = cpu_to_le32(ts->tv_nsec);
485 return tlv_put(sctx, attr, &bts, sizeof(bts));
486}
487#endif
488
489static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 struct extent_buffer *eb,
491 struct btrfs_timespec *ts)
492{
493 struct btrfs_timespec bts;
494 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 return tlv_put(sctx, attr, &bts, sizeof(bts));
496}
497
498
499#define TLV_PUT(sctx, attrtype, attrlen, data) \
500 do { \
501 ret = tlv_put(sctx, attrtype, attrlen, data); \
502 if (ret < 0) \
503 goto tlv_put_failure; \
504 } while (0)
505
506#define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 do { \
508 ret = tlv_put_u##bits(sctx, attrtype, value); \
509 if (ret < 0) \
510 goto tlv_put_failure; \
511 } while (0)
512
513#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517#define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 do { \
519 ret = tlv_put_string(sctx, attrtype, str, len); \
520 if (ret < 0) \
521 goto tlv_put_failure; \
522 } while (0)
523#define TLV_PUT_PATH(sctx, attrtype, p) \
524 do { \
525 ret = tlv_put_string(sctx, attrtype, p->start, \
526 p->end - p->start); \
527 if (ret < 0) \
528 goto tlv_put_failure; \
529 } while(0)
530#define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 do { \
532 ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 if (ret < 0) \
534 goto tlv_put_failure; \
535 } while (0)
536#define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 do { \
538 ret = tlv_put_timespec(sctx, attrtype, ts); \
539 if (ret < 0) \
540 goto tlv_put_failure; \
541 } while (0)
542#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 do { \
544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 if (ret < 0) \
546 goto tlv_put_failure; \
547 } while (0)
548
549static int send_header(struct send_ctx *sctx)
550{
551 struct btrfs_stream_header hdr;
552
553 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
555
556 return write_buf(sctx, &hdr, sizeof(hdr));
557}
558
559/*
560 * For each command/item we want to send to userspace, we call this function.
561 */
562static int begin_cmd(struct send_ctx *sctx, int cmd)
563{
564 struct btrfs_cmd_header *hdr;
565
566 if (!sctx->send_buf) {
567 WARN_ON(1);
568 return -EINVAL;
569 }
570
571 BUG_ON(sctx->send_size);
572
573 sctx->send_size += sizeof(*hdr);
574 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
575 hdr->cmd = cpu_to_le16(cmd);
576
577 return 0;
578}
579
580static int send_cmd(struct send_ctx *sctx)
581{
582 int ret;
583 struct btrfs_cmd_header *hdr;
584 u32 crc;
585
586 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
587 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
588 hdr->crc = 0;
589
590 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
591 hdr->crc = cpu_to_le32(crc);
592
593 ret = write_buf(sctx, sctx->send_buf, sctx->send_size);
594
595 sctx->total_send_size += sctx->send_size;
596 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
597 sctx->send_size = 0;
598
599 return ret;
600}
601
602/*
603 * Sends a move instruction to user space
604 */
605static int send_rename(struct send_ctx *sctx,
606 struct fs_path *from, struct fs_path *to)
607{
608 int ret;
609
610verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
611
612 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
613 if (ret < 0)
614 goto out;
615
616 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
618
619 ret = send_cmd(sctx);
620
621tlv_put_failure:
622out:
623 return ret;
624}
625
626/*
627 * Sends a link instruction to user space
628 */
629static int send_link(struct send_ctx *sctx,
630 struct fs_path *path, struct fs_path *lnk)
631{
632 int ret;
633
634verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
635
636 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
637 if (ret < 0)
638 goto out;
639
640 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
642
643 ret = send_cmd(sctx);
644
645tlv_put_failure:
646out:
647 return ret;
648}
649
650/*
651 * Sends an unlink instruction to user space
652 */
653static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
654{
655 int ret;
656
657verbose_printk("btrfs: send_unlink %s\n", path->start);
658
659 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
660 if (ret < 0)
661 goto out;
662
663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
664
665 ret = send_cmd(sctx);
666
667tlv_put_failure:
668out:
669 return ret;
670}
671
672/*
673 * Sends a rmdir instruction to user space
674 */
675static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
676{
677 int ret;
678
679verbose_printk("btrfs: send_rmdir %s\n", path->start);
680
681 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
682 if (ret < 0)
683 goto out;
684
685 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
686
687 ret = send_cmd(sctx);
688
689tlv_put_failure:
690out:
691 return ret;
692}
693
694/*
695 * Helper function to retrieve some fields from an inode item.
696 */
697static int get_inode_info(struct btrfs_root *root,
698 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
699 u64 *mode, u64 *uid, u64 *gid,
700 u64 *rdev)
31db9f7c
AB
701{
702 int ret;
703 struct btrfs_inode_item *ii;
704 struct btrfs_key key;
705 struct btrfs_path *path;
706
707 path = alloc_path_for_send();
708 if (!path)
709 return -ENOMEM;
710
711 key.objectid = ino;
712 key.type = BTRFS_INODE_ITEM_KEY;
713 key.offset = 0;
714 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
715 if (ret < 0)
716 goto out;
717 if (ret) {
718 ret = -ENOENT;
719 goto out;
720 }
721
722 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
723 struct btrfs_inode_item);
724 if (size)
725 *size = btrfs_inode_size(path->nodes[0], ii);
726 if (gen)
727 *gen = btrfs_inode_generation(path->nodes[0], ii);
728 if (mode)
729 *mode = btrfs_inode_mode(path->nodes[0], ii);
730 if (uid)
731 *uid = btrfs_inode_uid(path->nodes[0], ii);
732 if (gid)
733 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
734 if (rdev)
735 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
736
737out:
738 btrfs_free_path(path);
739 return ret;
740}
741
742typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
743 struct fs_path *p,
744 void *ctx);
745
746/*
747 * Helper function to iterate the entries in ONE btrfs_inode_ref.
748 * The iterate callback may return a non zero value to stop iteration. This can
749 * be a negative value for error codes or 1 to simply stop it.
750 *
751 * path must point to the INODE_REF when called.
752 */
753static int iterate_inode_ref(struct send_ctx *sctx,
754 struct btrfs_root *root, struct btrfs_path *path,
755 struct btrfs_key *found_key, int resolve,
756 iterate_inode_ref_t iterate, void *ctx)
757{
758 struct extent_buffer *eb;
759 struct btrfs_item *item;
760 struct btrfs_inode_ref *iref;
761 struct btrfs_path *tmp_path;
762 struct fs_path *p;
763 u32 cur;
764 u32 len;
765 u32 total;
766 int slot;
767 u32 name_len;
768 char *start;
769 int ret = 0;
770 int num;
771 int index;
772
773 p = fs_path_alloc_reversed(sctx);
774 if (!p)
775 return -ENOMEM;
776
777 tmp_path = alloc_path_for_send();
778 if (!tmp_path) {
779 fs_path_free(sctx, p);
780 return -ENOMEM;
781 }
782
783 eb = path->nodes[0];
784 slot = path->slots[0];
785 item = btrfs_item_nr(eb, slot);
786 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
787 cur = 0;
788 len = 0;
789 total = btrfs_item_size(eb, item);
790
791 num = 0;
792 while (cur < total) {
793 fs_path_reset(p);
794
795 name_len = btrfs_inode_ref_name_len(eb, iref);
796 index = btrfs_inode_ref_index(eb, iref);
797 if (resolve) {
798 start = btrfs_iref_to_path(root, tmp_path, iref, eb,
799 found_key->offset, p->buf,
800 p->buf_len);
801 if (IS_ERR(start)) {
802 ret = PTR_ERR(start);
803 goto out;
804 }
805 if (start < p->buf) {
806 /* overflow , try again with larger buffer */
807 ret = fs_path_ensure_buf(p,
808 p->buf_len + p->buf - start);
809 if (ret < 0)
810 goto out;
811 start = btrfs_iref_to_path(root, tmp_path, iref,
812 eb, found_key->offset, p->buf,
813 p->buf_len);
814 if (IS_ERR(start)) {
815 ret = PTR_ERR(start);
816 goto out;
817 }
818 BUG_ON(start < p->buf);
819 }
820 p->start = start;
821 } else {
822 ret = fs_path_add_from_extent_buffer(p, eb,
823 (unsigned long)(iref + 1), name_len);
824 if (ret < 0)
825 goto out;
826 }
827
828
829 len = sizeof(*iref) + name_len;
830 iref = (struct btrfs_inode_ref *)((char *)iref + len);
831 cur += len;
832
833 ret = iterate(num, found_key->offset, index, p, ctx);
834 if (ret)
835 goto out;
836
837 num++;
838 }
839
840out:
841 btrfs_free_path(tmp_path);
842 fs_path_free(sctx, p);
843 return ret;
844}
845
846typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
847 const char *name, int name_len,
848 const char *data, int data_len,
849 u8 type, void *ctx);
850
851/*
852 * Helper function to iterate the entries in ONE btrfs_dir_item.
853 * The iterate callback may return a non zero value to stop iteration. This can
854 * be a negative value for error codes or 1 to simply stop it.
855 *
856 * path must point to the dir item when called.
857 */
858static int iterate_dir_item(struct send_ctx *sctx,
859 struct btrfs_root *root, struct btrfs_path *path,
860 struct btrfs_key *found_key,
861 iterate_dir_item_t iterate, void *ctx)
862{
863 int ret = 0;
864 struct extent_buffer *eb;
865 struct btrfs_item *item;
866 struct btrfs_dir_item *di;
31db9f7c
AB
867 struct btrfs_key di_key;
868 char *buf = NULL;
869 char *buf2 = NULL;
870 int buf_len;
871 int buf_virtual = 0;
872 u32 name_len;
873 u32 data_len;
874 u32 cur;
875 u32 len;
876 u32 total;
877 int slot;
878 int num;
879 u8 type;
880
881 buf_len = PAGE_SIZE;
882 buf = kmalloc(buf_len, GFP_NOFS);
883 if (!buf) {
884 ret = -ENOMEM;
885 goto out;
886 }
887
31db9f7c
AB
888 eb = path->nodes[0];
889 slot = path->slots[0];
890 item = btrfs_item_nr(eb, slot);
891 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
892 cur = 0;
893 len = 0;
894 total = btrfs_item_size(eb, item);
895
896 num = 0;
897 while (cur < total) {
898 name_len = btrfs_dir_name_len(eb, di);
899 data_len = btrfs_dir_data_len(eb, di);
900 type = btrfs_dir_type(eb, di);
901 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
902
903 if (name_len + data_len > buf_len) {
904 buf_len = PAGE_ALIGN(name_len + data_len);
905 if (buf_virtual) {
906 buf2 = vmalloc(buf_len);
907 if (!buf2) {
908 ret = -ENOMEM;
909 goto out;
910 }
911 vfree(buf);
912 } else {
913 buf2 = krealloc(buf, buf_len, GFP_NOFS);
914 if (!buf2) {
915 buf2 = vmalloc(buf_len);
916 if (!buf2) {
917 ret = -ENOMEM;
918 goto out;
919 }
920 kfree(buf);
921 buf_virtual = 1;
922 }
923 }
924
925 buf = buf2;
926 buf2 = NULL;
927 }
928
929 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
930 name_len + data_len);
931
932 len = sizeof(*di) + name_len + data_len;
933 di = (struct btrfs_dir_item *)((char *)di + len);
934 cur += len;
935
936 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
937 data_len, type, ctx);
938 if (ret < 0)
939 goto out;
940 if (ret) {
941 ret = 0;
942 goto out;
943 }
944
945 num++;
946 }
947
948out:
31db9f7c
AB
949 if (buf_virtual)
950 vfree(buf);
951 else
952 kfree(buf);
953 return ret;
954}
955
956static int __copy_first_ref(int num, u64 dir, int index,
957 struct fs_path *p, void *ctx)
958{
959 int ret;
960 struct fs_path *pt = ctx;
961
962 ret = fs_path_copy(pt, p);
963 if (ret < 0)
964 return ret;
965
966 /* we want the first only */
967 return 1;
968}
969
970/*
971 * Retrieve the first path of an inode. If an inode has more then one
972 * ref/hardlink, this is ignored.
973 */
974static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
975 u64 ino, struct fs_path *path)
976{
977 int ret;
978 struct btrfs_key key, found_key;
979 struct btrfs_path *p;
980
981 p = alloc_path_for_send();
982 if (!p)
983 return -ENOMEM;
984
985 fs_path_reset(path);
986
987 key.objectid = ino;
988 key.type = BTRFS_INODE_REF_KEY;
989 key.offset = 0;
990
991 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
992 if (ret < 0)
993 goto out;
994 if (ret) {
995 ret = 1;
996 goto out;
997 }
998 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
999 if (found_key.objectid != ino ||
1000 found_key.type != BTRFS_INODE_REF_KEY) {
1001 ret = -ENOENT;
1002 goto out;
1003 }
1004
1005 ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1006 __copy_first_ref, path);
1007 if (ret < 0)
1008 goto out;
1009 ret = 0;
1010
1011out:
1012 btrfs_free_path(p);
1013 return ret;
1014}
1015
1016struct backref_ctx {
1017 struct send_ctx *sctx;
1018
1019 /* number of total found references */
1020 u64 found;
1021
1022 /*
1023 * used for clones found in send_root. clones found behind cur_objectid
1024 * and cur_offset are not considered as allowed clones.
1025 */
1026 u64 cur_objectid;
1027 u64 cur_offset;
1028
1029 /* may be truncated in case it's the last extent in a file */
1030 u64 extent_len;
1031
1032 /* Just to check for bugs in backref resolving */
ee849c04 1033 int found_itself;
31db9f7c
AB
1034};
1035
1036static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1037{
995e01b7 1038 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1039 struct clone_root *cr = (struct clone_root *)elt;
1040
1041 if (root < cr->root->objectid)
1042 return -1;
1043 if (root > cr->root->objectid)
1044 return 1;
1045 return 0;
1046}
1047
1048static int __clone_root_cmp_sort(const void *e1, const void *e2)
1049{
1050 struct clone_root *cr1 = (struct clone_root *)e1;
1051 struct clone_root *cr2 = (struct clone_root *)e2;
1052
1053 if (cr1->root->objectid < cr2->root->objectid)
1054 return -1;
1055 if (cr1->root->objectid > cr2->root->objectid)
1056 return 1;
1057 return 0;
1058}
1059
1060/*
1061 * Called for every backref that is found for the current extent.
766702ef 1062 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1063 */
1064static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1065{
1066 struct backref_ctx *bctx = ctx_;
1067 struct clone_root *found;
1068 int ret;
1069 u64 i_size;
1070
1071 /* First check if the root is in the list of accepted clone sources */
995e01b7 1072 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1073 bctx->sctx->clone_roots_cnt,
1074 sizeof(struct clone_root),
1075 __clone_root_cmp_bsearch);
1076 if (!found)
1077 return 0;
1078
1079 if (found->root == bctx->sctx->send_root &&
1080 ino == bctx->cur_objectid &&
1081 offset == bctx->cur_offset) {
ee849c04 1082 bctx->found_itself = 1;
31db9f7c
AB
1083 }
1084
1085 /*
766702ef 1086 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1087 * accept clones from these extents.
1088 */
85a7b33b
AB
1089 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1090 NULL);
31db9f7c
AB
1091 if (ret < 0)
1092 return ret;
1093
1094 if (offset + bctx->extent_len > i_size)
1095 return 0;
1096
1097 /*
1098 * Make sure we don't consider clones from send_root that are
1099 * behind the current inode/offset.
1100 */
1101 if (found->root == bctx->sctx->send_root) {
1102 /*
1103 * TODO for the moment we don't accept clones from the inode
1104 * that is currently send. We may change this when
1105 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1106 * file.
1107 */
1108 if (ino >= bctx->cur_objectid)
1109 return 0;
e938c8ad
AB
1110#if 0
1111 if (ino > bctx->cur_objectid)
1112 return 0;
1113 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1114 return 0;
e938c8ad 1115#endif
31db9f7c
AB
1116 }
1117
1118 bctx->found++;
1119 found->found_refs++;
1120 if (ino < found->ino) {
1121 found->ino = ino;
1122 found->offset = offset;
1123 } else if (found->ino == ino) {
1124 /*
1125 * same extent found more then once in the same file.
1126 */
1127 if (found->offset > offset + bctx->extent_len)
1128 found->offset = offset;
1129 }
1130
1131 return 0;
1132}
1133
1134/*
766702ef
AB
1135 * Given an inode, offset and extent item, it finds a good clone for a clone
1136 * instruction. Returns -ENOENT when none could be found. The function makes
1137 * sure that the returned clone is usable at the point where sending is at the
1138 * moment. This means, that no clones are accepted which lie behind the current
1139 * inode+offset.
1140 *
31db9f7c
AB
1141 * path must point to the extent item when called.
1142 */
1143static int find_extent_clone(struct send_ctx *sctx,
1144 struct btrfs_path *path,
1145 u64 ino, u64 data_offset,
1146 u64 ino_size,
1147 struct clone_root **found)
1148{
1149 int ret;
1150 int extent_type;
1151 u64 logical;
74dd17fb 1152 u64 disk_byte;
31db9f7c
AB
1153 u64 num_bytes;
1154 u64 extent_item_pos;
69917e43 1155 u64 flags = 0;
31db9f7c
AB
1156 struct btrfs_file_extent_item *fi;
1157 struct extent_buffer *eb = path->nodes[0];
35075bb0 1158 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1159 struct clone_root *cur_clone_root;
1160 struct btrfs_key found_key;
1161 struct btrfs_path *tmp_path;
74dd17fb 1162 int compressed;
31db9f7c
AB
1163 u32 i;
1164
1165 tmp_path = alloc_path_for_send();
1166 if (!tmp_path)
1167 return -ENOMEM;
1168
35075bb0
AB
1169 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1170 if (!backref_ctx) {
1171 ret = -ENOMEM;
1172 goto out;
1173 }
1174
31db9f7c
AB
1175 if (data_offset >= ino_size) {
1176 /*
1177 * There may be extents that lie behind the file's size.
1178 * I at least had this in combination with snapshotting while
1179 * writing large files.
1180 */
1181 ret = 0;
1182 goto out;
1183 }
1184
1185 fi = btrfs_item_ptr(eb, path->slots[0],
1186 struct btrfs_file_extent_item);
1187 extent_type = btrfs_file_extent_type(eb, fi);
1188 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1189 ret = -ENOENT;
1190 goto out;
1191 }
74dd17fb 1192 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1193
1194 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1195 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1196 if (disk_byte == 0) {
31db9f7c
AB
1197 ret = -ENOENT;
1198 goto out;
1199 }
74dd17fb 1200 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1201
69917e43
LB
1202 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1203 &found_key, &flags);
31db9f7c
AB
1204 btrfs_release_path(tmp_path);
1205
1206 if (ret < 0)
1207 goto out;
69917e43 1208 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1209 ret = -EIO;
1210 goto out;
1211 }
1212
1213 /*
1214 * Setup the clone roots.
1215 */
1216 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1217 cur_clone_root = sctx->clone_roots + i;
1218 cur_clone_root->ino = (u64)-1;
1219 cur_clone_root->offset = 0;
1220 cur_clone_root->found_refs = 0;
1221 }
1222
35075bb0
AB
1223 backref_ctx->sctx = sctx;
1224 backref_ctx->found = 0;
1225 backref_ctx->cur_objectid = ino;
1226 backref_ctx->cur_offset = data_offset;
1227 backref_ctx->found_itself = 0;
1228 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1229
1230 /*
1231 * The last extent of a file may be too large due to page alignment.
1232 * We need to adjust extent_len in this case so that the checks in
1233 * __iterate_backrefs work.
1234 */
1235 if (data_offset + num_bytes >= ino_size)
35075bb0 1236 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1237
1238 /*
1239 * Now collect all backrefs.
1240 */
74dd17fb
CM
1241 if (compressed == BTRFS_COMPRESS_NONE)
1242 extent_item_pos = logical - found_key.objectid;
1243 else
1244 extent_item_pos = 0;
1245
31db9f7c
AB
1246 extent_item_pos = logical - found_key.objectid;
1247 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1248 found_key.objectid, extent_item_pos, 1,
35075bb0 1249 __iterate_backrefs, backref_ctx);
74dd17fb 1250
31db9f7c
AB
1251 if (ret < 0)
1252 goto out;
1253
35075bb0 1254 if (!backref_ctx->found_itself) {
31db9f7c
AB
1255 /* found a bug in backref code? */
1256 ret = -EIO;
1257 printk(KERN_ERR "btrfs: ERROR did not find backref in "
1258 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1259 "disk_byte=%llu found extent=%llu\n",
1260 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1261 goto out;
1262 }
1263
1264verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1265 "ino=%llu, "
1266 "num_bytes=%llu, logical=%llu\n",
1267 data_offset, ino, num_bytes, logical);
1268
35075bb0 1269 if (!backref_ctx->found)
31db9f7c
AB
1270 verbose_printk("btrfs: no clones found\n");
1271
1272 cur_clone_root = NULL;
1273 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1274 if (sctx->clone_roots[i].found_refs) {
1275 if (!cur_clone_root)
1276 cur_clone_root = sctx->clone_roots + i;
1277 else if (sctx->clone_roots[i].root == sctx->send_root)
1278 /* prefer clones from send_root over others */
1279 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1280 }
1281
1282 }
1283
1284 if (cur_clone_root) {
1285 *found = cur_clone_root;
1286 ret = 0;
1287 } else {
1288 ret = -ENOENT;
1289 }
1290
1291out:
1292 btrfs_free_path(tmp_path);
35075bb0 1293 kfree(backref_ctx);
31db9f7c
AB
1294 return ret;
1295}
1296
1297static int read_symlink(struct send_ctx *sctx,
1298 struct btrfs_root *root,
1299 u64 ino,
1300 struct fs_path *dest)
1301{
1302 int ret;
1303 struct btrfs_path *path;
1304 struct btrfs_key key;
1305 struct btrfs_file_extent_item *ei;
1306 u8 type;
1307 u8 compression;
1308 unsigned long off;
1309 int len;
1310
1311 path = alloc_path_for_send();
1312 if (!path)
1313 return -ENOMEM;
1314
1315 key.objectid = ino;
1316 key.type = BTRFS_EXTENT_DATA_KEY;
1317 key.offset = 0;
1318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1319 if (ret < 0)
1320 goto out;
1321 BUG_ON(ret);
1322
1323 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1324 struct btrfs_file_extent_item);
1325 type = btrfs_file_extent_type(path->nodes[0], ei);
1326 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1327 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1328 BUG_ON(compression);
1329
1330 off = btrfs_file_extent_inline_start(ei);
1331 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1332
1333 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1334
1335out:
1336 btrfs_free_path(path);
1337 return ret;
1338}
1339
1340/*
1341 * Helper function to generate a file name that is unique in the root of
1342 * send_root and parent_root. This is used to generate names for orphan inodes.
1343 */
1344static int gen_unique_name(struct send_ctx *sctx,
1345 u64 ino, u64 gen,
1346 struct fs_path *dest)
1347{
1348 int ret = 0;
1349 struct btrfs_path *path;
1350 struct btrfs_dir_item *di;
1351 char tmp[64];
1352 int len;
1353 u64 idx = 0;
1354
1355 path = alloc_path_for_send();
1356 if (!path)
1357 return -ENOMEM;
1358
1359 while (1) {
1360 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1361 ino, gen, idx);
1362 if (len >= sizeof(tmp)) {
1363 /* should really not happen */
1364 ret = -EOVERFLOW;
1365 goto out;
1366 }
1367
1368 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1369 path, BTRFS_FIRST_FREE_OBJECTID,
1370 tmp, strlen(tmp), 0);
1371 btrfs_release_path(path);
1372 if (IS_ERR(di)) {
1373 ret = PTR_ERR(di);
1374 goto out;
1375 }
1376 if (di) {
1377 /* not unique, try again */
1378 idx++;
1379 continue;
1380 }
1381
1382 if (!sctx->parent_root) {
1383 /* unique */
1384 ret = 0;
1385 break;
1386 }
1387
1388 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1389 path, BTRFS_FIRST_FREE_OBJECTID,
1390 tmp, strlen(tmp), 0);
1391 btrfs_release_path(path);
1392 if (IS_ERR(di)) {
1393 ret = PTR_ERR(di);
1394 goto out;
1395 }
1396 if (di) {
1397 /* not unique, try again */
1398 idx++;
1399 continue;
1400 }
1401 /* unique */
1402 break;
1403 }
1404
1405 ret = fs_path_add(dest, tmp, strlen(tmp));
1406
1407out:
1408 btrfs_free_path(path);
1409 return ret;
1410}
1411
1412enum inode_state {
1413 inode_state_no_change,
1414 inode_state_will_create,
1415 inode_state_did_create,
1416 inode_state_will_delete,
1417 inode_state_did_delete,
1418};
1419
1420static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1421{
1422 int ret;
1423 int left_ret;
1424 int right_ret;
1425 u64 left_gen;
1426 u64 right_gen;
1427
1428 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1429 NULL, NULL);
31db9f7c
AB
1430 if (ret < 0 && ret != -ENOENT)
1431 goto out;
1432 left_ret = ret;
1433
1434 if (!sctx->parent_root) {
1435 right_ret = -ENOENT;
1436 } else {
1437 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1438 NULL, NULL, NULL, NULL);
31db9f7c
AB
1439 if (ret < 0 && ret != -ENOENT)
1440 goto out;
1441 right_ret = ret;
1442 }
1443
1444 if (!left_ret && !right_ret) {
e938c8ad 1445 if (left_gen == gen && right_gen == gen) {
31db9f7c 1446 ret = inode_state_no_change;
e938c8ad 1447 } else if (left_gen == gen) {
31db9f7c
AB
1448 if (ino < sctx->send_progress)
1449 ret = inode_state_did_create;
1450 else
1451 ret = inode_state_will_create;
1452 } else if (right_gen == gen) {
1453 if (ino < sctx->send_progress)
1454 ret = inode_state_did_delete;
1455 else
1456 ret = inode_state_will_delete;
1457 } else {
1458 ret = -ENOENT;
1459 }
1460 } else if (!left_ret) {
1461 if (left_gen == gen) {
1462 if (ino < sctx->send_progress)
1463 ret = inode_state_did_create;
1464 else
1465 ret = inode_state_will_create;
1466 } else {
1467 ret = -ENOENT;
1468 }
1469 } else if (!right_ret) {
1470 if (right_gen == gen) {
1471 if (ino < sctx->send_progress)
1472 ret = inode_state_did_delete;
1473 else
1474 ret = inode_state_will_delete;
1475 } else {
1476 ret = -ENOENT;
1477 }
1478 } else {
1479 ret = -ENOENT;
1480 }
1481
1482out:
1483 return ret;
1484}
1485
1486static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1487{
1488 int ret;
1489
1490 ret = get_cur_inode_state(sctx, ino, gen);
1491 if (ret < 0)
1492 goto out;
1493
1494 if (ret == inode_state_no_change ||
1495 ret == inode_state_did_create ||
1496 ret == inode_state_will_delete)
1497 ret = 1;
1498 else
1499 ret = 0;
1500
1501out:
1502 return ret;
1503}
1504
1505/*
1506 * Helper function to lookup a dir item in a dir.
1507 */
1508static int lookup_dir_item_inode(struct btrfs_root *root,
1509 u64 dir, const char *name, int name_len,
1510 u64 *found_inode,
1511 u8 *found_type)
1512{
1513 int ret = 0;
1514 struct btrfs_dir_item *di;
1515 struct btrfs_key key;
1516 struct btrfs_path *path;
1517
1518 path = alloc_path_for_send();
1519 if (!path)
1520 return -ENOMEM;
1521
1522 di = btrfs_lookup_dir_item(NULL, root, path,
1523 dir, name, name_len, 0);
1524 if (!di) {
1525 ret = -ENOENT;
1526 goto out;
1527 }
1528 if (IS_ERR(di)) {
1529 ret = PTR_ERR(di);
1530 goto out;
1531 }
1532 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1533 *found_inode = key.objectid;
1534 *found_type = btrfs_dir_type(path->nodes[0], di);
1535
1536out:
1537 btrfs_free_path(path);
1538 return ret;
1539}
1540
766702ef
AB
1541/*
1542 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1543 * generation of the parent dir and the name of the dir entry.
1544 */
31db9f7c
AB
1545static int get_first_ref(struct send_ctx *sctx,
1546 struct btrfs_root *root, u64 ino,
1547 u64 *dir, u64 *dir_gen, struct fs_path *name)
1548{
1549 int ret;
1550 struct btrfs_key key;
1551 struct btrfs_key found_key;
1552 struct btrfs_path *path;
1553 struct btrfs_inode_ref *iref;
1554 int len;
1555
1556 path = alloc_path_for_send();
1557 if (!path)
1558 return -ENOMEM;
1559
1560 key.objectid = ino;
1561 key.type = BTRFS_INODE_REF_KEY;
1562 key.offset = 0;
1563
1564 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1565 if (ret < 0)
1566 goto out;
1567 if (!ret)
1568 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1569 path->slots[0]);
1570 if (ret || found_key.objectid != key.objectid ||
1571 found_key.type != key.type) {
1572 ret = -ENOENT;
1573 goto out;
1574 }
1575
1576 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1577 struct btrfs_inode_ref);
1578 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1579 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1580 (unsigned long)(iref + 1), len);
1581 if (ret < 0)
1582 goto out;
1583 btrfs_release_path(path);
1584
1585 ret = get_inode_info(root, found_key.offset, NULL, dir_gen, NULL, NULL,
85a7b33b 1586 NULL, NULL);
31db9f7c
AB
1587 if (ret < 0)
1588 goto out;
1589
1590 *dir = found_key.offset;
1591
1592out:
1593 btrfs_free_path(path);
1594 return ret;
1595}
1596
1597static int is_first_ref(struct send_ctx *sctx,
1598 struct btrfs_root *root,
1599 u64 ino, u64 dir,
1600 const char *name, int name_len)
1601{
1602 int ret;
1603 struct fs_path *tmp_name;
1604 u64 tmp_dir;
1605 u64 tmp_dir_gen;
1606
1607 tmp_name = fs_path_alloc(sctx);
1608 if (!tmp_name)
1609 return -ENOMEM;
1610
1611 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1612 if (ret < 0)
1613 goto out;
1614
b9291aff 1615 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1616 ret = 0;
1617 goto out;
1618 }
1619
e938c8ad 1620 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1621
1622out:
1623 fs_path_free(sctx, tmp_name);
1624 return ret;
1625}
1626
766702ef
AB
1627/*
1628 * Used by process_recorded_refs to determine if a new ref would overwrite an
1629 * already existing ref. In case it detects an overwrite, it returns the
1630 * inode/gen in who_ino/who_gen.
1631 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1632 * to make sure later references to the overwritten inode are possible.
1633 * Orphanizing is however only required for the first ref of an inode.
1634 * process_recorded_refs does an additional is_first_ref check to see if
1635 * orphanizing is really required.
1636 */
31db9f7c
AB
1637static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1638 const char *name, int name_len,
1639 u64 *who_ino, u64 *who_gen)
1640{
1641 int ret = 0;
1642 u64 other_inode = 0;
1643 u8 other_type = 0;
1644
1645 if (!sctx->parent_root)
1646 goto out;
1647
1648 ret = is_inode_existent(sctx, dir, dir_gen);
1649 if (ret <= 0)
1650 goto out;
1651
1652 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1653 &other_inode, &other_type);
1654 if (ret < 0 && ret != -ENOENT)
1655 goto out;
1656 if (ret) {
1657 ret = 0;
1658 goto out;
1659 }
1660
766702ef
AB
1661 /*
1662 * Check if the overwritten ref was already processed. If yes, the ref
1663 * was already unlinked/moved, so we can safely assume that we will not
1664 * overwrite anything at this point in time.
1665 */
31db9f7c
AB
1666 if (other_inode > sctx->send_progress) {
1667 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1668 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1669 if (ret < 0)
1670 goto out;
1671
1672 ret = 1;
1673 *who_ino = other_inode;
1674 } else {
1675 ret = 0;
1676 }
1677
1678out:
1679 return ret;
1680}
1681
766702ef
AB
1682/*
1683 * Checks if the ref was overwritten by an already processed inode. This is
1684 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1685 * thus the orphan name needs be used.
1686 * process_recorded_refs also uses it to avoid unlinking of refs that were
1687 * overwritten.
1688 */
31db9f7c
AB
1689static int did_overwrite_ref(struct send_ctx *sctx,
1690 u64 dir, u64 dir_gen,
1691 u64 ino, u64 ino_gen,
1692 const char *name, int name_len)
1693{
1694 int ret = 0;
1695 u64 gen;
1696 u64 ow_inode;
1697 u8 other_type;
1698
1699 if (!sctx->parent_root)
1700 goto out;
1701
1702 ret = is_inode_existent(sctx, dir, dir_gen);
1703 if (ret <= 0)
1704 goto out;
1705
1706 /* check if the ref was overwritten by another ref */
1707 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1708 &ow_inode, &other_type);
1709 if (ret < 0 && ret != -ENOENT)
1710 goto out;
1711 if (ret) {
1712 /* was never and will never be overwritten */
1713 ret = 0;
1714 goto out;
1715 }
1716
1717 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1718 NULL, NULL);
31db9f7c
AB
1719 if (ret < 0)
1720 goto out;
1721
1722 if (ow_inode == ino && gen == ino_gen) {
1723 ret = 0;
1724 goto out;
1725 }
1726
1727 /* we know that it is or will be overwritten. check this now */
1728 if (ow_inode < sctx->send_progress)
1729 ret = 1;
1730 else
1731 ret = 0;
1732
1733out:
1734 return ret;
1735}
1736
766702ef
AB
1737/*
1738 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1739 * that got overwritten. This is used by process_recorded_refs to determine
1740 * if it has to use the path as returned by get_cur_path or the orphan name.
1741 */
31db9f7c
AB
1742static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1743{
1744 int ret = 0;
1745 struct fs_path *name = NULL;
1746 u64 dir;
1747 u64 dir_gen;
1748
1749 if (!sctx->parent_root)
1750 goto out;
1751
1752 name = fs_path_alloc(sctx);
1753 if (!name)
1754 return -ENOMEM;
1755
1756 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1757 if (ret < 0)
1758 goto out;
1759
1760 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1761 name->start, fs_path_len(name));
31db9f7c
AB
1762
1763out:
1764 fs_path_free(sctx, name);
1765 return ret;
1766}
1767
766702ef
AB
1768/*
1769 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1770 * so we need to do some special handling in case we have clashes. This function
1771 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1772 * In case of error, nce is kfreed.
766702ef 1773 */
31db9f7c
AB
1774static int name_cache_insert(struct send_ctx *sctx,
1775 struct name_cache_entry *nce)
1776{
1777 int ret = 0;
7e0926fe
AB
1778 struct list_head *nce_head;
1779
1780 nce_head = radix_tree_lookup(&sctx->name_cache,
1781 (unsigned long)nce->ino);
1782 if (!nce_head) {
1783 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1784 if (!nce_head)
31db9f7c 1785 return -ENOMEM;
7e0926fe 1786 INIT_LIST_HEAD(nce_head);
31db9f7c 1787
7e0926fe 1788 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1789 if (ret < 0) {
1790 kfree(nce_head);
1791 kfree(nce);
31db9f7c 1792 return ret;
5dc67d0b 1793 }
31db9f7c 1794 }
7e0926fe 1795 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1796 list_add_tail(&nce->list, &sctx->name_cache_list);
1797 sctx->name_cache_size++;
1798
1799 return ret;
1800}
1801
1802static void name_cache_delete(struct send_ctx *sctx,
1803 struct name_cache_entry *nce)
1804{
7e0926fe 1805 struct list_head *nce_head;
31db9f7c 1806
7e0926fe
AB
1807 nce_head = radix_tree_lookup(&sctx->name_cache,
1808 (unsigned long)nce->ino);
1809 BUG_ON(!nce_head);
31db9f7c 1810
7e0926fe 1811 list_del(&nce->radix_list);
31db9f7c 1812 list_del(&nce->list);
31db9f7c 1813 sctx->name_cache_size--;
7e0926fe
AB
1814
1815 if (list_empty(nce_head)) {
1816 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1817 kfree(nce_head);
1818 }
31db9f7c
AB
1819}
1820
1821static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1822 u64 ino, u64 gen)
1823{
7e0926fe
AB
1824 struct list_head *nce_head;
1825 struct name_cache_entry *cur;
31db9f7c 1826
7e0926fe
AB
1827 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1828 if (!nce_head)
31db9f7c
AB
1829 return NULL;
1830
7e0926fe
AB
1831 list_for_each_entry(cur, nce_head, radix_list) {
1832 if (cur->ino == ino && cur->gen == gen)
1833 return cur;
1834 }
31db9f7c
AB
1835 return NULL;
1836}
1837
766702ef
AB
1838/*
1839 * Removes the entry from the list and adds it back to the end. This marks the
1840 * entry as recently used so that name_cache_clean_unused does not remove it.
1841 */
31db9f7c
AB
1842static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1843{
1844 list_del(&nce->list);
1845 list_add_tail(&nce->list, &sctx->name_cache_list);
1846}
1847
766702ef
AB
1848/*
1849 * Remove some entries from the beginning of name_cache_list.
1850 */
31db9f7c
AB
1851static void name_cache_clean_unused(struct send_ctx *sctx)
1852{
1853 struct name_cache_entry *nce;
1854
1855 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1856 return;
1857
1858 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1859 nce = list_entry(sctx->name_cache_list.next,
1860 struct name_cache_entry, list);
1861 name_cache_delete(sctx, nce);
1862 kfree(nce);
1863 }
1864}
1865
1866static void name_cache_free(struct send_ctx *sctx)
1867{
1868 struct name_cache_entry *nce;
31db9f7c 1869
e938c8ad
AB
1870 while (!list_empty(&sctx->name_cache_list)) {
1871 nce = list_entry(sctx->name_cache_list.next,
1872 struct name_cache_entry, list);
31db9f7c 1873 name_cache_delete(sctx, nce);
17589bd9 1874 kfree(nce);
31db9f7c
AB
1875 }
1876}
1877
766702ef
AB
1878/*
1879 * Used by get_cur_path for each ref up to the root.
1880 * Returns 0 if it succeeded.
1881 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1882 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1883 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1884 * Returns <0 in case of error.
1885 */
31db9f7c
AB
1886static int __get_cur_name_and_parent(struct send_ctx *sctx,
1887 u64 ino, u64 gen,
1888 u64 *parent_ino,
1889 u64 *parent_gen,
1890 struct fs_path *dest)
1891{
1892 int ret;
1893 int nce_ret;
1894 struct btrfs_path *path = NULL;
1895 struct name_cache_entry *nce = NULL;
1896
766702ef
AB
1897 /*
1898 * First check if we already did a call to this function with the same
1899 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1900 * return the cached result.
1901 */
31db9f7c
AB
1902 nce = name_cache_search(sctx, ino, gen);
1903 if (nce) {
1904 if (ino < sctx->send_progress && nce->need_later_update) {
1905 name_cache_delete(sctx, nce);
1906 kfree(nce);
1907 nce = NULL;
1908 } else {
1909 name_cache_used(sctx, nce);
1910 *parent_ino = nce->parent_ino;
1911 *parent_gen = nce->parent_gen;
1912 ret = fs_path_add(dest, nce->name, nce->name_len);
1913 if (ret < 0)
1914 goto out;
1915 ret = nce->ret;
1916 goto out;
1917 }
1918 }
1919
1920 path = alloc_path_for_send();
1921 if (!path)
1922 return -ENOMEM;
1923
766702ef
AB
1924 /*
1925 * If the inode is not existent yet, add the orphan name and return 1.
1926 * This should only happen for the parent dir that we determine in
1927 * __record_new_ref
1928 */
31db9f7c
AB
1929 ret = is_inode_existent(sctx, ino, gen);
1930 if (ret < 0)
1931 goto out;
1932
1933 if (!ret) {
1934 ret = gen_unique_name(sctx, ino, gen, dest);
1935 if (ret < 0)
1936 goto out;
1937 ret = 1;
1938 goto out_cache;
1939 }
1940
766702ef
AB
1941 /*
1942 * Depending on whether the inode was already processed or not, use
1943 * send_root or parent_root for ref lookup.
1944 */
31db9f7c
AB
1945 if (ino < sctx->send_progress)
1946 ret = get_first_ref(sctx, sctx->send_root, ino,
1947 parent_ino, parent_gen, dest);
1948 else
1949 ret = get_first_ref(sctx, sctx->parent_root, ino,
1950 parent_ino, parent_gen, dest);
1951 if (ret < 0)
1952 goto out;
1953
766702ef
AB
1954 /*
1955 * Check if the ref was overwritten by an inode's ref that was processed
1956 * earlier. If yes, treat as orphan and return 1.
1957 */
31db9f7c
AB
1958 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1959 dest->start, dest->end - dest->start);
1960 if (ret < 0)
1961 goto out;
1962 if (ret) {
1963 fs_path_reset(dest);
1964 ret = gen_unique_name(sctx, ino, gen, dest);
1965 if (ret < 0)
1966 goto out;
1967 ret = 1;
1968 }
1969
1970out_cache:
766702ef
AB
1971 /*
1972 * Store the result of the lookup in the name cache.
1973 */
31db9f7c
AB
1974 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
1975 if (!nce) {
1976 ret = -ENOMEM;
1977 goto out;
1978 }
1979
1980 nce->ino = ino;
1981 nce->gen = gen;
1982 nce->parent_ino = *parent_ino;
1983 nce->parent_gen = *parent_gen;
1984 nce->name_len = fs_path_len(dest);
1985 nce->ret = ret;
1986 strcpy(nce->name, dest->start);
31db9f7c
AB
1987
1988 if (ino < sctx->send_progress)
1989 nce->need_later_update = 0;
1990 else
1991 nce->need_later_update = 1;
1992
1993 nce_ret = name_cache_insert(sctx, nce);
1994 if (nce_ret < 0)
1995 ret = nce_ret;
1996 name_cache_clean_unused(sctx);
1997
1998out:
1999 btrfs_free_path(path);
2000 return ret;
2001}
2002
2003/*
2004 * Magic happens here. This function returns the first ref to an inode as it
2005 * would look like while receiving the stream at this point in time.
2006 * We walk the path up to the root. For every inode in between, we check if it
2007 * was already processed/sent. If yes, we continue with the parent as found
2008 * in send_root. If not, we continue with the parent as found in parent_root.
2009 * If we encounter an inode that was deleted at this point in time, we use the
2010 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2011 * that were not created yet and overwritten inodes/refs.
2012 *
2013 * When do we have have orphan inodes:
2014 * 1. When an inode is freshly created and thus no valid refs are available yet
2015 * 2. When a directory lost all it's refs (deleted) but still has dir items
2016 * inside which were not processed yet (pending for move/delete). If anyone
2017 * tried to get the path to the dir items, it would get a path inside that
2018 * orphan directory.
2019 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2020 * of an unprocessed inode. If in that case the first ref would be
2021 * overwritten, the overwritten inode gets "orphanized". Later when we
2022 * process this overwritten inode, it is restored at a new place by moving
2023 * the orphan inode.
2024 *
2025 * sctx->send_progress tells this function at which point in time receiving
2026 * would be.
2027 */
2028static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2029 struct fs_path *dest)
2030{
2031 int ret = 0;
2032 struct fs_path *name = NULL;
2033 u64 parent_inode = 0;
2034 u64 parent_gen = 0;
2035 int stop = 0;
2036
2037 name = fs_path_alloc(sctx);
2038 if (!name) {
2039 ret = -ENOMEM;
2040 goto out;
2041 }
2042
2043 dest->reversed = 1;
2044 fs_path_reset(dest);
2045
2046 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2047 fs_path_reset(name);
2048
2049 ret = __get_cur_name_and_parent(sctx, ino, gen,
2050 &parent_inode, &parent_gen, name);
2051 if (ret < 0)
2052 goto out;
2053 if (ret)
2054 stop = 1;
2055
2056 ret = fs_path_add_path(dest, name);
2057 if (ret < 0)
2058 goto out;
2059
2060 ino = parent_inode;
2061 gen = parent_gen;
2062 }
2063
2064out:
2065 fs_path_free(sctx, name);
2066 if (!ret)
2067 fs_path_unreverse(dest);
2068 return ret;
2069}
2070
2071/*
2072 * Called for regular files when sending extents data. Opens a struct file
2073 * to read from the file.
2074 */
2075static int open_cur_inode_file(struct send_ctx *sctx)
2076{
2077 int ret = 0;
2078 struct btrfs_key key;
e2aed8df 2079 struct path path;
31db9f7c
AB
2080 struct inode *inode;
2081 struct dentry *dentry;
2082 struct file *filp;
2083 int new = 0;
2084
2085 if (sctx->cur_inode_filp)
2086 goto out;
2087
2088 key.objectid = sctx->cur_ino;
2089 key.type = BTRFS_INODE_ITEM_KEY;
2090 key.offset = 0;
2091
2092 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2093 &new);
2094 if (IS_ERR(inode)) {
2095 ret = PTR_ERR(inode);
2096 goto out;
2097 }
2098
2099 dentry = d_obtain_alias(inode);
2100 inode = NULL;
2101 if (IS_ERR(dentry)) {
2102 ret = PTR_ERR(dentry);
2103 goto out;
2104 }
2105
e2aed8df
LT
2106 path.mnt = sctx->mnt;
2107 path.dentry = dentry;
2108 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2109 dput(dentry);
31db9f7c 2110 dentry = NULL;
31db9f7c
AB
2111 if (IS_ERR(filp)) {
2112 ret = PTR_ERR(filp);
2113 goto out;
2114 }
2115 sctx->cur_inode_filp = filp;
2116
2117out:
2118 /*
2119 * no xxxput required here as every vfs op
2120 * does it by itself on failure
2121 */
2122 return ret;
2123}
2124
2125/*
2126 * Closes the struct file that was created in open_cur_inode_file
2127 */
2128static int close_cur_inode_file(struct send_ctx *sctx)
2129{
2130 int ret = 0;
2131
2132 if (!sctx->cur_inode_filp)
2133 goto out;
2134
2135 ret = filp_close(sctx->cur_inode_filp, NULL);
2136 sctx->cur_inode_filp = NULL;
2137
2138out:
2139 return ret;
2140}
2141
2142/*
2143 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2144 */
2145static int send_subvol_begin(struct send_ctx *sctx)
2146{
2147 int ret;
2148 struct btrfs_root *send_root = sctx->send_root;
2149 struct btrfs_root *parent_root = sctx->parent_root;
2150 struct btrfs_path *path;
2151 struct btrfs_key key;
2152 struct btrfs_root_ref *ref;
2153 struct extent_buffer *leaf;
2154 char *name = NULL;
2155 int namelen;
2156
2157 path = alloc_path_for_send();
2158 if (!path)
2159 return -ENOMEM;
2160
2161 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2162 if (!name) {
2163 btrfs_free_path(path);
2164 return -ENOMEM;
2165 }
2166
2167 key.objectid = send_root->objectid;
2168 key.type = BTRFS_ROOT_BACKREF_KEY;
2169 key.offset = 0;
2170
2171 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2172 &key, path, 1, 0);
2173 if (ret < 0)
2174 goto out;
2175 if (ret) {
2176 ret = -ENOENT;
2177 goto out;
2178 }
2179
2180 leaf = path->nodes[0];
2181 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2182 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2183 key.objectid != send_root->objectid) {
2184 ret = -ENOENT;
2185 goto out;
2186 }
2187 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2188 namelen = btrfs_root_ref_name_len(leaf, ref);
2189 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2190 btrfs_release_path(path);
2191
31db9f7c
AB
2192 if (parent_root) {
2193 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2194 if (ret < 0)
2195 goto out;
2196 } else {
2197 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2198 if (ret < 0)
2199 goto out;
2200 }
2201
2202 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2203 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2204 sctx->send_root->root_item.uuid);
2205 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2206 sctx->send_root->root_item.ctransid);
2207 if (parent_root) {
2208 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2209 sctx->parent_root->root_item.uuid);
2210 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2211 sctx->parent_root->root_item.ctransid);
2212 }
2213
2214 ret = send_cmd(sctx);
2215
2216tlv_put_failure:
2217out:
2218 btrfs_free_path(path);
2219 kfree(name);
2220 return ret;
2221}
2222
2223static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2224{
2225 int ret = 0;
2226 struct fs_path *p;
2227
2228verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2229
2230 p = fs_path_alloc(sctx);
2231 if (!p)
2232 return -ENOMEM;
2233
2234 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2235 if (ret < 0)
2236 goto out;
2237
2238 ret = get_cur_path(sctx, ino, gen, p);
2239 if (ret < 0)
2240 goto out;
2241 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2242 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2243
2244 ret = send_cmd(sctx);
2245
2246tlv_put_failure:
2247out:
2248 fs_path_free(sctx, p);
2249 return ret;
2250}
2251
2252static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2253{
2254 int ret = 0;
2255 struct fs_path *p;
2256
2257verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2258
2259 p = fs_path_alloc(sctx);
2260 if (!p)
2261 return -ENOMEM;
2262
2263 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2264 if (ret < 0)
2265 goto out;
2266
2267 ret = get_cur_path(sctx, ino, gen, p);
2268 if (ret < 0)
2269 goto out;
2270 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2271 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2272
2273 ret = send_cmd(sctx);
2274
2275tlv_put_failure:
2276out:
2277 fs_path_free(sctx, p);
2278 return ret;
2279}
2280
2281static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2282{
2283 int ret = 0;
2284 struct fs_path *p;
2285
2286verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2287
2288 p = fs_path_alloc(sctx);
2289 if (!p)
2290 return -ENOMEM;
2291
2292 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2293 if (ret < 0)
2294 goto out;
2295
2296 ret = get_cur_path(sctx, ino, gen, p);
2297 if (ret < 0)
2298 goto out;
2299 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2300 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2301 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2302
2303 ret = send_cmd(sctx);
2304
2305tlv_put_failure:
2306out:
2307 fs_path_free(sctx, p);
2308 return ret;
2309}
2310
2311static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2312{
2313 int ret = 0;
2314 struct fs_path *p = NULL;
2315 struct btrfs_inode_item *ii;
2316 struct btrfs_path *path = NULL;
2317 struct extent_buffer *eb;
2318 struct btrfs_key key;
2319 int slot;
2320
2321verbose_printk("btrfs: send_utimes %llu\n", ino);
2322
2323 p = fs_path_alloc(sctx);
2324 if (!p)
2325 return -ENOMEM;
2326
2327 path = alloc_path_for_send();
2328 if (!path) {
2329 ret = -ENOMEM;
2330 goto out;
2331 }
2332
2333 key.objectid = ino;
2334 key.type = BTRFS_INODE_ITEM_KEY;
2335 key.offset = 0;
2336 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 eb = path->nodes[0];
2341 slot = path->slots[0];
2342 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2343
2344 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2345 if (ret < 0)
2346 goto out;
2347
2348 ret = get_cur_path(sctx, ino, gen, p);
2349 if (ret < 0)
2350 goto out;
2351 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2352 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2353 btrfs_inode_atime(ii));
2354 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2355 btrfs_inode_mtime(ii));
2356 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2357 btrfs_inode_ctime(ii));
766702ef 2358 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2359
2360 ret = send_cmd(sctx);
2361
2362tlv_put_failure:
2363out:
2364 fs_path_free(sctx, p);
2365 btrfs_free_path(path);
2366 return ret;
2367}
2368
2369/*
2370 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2371 * a valid path yet because we did not process the refs yet. So, the inode
2372 * is created as orphan.
2373 */
1f4692da 2374static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2375{
2376 int ret = 0;
31db9f7c 2377 struct fs_path *p;
31db9f7c 2378 int cmd;
1f4692da 2379 u64 gen;
31db9f7c 2380 u64 mode;
1f4692da 2381 u64 rdev;
31db9f7c 2382
1f4692da 2383verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c
AB
2384
2385 p = fs_path_alloc(sctx);
2386 if (!p)
2387 return -ENOMEM;
2388
1f4692da
AB
2389 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2390 NULL, &rdev);
2391 if (ret < 0)
2392 goto out;
31db9f7c 2393
e938c8ad 2394 if (S_ISREG(mode)) {
31db9f7c 2395 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2396 } else if (S_ISDIR(mode)) {
31db9f7c 2397 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2398 } else if (S_ISLNK(mode)) {
31db9f7c 2399 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2400 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2401 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2402 } else if (S_ISFIFO(mode)) {
31db9f7c 2403 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2404 } else if (S_ISSOCK(mode)) {
31db9f7c 2405 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2406 } else {
31db9f7c
AB
2407 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2408 (int)(mode & S_IFMT));
2409 ret = -ENOTSUPP;
2410 goto out;
2411 }
2412
2413 ret = begin_cmd(sctx, cmd);
2414 if (ret < 0)
2415 goto out;
2416
1f4692da 2417 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2418 if (ret < 0)
2419 goto out;
2420
2421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2423
2424 if (S_ISLNK(mode)) {
2425 fs_path_reset(p);
1f4692da 2426 ret = read_symlink(sctx, sctx->send_root, ino, p);
31db9f7c
AB
2427 if (ret < 0)
2428 goto out;
2429 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2430 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2431 S_ISFIFO(mode) || S_ISSOCK(mode)) {
1f4692da 2432 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, rdev);
31db9f7c
AB
2433 }
2434
2435 ret = send_cmd(sctx);
2436 if (ret < 0)
2437 goto out;
2438
2439
2440tlv_put_failure:
2441out:
2442 fs_path_free(sctx, p);
2443 return ret;
2444}
2445
1f4692da
AB
2446/*
2447 * We need some special handling for inodes that get processed before the parent
2448 * directory got created. See process_recorded_refs for details.
2449 * This function does the check if we already created the dir out of order.
2450 */
2451static int did_create_dir(struct send_ctx *sctx, u64 dir)
2452{
2453 int ret = 0;
2454 struct btrfs_path *path = NULL;
2455 struct btrfs_key key;
2456 struct btrfs_key found_key;
2457 struct btrfs_key di_key;
2458 struct extent_buffer *eb;
2459 struct btrfs_dir_item *di;
2460 int slot;
2461
2462 path = alloc_path_for_send();
2463 if (!path) {
2464 ret = -ENOMEM;
2465 goto out;
2466 }
2467
2468 key.objectid = dir;
2469 key.type = BTRFS_DIR_INDEX_KEY;
2470 key.offset = 0;
2471 while (1) {
2472 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2473 1, 0);
2474 if (ret < 0)
2475 goto out;
2476 if (!ret) {
2477 eb = path->nodes[0];
2478 slot = path->slots[0];
2479 btrfs_item_key_to_cpu(eb, &found_key, slot);
2480 }
2481 if (ret || found_key.objectid != key.objectid ||
2482 found_key.type != key.type) {
2483 ret = 0;
2484 goto out;
2485 }
2486
2487 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2488 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2489
2490 if (di_key.objectid < sctx->send_progress) {
2491 ret = 1;
2492 goto out;
2493 }
2494
2495 key.offset = found_key.offset + 1;
2496 btrfs_release_path(path);
2497 }
2498
2499out:
2500 btrfs_free_path(path);
2501 return ret;
2502}
2503
2504/*
2505 * Only creates the inode if it is:
2506 * 1. Not a directory
2507 * 2. Or a directory which was not created already due to out of order
2508 * directories. See did_create_dir and process_recorded_refs for details.
2509 */
2510static int send_create_inode_if_needed(struct send_ctx *sctx)
2511{
2512 int ret;
2513
2514 if (S_ISDIR(sctx->cur_inode_mode)) {
2515 ret = did_create_dir(sctx, sctx->cur_ino);
2516 if (ret < 0)
2517 goto out;
2518 if (ret) {
2519 ret = 0;
2520 goto out;
2521 }
2522 }
2523
2524 ret = send_create_inode(sctx, sctx->cur_ino);
2525 if (ret < 0)
2526 goto out;
2527
2528out:
2529 return ret;
2530}
2531
31db9f7c
AB
2532struct recorded_ref {
2533 struct list_head list;
2534 char *dir_path;
2535 char *name;
2536 struct fs_path *full_path;
2537 u64 dir;
2538 u64 dir_gen;
2539 int dir_path_len;
2540 int name_len;
2541};
2542
2543/*
2544 * We need to process new refs before deleted refs, but compare_tree gives us
2545 * everything mixed. So we first record all refs and later process them.
2546 * This function is a helper to record one ref.
2547 */
2548static int record_ref(struct list_head *head, u64 dir,
2549 u64 dir_gen, struct fs_path *path)
2550{
2551 struct recorded_ref *ref;
2552 char *tmp;
2553
2554 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2555 if (!ref)
2556 return -ENOMEM;
2557
2558 ref->dir = dir;
2559 ref->dir_gen = dir_gen;
2560 ref->full_path = path;
2561
2562 tmp = strrchr(ref->full_path->start, '/');
2563 if (!tmp) {
2564 ref->name_len = ref->full_path->end - ref->full_path->start;
2565 ref->name = ref->full_path->start;
2566 ref->dir_path_len = 0;
2567 ref->dir_path = ref->full_path->start;
2568 } else {
2569 tmp++;
2570 ref->name_len = ref->full_path->end - tmp;
2571 ref->name = tmp;
2572 ref->dir_path = ref->full_path->start;
2573 ref->dir_path_len = ref->full_path->end -
2574 ref->full_path->start - 1 - ref->name_len;
2575 }
2576
2577 list_add_tail(&ref->list, head);
2578 return 0;
2579}
2580
2581static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2582{
2583 struct recorded_ref *cur;
31db9f7c 2584
e938c8ad
AB
2585 while (!list_empty(head)) {
2586 cur = list_entry(head->next, struct recorded_ref, list);
31db9f7c 2587 fs_path_free(sctx, cur->full_path);
e938c8ad 2588 list_del(&cur->list);
31db9f7c
AB
2589 kfree(cur);
2590 }
31db9f7c
AB
2591}
2592
2593static void free_recorded_refs(struct send_ctx *sctx)
2594{
2595 __free_recorded_refs(sctx, &sctx->new_refs);
2596 __free_recorded_refs(sctx, &sctx->deleted_refs);
2597}
2598
2599/*
766702ef 2600 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2601 * ref of an unprocessed inode gets overwritten and for all non empty
2602 * directories.
2603 */
2604static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2605 struct fs_path *path)
2606{
2607 int ret;
2608 struct fs_path *orphan;
2609
2610 orphan = fs_path_alloc(sctx);
2611 if (!orphan)
2612 return -ENOMEM;
2613
2614 ret = gen_unique_name(sctx, ino, gen, orphan);
2615 if (ret < 0)
2616 goto out;
2617
2618 ret = send_rename(sctx, path, orphan);
2619
2620out:
2621 fs_path_free(sctx, orphan);
2622 return ret;
2623}
2624
2625/*
2626 * Returns 1 if a directory can be removed at this point in time.
2627 * We check this by iterating all dir items and checking if the inode behind
2628 * the dir item was already processed.
2629 */
2630static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2631{
2632 int ret = 0;
2633 struct btrfs_root *root = sctx->parent_root;
2634 struct btrfs_path *path;
2635 struct btrfs_key key;
2636 struct btrfs_key found_key;
2637 struct btrfs_key loc;
2638 struct btrfs_dir_item *di;
2639
6d85ed05
AB
2640 /*
2641 * Don't try to rmdir the top/root subvolume dir.
2642 */
2643 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2644 return 0;
2645
31db9f7c
AB
2646 path = alloc_path_for_send();
2647 if (!path)
2648 return -ENOMEM;
2649
2650 key.objectid = dir;
2651 key.type = BTRFS_DIR_INDEX_KEY;
2652 key.offset = 0;
2653
2654 while (1) {
2655 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2656 if (ret < 0)
2657 goto out;
2658 if (!ret) {
2659 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2660 path->slots[0]);
2661 }
2662 if (ret || found_key.objectid != key.objectid ||
2663 found_key.type != key.type) {
2664 break;
2665 }
2666
2667 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2668 struct btrfs_dir_item);
2669 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2670
2671 if (loc.objectid > send_progress) {
2672 ret = 0;
2673 goto out;
2674 }
2675
2676 btrfs_release_path(path);
2677 key.offset = found_key.offset + 1;
2678 }
2679
2680 ret = 1;
2681
2682out:
2683 btrfs_free_path(path);
2684 return ret;
2685}
2686
31db9f7c
AB
2687/*
2688 * This does all the move/link/unlink/rmdir magic.
2689 */
2690static int process_recorded_refs(struct send_ctx *sctx)
2691{
2692 int ret = 0;
2693 struct recorded_ref *cur;
1f4692da 2694 struct recorded_ref *cur2;
31db9f7c
AB
2695 struct ulist *check_dirs = NULL;
2696 struct ulist_iterator uit;
2697 struct ulist_node *un;
2698 struct fs_path *valid_path = NULL;
b24baf69 2699 u64 ow_inode = 0;
31db9f7c
AB
2700 u64 ow_gen;
2701 int did_overwrite = 0;
2702 int is_orphan = 0;
2703
2704verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2705
6d85ed05
AB
2706 /*
2707 * This should never happen as the root dir always has the same ref
2708 * which is always '..'
2709 */
2710 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2711
31db9f7c
AB
2712 valid_path = fs_path_alloc(sctx);
2713 if (!valid_path) {
2714 ret = -ENOMEM;
2715 goto out;
2716 }
2717
2718 check_dirs = ulist_alloc(GFP_NOFS);
2719 if (!check_dirs) {
2720 ret = -ENOMEM;
2721 goto out;
2722 }
2723
2724 /*
2725 * First, check if the first ref of the current inode was overwritten
2726 * before. If yes, we know that the current inode was already orphanized
2727 * and thus use the orphan name. If not, we can use get_cur_path to
2728 * get the path of the first ref as it would like while receiving at
2729 * this point in time.
2730 * New inodes are always orphan at the beginning, so force to use the
2731 * orphan name in this case.
2732 * The first ref is stored in valid_path and will be updated if it
2733 * gets moved around.
2734 */
2735 if (!sctx->cur_inode_new) {
2736 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2737 sctx->cur_inode_gen);
2738 if (ret < 0)
2739 goto out;
2740 if (ret)
2741 did_overwrite = 1;
2742 }
2743 if (sctx->cur_inode_new || did_overwrite) {
2744 ret = gen_unique_name(sctx, sctx->cur_ino,
2745 sctx->cur_inode_gen, valid_path);
2746 if (ret < 0)
2747 goto out;
2748 is_orphan = 1;
2749 } else {
2750 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2751 valid_path);
2752 if (ret < 0)
2753 goto out;
2754 }
2755
2756 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
2757 /*
2758 * We may have refs where the parent directory does not exist
2759 * yet. This happens if the parent directories inum is higher
2760 * the the current inum. To handle this case, we create the
2761 * parent directory out of order. But we need to check if this
2762 * did already happen before due to other refs in the same dir.
2763 */
2764 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2765 if (ret < 0)
2766 goto out;
2767 if (ret == inode_state_will_create) {
2768 ret = 0;
2769 /*
2770 * First check if any of the current inodes refs did
2771 * already create the dir.
2772 */
2773 list_for_each_entry(cur2, &sctx->new_refs, list) {
2774 if (cur == cur2)
2775 break;
2776 if (cur2->dir == cur->dir) {
2777 ret = 1;
2778 break;
2779 }
2780 }
2781
2782 /*
2783 * If that did not happen, check if a previous inode
2784 * did already create the dir.
2785 */
2786 if (!ret)
2787 ret = did_create_dir(sctx, cur->dir);
2788 if (ret < 0)
2789 goto out;
2790 if (!ret) {
2791 ret = send_create_inode(sctx, cur->dir);
2792 if (ret < 0)
2793 goto out;
2794 }
2795 }
2796
31db9f7c
AB
2797 /*
2798 * Check if this new ref would overwrite the first ref of
2799 * another unprocessed inode. If yes, orphanize the
2800 * overwritten inode. If we find an overwritten ref that is
2801 * not the first ref, simply unlink it.
2802 */
2803 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2804 cur->name, cur->name_len,
2805 &ow_inode, &ow_gen);
2806 if (ret < 0)
2807 goto out;
2808 if (ret) {
2809 ret = is_first_ref(sctx, sctx->parent_root,
2810 ow_inode, cur->dir, cur->name,
2811 cur->name_len);
2812 if (ret < 0)
2813 goto out;
2814 if (ret) {
2815 ret = orphanize_inode(sctx, ow_inode, ow_gen,
2816 cur->full_path);
2817 if (ret < 0)
2818 goto out;
2819 } else {
2820 ret = send_unlink(sctx, cur->full_path);
2821 if (ret < 0)
2822 goto out;
2823 }
2824 }
2825
2826 /*
2827 * link/move the ref to the new place. If we have an orphan
2828 * inode, move it and update valid_path. If not, link or move
2829 * it depending on the inode mode.
2830 */
1f4692da 2831 if (is_orphan) {
31db9f7c
AB
2832 ret = send_rename(sctx, valid_path, cur->full_path);
2833 if (ret < 0)
2834 goto out;
2835 is_orphan = 0;
2836 ret = fs_path_copy(valid_path, cur->full_path);
2837 if (ret < 0)
2838 goto out;
2839 } else {
2840 if (S_ISDIR(sctx->cur_inode_mode)) {
2841 /*
2842 * Dirs can't be linked, so move it. For moved
2843 * dirs, we always have one new and one deleted
2844 * ref. The deleted ref is ignored later.
2845 */
2846 ret = send_rename(sctx, valid_path,
2847 cur->full_path);
2848 if (ret < 0)
2849 goto out;
2850 ret = fs_path_copy(valid_path, cur->full_path);
2851 if (ret < 0)
2852 goto out;
2853 } else {
2854 ret = send_link(sctx, cur->full_path,
2855 valid_path);
2856 if (ret < 0)
2857 goto out;
2858 }
2859 }
2860 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2861 GFP_NOFS);
2862 if (ret < 0)
2863 goto out;
2864 }
2865
2866 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2867 /*
2868 * Check if we can already rmdir the directory. If not,
2869 * orphanize it. For every dir item inside that gets deleted
2870 * later, we do this check again and rmdir it then if possible.
2871 * See the use of check_dirs for more details.
2872 */
2873 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2874 if (ret < 0)
2875 goto out;
2876 if (ret) {
2877 ret = send_rmdir(sctx, valid_path);
2878 if (ret < 0)
2879 goto out;
2880 } else if (!is_orphan) {
2881 ret = orphanize_inode(sctx, sctx->cur_ino,
2882 sctx->cur_inode_gen, valid_path);
2883 if (ret < 0)
2884 goto out;
2885 is_orphan = 1;
2886 }
2887
2888 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2889 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2890 GFP_NOFS);
2891 if (ret < 0)
2892 goto out;
2893 }
ccf1626b
AB
2894 } else if (S_ISDIR(sctx->cur_inode_mode) &&
2895 !list_empty(&sctx->deleted_refs)) {
2896 /*
2897 * We have a moved dir. Add the old parent to check_dirs
2898 */
2899 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2900 list);
2901 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2902 GFP_NOFS);
2903 if (ret < 0)
2904 goto out;
31db9f7c
AB
2905 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
2906 /*
2907 * We have a non dir inode. Go through all deleted refs and
2908 * unlink them if they were not already overwritten by other
2909 * inodes.
2910 */
2911 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2912 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2913 sctx->cur_ino, sctx->cur_inode_gen,
2914 cur->name, cur->name_len);
2915 if (ret < 0)
2916 goto out;
2917 if (!ret) {
1f4692da
AB
2918 ret = send_unlink(sctx, cur->full_path);
2919 if (ret < 0)
2920 goto out;
31db9f7c
AB
2921 }
2922 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2923 GFP_NOFS);
2924 if (ret < 0)
2925 goto out;
2926 }
2927
2928 /*
2929 * If the inode is still orphan, unlink the orphan. This may
2930 * happen when a previous inode did overwrite the first ref
2931 * of this inode and no new refs were added for the current
766702ef
AB
2932 * inode. Unlinking does not mean that the inode is deleted in
2933 * all cases. There may still be links to this inode in other
2934 * places.
31db9f7c 2935 */
1f4692da 2936 if (is_orphan) {
31db9f7c
AB
2937 ret = send_unlink(sctx, valid_path);
2938 if (ret < 0)
2939 goto out;
2940 }
2941 }
2942
2943 /*
2944 * We did collect all parent dirs where cur_inode was once located. We
2945 * now go through all these dirs and check if they are pending for
2946 * deletion and if it's finally possible to perform the rmdir now.
2947 * We also update the inode stats of the parent dirs here.
2948 */
2949 ULIST_ITER_INIT(&uit);
2950 while ((un = ulist_next(check_dirs, &uit))) {
766702ef
AB
2951 /*
2952 * In case we had refs into dirs that were not processed yet,
2953 * we don't need to do the utime and rmdir logic for these dirs.
2954 * The dir will be processed later.
2955 */
31db9f7c
AB
2956 if (un->val > sctx->cur_ino)
2957 continue;
2958
2959 ret = get_cur_inode_state(sctx, un->val, un->aux);
2960 if (ret < 0)
2961 goto out;
2962
2963 if (ret == inode_state_did_create ||
2964 ret == inode_state_no_change) {
2965 /* TODO delayed utimes */
2966 ret = send_utimes(sctx, un->val, un->aux);
2967 if (ret < 0)
2968 goto out;
2969 } else if (ret == inode_state_did_delete) {
2970 ret = can_rmdir(sctx, un->val, sctx->cur_ino);
2971 if (ret < 0)
2972 goto out;
2973 if (ret) {
2974 ret = get_cur_path(sctx, un->val, un->aux,
2975 valid_path);
2976 if (ret < 0)
2977 goto out;
2978 ret = send_rmdir(sctx, valid_path);
2979 if (ret < 0)
2980 goto out;
2981 }
2982 }
2983 }
2984
31db9f7c
AB
2985 ret = 0;
2986
2987out:
2988 free_recorded_refs(sctx);
2989 ulist_free(check_dirs);
2990 fs_path_free(sctx, valid_path);
2991 return ret;
2992}
2993
2994static int __record_new_ref(int num, u64 dir, int index,
2995 struct fs_path *name,
2996 void *ctx)
2997{
2998 int ret = 0;
2999 struct send_ctx *sctx = ctx;
3000 struct fs_path *p;
3001 u64 gen;
3002
3003 p = fs_path_alloc(sctx);
3004 if (!p)
3005 return -ENOMEM;
3006
3007 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3008 NULL, NULL);
31db9f7c
AB
3009 if (ret < 0)
3010 goto out;
3011
31db9f7c
AB
3012 ret = get_cur_path(sctx, dir, gen, p);
3013 if (ret < 0)
3014 goto out;
3015 ret = fs_path_add_path(p, name);
3016 if (ret < 0)
3017 goto out;
3018
3019 ret = record_ref(&sctx->new_refs, dir, gen, p);
3020
3021out:
3022 if (ret)
3023 fs_path_free(sctx, p);
3024 return ret;
3025}
3026
3027static int __record_deleted_ref(int num, u64 dir, int index,
3028 struct fs_path *name,
3029 void *ctx)
3030{
3031 int ret = 0;
3032 struct send_ctx *sctx = ctx;
3033 struct fs_path *p;
3034 u64 gen;
3035
3036 p = fs_path_alloc(sctx);
3037 if (!p)
3038 return -ENOMEM;
3039
3040 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3041 NULL, NULL);
31db9f7c
AB
3042 if (ret < 0)
3043 goto out;
3044
3045 ret = get_cur_path(sctx, dir, gen, p);
3046 if (ret < 0)
3047 goto out;
3048 ret = fs_path_add_path(p, name);
3049 if (ret < 0)
3050 goto out;
3051
3052 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3053
3054out:
3055 if (ret)
3056 fs_path_free(sctx, p);
3057 return ret;
3058}
3059
3060static int record_new_ref(struct send_ctx *sctx)
3061{
3062 int ret;
3063
3064 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3065 sctx->cmp_key, 0, __record_new_ref, sctx);
3066 if (ret < 0)
3067 goto out;
3068 ret = 0;
3069
3070out:
3071 return ret;
3072}
3073
3074static int record_deleted_ref(struct send_ctx *sctx)
3075{
3076 int ret;
3077
3078 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3079 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3080 if (ret < 0)
3081 goto out;
3082 ret = 0;
3083
3084out:
3085 return ret;
3086}
3087
3088struct find_ref_ctx {
3089 u64 dir;
3090 struct fs_path *name;
3091 int found_idx;
3092};
3093
3094static int __find_iref(int num, u64 dir, int index,
3095 struct fs_path *name,
3096 void *ctx_)
3097{
3098 struct find_ref_ctx *ctx = ctx_;
3099
3100 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3101 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3102 ctx->found_idx = num;
3103 return 1;
3104 }
3105 return 0;
3106}
3107
3108static int find_iref(struct send_ctx *sctx,
3109 struct btrfs_root *root,
3110 struct btrfs_path *path,
3111 struct btrfs_key *key,
3112 u64 dir, struct fs_path *name)
3113{
3114 int ret;
3115 struct find_ref_ctx ctx;
3116
3117 ctx.dir = dir;
3118 ctx.name = name;
3119 ctx.found_idx = -1;
3120
3121 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3122 if (ret < 0)
3123 return ret;
3124
3125 if (ctx.found_idx == -1)
3126 return -ENOENT;
3127
3128 return ctx.found_idx;
3129}
3130
3131static int __record_changed_new_ref(int num, u64 dir, int index,
3132 struct fs_path *name,
3133 void *ctx)
3134{
3135 int ret;
3136 struct send_ctx *sctx = ctx;
3137
3138 ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3139 sctx->cmp_key, dir, name);
3140 if (ret == -ENOENT)
3141 ret = __record_new_ref(num, dir, index, name, sctx);
3142 else if (ret > 0)
3143 ret = 0;
3144
3145 return ret;
3146}
3147
3148static int __record_changed_deleted_ref(int num, u64 dir, int index,
3149 struct fs_path *name,
3150 void *ctx)
3151{
3152 int ret;
3153 struct send_ctx *sctx = ctx;
3154
3155 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3156 dir, name);
3157 if (ret == -ENOENT)
3158 ret = __record_deleted_ref(num, dir, index, name, sctx);
3159 else if (ret > 0)
3160 ret = 0;
3161
3162 return ret;
3163}
3164
3165static int record_changed_ref(struct send_ctx *sctx)
3166{
3167 int ret = 0;
3168
3169 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3170 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3171 if (ret < 0)
3172 goto out;
3173 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3174 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3175 if (ret < 0)
3176 goto out;
3177 ret = 0;
3178
3179out:
3180 return ret;
3181}
3182
3183/*
3184 * Record and process all refs at once. Needed when an inode changes the
3185 * generation number, which means that it was deleted and recreated.
3186 */
3187static int process_all_refs(struct send_ctx *sctx,
3188 enum btrfs_compare_tree_result cmd)
3189{
3190 int ret;
3191 struct btrfs_root *root;
3192 struct btrfs_path *path;
3193 struct btrfs_key key;
3194 struct btrfs_key found_key;
3195 struct extent_buffer *eb;
3196 int slot;
3197 iterate_inode_ref_t cb;
3198
3199 path = alloc_path_for_send();
3200 if (!path)
3201 return -ENOMEM;
3202
3203 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3204 root = sctx->send_root;
3205 cb = __record_new_ref;
3206 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3207 root = sctx->parent_root;
3208 cb = __record_deleted_ref;
3209 } else {
3210 BUG();
3211 }
3212
3213 key.objectid = sctx->cmp_key->objectid;
3214 key.type = BTRFS_INODE_REF_KEY;
3215 key.offset = 0;
3216 while (1) {
3217 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
e938c8ad 3218 if (ret < 0)
31db9f7c 3219 goto out;
e938c8ad 3220 if (ret)
31db9f7c 3221 break;
31db9f7c
AB
3222
3223 eb = path->nodes[0];
3224 slot = path->slots[0];
3225 btrfs_item_key_to_cpu(eb, &found_key, slot);
3226
3227 if (found_key.objectid != key.objectid ||
e938c8ad 3228 found_key.type != key.type)
31db9f7c 3229 break;
31db9f7c 3230
2f28f478
AB
3231 ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb,
3232 sctx);
31db9f7c
AB
3233 btrfs_release_path(path);
3234 if (ret < 0)
3235 goto out;
3236
3237 key.offset = found_key.offset + 1;
3238 }
e938c8ad 3239 btrfs_release_path(path);
31db9f7c
AB
3240
3241 ret = process_recorded_refs(sctx);
3242
3243out:
3244 btrfs_free_path(path);
3245 return ret;
3246}
3247
3248static int send_set_xattr(struct send_ctx *sctx,
3249 struct fs_path *path,
3250 const char *name, int name_len,
3251 const char *data, int data_len)
3252{
3253 int ret = 0;
3254
3255 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3256 if (ret < 0)
3257 goto out;
3258
3259 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3260 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3261 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3262
3263 ret = send_cmd(sctx);
3264
3265tlv_put_failure:
3266out:
3267 return ret;
3268}
3269
3270static int send_remove_xattr(struct send_ctx *sctx,
3271 struct fs_path *path,
3272 const char *name, int name_len)
3273{
3274 int ret = 0;
3275
3276 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3277 if (ret < 0)
3278 goto out;
3279
3280 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3281 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3282
3283 ret = send_cmd(sctx);
3284
3285tlv_put_failure:
3286out:
3287 return ret;
3288}
3289
3290static int __process_new_xattr(int num, struct btrfs_key *di_key,
3291 const char *name, int name_len,
3292 const char *data, int data_len,
3293 u8 type, void *ctx)
3294{
3295 int ret;
3296 struct send_ctx *sctx = ctx;
3297 struct fs_path *p;
3298 posix_acl_xattr_header dummy_acl;
3299
3300 p = fs_path_alloc(sctx);
3301 if (!p)
3302 return -ENOMEM;
3303
3304 /*
3305 * This hack is needed because empty acl's are stored as zero byte
3306 * data in xattrs. Problem with that is, that receiving these zero byte
3307 * acl's will fail later. To fix this, we send a dummy acl list that
3308 * only contains the version number and no entries.
3309 */
3310 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3311 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3312 if (data_len == 0) {
3313 dummy_acl.a_version =
3314 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3315 data = (char *)&dummy_acl;
3316 data_len = sizeof(dummy_acl);
3317 }
3318 }
3319
3320 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3321 if (ret < 0)
3322 goto out;
3323
3324 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3325
3326out:
3327 fs_path_free(sctx, p);
3328 return ret;
3329}
3330
3331static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3332 const char *name, int name_len,
3333 const char *data, int data_len,
3334 u8 type, void *ctx)
3335{
3336 int ret;
3337 struct send_ctx *sctx = ctx;
3338 struct fs_path *p;
3339
3340 p = fs_path_alloc(sctx);
3341 if (!p)
3342 return -ENOMEM;
3343
3344 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3345 if (ret < 0)
3346 goto out;
3347
3348 ret = send_remove_xattr(sctx, p, name, name_len);
3349
3350out:
3351 fs_path_free(sctx, p);
3352 return ret;
3353}
3354
3355static int process_new_xattr(struct send_ctx *sctx)
3356{
3357 int ret = 0;
3358
3359 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3360 sctx->cmp_key, __process_new_xattr, sctx);
3361
3362 return ret;
3363}
3364
3365static int process_deleted_xattr(struct send_ctx *sctx)
3366{
3367 int ret;
3368
3369 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3370 sctx->cmp_key, __process_deleted_xattr, sctx);
3371
3372 return ret;
3373}
3374
3375struct find_xattr_ctx {
3376 const char *name;
3377 int name_len;
3378 int found_idx;
3379 char *found_data;
3380 int found_data_len;
3381};
3382
3383static int __find_xattr(int num, struct btrfs_key *di_key,
3384 const char *name, int name_len,
3385 const char *data, int data_len,
3386 u8 type, void *vctx)
3387{
3388 struct find_xattr_ctx *ctx = vctx;
3389
3390 if (name_len == ctx->name_len &&
3391 strncmp(name, ctx->name, name_len) == 0) {
3392 ctx->found_idx = num;
3393 ctx->found_data_len = data_len;
3394 ctx->found_data = kmalloc(data_len, GFP_NOFS);
3395 if (!ctx->found_data)
3396 return -ENOMEM;
3397 memcpy(ctx->found_data, data, data_len);
3398 return 1;
3399 }
3400 return 0;
3401}
3402
3403static int find_xattr(struct send_ctx *sctx,
3404 struct btrfs_root *root,
3405 struct btrfs_path *path,
3406 struct btrfs_key *key,
3407 const char *name, int name_len,
3408 char **data, int *data_len)
3409{
3410 int ret;
3411 struct find_xattr_ctx ctx;
3412
3413 ctx.name = name;
3414 ctx.name_len = name_len;
3415 ctx.found_idx = -1;
3416 ctx.found_data = NULL;
3417 ctx.found_data_len = 0;
3418
3419 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3420 if (ret < 0)
3421 return ret;
3422
3423 if (ctx.found_idx == -1)
3424 return -ENOENT;
3425 if (data) {
3426 *data = ctx.found_data;
3427 *data_len = ctx.found_data_len;
3428 } else {
3429 kfree(ctx.found_data);
3430 }
3431 return ctx.found_idx;
3432}
3433
3434
3435static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3436 const char *name, int name_len,
3437 const char *data, int data_len,
3438 u8 type, void *ctx)
3439{
3440 int ret;
3441 struct send_ctx *sctx = ctx;
3442 char *found_data = NULL;
3443 int found_data_len = 0;
3444 struct fs_path *p = NULL;
3445
3446 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3447 sctx->cmp_key, name, name_len, &found_data,
3448 &found_data_len);
3449 if (ret == -ENOENT) {
3450 ret = __process_new_xattr(num, di_key, name, name_len, data,
3451 data_len, type, ctx);
3452 } else if (ret >= 0) {
3453 if (data_len != found_data_len ||
3454 memcmp(data, found_data, data_len)) {
3455 ret = __process_new_xattr(num, di_key, name, name_len,
3456 data, data_len, type, ctx);
3457 } else {
3458 ret = 0;
3459 }
3460 }
3461
3462 kfree(found_data);
3463 fs_path_free(sctx, p);
3464 return ret;
3465}
3466
3467static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3468 const char *name, int name_len,
3469 const char *data, int data_len,
3470 u8 type, void *ctx)
3471{
3472 int ret;
3473 struct send_ctx *sctx = ctx;
3474
3475 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3476 name, name_len, NULL, NULL);
3477 if (ret == -ENOENT)
3478 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3479 data_len, type, ctx);
3480 else if (ret >= 0)
3481 ret = 0;
3482
3483 return ret;
3484}
3485
3486static int process_changed_xattr(struct send_ctx *sctx)
3487{
3488 int ret = 0;
3489
3490 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3491 sctx->cmp_key, __process_changed_new_xattr, sctx);
3492 if (ret < 0)
3493 goto out;
3494 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3495 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3496
3497out:
3498 return ret;
3499}
3500
3501static int process_all_new_xattrs(struct send_ctx *sctx)
3502{
3503 int ret;
3504 struct btrfs_root *root;
3505 struct btrfs_path *path;
3506 struct btrfs_key key;
3507 struct btrfs_key found_key;
3508 struct extent_buffer *eb;
3509 int slot;
3510
3511 path = alloc_path_for_send();
3512 if (!path)
3513 return -ENOMEM;
3514
3515 root = sctx->send_root;
3516
3517 key.objectid = sctx->cmp_key->objectid;
3518 key.type = BTRFS_XATTR_ITEM_KEY;
3519 key.offset = 0;
3520 while (1) {
3521 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3522 if (ret < 0)
3523 goto out;
3524 if (ret) {
3525 ret = 0;
3526 goto out;
3527 }
3528
3529 eb = path->nodes[0];
3530 slot = path->slots[0];
3531 btrfs_item_key_to_cpu(eb, &found_key, slot);
3532
3533 if (found_key.objectid != key.objectid ||
3534 found_key.type != key.type) {
3535 ret = 0;
3536 goto out;
3537 }
3538
3539 ret = iterate_dir_item(sctx, root, path, &found_key,
3540 __process_new_xattr, sctx);
3541 if (ret < 0)
3542 goto out;
3543
3544 btrfs_release_path(path);
3545 key.offset = found_key.offset + 1;
3546 }
3547
3548out:
3549 btrfs_free_path(path);
3550 return ret;
3551}
3552
3553/*
3554 * Read some bytes from the current inode/file and send a write command to
3555 * user space.
3556 */
3557static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3558{
3559 int ret = 0;
3560 struct fs_path *p;
3561 loff_t pos = offset;
e938c8ad 3562 int num_read = 0;
31db9f7c
AB
3563 mm_segment_t old_fs;
3564
3565 p = fs_path_alloc(sctx);
3566 if (!p)
3567 return -ENOMEM;
3568
3569 /*
3570 * vfs normally only accepts user space buffers for security reasons.
3571 * we only read from the file and also only provide the read_buf buffer
3572 * to vfs. As this buffer does not come from a user space call, it's
3573 * ok to temporary allow kernel space buffers.
3574 */
3575 old_fs = get_fs();
3576 set_fs(KERNEL_DS);
3577
3578verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3579
3580 ret = open_cur_inode_file(sctx);
3581 if (ret < 0)
3582 goto out;
3583
3584 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3585 if (ret < 0)
3586 goto out;
e938c8ad
AB
3587 num_read = ret;
3588 if (!num_read)
31db9f7c
AB
3589 goto out;
3590
3591 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3592 if (ret < 0)
3593 goto out;
3594
3595 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3596 if (ret < 0)
3597 goto out;
3598
3599 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3600 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 3601 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
3602
3603 ret = send_cmd(sctx);
3604
3605tlv_put_failure:
3606out:
3607 fs_path_free(sctx, p);
3608 set_fs(old_fs);
3609 if (ret < 0)
3610 return ret;
e938c8ad 3611 return num_read;
31db9f7c
AB
3612}
3613
3614/*
3615 * Send a clone command to user space.
3616 */
3617static int send_clone(struct send_ctx *sctx,
3618 u64 offset, u32 len,
3619 struct clone_root *clone_root)
3620{
3621 int ret = 0;
31db9f7c
AB
3622 struct fs_path *p;
3623 u64 gen;
3624
3625verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3626 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3627 clone_root->root->objectid, clone_root->ino,
3628 clone_root->offset);
3629
3630 p = fs_path_alloc(sctx);
3631 if (!p)
3632 return -ENOMEM;
3633
3634 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3635 if (ret < 0)
3636 goto out;
3637
3638 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3639 if (ret < 0)
3640 goto out;
3641
3642 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3643 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3645
e938c8ad 3646 if (clone_root->root == sctx->send_root) {
31db9f7c 3647 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 3648 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
3649 if (ret < 0)
3650 goto out;
3651 ret = get_cur_path(sctx, clone_root->ino, gen, p);
3652 } else {
e938c8ad
AB
3653 ret = get_inode_path(sctx, clone_root->root,
3654 clone_root->ino, p);
31db9f7c
AB
3655 }
3656 if (ret < 0)
3657 goto out;
3658
3659 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 3660 clone_root->root->root_item.uuid);
31db9f7c 3661 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
e938c8ad 3662 clone_root->root->root_item.ctransid);
31db9f7c
AB
3663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3664 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3665 clone_root->offset);
3666
3667 ret = send_cmd(sctx);
3668
3669tlv_put_failure:
3670out:
3671 fs_path_free(sctx, p);
3672 return ret;
3673}
3674
3675static int send_write_or_clone(struct send_ctx *sctx,
3676 struct btrfs_path *path,
3677 struct btrfs_key *key,
3678 struct clone_root *clone_root)
3679{
3680 int ret = 0;
3681 struct btrfs_file_extent_item *ei;
3682 u64 offset = key->offset;
3683 u64 pos = 0;
3684 u64 len;
3685 u32 l;
3686 u8 type;
3687
3688 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3689 struct btrfs_file_extent_item);
3690 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 3691 if (type == BTRFS_FILE_EXTENT_INLINE) {
31db9f7c 3692 len = btrfs_file_extent_inline_len(path->nodes[0], ei);
74dd17fb
CM
3693 /*
3694 * it is possible the inline item won't cover the whole page,
3695 * but there may be items after this page. Make
3696 * sure to send the whole thing
3697 */
3698 len = PAGE_CACHE_ALIGN(len);
3699 } else {
31db9f7c 3700 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 3701 }
31db9f7c
AB
3702
3703 if (offset + len > sctx->cur_inode_size)
3704 len = sctx->cur_inode_size - offset;
3705 if (len == 0) {
3706 ret = 0;
3707 goto out;
3708 }
3709
3710 if (!clone_root) {
3711 while (pos < len) {
3712 l = len - pos;
3713 if (l > BTRFS_SEND_READ_SIZE)
3714 l = BTRFS_SEND_READ_SIZE;
3715 ret = send_write(sctx, pos + offset, l);
3716 if (ret < 0)
3717 goto out;
3718 if (!ret)
3719 break;
3720 pos += ret;
3721 }
3722 ret = 0;
3723 } else {
3724 ret = send_clone(sctx, offset, len, clone_root);
3725 }
3726
3727out:
3728 return ret;
3729}
3730
3731static int is_extent_unchanged(struct send_ctx *sctx,
3732 struct btrfs_path *left_path,
3733 struct btrfs_key *ekey)
3734{
3735 int ret = 0;
3736 struct btrfs_key key;
3737 struct btrfs_path *path = NULL;
3738 struct extent_buffer *eb;
3739 int slot;
3740 struct btrfs_key found_key;
3741 struct btrfs_file_extent_item *ei;
3742 u64 left_disknr;
3743 u64 right_disknr;
3744 u64 left_offset;
3745 u64 right_offset;
3746 u64 left_offset_fixed;
3747 u64 left_len;
3748 u64 right_len;
74dd17fb
CM
3749 u64 left_gen;
3750 u64 right_gen;
31db9f7c
AB
3751 u8 left_type;
3752 u8 right_type;
3753
3754 path = alloc_path_for_send();
3755 if (!path)
3756 return -ENOMEM;
3757
3758 eb = left_path->nodes[0];
3759 slot = left_path->slots[0];
31db9f7c
AB
3760 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3761 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
3762
3763 if (left_type != BTRFS_FILE_EXTENT_REG) {
3764 ret = 0;
3765 goto out;
3766 }
74dd17fb
CM
3767 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3768 left_len = btrfs_file_extent_num_bytes(eb, ei);
3769 left_offset = btrfs_file_extent_offset(eb, ei);
3770 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
3771
3772 /*
3773 * Following comments will refer to these graphics. L is the left
3774 * extents which we are checking at the moment. 1-8 are the right
3775 * extents that we iterate.
3776 *
3777 * |-----L-----|
3778 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3779 *
3780 * |-----L-----|
3781 * |--1--|-2b-|...(same as above)
3782 *
3783 * Alternative situation. Happens on files where extents got split.
3784 * |-----L-----|
3785 * |-----------7-----------|-6-|
3786 *
3787 * Alternative situation. Happens on files which got larger.
3788 * |-----L-----|
3789 * |-8-|
3790 * Nothing follows after 8.
3791 */
3792
3793 key.objectid = ekey->objectid;
3794 key.type = BTRFS_EXTENT_DATA_KEY;
3795 key.offset = ekey->offset;
3796 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3797 if (ret < 0)
3798 goto out;
3799 if (ret) {
3800 ret = 0;
3801 goto out;
3802 }
3803
3804 /*
3805 * Handle special case where the right side has no extents at all.
3806 */
3807 eb = path->nodes[0];
3808 slot = path->slots[0];
3809 btrfs_item_key_to_cpu(eb, &found_key, slot);
3810 if (found_key.objectid != key.objectid ||
3811 found_key.type != key.type) {
3812 ret = 0;
3813 goto out;
3814 }
3815
3816 /*
3817 * We're now on 2a, 2b or 7.
3818 */
3819 key = found_key;
3820 while (key.offset < ekey->offset + left_len) {
3821 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3822 right_type = btrfs_file_extent_type(eb, ei);
3823 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3824 right_len = btrfs_file_extent_num_bytes(eb, ei);
3825 right_offset = btrfs_file_extent_offset(eb, ei);
74dd17fb 3826 right_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
3827
3828 if (right_type != BTRFS_FILE_EXTENT_REG) {
3829 ret = 0;
3830 goto out;
3831 }
3832
3833 /*
3834 * Are we at extent 8? If yes, we know the extent is changed.
3835 * This may only happen on the first iteration.
3836 */
d8347fa4 3837 if (found_key.offset + right_len <= ekey->offset) {
31db9f7c
AB
3838 ret = 0;
3839 goto out;
3840 }
3841
3842 left_offset_fixed = left_offset;
3843 if (key.offset < ekey->offset) {
3844 /* Fix the right offset for 2a and 7. */
3845 right_offset += ekey->offset - key.offset;
3846 } else {
3847 /* Fix the left offset for all behind 2a and 2b */
3848 left_offset_fixed += key.offset - ekey->offset;
3849 }
3850
3851 /*
3852 * Check if we have the same extent.
3853 */
3954096d 3854 if (left_disknr != right_disknr ||
74dd17fb
CM
3855 left_offset_fixed != right_offset ||
3856 left_gen != right_gen) {
31db9f7c
AB
3857 ret = 0;
3858 goto out;
3859 }
3860
3861 /*
3862 * Go to the next extent.
3863 */
3864 ret = btrfs_next_item(sctx->parent_root, path);
3865 if (ret < 0)
3866 goto out;
3867 if (!ret) {
3868 eb = path->nodes[0];
3869 slot = path->slots[0];
3870 btrfs_item_key_to_cpu(eb, &found_key, slot);
3871 }
3872 if (ret || found_key.objectid != key.objectid ||
3873 found_key.type != key.type) {
3874 key.offset += right_len;
3875 break;
3876 } else {
3877 if (found_key.offset != key.offset + right_len) {
3878 /* Should really not happen */
3879 ret = -EIO;
3880 goto out;
3881 }
3882 }
3883 key = found_key;
3884 }
3885
3886 /*
3887 * We're now behind the left extent (treat as unchanged) or at the end
3888 * of the right side (treat as changed).
3889 */
3890 if (key.offset >= ekey->offset + left_len)
3891 ret = 1;
3892 else
3893 ret = 0;
3894
3895
3896out:
3897 btrfs_free_path(path);
3898 return ret;
3899}
3900
3901static int process_extent(struct send_ctx *sctx,
3902 struct btrfs_path *path,
3903 struct btrfs_key *key)
3904{
3905 int ret = 0;
3906 struct clone_root *found_clone = NULL;
3907
3908 if (S_ISLNK(sctx->cur_inode_mode))
3909 return 0;
3910
3911 if (sctx->parent_root && !sctx->cur_inode_new) {
3912 ret = is_extent_unchanged(sctx, path, key);
3913 if (ret < 0)
3914 goto out;
3915 if (ret) {
3916 ret = 0;
3917 goto out;
3918 }
3919 }
3920
3921 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3922 sctx->cur_inode_size, &found_clone);
3923 if (ret != -ENOENT && ret < 0)
3924 goto out;
3925
3926 ret = send_write_or_clone(sctx, path, key, found_clone);
3927
3928out:
3929 return ret;
3930}
3931
3932static int process_all_extents(struct send_ctx *sctx)
3933{
3934 int ret;
3935 struct btrfs_root *root;
3936 struct btrfs_path *path;
3937 struct btrfs_key key;
3938 struct btrfs_key found_key;
3939 struct extent_buffer *eb;
3940 int slot;
3941
3942 root = sctx->send_root;
3943 path = alloc_path_for_send();
3944 if (!path)
3945 return -ENOMEM;
3946
3947 key.objectid = sctx->cmp_key->objectid;
3948 key.type = BTRFS_EXTENT_DATA_KEY;
3949 key.offset = 0;
3950 while (1) {
3951 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3952 if (ret < 0)
3953 goto out;
3954 if (ret) {
3955 ret = 0;
3956 goto out;
3957 }
3958
3959 eb = path->nodes[0];
3960 slot = path->slots[0];
3961 btrfs_item_key_to_cpu(eb, &found_key, slot);
3962
3963 if (found_key.objectid != key.objectid ||
3964 found_key.type != key.type) {
3965 ret = 0;
3966 goto out;
3967 }
3968
3969 ret = process_extent(sctx, path, &found_key);
3970 if (ret < 0)
3971 goto out;
3972
3973 btrfs_release_path(path);
3974 key.offset = found_key.offset + 1;
3975 }
3976
3977out:
3978 btrfs_free_path(path);
3979 return ret;
3980}
3981
3982static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
3983{
3984 int ret = 0;
3985
3986 if (sctx->cur_ino == 0)
3987 goto out;
3988 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
3989 sctx->cmp_key->type <= BTRFS_INODE_REF_KEY)
3990 goto out;
3991 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
3992 goto out;
3993
3994 ret = process_recorded_refs(sctx);
e479d9bb
AB
3995 if (ret < 0)
3996 goto out;
3997
3998 /*
3999 * We have processed the refs and thus need to advance send_progress.
4000 * Now, calls to get_cur_xxx will take the updated refs of the current
4001 * inode into account.
4002 */
4003 sctx->send_progress = sctx->cur_ino + 1;
31db9f7c
AB
4004
4005out:
4006 return ret;
4007}
4008
4009static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4010{
4011 int ret = 0;
4012 u64 left_mode;
4013 u64 left_uid;
4014 u64 left_gid;
4015 u64 right_mode;
4016 u64 right_uid;
4017 u64 right_gid;
4018 int need_chmod = 0;
4019 int need_chown = 0;
4020
4021 ret = process_recorded_refs_if_needed(sctx, at_end);
4022 if (ret < 0)
4023 goto out;
4024
4025 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4026 goto out;
4027 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4028 goto out;
4029
4030 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4031 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4032 if (ret < 0)
4033 goto out;
4034
4035 if (!S_ISLNK(sctx->cur_inode_mode)) {
4036 if (!sctx->parent_root || sctx->cur_inode_new) {
4037 need_chmod = 1;
4038 need_chown = 1;
4039 } else {
4040 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4041 NULL, NULL, &right_mode, &right_uid,
85a7b33b 4042 &right_gid, NULL);
31db9f7c
AB
4043 if (ret < 0)
4044 goto out;
4045
4046 if (left_uid != right_uid || left_gid != right_gid)
4047 need_chown = 1;
4048 if (left_mode != right_mode)
4049 need_chmod = 1;
4050 }
4051 }
4052
4053 if (S_ISREG(sctx->cur_inode_mode)) {
4054 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4055 sctx->cur_inode_size);
4056 if (ret < 0)
4057 goto out;
4058 }
4059
4060 if (need_chown) {
4061 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4062 left_uid, left_gid);
4063 if (ret < 0)
4064 goto out;
4065 }
4066 if (need_chmod) {
4067 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4068 left_mode);
4069 if (ret < 0)
4070 goto out;
4071 }
4072
4073 /*
4074 * Need to send that every time, no matter if it actually changed
4075 * between the two trees as we have done changes to the inode before.
4076 */
4077 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4078 if (ret < 0)
4079 goto out;
4080
4081out:
4082 return ret;
4083}
4084
4085static int changed_inode(struct send_ctx *sctx,
4086 enum btrfs_compare_tree_result result)
4087{
4088 int ret = 0;
4089 struct btrfs_key *key = sctx->cmp_key;
4090 struct btrfs_inode_item *left_ii = NULL;
4091 struct btrfs_inode_item *right_ii = NULL;
4092 u64 left_gen = 0;
4093 u64 right_gen = 0;
4094
4095 ret = close_cur_inode_file(sctx);
4096 if (ret < 0)
4097 goto out;
4098
4099 sctx->cur_ino = key->objectid;
4100 sctx->cur_inode_new_gen = 0;
e479d9bb
AB
4101
4102 /*
4103 * Set send_progress to current inode. This will tell all get_cur_xxx
4104 * functions that the current inode's refs are not updated yet. Later,
4105 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4106 */
31db9f7c
AB
4107 sctx->send_progress = sctx->cur_ino;
4108
4109 if (result == BTRFS_COMPARE_TREE_NEW ||
4110 result == BTRFS_COMPARE_TREE_CHANGED) {
4111 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4112 sctx->left_path->slots[0],
4113 struct btrfs_inode_item);
4114 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4115 left_ii);
4116 } else {
4117 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4118 sctx->right_path->slots[0],
4119 struct btrfs_inode_item);
4120 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4121 right_ii);
4122 }
4123 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4124 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4125 sctx->right_path->slots[0],
4126 struct btrfs_inode_item);
4127
4128 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4129 right_ii);
6d85ed05
AB
4130
4131 /*
4132 * The cur_ino = root dir case is special here. We can't treat
4133 * the inode as deleted+reused because it would generate a
4134 * stream that tries to delete/mkdir the root dir.
4135 */
4136 if (left_gen != right_gen &&
4137 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
4138 sctx->cur_inode_new_gen = 1;
4139 }
4140
4141 if (result == BTRFS_COMPARE_TREE_NEW) {
4142 sctx->cur_inode_gen = left_gen;
4143 sctx->cur_inode_new = 1;
4144 sctx->cur_inode_deleted = 0;
4145 sctx->cur_inode_size = btrfs_inode_size(
4146 sctx->left_path->nodes[0], left_ii);
4147 sctx->cur_inode_mode = btrfs_inode_mode(
4148 sctx->left_path->nodes[0], left_ii);
4149 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4150 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4151 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4152 sctx->cur_inode_gen = right_gen;
4153 sctx->cur_inode_new = 0;
4154 sctx->cur_inode_deleted = 1;
4155 sctx->cur_inode_size = btrfs_inode_size(
4156 sctx->right_path->nodes[0], right_ii);
4157 sctx->cur_inode_mode = btrfs_inode_mode(
4158 sctx->right_path->nodes[0], right_ii);
4159 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
4160 /*
4161 * We need to do some special handling in case the inode was
4162 * reported as changed with a changed generation number. This
4163 * means that the original inode was deleted and new inode
4164 * reused the same inum. So we have to treat the old inode as
4165 * deleted and the new one as new.
4166 */
31db9f7c 4167 if (sctx->cur_inode_new_gen) {
766702ef
AB
4168 /*
4169 * First, process the inode as if it was deleted.
4170 */
31db9f7c
AB
4171 sctx->cur_inode_gen = right_gen;
4172 sctx->cur_inode_new = 0;
4173 sctx->cur_inode_deleted = 1;
4174 sctx->cur_inode_size = btrfs_inode_size(
4175 sctx->right_path->nodes[0], right_ii);
4176 sctx->cur_inode_mode = btrfs_inode_mode(
4177 sctx->right_path->nodes[0], right_ii);
4178 ret = process_all_refs(sctx,
4179 BTRFS_COMPARE_TREE_DELETED);
4180 if (ret < 0)
4181 goto out;
4182
766702ef
AB
4183 /*
4184 * Now process the inode as if it was new.
4185 */
31db9f7c
AB
4186 sctx->cur_inode_gen = left_gen;
4187 sctx->cur_inode_new = 1;
4188 sctx->cur_inode_deleted = 0;
4189 sctx->cur_inode_size = btrfs_inode_size(
4190 sctx->left_path->nodes[0], left_ii);
4191 sctx->cur_inode_mode = btrfs_inode_mode(
4192 sctx->left_path->nodes[0], left_ii);
1f4692da 4193 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4194 if (ret < 0)
4195 goto out;
4196
4197 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4198 if (ret < 0)
4199 goto out;
e479d9bb
AB
4200 /*
4201 * Advance send_progress now as we did not get into
4202 * process_recorded_refs_if_needed in the new_gen case.
4203 */
4204 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
4205
4206 /*
4207 * Now process all extents and xattrs of the inode as if
4208 * they were all new.
4209 */
31db9f7c
AB
4210 ret = process_all_extents(sctx);
4211 if (ret < 0)
4212 goto out;
4213 ret = process_all_new_xattrs(sctx);
4214 if (ret < 0)
4215 goto out;
4216 } else {
4217 sctx->cur_inode_gen = left_gen;
4218 sctx->cur_inode_new = 0;
4219 sctx->cur_inode_new_gen = 0;
4220 sctx->cur_inode_deleted = 0;
4221 sctx->cur_inode_size = btrfs_inode_size(
4222 sctx->left_path->nodes[0], left_ii);
4223 sctx->cur_inode_mode = btrfs_inode_mode(
4224 sctx->left_path->nodes[0], left_ii);
4225 }
4226 }
4227
4228out:
4229 return ret;
4230}
4231
766702ef
AB
4232/*
4233 * We have to process new refs before deleted refs, but compare_trees gives us
4234 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4235 * first and later process them in process_recorded_refs.
4236 * For the cur_inode_new_gen case, we skip recording completely because
4237 * changed_inode did already initiate processing of refs. The reason for this is
4238 * that in this case, compare_tree actually compares the refs of 2 different
4239 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4240 * refs of the right tree as deleted and all refs of the left tree as new.
4241 */
31db9f7c
AB
4242static int changed_ref(struct send_ctx *sctx,
4243 enum btrfs_compare_tree_result result)
4244{
4245 int ret = 0;
4246
4247 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4248
4249 if (!sctx->cur_inode_new_gen &&
4250 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4251 if (result == BTRFS_COMPARE_TREE_NEW)
4252 ret = record_new_ref(sctx);
4253 else if (result == BTRFS_COMPARE_TREE_DELETED)
4254 ret = record_deleted_ref(sctx);
4255 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4256 ret = record_changed_ref(sctx);
4257 }
4258
4259 return ret;
4260}
4261
766702ef
AB
4262/*
4263 * Process new/deleted/changed xattrs. We skip processing in the
4264 * cur_inode_new_gen case because changed_inode did already initiate processing
4265 * of xattrs. The reason is the same as in changed_ref
4266 */
31db9f7c
AB
4267static int changed_xattr(struct send_ctx *sctx,
4268 enum btrfs_compare_tree_result result)
4269{
4270 int ret = 0;
4271
4272 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4273
4274 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4275 if (result == BTRFS_COMPARE_TREE_NEW)
4276 ret = process_new_xattr(sctx);
4277 else if (result == BTRFS_COMPARE_TREE_DELETED)
4278 ret = process_deleted_xattr(sctx);
4279 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4280 ret = process_changed_xattr(sctx);
4281 }
4282
4283 return ret;
4284}
4285
766702ef
AB
4286/*
4287 * Process new/deleted/changed extents. We skip processing in the
4288 * cur_inode_new_gen case because changed_inode did already initiate processing
4289 * of extents. The reason is the same as in changed_ref
4290 */
31db9f7c
AB
4291static int changed_extent(struct send_ctx *sctx,
4292 enum btrfs_compare_tree_result result)
4293{
4294 int ret = 0;
4295
4296 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4297
4298 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4299 if (result != BTRFS_COMPARE_TREE_DELETED)
4300 ret = process_extent(sctx, sctx->left_path,
4301 sctx->cmp_key);
4302 }
4303
4304 return ret;
4305}
4306
766702ef
AB
4307/*
4308 * Updates compare related fields in sctx and simply forwards to the actual
4309 * changed_xxx functions.
4310 */
31db9f7c
AB
4311static int changed_cb(struct btrfs_root *left_root,
4312 struct btrfs_root *right_root,
4313 struct btrfs_path *left_path,
4314 struct btrfs_path *right_path,
4315 struct btrfs_key *key,
4316 enum btrfs_compare_tree_result result,
4317 void *ctx)
4318{
4319 int ret = 0;
4320 struct send_ctx *sctx = ctx;
4321
4322 sctx->left_path = left_path;
4323 sctx->right_path = right_path;
4324 sctx->cmp_key = key;
4325
4326 ret = finish_inode_if_needed(sctx, 0);
4327 if (ret < 0)
4328 goto out;
4329
2981e225
AB
4330 /* Ignore non-FS objects */
4331 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4332 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4333 goto out;
4334
31db9f7c
AB
4335 if (key->type == BTRFS_INODE_ITEM_KEY)
4336 ret = changed_inode(sctx, result);
4337 else if (key->type == BTRFS_INODE_REF_KEY)
4338 ret = changed_ref(sctx, result);
4339 else if (key->type == BTRFS_XATTR_ITEM_KEY)
4340 ret = changed_xattr(sctx, result);
4341 else if (key->type == BTRFS_EXTENT_DATA_KEY)
4342 ret = changed_extent(sctx, result);
4343
4344out:
4345 return ret;
4346}
4347
4348static int full_send_tree(struct send_ctx *sctx)
4349{
4350 int ret;
4351 struct btrfs_trans_handle *trans = NULL;
4352 struct btrfs_root *send_root = sctx->send_root;
4353 struct btrfs_key key;
4354 struct btrfs_key found_key;
4355 struct btrfs_path *path;
4356 struct extent_buffer *eb;
4357 int slot;
4358 u64 start_ctransid;
4359 u64 ctransid;
4360
4361 path = alloc_path_for_send();
4362 if (!path)
4363 return -ENOMEM;
4364
4365 spin_lock(&send_root->root_times_lock);
4366 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4367 spin_unlock(&send_root->root_times_lock);
4368
4369 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4370 key.type = BTRFS_INODE_ITEM_KEY;
4371 key.offset = 0;
4372
4373join_trans:
4374 /*
4375 * We need to make sure the transaction does not get committed
4376 * while we do anything on commit roots. Join a transaction to prevent
4377 * this.
4378 */
4379 trans = btrfs_join_transaction(send_root);
4380 if (IS_ERR(trans)) {
4381 ret = PTR_ERR(trans);
4382 trans = NULL;
4383 goto out;
4384 }
4385
4386 /*
766702ef
AB
4387 * Make sure the tree has not changed after re-joining. We detect this
4388 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c
AB
4389 */
4390 spin_lock(&send_root->root_times_lock);
4391 ctransid = btrfs_root_ctransid(&send_root->root_item);
4392 spin_unlock(&send_root->root_times_lock);
4393
4394 if (ctransid != start_ctransid) {
4395 WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4396 "send was modified in between. This is "
4397 "probably a bug.\n");
4398 ret = -EIO;
4399 goto out;
4400 }
4401
4402 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4403 if (ret < 0)
4404 goto out;
4405 if (ret)
4406 goto out_finish;
4407
4408 while (1) {
4409 /*
4410 * When someone want to commit while we iterate, end the
4411 * joined transaction and rejoin.
4412 */
4413 if (btrfs_should_end_transaction(trans, send_root)) {
4414 ret = btrfs_end_transaction(trans, send_root);
4415 trans = NULL;
4416 if (ret < 0)
4417 goto out;
4418 btrfs_release_path(path);
4419 goto join_trans;
4420 }
4421
4422 eb = path->nodes[0];
4423 slot = path->slots[0];
4424 btrfs_item_key_to_cpu(eb, &found_key, slot);
4425
4426 ret = changed_cb(send_root, NULL, path, NULL,
4427 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4428 if (ret < 0)
4429 goto out;
4430
4431 key.objectid = found_key.objectid;
4432 key.type = found_key.type;
4433 key.offset = found_key.offset + 1;
4434
4435 ret = btrfs_next_item(send_root, path);
4436 if (ret < 0)
4437 goto out;
4438 if (ret) {
4439 ret = 0;
4440 break;
4441 }
4442 }
4443
4444out_finish:
4445 ret = finish_inode_if_needed(sctx, 1);
4446
4447out:
4448 btrfs_free_path(path);
4449 if (trans) {
4450 if (!ret)
4451 ret = btrfs_end_transaction(trans, send_root);
4452 else
4453 btrfs_end_transaction(trans, send_root);
4454 }
4455 return ret;
4456}
4457
4458static int send_subvol(struct send_ctx *sctx)
4459{
4460 int ret;
4461
4462 ret = send_header(sctx);
4463 if (ret < 0)
4464 goto out;
4465
4466 ret = send_subvol_begin(sctx);
4467 if (ret < 0)
4468 goto out;
4469
4470 if (sctx->parent_root) {
4471 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4472 changed_cb, sctx);
4473 if (ret < 0)
4474 goto out;
4475 ret = finish_inode_if_needed(sctx, 1);
4476 if (ret < 0)
4477 goto out;
4478 } else {
4479 ret = full_send_tree(sctx);
4480 if (ret < 0)
4481 goto out;
4482 }
4483
4484out:
4485 if (!ret)
4486 ret = close_cur_inode_file(sctx);
4487 else
4488 close_cur_inode_file(sctx);
4489
4490 free_recorded_refs(sctx);
4491 return ret;
4492}
4493
4494long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4495{
4496 int ret = 0;
4497 struct btrfs_root *send_root;
4498 struct btrfs_root *clone_root;
4499 struct btrfs_fs_info *fs_info;
4500 struct btrfs_ioctl_send_args *arg = NULL;
4501 struct btrfs_key key;
4502 struct file *filp = NULL;
4503 struct send_ctx *sctx = NULL;
4504 u32 i;
4505 u64 *clone_sources_tmp = NULL;
4506
4507 if (!capable(CAP_SYS_ADMIN))
4508 return -EPERM;
4509
4510 send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root;
4511 fs_info = send_root->fs_info;
4512
4513 arg = memdup_user(arg_, sizeof(*arg));
4514 if (IS_ERR(arg)) {
4515 ret = PTR_ERR(arg);
4516 arg = NULL;
4517 goto out;
4518 }
4519
4520 if (!access_ok(VERIFY_READ, arg->clone_sources,
4521 sizeof(*arg->clone_sources *
4522 arg->clone_sources_count))) {
4523 ret = -EFAULT;
4524 goto out;
4525 }
4526
4527 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4528 if (!sctx) {
4529 ret = -ENOMEM;
4530 goto out;
4531 }
4532
4533 INIT_LIST_HEAD(&sctx->new_refs);
4534 INIT_LIST_HEAD(&sctx->deleted_refs);
4535 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4536 INIT_LIST_HEAD(&sctx->name_cache_list);
4537
4538 sctx->send_filp = fget(arg->send_fd);
4539 if (IS_ERR(sctx->send_filp)) {
4540 ret = PTR_ERR(sctx->send_filp);
4541 goto out;
4542 }
4543
4544 sctx->mnt = mnt_file->f_path.mnt;
4545
4546 sctx->send_root = send_root;
4547 sctx->clone_roots_cnt = arg->clone_sources_count;
4548
4549 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4550 sctx->send_buf = vmalloc(sctx->send_max_size);
4551 if (!sctx->send_buf) {
4552 ret = -ENOMEM;
4553 goto out;
4554 }
4555
4556 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4557 if (!sctx->read_buf) {
4558 ret = -ENOMEM;
4559 goto out;
4560 }
4561
4562 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4563 (arg->clone_sources_count + 1));
4564 if (!sctx->clone_roots) {
4565 ret = -ENOMEM;
4566 goto out;
4567 }
4568
4569 if (arg->clone_sources_count) {
4570 clone_sources_tmp = vmalloc(arg->clone_sources_count *
4571 sizeof(*arg->clone_sources));
4572 if (!clone_sources_tmp) {
4573 ret = -ENOMEM;
4574 goto out;
4575 }
4576
4577 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4578 arg->clone_sources_count *
4579 sizeof(*arg->clone_sources));
4580 if (ret) {
4581 ret = -EFAULT;
4582 goto out;
4583 }
4584
4585 for (i = 0; i < arg->clone_sources_count; i++) {
4586 key.objectid = clone_sources_tmp[i];
4587 key.type = BTRFS_ROOT_ITEM_KEY;
4588 key.offset = (u64)-1;
4589 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4590 if (!clone_root) {
4591 ret = -EINVAL;
4592 goto out;
4593 }
4594 if (IS_ERR(clone_root)) {
4595 ret = PTR_ERR(clone_root);
4596 goto out;
4597 }
4598 sctx->clone_roots[i].root = clone_root;
4599 }
4600 vfree(clone_sources_tmp);
4601 clone_sources_tmp = NULL;
4602 }
4603
4604 if (arg->parent_root) {
4605 key.objectid = arg->parent_root;
4606 key.type = BTRFS_ROOT_ITEM_KEY;
4607 key.offset = (u64)-1;
4608 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4609 if (!sctx->parent_root) {
4610 ret = -EINVAL;
4611 goto out;
4612 }
4613 }
4614
4615 /*
4616 * Clones from send_root are allowed, but only if the clone source
4617 * is behind the current send position. This is checked while searching
4618 * for possible clone sources.
4619 */
4620 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4621
4622 /* We do a bsearch later */
4623 sort(sctx->clone_roots, sctx->clone_roots_cnt,
4624 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4625 NULL);
4626
4627 ret = send_subvol(sctx);
4628 if (ret < 0)
4629 goto out;
4630
4631 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4632 if (ret < 0)
4633 goto out;
4634 ret = send_cmd(sctx);
4635 if (ret < 0)
4636 goto out;
4637
4638out:
4639 if (filp)
4640 fput(filp);
4641 kfree(arg);
4642 vfree(clone_sources_tmp);
4643
4644 if (sctx) {
4645 if (sctx->send_filp)
4646 fput(sctx->send_filp);
4647
4648 vfree(sctx->clone_roots);
4649 vfree(sctx->send_buf);
4650 vfree(sctx->read_buf);
4651
4652 name_cache_free(sctx);
4653
4654 kfree(sctx);
4655 }
4656
4657 return ret;
4658}
This page took 0.617536 seconds and 4 git commands to generate.