]>
Commit | Line | Data |
---|---|---|
e02119d5 CM |
1 | /* |
2 | * Copyright (C) 2008 Oracle. All rights reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or | |
5 | * modify it under the terms of the GNU General Public | |
6 | * License v2 as published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it will be useful, | |
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
11 | * General Public License for more details. | |
12 | * | |
13 | * You should have received a copy of the GNU General Public | |
14 | * License along with this program; if not, write to the | |
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
16 | * Boston, MA 021110-1307, USA. | |
17 | */ | |
18 | ||
19 | #include <linux/sched.h> | |
5a0e3ad6 | 20 | #include <linux/slab.h> |
e02119d5 CM |
21 | #include "ctree.h" |
22 | #include "transaction.h" | |
23 | #include "disk-io.h" | |
24 | #include "locking.h" | |
25 | #include "print-tree.h" | |
26 | #include "compat.h" | |
b2950863 | 27 | #include "tree-log.h" |
e02119d5 CM |
28 | |
29 | /* magic values for the inode_only field in btrfs_log_inode: | |
30 | * | |
31 | * LOG_INODE_ALL means to log everything | |
32 | * LOG_INODE_EXISTS means to log just enough to recreate the inode | |
33 | * during log replay | |
34 | */ | |
35 | #define LOG_INODE_ALL 0 | |
36 | #define LOG_INODE_EXISTS 1 | |
37 | ||
12fcfd22 CM |
38 | /* |
39 | * directory trouble cases | |
40 | * | |
41 | * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | |
42 | * log, we must force a full commit before doing an fsync of the directory | |
43 | * where the unlink was done. | |
44 | * ---> record transid of last unlink/rename per directory | |
45 | * | |
46 | * mkdir foo/some_dir | |
47 | * normal commit | |
48 | * rename foo/some_dir foo2/some_dir | |
49 | * mkdir foo/some_dir | |
50 | * fsync foo/some_dir/some_file | |
51 | * | |
52 | * The fsync above will unlink the original some_dir without recording | |
53 | * it in its new location (foo2). After a crash, some_dir will be gone | |
54 | * unless the fsync of some_file forces a full commit | |
55 | * | |
56 | * 2) we must log any new names for any file or dir that is in the fsync | |
57 | * log. ---> check inode while renaming/linking. | |
58 | * | |
59 | * 2a) we must log any new names for any file or dir during rename | |
60 | * when the directory they are being removed from was logged. | |
61 | * ---> check inode and old parent dir during rename | |
62 | * | |
63 | * 2a is actually the more important variant. With the extra logging | |
64 | * a crash might unlink the old name without recreating the new one | |
65 | * | |
66 | * 3) after a crash, we must go through any directories with a link count | |
67 | * of zero and redo the rm -rf | |
68 | * | |
69 | * mkdir f1/foo | |
70 | * normal commit | |
71 | * rm -rf f1/foo | |
72 | * fsync(f1) | |
73 | * | |
74 | * The directory f1 was fully removed from the FS, but fsync was never | |
75 | * called on f1, only its parent dir. After a crash the rm -rf must | |
76 | * be replayed. This must be able to recurse down the entire | |
77 | * directory tree. The inode link count fixup code takes care of the | |
78 | * ugly details. | |
79 | */ | |
80 | ||
e02119d5 CM |
81 | /* |
82 | * stages for the tree walking. The first | |
83 | * stage (0) is to only pin down the blocks we find | |
84 | * the second stage (1) is to make sure that all the inodes | |
85 | * we find in the log are created in the subvolume. | |
86 | * | |
87 | * The last stage is to deal with directories and links and extents | |
88 | * and all the other fun semantics | |
89 | */ | |
90 | #define LOG_WALK_PIN_ONLY 0 | |
91 | #define LOG_WALK_REPLAY_INODES 1 | |
92 | #define LOG_WALK_REPLAY_ALL 2 | |
93 | ||
12fcfd22 | 94 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
e02119d5 CM |
95 | struct btrfs_root *root, struct inode *inode, |
96 | int inode_only); | |
ec051c0f YZ |
97 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, |
98 | struct btrfs_root *root, | |
99 | struct btrfs_path *path, u64 objectid); | |
12fcfd22 CM |
100 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, |
101 | struct btrfs_root *root, | |
102 | struct btrfs_root *log, | |
103 | struct btrfs_path *path, | |
104 | u64 dirid, int del_all); | |
e02119d5 CM |
105 | |
106 | /* | |
107 | * tree logging is a special write ahead log used to make sure that | |
108 | * fsyncs and O_SYNCs can happen without doing full tree commits. | |
109 | * | |
110 | * Full tree commits are expensive because they require commonly | |
111 | * modified blocks to be recowed, creating many dirty pages in the | |
112 | * extent tree an 4x-6x higher write load than ext3. | |
113 | * | |
114 | * Instead of doing a tree commit on every fsync, we use the | |
115 | * key ranges and transaction ids to find items for a given file or directory | |
116 | * that have changed in this transaction. Those items are copied into | |
117 | * a special tree (one per subvolume root), that tree is written to disk | |
118 | * and then the fsync is considered complete. | |
119 | * | |
120 | * After a crash, items are copied out of the log-tree back into the | |
121 | * subvolume tree. Any file data extents found are recorded in the extent | |
122 | * allocation tree, and the log-tree freed. | |
123 | * | |
124 | * The log tree is read three times, once to pin down all the extents it is | |
125 | * using in ram and once, once to create all the inodes logged in the tree | |
126 | * and once to do all the other items. | |
127 | */ | |
128 | ||
e02119d5 CM |
129 | /* |
130 | * start a sub transaction and setup the log tree | |
131 | * this increments the log tree writer count to make the people | |
132 | * syncing the tree wait for us to finish | |
133 | */ | |
134 | static int start_log_trans(struct btrfs_trans_handle *trans, | |
135 | struct btrfs_root *root) | |
136 | { | |
137 | int ret; | |
4a500fd1 | 138 | int err = 0; |
7237f183 YZ |
139 | |
140 | mutex_lock(&root->log_mutex); | |
141 | if (root->log_root) { | |
ff782e0a JB |
142 | if (!root->log_start_pid) { |
143 | root->log_start_pid = current->pid; | |
144 | root->log_multiple_pids = false; | |
145 | } else if (root->log_start_pid != current->pid) { | |
146 | root->log_multiple_pids = true; | |
147 | } | |
148 | ||
7237f183 YZ |
149 | root->log_batch++; |
150 | atomic_inc(&root->log_writers); | |
151 | mutex_unlock(&root->log_mutex); | |
152 | return 0; | |
153 | } | |
ff782e0a JB |
154 | root->log_multiple_pids = false; |
155 | root->log_start_pid = current->pid; | |
e02119d5 CM |
156 | mutex_lock(&root->fs_info->tree_log_mutex); |
157 | if (!root->fs_info->log_root_tree) { | |
158 | ret = btrfs_init_log_root_tree(trans, root->fs_info); | |
4a500fd1 YZ |
159 | if (ret) |
160 | err = ret; | |
e02119d5 | 161 | } |
4a500fd1 | 162 | if (err == 0 && !root->log_root) { |
e02119d5 | 163 | ret = btrfs_add_log_tree(trans, root); |
4a500fd1 YZ |
164 | if (ret) |
165 | err = ret; | |
e02119d5 | 166 | } |
e02119d5 | 167 | mutex_unlock(&root->fs_info->tree_log_mutex); |
7237f183 YZ |
168 | root->log_batch++; |
169 | atomic_inc(&root->log_writers); | |
170 | mutex_unlock(&root->log_mutex); | |
4a500fd1 | 171 | return err; |
e02119d5 CM |
172 | } |
173 | ||
174 | /* | |
175 | * returns 0 if there was a log transaction running and we were able | |
176 | * to join, or returns -ENOENT if there were not transactions | |
177 | * in progress | |
178 | */ | |
179 | static int join_running_log_trans(struct btrfs_root *root) | |
180 | { | |
181 | int ret = -ENOENT; | |
182 | ||
183 | smp_mb(); | |
184 | if (!root->log_root) | |
185 | return -ENOENT; | |
186 | ||
7237f183 | 187 | mutex_lock(&root->log_mutex); |
e02119d5 CM |
188 | if (root->log_root) { |
189 | ret = 0; | |
7237f183 | 190 | atomic_inc(&root->log_writers); |
e02119d5 | 191 | } |
7237f183 | 192 | mutex_unlock(&root->log_mutex); |
e02119d5 CM |
193 | return ret; |
194 | } | |
195 | ||
12fcfd22 CM |
196 | /* |
197 | * This either makes the current running log transaction wait | |
198 | * until you call btrfs_end_log_trans() or it makes any future | |
199 | * log transactions wait until you call btrfs_end_log_trans() | |
200 | */ | |
201 | int btrfs_pin_log_trans(struct btrfs_root *root) | |
202 | { | |
203 | int ret = -ENOENT; | |
204 | ||
205 | mutex_lock(&root->log_mutex); | |
206 | atomic_inc(&root->log_writers); | |
207 | mutex_unlock(&root->log_mutex); | |
208 | return ret; | |
209 | } | |
210 | ||
e02119d5 CM |
211 | /* |
212 | * indicate we're done making changes to the log tree | |
213 | * and wake up anyone waiting to do a sync | |
214 | */ | |
12fcfd22 | 215 | int btrfs_end_log_trans(struct btrfs_root *root) |
e02119d5 | 216 | { |
7237f183 YZ |
217 | if (atomic_dec_and_test(&root->log_writers)) { |
218 | smp_mb(); | |
219 | if (waitqueue_active(&root->log_writer_wait)) | |
220 | wake_up(&root->log_writer_wait); | |
221 | } | |
e02119d5 CM |
222 | return 0; |
223 | } | |
224 | ||
225 | ||
226 | /* | |
227 | * the walk control struct is used to pass state down the chain when | |
228 | * processing the log tree. The stage field tells us which part | |
229 | * of the log tree processing we are currently doing. The others | |
230 | * are state fields used for that specific part | |
231 | */ | |
232 | struct walk_control { | |
233 | /* should we free the extent on disk when done? This is used | |
234 | * at transaction commit time while freeing a log tree | |
235 | */ | |
236 | int free; | |
237 | ||
238 | /* should we write out the extent buffer? This is used | |
239 | * while flushing the log tree to disk during a sync | |
240 | */ | |
241 | int write; | |
242 | ||
243 | /* should we wait for the extent buffer io to finish? Also used | |
244 | * while flushing the log tree to disk for a sync | |
245 | */ | |
246 | int wait; | |
247 | ||
248 | /* pin only walk, we record which extents on disk belong to the | |
249 | * log trees | |
250 | */ | |
251 | int pin; | |
252 | ||
253 | /* what stage of the replay code we're currently in */ | |
254 | int stage; | |
255 | ||
256 | /* the root we are currently replaying */ | |
257 | struct btrfs_root *replay_dest; | |
258 | ||
259 | /* the trans handle for the current replay */ | |
260 | struct btrfs_trans_handle *trans; | |
261 | ||
262 | /* the function that gets used to process blocks we find in the | |
263 | * tree. Note the extent_buffer might not be up to date when it is | |
264 | * passed in, and it must be checked or read if you need the data | |
265 | * inside it | |
266 | */ | |
267 | int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | |
268 | struct walk_control *wc, u64 gen); | |
269 | }; | |
270 | ||
271 | /* | |
272 | * process_func used to pin down extents, write them or wait on them | |
273 | */ | |
274 | static int process_one_buffer(struct btrfs_root *log, | |
275 | struct extent_buffer *eb, | |
276 | struct walk_control *wc, u64 gen) | |
277 | { | |
04018de5 | 278 | if (wc->pin) |
11833d66 YZ |
279 | btrfs_pin_extent(log->fs_info->extent_root, |
280 | eb->start, eb->len, 0); | |
e02119d5 CM |
281 | |
282 | if (btrfs_buffer_uptodate(eb, gen)) { | |
283 | if (wc->write) | |
284 | btrfs_write_tree_block(eb); | |
285 | if (wc->wait) | |
286 | btrfs_wait_tree_block_writeback(eb); | |
287 | } | |
288 | return 0; | |
289 | } | |
290 | ||
291 | /* | |
292 | * Item overwrite used by replay and tree logging. eb, slot and key all refer | |
293 | * to the src data we are copying out. | |
294 | * | |
295 | * root is the tree we are copying into, and path is a scratch | |
296 | * path for use in this function (it should be released on entry and | |
297 | * will be released on exit). | |
298 | * | |
299 | * If the key is already in the destination tree the existing item is | |
300 | * overwritten. If the existing item isn't big enough, it is extended. | |
301 | * If it is too large, it is truncated. | |
302 | * | |
303 | * If the key isn't in the destination yet, a new item is inserted. | |
304 | */ | |
305 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | |
306 | struct btrfs_root *root, | |
307 | struct btrfs_path *path, | |
308 | struct extent_buffer *eb, int slot, | |
309 | struct btrfs_key *key) | |
310 | { | |
311 | int ret; | |
312 | u32 item_size; | |
313 | u64 saved_i_size = 0; | |
314 | int save_old_i_size = 0; | |
315 | unsigned long src_ptr; | |
316 | unsigned long dst_ptr; | |
317 | int overwrite_root = 0; | |
318 | ||
319 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | |
320 | overwrite_root = 1; | |
321 | ||
322 | item_size = btrfs_item_size_nr(eb, slot); | |
323 | src_ptr = btrfs_item_ptr_offset(eb, slot); | |
324 | ||
325 | /* look for the key in the destination tree */ | |
326 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | |
327 | if (ret == 0) { | |
328 | char *src_copy; | |
329 | char *dst_copy; | |
330 | u32 dst_size = btrfs_item_size_nr(path->nodes[0], | |
331 | path->slots[0]); | |
332 | if (dst_size != item_size) | |
333 | goto insert; | |
334 | ||
335 | if (item_size == 0) { | |
b3b4aa74 | 336 | btrfs_release_path(path); |
e02119d5 CM |
337 | return 0; |
338 | } | |
339 | dst_copy = kmalloc(item_size, GFP_NOFS); | |
340 | src_copy = kmalloc(item_size, GFP_NOFS); | |
2a29edc6 | 341 | if (!dst_copy || !src_copy) { |
b3b4aa74 | 342 | btrfs_release_path(path); |
2a29edc6 | 343 | kfree(dst_copy); |
344 | kfree(src_copy); | |
345 | return -ENOMEM; | |
346 | } | |
e02119d5 CM |
347 | |
348 | read_extent_buffer(eb, src_copy, src_ptr, item_size); | |
349 | ||
350 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
351 | read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | |
352 | item_size); | |
353 | ret = memcmp(dst_copy, src_copy, item_size); | |
354 | ||
355 | kfree(dst_copy); | |
356 | kfree(src_copy); | |
357 | /* | |
358 | * they have the same contents, just return, this saves | |
359 | * us from cowing blocks in the destination tree and doing | |
360 | * extra writes that may not have been done by a previous | |
361 | * sync | |
362 | */ | |
363 | if (ret == 0) { | |
b3b4aa74 | 364 | btrfs_release_path(path); |
e02119d5 CM |
365 | return 0; |
366 | } | |
367 | ||
368 | } | |
369 | insert: | |
b3b4aa74 | 370 | btrfs_release_path(path); |
e02119d5 CM |
371 | /* try to insert the key into the destination tree */ |
372 | ret = btrfs_insert_empty_item(trans, root, path, | |
373 | key, item_size); | |
374 | ||
375 | /* make sure any existing item is the correct size */ | |
376 | if (ret == -EEXIST) { | |
377 | u32 found_size; | |
378 | found_size = btrfs_item_size_nr(path->nodes[0], | |
379 | path->slots[0]); | |
380 | if (found_size > item_size) { | |
381 | btrfs_truncate_item(trans, root, path, item_size, 1); | |
382 | } else if (found_size < item_size) { | |
87b29b20 YZ |
383 | ret = btrfs_extend_item(trans, root, path, |
384 | item_size - found_size); | |
e02119d5 CM |
385 | BUG_ON(ret); |
386 | } | |
387 | } else if (ret) { | |
4a500fd1 | 388 | return ret; |
e02119d5 CM |
389 | } |
390 | dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | |
391 | path->slots[0]); | |
392 | ||
393 | /* don't overwrite an existing inode if the generation number | |
394 | * was logged as zero. This is done when the tree logging code | |
395 | * is just logging an inode to make sure it exists after recovery. | |
396 | * | |
397 | * Also, don't overwrite i_size on directories during replay. | |
398 | * log replay inserts and removes directory items based on the | |
399 | * state of the tree found in the subvolume, and i_size is modified | |
400 | * as it goes | |
401 | */ | |
402 | if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | |
403 | struct btrfs_inode_item *src_item; | |
404 | struct btrfs_inode_item *dst_item; | |
405 | ||
406 | src_item = (struct btrfs_inode_item *)src_ptr; | |
407 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
408 | ||
409 | if (btrfs_inode_generation(eb, src_item) == 0) | |
410 | goto no_copy; | |
411 | ||
412 | if (overwrite_root && | |
413 | S_ISDIR(btrfs_inode_mode(eb, src_item)) && | |
414 | S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | |
415 | save_old_i_size = 1; | |
416 | saved_i_size = btrfs_inode_size(path->nodes[0], | |
417 | dst_item); | |
418 | } | |
419 | } | |
420 | ||
421 | copy_extent_buffer(path->nodes[0], eb, dst_ptr, | |
422 | src_ptr, item_size); | |
423 | ||
424 | if (save_old_i_size) { | |
425 | struct btrfs_inode_item *dst_item; | |
426 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
427 | btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | |
428 | } | |
429 | ||
430 | /* make sure the generation is filled in */ | |
431 | if (key->type == BTRFS_INODE_ITEM_KEY) { | |
432 | struct btrfs_inode_item *dst_item; | |
433 | dst_item = (struct btrfs_inode_item *)dst_ptr; | |
434 | if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | |
435 | btrfs_set_inode_generation(path->nodes[0], dst_item, | |
436 | trans->transid); | |
437 | } | |
438 | } | |
439 | no_copy: | |
440 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
b3b4aa74 | 441 | btrfs_release_path(path); |
e02119d5 CM |
442 | return 0; |
443 | } | |
444 | ||
445 | /* | |
446 | * simple helper to read an inode off the disk from a given root | |
447 | * This can only be called for subvolume roots and not for the log | |
448 | */ | |
449 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | |
450 | u64 objectid) | |
451 | { | |
5d4f98a2 | 452 | struct btrfs_key key; |
e02119d5 | 453 | struct inode *inode; |
e02119d5 | 454 | |
5d4f98a2 YZ |
455 | key.objectid = objectid; |
456 | key.type = BTRFS_INODE_ITEM_KEY; | |
457 | key.offset = 0; | |
73f73415 | 458 | inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); |
5d4f98a2 YZ |
459 | if (IS_ERR(inode)) { |
460 | inode = NULL; | |
461 | } else if (is_bad_inode(inode)) { | |
e02119d5 CM |
462 | iput(inode); |
463 | inode = NULL; | |
464 | } | |
465 | return inode; | |
466 | } | |
467 | ||
468 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | |
469 | * subvolume 'root'. path is released on entry and should be released | |
470 | * on exit. | |
471 | * | |
472 | * extents in the log tree have not been allocated out of the extent | |
473 | * tree yet. So, this completes the allocation, taking a reference | |
474 | * as required if the extent already exists or creating a new extent | |
475 | * if it isn't in the extent allocation tree yet. | |
476 | * | |
477 | * The extent is inserted into the file, dropping any existing extents | |
478 | * from the file that overlap the new one. | |
479 | */ | |
480 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | |
481 | struct btrfs_root *root, | |
482 | struct btrfs_path *path, | |
483 | struct extent_buffer *eb, int slot, | |
484 | struct btrfs_key *key) | |
485 | { | |
486 | int found_type; | |
487 | u64 mask = root->sectorsize - 1; | |
488 | u64 extent_end; | |
489 | u64 alloc_hint; | |
490 | u64 start = key->offset; | |
07d400a6 | 491 | u64 saved_nbytes; |
e02119d5 CM |
492 | struct btrfs_file_extent_item *item; |
493 | struct inode *inode = NULL; | |
494 | unsigned long size; | |
495 | int ret = 0; | |
496 | ||
497 | item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | |
498 | found_type = btrfs_file_extent_type(eb, item); | |
499 | ||
d899e052 YZ |
500 | if (found_type == BTRFS_FILE_EXTENT_REG || |
501 | found_type == BTRFS_FILE_EXTENT_PREALLOC) | |
e02119d5 CM |
502 | extent_end = start + btrfs_file_extent_num_bytes(eb, item); |
503 | else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | |
c8b97818 | 504 | size = btrfs_file_extent_inline_len(eb, item); |
e02119d5 CM |
505 | extent_end = (start + size + mask) & ~mask; |
506 | } else { | |
507 | ret = 0; | |
508 | goto out; | |
509 | } | |
510 | ||
511 | inode = read_one_inode(root, key->objectid); | |
512 | if (!inode) { | |
513 | ret = -EIO; | |
514 | goto out; | |
515 | } | |
516 | ||
517 | /* | |
518 | * first check to see if we already have this extent in the | |
519 | * file. This must be done before the btrfs_drop_extents run | |
520 | * so we don't try to drop this extent. | |
521 | */ | |
522 | ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, | |
523 | start, 0); | |
524 | ||
d899e052 YZ |
525 | if (ret == 0 && |
526 | (found_type == BTRFS_FILE_EXTENT_REG || | |
527 | found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | |
e02119d5 CM |
528 | struct btrfs_file_extent_item cmp1; |
529 | struct btrfs_file_extent_item cmp2; | |
530 | struct btrfs_file_extent_item *existing; | |
531 | struct extent_buffer *leaf; | |
532 | ||
533 | leaf = path->nodes[0]; | |
534 | existing = btrfs_item_ptr(leaf, path->slots[0], | |
535 | struct btrfs_file_extent_item); | |
536 | ||
537 | read_extent_buffer(eb, &cmp1, (unsigned long)item, | |
538 | sizeof(cmp1)); | |
539 | read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | |
540 | sizeof(cmp2)); | |
541 | ||
542 | /* | |
543 | * we already have a pointer to this exact extent, | |
544 | * we don't have to do anything | |
545 | */ | |
546 | if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | |
b3b4aa74 | 547 | btrfs_release_path(path); |
e02119d5 CM |
548 | goto out; |
549 | } | |
550 | } | |
b3b4aa74 | 551 | btrfs_release_path(path); |
e02119d5 | 552 | |
07d400a6 | 553 | saved_nbytes = inode_get_bytes(inode); |
e02119d5 | 554 | /* drop any overlapping extents */ |
920bbbfb YZ |
555 | ret = btrfs_drop_extents(trans, inode, start, extent_end, |
556 | &alloc_hint, 1); | |
e02119d5 CM |
557 | BUG_ON(ret); |
558 | ||
07d400a6 YZ |
559 | if (found_type == BTRFS_FILE_EXTENT_REG || |
560 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | |
5d4f98a2 | 561 | u64 offset; |
07d400a6 YZ |
562 | unsigned long dest_offset; |
563 | struct btrfs_key ins; | |
564 | ||
565 | ret = btrfs_insert_empty_item(trans, root, path, key, | |
566 | sizeof(*item)); | |
567 | BUG_ON(ret); | |
568 | dest_offset = btrfs_item_ptr_offset(path->nodes[0], | |
569 | path->slots[0]); | |
570 | copy_extent_buffer(path->nodes[0], eb, dest_offset, | |
571 | (unsigned long)item, sizeof(*item)); | |
572 | ||
573 | ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | |
574 | ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | |
575 | ins.type = BTRFS_EXTENT_ITEM_KEY; | |
5d4f98a2 | 576 | offset = key->offset - btrfs_file_extent_offset(eb, item); |
07d400a6 YZ |
577 | |
578 | if (ins.objectid > 0) { | |
579 | u64 csum_start; | |
580 | u64 csum_end; | |
581 | LIST_HEAD(ordered_sums); | |
582 | /* | |
583 | * is this extent already allocated in the extent | |
584 | * allocation tree? If so, just add a reference | |
585 | */ | |
586 | ret = btrfs_lookup_extent(root, ins.objectid, | |
587 | ins.offset); | |
588 | if (ret == 0) { | |
589 | ret = btrfs_inc_extent_ref(trans, root, | |
590 | ins.objectid, ins.offset, | |
5d4f98a2 YZ |
591 | 0, root->root_key.objectid, |
592 | key->objectid, offset); | |
07d400a6 YZ |
593 | } else { |
594 | /* | |
595 | * insert the extent pointer in the extent | |
596 | * allocation tree | |
597 | */ | |
5d4f98a2 YZ |
598 | ret = btrfs_alloc_logged_file_extent(trans, |
599 | root, root->root_key.objectid, | |
600 | key->objectid, offset, &ins); | |
07d400a6 YZ |
601 | BUG_ON(ret); |
602 | } | |
b3b4aa74 | 603 | btrfs_release_path(path); |
07d400a6 YZ |
604 | |
605 | if (btrfs_file_extent_compression(eb, item)) { | |
606 | csum_start = ins.objectid; | |
607 | csum_end = csum_start + ins.offset; | |
608 | } else { | |
609 | csum_start = ins.objectid + | |
610 | btrfs_file_extent_offset(eb, item); | |
611 | csum_end = csum_start + | |
612 | btrfs_file_extent_num_bytes(eb, item); | |
613 | } | |
614 | ||
615 | ret = btrfs_lookup_csums_range(root->log_root, | |
616 | csum_start, csum_end - 1, | |
617 | &ordered_sums); | |
618 | BUG_ON(ret); | |
619 | while (!list_empty(&ordered_sums)) { | |
620 | struct btrfs_ordered_sum *sums; | |
621 | sums = list_entry(ordered_sums.next, | |
622 | struct btrfs_ordered_sum, | |
623 | list); | |
624 | ret = btrfs_csum_file_blocks(trans, | |
625 | root->fs_info->csum_root, | |
626 | sums); | |
627 | BUG_ON(ret); | |
628 | list_del(&sums->list); | |
629 | kfree(sums); | |
630 | } | |
631 | } else { | |
b3b4aa74 | 632 | btrfs_release_path(path); |
07d400a6 YZ |
633 | } |
634 | } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | |
635 | /* inline extents are easy, we just overwrite them */ | |
636 | ret = overwrite_item(trans, root, path, eb, slot, key); | |
637 | BUG_ON(ret); | |
638 | } | |
e02119d5 | 639 | |
07d400a6 | 640 | inode_set_bytes(inode, saved_nbytes); |
e02119d5 CM |
641 | btrfs_update_inode(trans, root, inode); |
642 | out: | |
643 | if (inode) | |
644 | iput(inode); | |
645 | return ret; | |
646 | } | |
647 | ||
648 | /* | |
649 | * when cleaning up conflicts between the directory names in the | |
650 | * subvolume, directory names in the log and directory names in the | |
651 | * inode back references, we may have to unlink inodes from directories. | |
652 | * | |
653 | * This is a helper function to do the unlink of a specific directory | |
654 | * item | |
655 | */ | |
656 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | |
657 | struct btrfs_root *root, | |
658 | struct btrfs_path *path, | |
659 | struct inode *dir, | |
660 | struct btrfs_dir_item *di) | |
661 | { | |
662 | struct inode *inode; | |
663 | char *name; | |
664 | int name_len; | |
665 | struct extent_buffer *leaf; | |
666 | struct btrfs_key location; | |
667 | int ret; | |
668 | ||
669 | leaf = path->nodes[0]; | |
670 | ||
671 | btrfs_dir_item_key_to_cpu(leaf, di, &location); | |
672 | name_len = btrfs_dir_name_len(leaf, di); | |
673 | name = kmalloc(name_len, GFP_NOFS); | |
2a29edc6 | 674 | if (!name) |
675 | return -ENOMEM; | |
676 | ||
e02119d5 | 677 | read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); |
b3b4aa74 | 678 | btrfs_release_path(path); |
e02119d5 CM |
679 | |
680 | inode = read_one_inode(root, location.objectid); | |
681 | BUG_ON(!inode); | |
682 | ||
ec051c0f YZ |
683 | ret = link_to_fixup_dir(trans, root, path, location.objectid); |
684 | BUG_ON(ret); | |
12fcfd22 | 685 | |
e02119d5 | 686 | ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); |
ec051c0f | 687 | BUG_ON(ret); |
e02119d5 CM |
688 | kfree(name); |
689 | ||
690 | iput(inode); | |
691 | return ret; | |
692 | } | |
693 | ||
694 | /* | |
695 | * helper function to see if a given name and sequence number found | |
696 | * in an inode back reference are already in a directory and correctly | |
697 | * point to this inode | |
698 | */ | |
699 | static noinline int inode_in_dir(struct btrfs_root *root, | |
700 | struct btrfs_path *path, | |
701 | u64 dirid, u64 objectid, u64 index, | |
702 | const char *name, int name_len) | |
703 | { | |
704 | struct btrfs_dir_item *di; | |
705 | struct btrfs_key location; | |
706 | int match = 0; | |
707 | ||
708 | di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | |
709 | index, name, name_len, 0); | |
710 | if (di && !IS_ERR(di)) { | |
711 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | |
712 | if (location.objectid != objectid) | |
713 | goto out; | |
714 | } else | |
715 | goto out; | |
b3b4aa74 | 716 | btrfs_release_path(path); |
e02119d5 CM |
717 | |
718 | di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | |
719 | if (di && !IS_ERR(di)) { | |
720 | btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | |
721 | if (location.objectid != objectid) | |
722 | goto out; | |
723 | } else | |
724 | goto out; | |
725 | match = 1; | |
726 | out: | |
b3b4aa74 | 727 | btrfs_release_path(path); |
e02119d5 CM |
728 | return match; |
729 | } | |
730 | ||
731 | /* | |
732 | * helper function to check a log tree for a named back reference in | |
733 | * an inode. This is used to decide if a back reference that is | |
734 | * found in the subvolume conflicts with what we find in the log. | |
735 | * | |
736 | * inode backreferences may have multiple refs in a single item, | |
737 | * during replay we process one reference at a time, and we don't | |
738 | * want to delete valid links to a file from the subvolume if that | |
739 | * link is also in the log. | |
740 | */ | |
741 | static noinline int backref_in_log(struct btrfs_root *log, | |
742 | struct btrfs_key *key, | |
743 | char *name, int namelen) | |
744 | { | |
745 | struct btrfs_path *path; | |
746 | struct btrfs_inode_ref *ref; | |
747 | unsigned long ptr; | |
748 | unsigned long ptr_end; | |
749 | unsigned long name_ptr; | |
750 | int found_name_len; | |
751 | int item_size; | |
752 | int ret; | |
753 | int match = 0; | |
754 | ||
755 | path = btrfs_alloc_path(); | |
2a29edc6 | 756 | if (!path) |
757 | return -ENOMEM; | |
758 | ||
e02119d5 CM |
759 | ret = btrfs_search_slot(NULL, log, key, path, 0, 0); |
760 | if (ret != 0) | |
761 | goto out; | |
762 | ||
763 | item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | |
764 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
765 | ptr_end = ptr + item_size; | |
766 | while (ptr < ptr_end) { | |
767 | ref = (struct btrfs_inode_ref *)ptr; | |
768 | found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | |
769 | if (found_name_len == namelen) { | |
770 | name_ptr = (unsigned long)(ref + 1); | |
771 | ret = memcmp_extent_buffer(path->nodes[0], name, | |
772 | name_ptr, namelen); | |
773 | if (ret == 0) { | |
774 | match = 1; | |
775 | goto out; | |
776 | } | |
777 | } | |
778 | ptr = (unsigned long)(ref + 1) + found_name_len; | |
779 | } | |
780 | out: | |
781 | btrfs_free_path(path); | |
782 | return match; | |
783 | } | |
784 | ||
785 | ||
786 | /* | |
787 | * replay one inode back reference item found in the log tree. | |
788 | * eb, slot and key refer to the buffer and key found in the log tree. | |
789 | * root is the destination we are replaying into, and path is for temp | |
790 | * use by this function. (it should be released on return). | |
791 | */ | |
792 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | |
793 | struct btrfs_root *root, | |
794 | struct btrfs_root *log, | |
795 | struct btrfs_path *path, | |
796 | struct extent_buffer *eb, int slot, | |
797 | struct btrfs_key *key) | |
798 | { | |
799 | struct inode *dir; | |
800 | int ret; | |
e02119d5 | 801 | struct btrfs_inode_ref *ref; |
e02119d5 CM |
802 | struct inode *inode; |
803 | char *name; | |
804 | int namelen; | |
805 | unsigned long ref_ptr; | |
806 | unsigned long ref_end; | |
c622ae60 | 807 | int search_done = 0; |
e02119d5 | 808 | |
e02119d5 CM |
809 | /* |
810 | * it is possible that we didn't log all the parent directories | |
811 | * for a given inode. If we don't find the dir, just don't | |
812 | * copy the back ref in. The link count fixup code will take | |
813 | * care of the rest | |
814 | */ | |
815 | dir = read_one_inode(root, key->offset); | |
816 | if (!dir) | |
817 | return -ENOENT; | |
818 | ||
819 | inode = read_one_inode(root, key->objectid); | |
631c07c8 | 820 | BUG_ON(!inode); |
e02119d5 CM |
821 | |
822 | ref_ptr = btrfs_item_ptr_offset(eb, slot); | |
823 | ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | |
824 | ||
825 | again: | |
826 | ref = (struct btrfs_inode_ref *)ref_ptr; | |
827 | ||
828 | namelen = btrfs_inode_ref_name_len(eb, ref); | |
829 | name = kmalloc(namelen, GFP_NOFS); | |
830 | BUG_ON(!name); | |
831 | ||
832 | read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); | |
833 | ||
834 | /* if we already have a perfect match, we're done */ | |
835 | if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, | |
836 | btrfs_inode_ref_index(eb, ref), | |
837 | name, namelen)) { | |
838 | goto out; | |
839 | } | |
840 | ||
841 | /* | |
842 | * look for a conflicting back reference in the metadata. | |
843 | * if we find one we have to unlink that name of the file | |
844 | * before we add our new link. Later on, we overwrite any | |
845 | * existing back reference, and we don't want to create | |
846 | * dangling pointers in the directory. | |
847 | */ | |
c622ae60 | 848 | |
849 | if (search_done) | |
850 | goto insert; | |
851 | ||
e02119d5 CM |
852 | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
853 | if (ret == 0) { | |
854 | char *victim_name; | |
855 | int victim_name_len; | |
856 | struct btrfs_inode_ref *victim_ref; | |
857 | unsigned long ptr; | |
858 | unsigned long ptr_end; | |
859 | struct extent_buffer *leaf = path->nodes[0]; | |
860 | ||
861 | /* are we trying to overwrite a back ref for the root directory | |
862 | * if so, just jump out, we're done | |
863 | */ | |
864 | if (key->objectid == key->offset) | |
865 | goto out_nowrite; | |
866 | ||
867 | /* check all the names in this back reference to see | |
868 | * if they are in the log. if so, we allow them to stay | |
869 | * otherwise they must be unlinked as a conflict | |
870 | */ | |
871 | ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | |
872 | ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | |
d397712b | 873 | while (ptr < ptr_end) { |
e02119d5 CM |
874 | victim_ref = (struct btrfs_inode_ref *)ptr; |
875 | victim_name_len = btrfs_inode_ref_name_len(leaf, | |
876 | victim_ref); | |
877 | victim_name = kmalloc(victim_name_len, GFP_NOFS); | |
878 | BUG_ON(!victim_name); | |
879 | ||
880 | read_extent_buffer(leaf, victim_name, | |
881 | (unsigned long)(victim_ref + 1), | |
882 | victim_name_len); | |
883 | ||
884 | if (!backref_in_log(log, key, victim_name, | |
885 | victim_name_len)) { | |
886 | btrfs_inc_nlink(inode); | |
b3b4aa74 | 887 | btrfs_release_path(path); |
12fcfd22 | 888 | |
e02119d5 CM |
889 | ret = btrfs_unlink_inode(trans, root, dir, |
890 | inode, victim_name, | |
891 | victim_name_len); | |
e02119d5 CM |
892 | } |
893 | kfree(victim_name); | |
894 | ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | |
895 | } | |
896 | BUG_ON(ret); | |
e02119d5 | 897 | |
c622ae60 | 898 | /* |
899 | * NOTE: we have searched root tree and checked the | |
900 | * coresponding ref, it does not need to check again. | |
901 | */ | |
902 | search_done = 1; | |
e02119d5 | 903 | } |
b3b4aa74 | 904 | btrfs_release_path(path); |
e02119d5 | 905 | |
c622ae60 | 906 | insert: |
e02119d5 CM |
907 | /* insert our name */ |
908 | ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, | |
909 | btrfs_inode_ref_index(eb, ref)); | |
910 | BUG_ON(ret); | |
911 | ||
912 | btrfs_update_inode(trans, root, inode); | |
913 | ||
914 | out: | |
915 | ref_ptr = (unsigned long)(ref + 1) + namelen; | |
916 | kfree(name); | |
917 | if (ref_ptr < ref_end) | |
918 | goto again; | |
919 | ||
920 | /* finally write the back reference in the inode */ | |
921 | ret = overwrite_item(trans, root, path, eb, slot, key); | |
922 | BUG_ON(ret); | |
923 | ||
924 | out_nowrite: | |
b3b4aa74 | 925 | btrfs_release_path(path); |
e02119d5 CM |
926 | iput(dir); |
927 | iput(inode); | |
928 | return 0; | |
929 | } | |
930 | ||
c71bf099 YZ |
931 | static int insert_orphan_item(struct btrfs_trans_handle *trans, |
932 | struct btrfs_root *root, u64 offset) | |
933 | { | |
934 | int ret; | |
935 | ret = btrfs_find_orphan_item(root, offset); | |
936 | if (ret > 0) | |
937 | ret = btrfs_insert_orphan_item(trans, root, offset); | |
938 | return ret; | |
939 | } | |
940 | ||
941 | ||
e02119d5 CM |
942 | /* |
943 | * There are a few corners where the link count of the file can't | |
944 | * be properly maintained during replay. So, instead of adding | |
945 | * lots of complexity to the log code, we just scan the backrefs | |
946 | * for any file that has been through replay. | |
947 | * | |
948 | * The scan will update the link count on the inode to reflect the | |
949 | * number of back refs found. If it goes down to zero, the iput | |
950 | * will free the inode. | |
951 | */ | |
952 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | |
953 | struct btrfs_root *root, | |
954 | struct inode *inode) | |
955 | { | |
956 | struct btrfs_path *path; | |
957 | int ret; | |
958 | struct btrfs_key key; | |
959 | u64 nlink = 0; | |
960 | unsigned long ptr; | |
961 | unsigned long ptr_end; | |
962 | int name_len; | |
963 | ||
964 | key.objectid = inode->i_ino; | |
965 | key.type = BTRFS_INODE_REF_KEY; | |
966 | key.offset = (u64)-1; | |
967 | ||
968 | path = btrfs_alloc_path(); | |
2a29edc6 | 969 | if (!path) |
970 | return -ENOMEM; | |
e02119d5 | 971 | |
d397712b | 972 | while (1) { |
e02119d5 CM |
973 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
974 | if (ret < 0) | |
975 | break; | |
976 | if (ret > 0) { | |
977 | if (path->slots[0] == 0) | |
978 | break; | |
979 | path->slots[0]--; | |
980 | } | |
981 | btrfs_item_key_to_cpu(path->nodes[0], &key, | |
982 | path->slots[0]); | |
983 | if (key.objectid != inode->i_ino || | |
984 | key.type != BTRFS_INODE_REF_KEY) | |
985 | break; | |
986 | ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | |
987 | ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | |
988 | path->slots[0]); | |
d397712b | 989 | while (ptr < ptr_end) { |
e02119d5 CM |
990 | struct btrfs_inode_ref *ref; |
991 | ||
992 | ref = (struct btrfs_inode_ref *)ptr; | |
993 | name_len = btrfs_inode_ref_name_len(path->nodes[0], | |
994 | ref); | |
995 | ptr = (unsigned long)(ref + 1) + name_len; | |
996 | nlink++; | |
997 | } | |
998 | ||
999 | if (key.offset == 0) | |
1000 | break; | |
1001 | key.offset--; | |
b3b4aa74 | 1002 | btrfs_release_path(path); |
e02119d5 | 1003 | } |
b3b4aa74 | 1004 | btrfs_release_path(path); |
e02119d5 CM |
1005 | if (nlink != inode->i_nlink) { |
1006 | inode->i_nlink = nlink; | |
1007 | btrfs_update_inode(trans, root, inode); | |
1008 | } | |
8d5bf1cb | 1009 | BTRFS_I(inode)->index_cnt = (u64)-1; |
e02119d5 | 1010 | |
c71bf099 YZ |
1011 | if (inode->i_nlink == 0) { |
1012 | if (S_ISDIR(inode->i_mode)) { | |
1013 | ret = replay_dir_deletes(trans, root, NULL, path, | |
1014 | inode->i_ino, 1); | |
1015 | BUG_ON(ret); | |
1016 | } | |
1017 | ret = insert_orphan_item(trans, root, inode->i_ino); | |
12fcfd22 CM |
1018 | BUG_ON(ret); |
1019 | } | |
1020 | btrfs_free_path(path); | |
1021 | ||
e02119d5 CM |
1022 | return 0; |
1023 | } | |
1024 | ||
1025 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | |
1026 | struct btrfs_root *root, | |
1027 | struct btrfs_path *path) | |
1028 | { | |
1029 | int ret; | |
1030 | struct btrfs_key key; | |
1031 | struct inode *inode; | |
1032 | ||
1033 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | |
1034 | key.type = BTRFS_ORPHAN_ITEM_KEY; | |
1035 | key.offset = (u64)-1; | |
d397712b | 1036 | while (1) { |
e02119d5 CM |
1037 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
1038 | if (ret < 0) | |
1039 | break; | |
1040 | ||
1041 | if (ret == 1) { | |
1042 | if (path->slots[0] == 0) | |
1043 | break; | |
1044 | path->slots[0]--; | |
1045 | } | |
1046 | ||
1047 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1048 | if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | |
1049 | key.type != BTRFS_ORPHAN_ITEM_KEY) | |
1050 | break; | |
1051 | ||
1052 | ret = btrfs_del_item(trans, root, path); | |
1053 | BUG_ON(ret); | |
1054 | ||
b3b4aa74 | 1055 | btrfs_release_path(path); |
e02119d5 CM |
1056 | inode = read_one_inode(root, key.offset); |
1057 | BUG_ON(!inode); | |
1058 | ||
1059 | ret = fixup_inode_link_count(trans, root, inode); | |
1060 | BUG_ON(ret); | |
1061 | ||
1062 | iput(inode); | |
1063 | ||
12fcfd22 CM |
1064 | /* |
1065 | * fixup on a directory may create new entries, | |
1066 | * make sure we always look for the highset possible | |
1067 | * offset | |
1068 | */ | |
1069 | key.offset = (u64)-1; | |
e02119d5 | 1070 | } |
b3b4aa74 | 1071 | btrfs_release_path(path); |
e02119d5 CM |
1072 | return 0; |
1073 | } | |
1074 | ||
1075 | ||
1076 | /* | |
1077 | * record a given inode in the fixup dir so we can check its link | |
1078 | * count when replay is done. The link count is incremented here | |
1079 | * so the inode won't go away until we check it | |
1080 | */ | |
1081 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | |
1082 | struct btrfs_root *root, | |
1083 | struct btrfs_path *path, | |
1084 | u64 objectid) | |
1085 | { | |
1086 | struct btrfs_key key; | |
1087 | int ret = 0; | |
1088 | struct inode *inode; | |
1089 | ||
1090 | inode = read_one_inode(root, objectid); | |
1091 | BUG_ON(!inode); | |
1092 | ||
1093 | key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | |
1094 | btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); | |
1095 | key.offset = objectid; | |
1096 | ||
1097 | ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | |
1098 | ||
b3b4aa74 | 1099 | btrfs_release_path(path); |
e02119d5 CM |
1100 | if (ret == 0) { |
1101 | btrfs_inc_nlink(inode); | |
1102 | btrfs_update_inode(trans, root, inode); | |
1103 | } else if (ret == -EEXIST) { | |
1104 | ret = 0; | |
1105 | } else { | |
1106 | BUG(); | |
1107 | } | |
1108 | iput(inode); | |
1109 | ||
1110 | return ret; | |
1111 | } | |
1112 | ||
1113 | /* | |
1114 | * when replaying the log for a directory, we only insert names | |
1115 | * for inodes that actually exist. This means an fsync on a directory | |
1116 | * does not implicitly fsync all the new files in it | |
1117 | */ | |
1118 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | |
1119 | struct btrfs_root *root, | |
1120 | struct btrfs_path *path, | |
1121 | u64 dirid, u64 index, | |
1122 | char *name, int name_len, u8 type, | |
1123 | struct btrfs_key *location) | |
1124 | { | |
1125 | struct inode *inode; | |
1126 | struct inode *dir; | |
1127 | int ret; | |
1128 | ||
1129 | inode = read_one_inode(root, location->objectid); | |
1130 | if (!inode) | |
1131 | return -ENOENT; | |
1132 | ||
1133 | dir = read_one_inode(root, dirid); | |
1134 | if (!dir) { | |
1135 | iput(inode); | |
1136 | return -EIO; | |
1137 | } | |
1138 | ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | |
1139 | ||
1140 | /* FIXME, put inode into FIXUP list */ | |
1141 | ||
1142 | iput(inode); | |
1143 | iput(dir); | |
1144 | return ret; | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * take a single entry in a log directory item and replay it into | |
1149 | * the subvolume. | |
1150 | * | |
1151 | * if a conflicting item exists in the subdirectory already, | |
1152 | * the inode it points to is unlinked and put into the link count | |
1153 | * fix up tree. | |
1154 | * | |
1155 | * If a name from the log points to a file or directory that does | |
1156 | * not exist in the FS, it is skipped. fsyncs on directories | |
1157 | * do not force down inodes inside that directory, just changes to the | |
1158 | * names or unlinks in a directory. | |
1159 | */ | |
1160 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | |
1161 | struct btrfs_root *root, | |
1162 | struct btrfs_path *path, | |
1163 | struct extent_buffer *eb, | |
1164 | struct btrfs_dir_item *di, | |
1165 | struct btrfs_key *key) | |
1166 | { | |
1167 | char *name; | |
1168 | int name_len; | |
1169 | struct btrfs_dir_item *dst_di; | |
1170 | struct btrfs_key found_key; | |
1171 | struct btrfs_key log_key; | |
1172 | struct inode *dir; | |
e02119d5 | 1173 | u8 log_type; |
4bef0848 | 1174 | int exists; |
e02119d5 CM |
1175 | int ret; |
1176 | ||
1177 | dir = read_one_inode(root, key->objectid); | |
1178 | BUG_ON(!dir); | |
1179 | ||
1180 | name_len = btrfs_dir_name_len(eb, di); | |
1181 | name = kmalloc(name_len, GFP_NOFS); | |
2a29edc6 | 1182 | if (!name) |
1183 | return -ENOMEM; | |
1184 | ||
e02119d5 CM |
1185 | log_type = btrfs_dir_type(eb, di); |
1186 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | |
1187 | name_len); | |
1188 | ||
1189 | btrfs_dir_item_key_to_cpu(eb, di, &log_key); | |
4bef0848 CM |
1190 | exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); |
1191 | if (exists == 0) | |
1192 | exists = 1; | |
1193 | else | |
1194 | exists = 0; | |
b3b4aa74 | 1195 | btrfs_release_path(path); |
4bef0848 | 1196 | |
e02119d5 CM |
1197 | if (key->type == BTRFS_DIR_ITEM_KEY) { |
1198 | dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | |
1199 | name, name_len, 1); | |
d397712b | 1200 | } else if (key->type == BTRFS_DIR_INDEX_KEY) { |
e02119d5 CM |
1201 | dst_di = btrfs_lookup_dir_index_item(trans, root, path, |
1202 | key->objectid, | |
1203 | key->offset, name, | |
1204 | name_len, 1); | |
1205 | } else { | |
1206 | BUG(); | |
1207 | } | |
c704005d | 1208 | if (IS_ERR_OR_NULL(dst_di)) { |
e02119d5 CM |
1209 | /* we need a sequence number to insert, so we only |
1210 | * do inserts for the BTRFS_DIR_INDEX_KEY types | |
1211 | */ | |
1212 | if (key->type != BTRFS_DIR_INDEX_KEY) | |
1213 | goto out; | |
1214 | goto insert; | |
1215 | } | |
1216 | ||
1217 | btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | |
1218 | /* the existing item matches the logged item */ | |
1219 | if (found_key.objectid == log_key.objectid && | |
1220 | found_key.type == log_key.type && | |
1221 | found_key.offset == log_key.offset && | |
1222 | btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | |
1223 | goto out; | |
1224 | } | |
1225 | ||
1226 | /* | |
1227 | * don't drop the conflicting directory entry if the inode | |
1228 | * for the new entry doesn't exist | |
1229 | */ | |
4bef0848 | 1230 | if (!exists) |
e02119d5 CM |
1231 | goto out; |
1232 | ||
e02119d5 CM |
1233 | ret = drop_one_dir_item(trans, root, path, dir, dst_di); |
1234 | BUG_ON(ret); | |
1235 | ||
1236 | if (key->type == BTRFS_DIR_INDEX_KEY) | |
1237 | goto insert; | |
1238 | out: | |
b3b4aa74 | 1239 | btrfs_release_path(path); |
e02119d5 CM |
1240 | kfree(name); |
1241 | iput(dir); | |
1242 | return 0; | |
1243 | ||
1244 | insert: | |
b3b4aa74 | 1245 | btrfs_release_path(path); |
e02119d5 CM |
1246 | ret = insert_one_name(trans, root, path, key->objectid, key->offset, |
1247 | name, name_len, log_type, &log_key); | |
1248 | ||
c293498b | 1249 | BUG_ON(ret && ret != -ENOENT); |
e02119d5 CM |
1250 | goto out; |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | * find all the names in a directory item and reconcile them into | |
1255 | * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than | |
1256 | * one name in a directory item, but the same code gets used for | |
1257 | * both directory index types | |
1258 | */ | |
1259 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | |
1260 | struct btrfs_root *root, | |
1261 | struct btrfs_path *path, | |
1262 | struct extent_buffer *eb, int slot, | |
1263 | struct btrfs_key *key) | |
1264 | { | |
1265 | int ret; | |
1266 | u32 item_size = btrfs_item_size_nr(eb, slot); | |
1267 | struct btrfs_dir_item *di; | |
1268 | int name_len; | |
1269 | unsigned long ptr; | |
1270 | unsigned long ptr_end; | |
1271 | ||
1272 | ptr = btrfs_item_ptr_offset(eb, slot); | |
1273 | ptr_end = ptr + item_size; | |
d397712b | 1274 | while (ptr < ptr_end) { |
e02119d5 | 1275 | di = (struct btrfs_dir_item *)ptr; |
22a94d44 JB |
1276 | if (verify_dir_item(root, eb, di)) |
1277 | return -EIO; | |
e02119d5 CM |
1278 | name_len = btrfs_dir_name_len(eb, di); |
1279 | ret = replay_one_name(trans, root, path, eb, di, key); | |
1280 | BUG_ON(ret); | |
1281 | ptr = (unsigned long)(di + 1); | |
1282 | ptr += name_len; | |
1283 | } | |
1284 | return 0; | |
1285 | } | |
1286 | ||
1287 | /* | |
1288 | * directory replay has two parts. There are the standard directory | |
1289 | * items in the log copied from the subvolume, and range items | |
1290 | * created in the log while the subvolume was logged. | |
1291 | * | |
1292 | * The range items tell us which parts of the key space the log | |
1293 | * is authoritative for. During replay, if a key in the subvolume | |
1294 | * directory is in a logged range item, but not actually in the log | |
1295 | * that means it was deleted from the directory before the fsync | |
1296 | * and should be removed. | |
1297 | */ | |
1298 | static noinline int find_dir_range(struct btrfs_root *root, | |
1299 | struct btrfs_path *path, | |
1300 | u64 dirid, int key_type, | |
1301 | u64 *start_ret, u64 *end_ret) | |
1302 | { | |
1303 | struct btrfs_key key; | |
1304 | u64 found_end; | |
1305 | struct btrfs_dir_log_item *item; | |
1306 | int ret; | |
1307 | int nritems; | |
1308 | ||
1309 | if (*start_ret == (u64)-1) | |
1310 | return 1; | |
1311 | ||
1312 | key.objectid = dirid; | |
1313 | key.type = key_type; | |
1314 | key.offset = *start_ret; | |
1315 | ||
1316 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | |
1317 | if (ret < 0) | |
1318 | goto out; | |
1319 | if (ret > 0) { | |
1320 | if (path->slots[0] == 0) | |
1321 | goto out; | |
1322 | path->slots[0]--; | |
1323 | } | |
1324 | if (ret != 0) | |
1325 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1326 | ||
1327 | if (key.type != key_type || key.objectid != dirid) { | |
1328 | ret = 1; | |
1329 | goto next; | |
1330 | } | |
1331 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
1332 | struct btrfs_dir_log_item); | |
1333 | found_end = btrfs_dir_log_end(path->nodes[0], item); | |
1334 | ||
1335 | if (*start_ret >= key.offset && *start_ret <= found_end) { | |
1336 | ret = 0; | |
1337 | *start_ret = key.offset; | |
1338 | *end_ret = found_end; | |
1339 | goto out; | |
1340 | } | |
1341 | ret = 1; | |
1342 | next: | |
1343 | /* check the next slot in the tree to see if it is a valid item */ | |
1344 | nritems = btrfs_header_nritems(path->nodes[0]); | |
1345 | if (path->slots[0] >= nritems) { | |
1346 | ret = btrfs_next_leaf(root, path); | |
1347 | if (ret) | |
1348 | goto out; | |
1349 | } else { | |
1350 | path->slots[0]++; | |
1351 | } | |
1352 | ||
1353 | btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | |
1354 | ||
1355 | if (key.type != key_type || key.objectid != dirid) { | |
1356 | ret = 1; | |
1357 | goto out; | |
1358 | } | |
1359 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
1360 | struct btrfs_dir_log_item); | |
1361 | found_end = btrfs_dir_log_end(path->nodes[0], item); | |
1362 | *start_ret = key.offset; | |
1363 | *end_ret = found_end; | |
1364 | ret = 0; | |
1365 | out: | |
b3b4aa74 | 1366 | btrfs_release_path(path); |
e02119d5 CM |
1367 | return ret; |
1368 | } | |
1369 | ||
1370 | /* | |
1371 | * this looks for a given directory item in the log. If the directory | |
1372 | * item is not in the log, the item is removed and the inode it points | |
1373 | * to is unlinked | |
1374 | */ | |
1375 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | |
1376 | struct btrfs_root *root, | |
1377 | struct btrfs_root *log, | |
1378 | struct btrfs_path *path, | |
1379 | struct btrfs_path *log_path, | |
1380 | struct inode *dir, | |
1381 | struct btrfs_key *dir_key) | |
1382 | { | |
1383 | int ret; | |
1384 | struct extent_buffer *eb; | |
1385 | int slot; | |
1386 | u32 item_size; | |
1387 | struct btrfs_dir_item *di; | |
1388 | struct btrfs_dir_item *log_di; | |
1389 | int name_len; | |
1390 | unsigned long ptr; | |
1391 | unsigned long ptr_end; | |
1392 | char *name; | |
1393 | struct inode *inode; | |
1394 | struct btrfs_key location; | |
1395 | ||
1396 | again: | |
1397 | eb = path->nodes[0]; | |
1398 | slot = path->slots[0]; | |
1399 | item_size = btrfs_item_size_nr(eb, slot); | |
1400 | ptr = btrfs_item_ptr_offset(eb, slot); | |
1401 | ptr_end = ptr + item_size; | |
d397712b | 1402 | while (ptr < ptr_end) { |
e02119d5 | 1403 | di = (struct btrfs_dir_item *)ptr; |
22a94d44 JB |
1404 | if (verify_dir_item(root, eb, di)) { |
1405 | ret = -EIO; | |
1406 | goto out; | |
1407 | } | |
1408 | ||
e02119d5 CM |
1409 | name_len = btrfs_dir_name_len(eb, di); |
1410 | name = kmalloc(name_len, GFP_NOFS); | |
1411 | if (!name) { | |
1412 | ret = -ENOMEM; | |
1413 | goto out; | |
1414 | } | |
1415 | read_extent_buffer(eb, name, (unsigned long)(di + 1), | |
1416 | name_len); | |
1417 | log_di = NULL; | |
12fcfd22 | 1418 | if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { |
e02119d5 CM |
1419 | log_di = btrfs_lookup_dir_item(trans, log, log_path, |
1420 | dir_key->objectid, | |
1421 | name, name_len, 0); | |
12fcfd22 | 1422 | } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { |
e02119d5 CM |
1423 | log_di = btrfs_lookup_dir_index_item(trans, log, |
1424 | log_path, | |
1425 | dir_key->objectid, | |
1426 | dir_key->offset, | |
1427 | name, name_len, 0); | |
1428 | } | |
c704005d | 1429 | if (IS_ERR_OR_NULL(log_di)) { |
e02119d5 | 1430 | btrfs_dir_item_key_to_cpu(eb, di, &location); |
b3b4aa74 DS |
1431 | btrfs_release_path(path); |
1432 | btrfs_release_path(log_path); | |
e02119d5 CM |
1433 | inode = read_one_inode(root, location.objectid); |
1434 | BUG_ON(!inode); | |
1435 | ||
1436 | ret = link_to_fixup_dir(trans, root, | |
1437 | path, location.objectid); | |
1438 | BUG_ON(ret); | |
1439 | btrfs_inc_nlink(inode); | |
1440 | ret = btrfs_unlink_inode(trans, root, dir, inode, | |
1441 | name, name_len); | |
1442 | BUG_ON(ret); | |
1443 | kfree(name); | |
1444 | iput(inode); | |
1445 | ||
1446 | /* there might still be more names under this key | |
1447 | * check and repeat if required | |
1448 | */ | |
1449 | ret = btrfs_search_slot(NULL, root, dir_key, path, | |
1450 | 0, 0); | |
1451 | if (ret == 0) | |
1452 | goto again; | |
1453 | ret = 0; | |
1454 | goto out; | |
1455 | } | |
b3b4aa74 | 1456 | btrfs_release_path(log_path); |
e02119d5 CM |
1457 | kfree(name); |
1458 | ||
1459 | ptr = (unsigned long)(di + 1); | |
1460 | ptr += name_len; | |
1461 | } | |
1462 | ret = 0; | |
1463 | out: | |
b3b4aa74 DS |
1464 | btrfs_release_path(path); |
1465 | btrfs_release_path(log_path); | |
e02119d5 CM |
1466 | return ret; |
1467 | } | |
1468 | ||
1469 | /* | |
1470 | * deletion replay happens before we copy any new directory items | |
1471 | * out of the log or out of backreferences from inodes. It | |
1472 | * scans the log to find ranges of keys that log is authoritative for, | |
1473 | * and then scans the directory to find items in those ranges that are | |
1474 | * not present in the log. | |
1475 | * | |
1476 | * Anything we don't find in the log is unlinked and removed from the | |
1477 | * directory. | |
1478 | */ | |
1479 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | |
1480 | struct btrfs_root *root, | |
1481 | struct btrfs_root *log, | |
1482 | struct btrfs_path *path, | |
12fcfd22 | 1483 | u64 dirid, int del_all) |
e02119d5 CM |
1484 | { |
1485 | u64 range_start; | |
1486 | u64 range_end; | |
1487 | int key_type = BTRFS_DIR_LOG_ITEM_KEY; | |
1488 | int ret = 0; | |
1489 | struct btrfs_key dir_key; | |
1490 | struct btrfs_key found_key; | |
1491 | struct btrfs_path *log_path; | |
1492 | struct inode *dir; | |
1493 | ||
1494 | dir_key.objectid = dirid; | |
1495 | dir_key.type = BTRFS_DIR_ITEM_KEY; | |
1496 | log_path = btrfs_alloc_path(); | |
1497 | if (!log_path) | |
1498 | return -ENOMEM; | |
1499 | ||
1500 | dir = read_one_inode(root, dirid); | |
1501 | /* it isn't an error if the inode isn't there, that can happen | |
1502 | * because we replay the deletes before we copy in the inode item | |
1503 | * from the log | |
1504 | */ | |
1505 | if (!dir) { | |
1506 | btrfs_free_path(log_path); | |
1507 | return 0; | |
1508 | } | |
1509 | again: | |
1510 | range_start = 0; | |
1511 | range_end = 0; | |
d397712b | 1512 | while (1) { |
12fcfd22 CM |
1513 | if (del_all) |
1514 | range_end = (u64)-1; | |
1515 | else { | |
1516 | ret = find_dir_range(log, path, dirid, key_type, | |
1517 | &range_start, &range_end); | |
1518 | if (ret != 0) | |
1519 | break; | |
1520 | } | |
e02119d5 CM |
1521 | |
1522 | dir_key.offset = range_start; | |
d397712b | 1523 | while (1) { |
e02119d5 CM |
1524 | int nritems; |
1525 | ret = btrfs_search_slot(NULL, root, &dir_key, path, | |
1526 | 0, 0); | |
1527 | if (ret < 0) | |
1528 | goto out; | |
1529 | ||
1530 | nritems = btrfs_header_nritems(path->nodes[0]); | |
1531 | if (path->slots[0] >= nritems) { | |
1532 | ret = btrfs_next_leaf(root, path); | |
1533 | if (ret) | |
1534 | break; | |
1535 | } | |
1536 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
1537 | path->slots[0]); | |
1538 | if (found_key.objectid != dirid || | |
1539 | found_key.type != dir_key.type) | |
1540 | goto next_type; | |
1541 | ||
1542 | if (found_key.offset > range_end) | |
1543 | break; | |
1544 | ||
1545 | ret = check_item_in_log(trans, root, log, path, | |
12fcfd22 CM |
1546 | log_path, dir, |
1547 | &found_key); | |
e02119d5 CM |
1548 | BUG_ON(ret); |
1549 | if (found_key.offset == (u64)-1) | |
1550 | break; | |
1551 | dir_key.offset = found_key.offset + 1; | |
1552 | } | |
b3b4aa74 | 1553 | btrfs_release_path(path); |
e02119d5 CM |
1554 | if (range_end == (u64)-1) |
1555 | break; | |
1556 | range_start = range_end + 1; | |
1557 | } | |
1558 | ||
1559 | next_type: | |
1560 | ret = 0; | |
1561 | if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | |
1562 | key_type = BTRFS_DIR_LOG_INDEX_KEY; | |
1563 | dir_key.type = BTRFS_DIR_INDEX_KEY; | |
b3b4aa74 | 1564 | btrfs_release_path(path); |
e02119d5 CM |
1565 | goto again; |
1566 | } | |
1567 | out: | |
b3b4aa74 | 1568 | btrfs_release_path(path); |
e02119d5 CM |
1569 | btrfs_free_path(log_path); |
1570 | iput(dir); | |
1571 | return ret; | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * the process_func used to replay items from the log tree. This | |
1576 | * gets called in two different stages. The first stage just looks | |
1577 | * for inodes and makes sure they are all copied into the subvolume. | |
1578 | * | |
1579 | * The second stage copies all the other item types from the log into | |
1580 | * the subvolume. The two stage approach is slower, but gets rid of | |
1581 | * lots of complexity around inodes referencing other inodes that exist | |
1582 | * only in the log (references come from either directory items or inode | |
1583 | * back refs). | |
1584 | */ | |
1585 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | |
1586 | struct walk_control *wc, u64 gen) | |
1587 | { | |
1588 | int nritems; | |
1589 | struct btrfs_path *path; | |
1590 | struct btrfs_root *root = wc->replay_dest; | |
1591 | struct btrfs_key key; | |
e02119d5 CM |
1592 | int level; |
1593 | int i; | |
1594 | int ret; | |
1595 | ||
1596 | btrfs_read_buffer(eb, gen); | |
1597 | ||
1598 | level = btrfs_header_level(eb); | |
1599 | ||
1600 | if (level != 0) | |
1601 | return 0; | |
1602 | ||
1603 | path = btrfs_alloc_path(); | |
1604 | BUG_ON(!path); | |
1605 | ||
1606 | nritems = btrfs_header_nritems(eb); | |
1607 | for (i = 0; i < nritems; i++) { | |
1608 | btrfs_item_key_to_cpu(eb, &key, i); | |
e02119d5 CM |
1609 | |
1610 | /* inode keys are done during the first stage */ | |
1611 | if (key.type == BTRFS_INODE_ITEM_KEY && | |
1612 | wc->stage == LOG_WALK_REPLAY_INODES) { | |
e02119d5 CM |
1613 | struct btrfs_inode_item *inode_item; |
1614 | u32 mode; | |
1615 | ||
1616 | inode_item = btrfs_item_ptr(eb, i, | |
1617 | struct btrfs_inode_item); | |
1618 | mode = btrfs_inode_mode(eb, inode_item); | |
1619 | if (S_ISDIR(mode)) { | |
1620 | ret = replay_dir_deletes(wc->trans, | |
12fcfd22 | 1621 | root, log, path, key.objectid, 0); |
e02119d5 CM |
1622 | BUG_ON(ret); |
1623 | } | |
1624 | ret = overwrite_item(wc->trans, root, path, | |
1625 | eb, i, &key); | |
1626 | BUG_ON(ret); | |
1627 | ||
c71bf099 YZ |
1628 | /* for regular files, make sure corresponding |
1629 | * orhpan item exist. extents past the new EOF | |
1630 | * will be truncated later by orphan cleanup. | |
e02119d5 CM |
1631 | */ |
1632 | if (S_ISREG(mode)) { | |
c71bf099 YZ |
1633 | ret = insert_orphan_item(wc->trans, root, |
1634 | key.objectid); | |
e02119d5 | 1635 | BUG_ON(ret); |
e02119d5 | 1636 | } |
c71bf099 | 1637 | |
e02119d5 CM |
1638 | ret = link_to_fixup_dir(wc->trans, root, |
1639 | path, key.objectid); | |
1640 | BUG_ON(ret); | |
1641 | } | |
1642 | if (wc->stage < LOG_WALK_REPLAY_ALL) | |
1643 | continue; | |
1644 | ||
1645 | /* these keys are simply copied */ | |
1646 | if (key.type == BTRFS_XATTR_ITEM_KEY) { | |
1647 | ret = overwrite_item(wc->trans, root, path, | |
1648 | eb, i, &key); | |
1649 | BUG_ON(ret); | |
1650 | } else if (key.type == BTRFS_INODE_REF_KEY) { | |
1651 | ret = add_inode_ref(wc->trans, root, log, path, | |
1652 | eb, i, &key); | |
1653 | BUG_ON(ret && ret != -ENOENT); | |
1654 | } else if (key.type == BTRFS_EXTENT_DATA_KEY) { | |
1655 | ret = replay_one_extent(wc->trans, root, path, | |
1656 | eb, i, &key); | |
1657 | BUG_ON(ret); | |
e02119d5 CM |
1658 | } else if (key.type == BTRFS_DIR_ITEM_KEY || |
1659 | key.type == BTRFS_DIR_INDEX_KEY) { | |
1660 | ret = replay_one_dir_item(wc->trans, root, path, | |
1661 | eb, i, &key); | |
1662 | BUG_ON(ret); | |
1663 | } | |
1664 | } | |
1665 | btrfs_free_path(path); | |
1666 | return 0; | |
1667 | } | |
1668 | ||
d397712b | 1669 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, |
e02119d5 CM |
1670 | struct btrfs_root *root, |
1671 | struct btrfs_path *path, int *level, | |
1672 | struct walk_control *wc) | |
1673 | { | |
1674 | u64 root_owner; | |
e02119d5 CM |
1675 | u64 bytenr; |
1676 | u64 ptr_gen; | |
1677 | struct extent_buffer *next; | |
1678 | struct extent_buffer *cur; | |
1679 | struct extent_buffer *parent; | |
1680 | u32 blocksize; | |
1681 | int ret = 0; | |
1682 | ||
1683 | WARN_ON(*level < 0); | |
1684 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1685 | ||
d397712b | 1686 | while (*level > 0) { |
e02119d5 CM |
1687 | WARN_ON(*level < 0); |
1688 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1689 | cur = path->nodes[*level]; | |
1690 | ||
1691 | if (btrfs_header_level(cur) != *level) | |
1692 | WARN_ON(1); | |
1693 | ||
1694 | if (path->slots[*level] >= | |
1695 | btrfs_header_nritems(cur)) | |
1696 | break; | |
1697 | ||
1698 | bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | |
1699 | ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | |
1700 | blocksize = btrfs_level_size(root, *level - 1); | |
1701 | ||
1702 | parent = path->nodes[*level]; | |
1703 | root_owner = btrfs_header_owner(parent); | |
e02119d5 CM |
1704 | |
1705 | next = btrfs_find_create_tree_block(root, bytenr, blocksize); | |
2a29edc6 | 1706 | if (!next) |
1707 | return -ENOMEM; | |
e02119d5 | 1708 | |
e02119d5 | 1709 | if (*level == 1) { |
4a500fd1 YZ |
1710 | wc->process_func(root, next, wc, ptr_gen); |
1711 | ||
e02119d5 CM |
1712 | path->slots[*level]++; |
1713 | if (wc->free) { | |
1714 | btrfs_read_buffer(next, ptr_gen); | |
1715 | ||
1716 | btrfs_tree_lock(next); | |
1717 | clean_tree_block(trans, root, next); | |
b4ce94de | 1718 | btrfs_set_lock_blocking(next); |
e02119d5 CM |
1719 | btrfs_wait_tree_block_writeback(next); |
1720 | btrfs_tree_unlock(next); | |
1721 | ||
e02119d5 CM |
1722 | WARN_ON(root_owner != |
1723 | BTRFS_TREE_LOG_OBJECTID); | |
d00aff00 CM |
1724 | ret = btrfs_free_reserved_extent(root, |
1725 | bytenr, blocksize); | |
e02119d5 CM |
1726 | BUG_ON(ret); |
1727 | } | |
1728 | free_extent_buffer(next); | |
1729 | continue; | |
1730 | } | |
1731 | btrfs_read_buffer(next, ptr_gen); | |
1732 | ||
1733 | WARN_ON(*level <= 0); | |
1734 | if (path->nodes[*level-1]) | |
1735 | free_extent_buffer(path->nodes[*level-1]); | |
1736 | path->nodes[*level-1] = next; | |
1737 | *level = btrfs_header_level(next); | |
1738 | path->slots[*level] = 0; | |
1739 | cond_resched(); | |
1740 | } | |
1741 | WARN_ON(*level < 0); | |
1742 | WARN_ON(*level >= BTRFS_MAX_LEVEL); | |
1743 | ||
4a500fd1 | 1744 | path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); |
e02119d5 CM |
1745 | |
1746 | cond_resched(); | |
1747 | return 0; | |
1748 | } | |
1749 | ||
d397712b | 1750 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, |
e02119d5 CM |
1751 | struct btrfs_root *root, |
1752 | struct btrfs_path *path, int *level, | |
1753 | struct walk_control *wc) | |
1754 | { | |
1755 | u64 root_owner; | |
e02119d5 CM |
1756 | int i; |
1757 | int slot; | |
1758 | int ret; | |
1759 | ||
d397712b | 1760 | for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { |
e02119d5 | 1761 | slot = path->slots[i]; |
4a500fd1 | 1762 | if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { |
e02119d5 CM |
1763 | path->slots[i]++; |
1764 | *level = i; | |
1765 | WARN_ON(*level == 0); | |
1766 | return 0; | |
1767 | } else { | |
31840ae1 ZY |
1768 | struct extent_buffer *parent; |
1769 | if (path->nodes[*level] == root->node) | |
1770 | parent = path->nodes[*level]; | |
1771 | else | |
1772 | parent = path->nodes[*level + 1]; | |
1773 | ||
1774 | root_owner = btrfs_header_owner(parent); | |
e02119d5 CM |
1775 | wc->process_func(root, path->nodes[*level], wc, |
1776 | btrfs_header_generation(path->nodes[*level])); | |
1777 | if (wc->free) { | |
1778 | struct extent_buffer *next; | |
1779 | ||
1780 | next = path->nodes[*level]; | |
1781 | ||
1782 | btrfs_tree_lock(next); | |
1783 | clean_tree_block(trans, root, next); | |
b4ce94de | 1784 | btrfs_set_lock_blocking(next); |
e02119d5 CM |
1785 | btrfs_wait_tree_block_writeback(next); |
1786 | btrfs_tree_unlock(next); | |
1787 | ||
e02119d5 | 1788 | WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); |
d00aff00 | 1789 | ret = btrfs_free_reserved_extent(root, |
e02119d5 | 1790 | path->nodes[*level]->start, |
d00aff00 | 1791 | path->nodes[*level]->len); |
e02119d5 CM |
1792 | BUG_ON(ret); |
1793 | } | |
1794 | free_extent_buffer(path->nodes[*level]); | |
1795 | path->nodes[*level] = NULL; | |
1796 | *level = i + 1; | |
1797 | } | |
1798 | } | |
1799 | return 1; | |
1800 | } | |
1801 | ||
1802 | /* | |
1803 | * drop the reference count on the tree rooted at 'snap'. This traverses | |
1804 | * the tree freeing any blocks that have a ref count of zero after being | |
1805 | * decremented. | |
1806 | */ | |
1807 | static int walk_log_tree(struct btrfs_trans_handle *trans, | |
1808 | struct btrfs_root *log, struct walk_control *wc) | |
1809 | { | |
1810 | int ret = 0; | |
1811 | int wret; | |
1812 | int level; | |
1813 | struct btrfs_path *path; | |
1814 | int i; | |
1815 | int orig_level; | |
1816 | ||
1817 | path = btrfs_alloc_path(); | |
db5b493a TI |
1818 | if (!path) |
1819 | return -ENOMEM; | |
e02119d5 CM |
1820 | |
1821 | level = btrfs_header_level(log->node); | |
1822 | orig_level = level; | |
1823 | path->nodes[level] = log->node; | |
1824 | extent_buffer_get(log->node); | |
1825 | path->slots[level] = 0; | |
1826 | ||
d397712b | 1827 | while (1) { |
e02119d5 CM |
1828 | wret = walk_down_log_tree(trans, log, path, &level, wc); |
1829 | if (wret > 0) | |
1830 | break; | |
1831 | if (wret < 0) | |
1832 | ret = wret; | |
1833 | ||
1834 | wret = walk_up_log_tree(trans, log, path, &level, wc); | |
1835 | if (wret > 0) | |
1836 | break; | |
1837 | if (wret < 0) | |
1838 | ret = wret; | |
1839 | } | |
1840 | ||
1841 | /* was the root node processed? if not, catch it here */ | |
1842 | if (path->nodes[orig_level]) { | |
1843 | wc->process_func(log, path->nodes[orig_level], wc, | |
1844 | btrfs_header_generation(path->nodes[orig_level])); | |
1845 | if (wc->free) { | |
1846 | struct extent_buffer *next; | |
1847 | ||
1848 | next = path->nodes[orig_level]; | |
1849 | ||
1850 | btrfs_tree_lock(next); | |
1851 | clean_tree_block(trans, log, next); | |
b4ce94de | 1852 | btrfs_set_lock_blocking(next); |
e02119d5 CM |
1853 | btrfs_wait_tree_block_writeback(next); |
1854 | btrfs_tree_unlock(next); | |
1855 | ||
e02119d5 CM |
1856 | WARN_ON(log->root_key.objectid != |
1857 | BTRFS_TREE_LOG_OBJECTID); | |
d00aff00 CM |
1858 | ret = btrfs_free_reserved_extent(log, next->start, |
1859 | next->len); | |
e02119d5 CM |
1860 | BUG_ON(ret); |
1861 | } | |
1862 | } | |
1863 | ||
1864 | for (i = 0; i <= orig_level; i++) { | |
1865 | if (path->nodes[i]) { | |
1866 | free_extent_buffer(path->nodes[i]); | |
1867 | path->nodes[i] = NULL; | |
1868 | } | |
1869 | } | |
1870 | btrfs_free_path(path); | |
e02119d5 CM |
1871 | return ret; |
1872 | } | |
1873 | ||
7237f183 YZ |
1874 | /* |
1875 | * helper function to update the item for a given subvolumes log root | |
1876 | * in the tree of log roots | |
1877 | */ | |
1878 | static int update_log_root(struct btrfs_trans_handle *trans, | |
1879 | struct btrfs_root *log) | |
1880 | { | |
1881 | int ret; | |
1882 | ||
1883 | if (log->log_transid == 1) { | |
1884 | /* insert root item on the first sync */ | |
1885 | ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, | |
1886 | &log->root_key, &log->root_item); | |
1887 | } else { | |
1888 | ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | |
1889 | &log->root_key, &log->root_item); | |
1890 | } | |
1891 | return ret; | |
1892 | } | |
1893 | ||
12fcfd22 CM |
1894 | static int wait_log_commit(struct btrfs_trans_handle *trans, |
1895 | struct btrfs_root *root, unsigned long transid) | |
e02119d5 CM |
1896 | { |
1897 | DEFINE_WAIT(wait); | |
7237f183 | 1898 | int index = transid % 2; |
e02119d5 | 1899 | |
7237f183 YZ |
1900 | /* |
1901 | * we only allow two pending log transactions at a time, | |
1902 | * so we know that if ours is more than 2 older than the | |
1903 | * current transaction, we're done | |
1904 | */ | |
e02119d5 | 1905 | do { |
7237f183 YZ |
1906 | prepare_to_wait(&root->log_commit_wait[index], |
1907 | &wait, TASK_UNINTERRUPTIBLE); | |
1908 | mutex_unlock(&root->log_mutex); | |
12fcfd22 CM |
1909 | |
1910 | if (root->fs_info->last_trans_log_full_commit != | |
1911 | trans->transid && root->log_transid < transid + 2 && | |
7237f183 YZ |
1912 | atomic_read(&root->log_commit[index])) |
1913 | schedule(); | |
12fcfd22 | 1914 | |
7237f183 YZ |
1915 | finish_wait(&root->log_commit_wait[index], &wait); |
1916 | mutex_lock(&root->log_mutex); | |
1917 | } while (root->log_transid < transid + 2 && | |
1918 | atomic_read(&root->log_commit[index])); | |
1919 | return 0; | |
1920 | } | |
1921 | ||
12fcfd22 CM |
1922 | static int wait_for_writer(struct btrfs_trans_handle *trans, |
1923 | struct btrfs_root *root) | |
7237f183 YZ |
1924 | { |
1925 | DEFINE_WAIT(wait); | |
1926 | while (atomic_read(&root->log_writers)) { | |
1927 | prepare_to_wait(&root->log_writer_wait, | |
1928 | &wait, TASK_UNINTERRUPTIBLE); | |
1929 | mutex_unlock(&root->log_mutex); | |
12fcfd22 CM |
1930 | if (root->fs_info->last_trans_log_full_commit != |
1931 | trans->transid && atomic_read(&root->log_writers)) | |
e02119d5 | 1932 | schedule(); |
7237f183 YZ |
1933 | mutex_lock(&root->log_mutex); |
1934 | finish_wait(&root->log_writer_wait, &wait); | |
1935 | } | |
e02119d5 CM |
1936 | return 0; |
1937 | } | |
1938 | ||
1939 | /* | |
1940 | * btrfs_sync_log does sends a given tree log down to the disk and | |
1941 | * updates the super blocks to record it. When this call is done, | |
12fcfd22 CM |
1942 | * you know that any inodes previously logged are safely on disk only |
1943 | * if it returns 0. | |
1944 | * | |
1945 | * Any other return value means you need to call btrfs_commit_transaction. | |
1946 | * Some of the edge cases for fsyncing directories that have had unlinks | |
1947 | * or renames done in the past mean that sometimes the only safe | |
1948 | * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, | |
1949 | * that has happened. | |
e02119d5 CM |
1950 | */ |
1951 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | |
1952 | struct btrfs_root *root) | |
1953 | { | |
7237f183 YZ |
1954 | int index1; |
1955 | int index2; | |
8cef4e16 | 1956 | int mark; |
e02119d5 | 1957 | int ret; |
e02119d5 | 1958 | struct btrfs_root *log = root->log_root; |
7237f183 | 1959 | struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; |
8cef4e16 | 1960 | unsigned long log_transid = 0; |
e02119d5 | 1961 | |
7237f183 YZ |
1962 | mutex_lock(&root->log_mutex); |
1963 | index1 = root->log_transid % 2; | |
1964 | if (atomic_read(&root->log_commit[index1])) { | |
12fcfd22 | 1965 | wait_log_commit(trans, root, root->log_transid); |
7237f183 YZ |
1966 | mutex_unlock(&root->log_mutex); |
1967 | return 0; | |
e02119d5 | 1968 | } |
7237f183 YZ |
1969 | atomic_set(&root->log_commit[index1], 1); |
1970 | ||
1971 | /* wait for previous tree log sync to complete */ | |
1972 | if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | |
12fcfd22 | 1973 | wait_log_commit(trans, root, root->log_transid - 1); |
e02119d5 | 1974 | |
86df7eb9 | 1975 | while (1) { |
7237f183 | 1976 | unsigned long batch = root->log_batch; |
86df7eb9 YZ |
1977 | if (root->log_multiple_pids) { |
1978 | mutex_unlock(&root->log_mutex); | |
1979 | schedule_timeout_uninterruptible(1); | |
1980 | mutex_lock(&root->log_mutex); | |
1981 | } | |
12fcfd22 | 1982 | wait_for_writer(trans, root); |
7237f183 | 1983 | if (batch == root->log_batch) |
e02119d5 CM |
1984 | break; |
1985 | } | |
e02119d5 | 1986 | |
12fcfd22 CM |
1987 | /* bail out if we need to do a full commit */ |
1988 | if (root->fs_info->last_trans_log_full_commit == trans->transid) { | |
1989 | ret = -EAGAIN; | |
1990 | mutex_unlock(&root->log_mutex); | |
1991 | goto out; | |
1992 | } | |
1993 | ||
8cef4e16 YZ |
1994 | log_transid = root->log_transid; |
1995 | if (log_transid % 2 == 0) | |
1996 | mark = EXTENT_DIRTY; | |
1997 | else | |
1998 | mark = EXTENT_NEW; | |
1999 | ||
690587d1 CM |
2000 | /* we start IO on all the marked extents here, but we don't actually |
2001 | * wait for them until later. | |
2002 | */ | |
8cef4e16 | 2003 | ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); |
e02119d5 | 2004 | BUG_ON(ret); |
7237f183 | 2005 | |
5d4f98a2 | 2006 | btrfs_set_root_node(&log->root_item, log->node); |
7237f183 YZ |
2007 | |
2008 | root->log_batch = 0; | |
2009 | root->log_transid++; | |
2010 | log->log_transid = root->log_transid; | |
ff782e0a | 2011 | root->log_start_pid = 0; |
7237f183 YZ |
2012 | smp_mb(); |
2013 | /* | |
8cef4e16 YZ |
2014 | * IO has been started, blocks of the log tree have WRITTEN flag set |
2015 | * in their headers. new modifications of the log will be written to | |
2016 | * new positions. so it's safe to allow log writers to go in. | |
7237f183 YZ |
2017 | */ |
2018 | mutex_unlock(&root->log_mutex); | |
2019 | ||
2020 | mutex_lock(&log_root_tree->log_mutex); | |
2021 | log_root_tree->log_batch++; | |
2022 | atomic_inc(&log_root_tree->log_writers); | |
2023 | mutex_unlock(&log_root_tree->log_mutex); | |
2024 | ||
2025 | ret = update_log_root(trans, log); | |
7237f183 YZ |
2026 | |
2027 | mutex_lock(&log_root_tree->log_mutex); | |
2028 | if (atomic_dec_and_test(&log_root_tree->log_writers)) { | |
2029 | smp_mb(); | |
2030 | if (waitqueue_active(&log_root_tree->log_writer_wait)) | |
2031 | wake_up(&log_root_tree->log_writer_wait); | |
2032 | } | |
2033 | ||
4a500fd1 YZ |
2034 | if (ret) { |
2035 | BUG_ON(ret != -ENOSPC); | |
2036 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
2037 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); | |
2038 | mutex_unlock(&log_root_tree->log_mutex); | |
2039 | ret = -EAGAIN; | |
2040 | goto out; | |
2041 | } | |
2042 | ||
7237f183 YZ |
2043 | index2 = log_root_tree->log_transid % 2; |
2044 | if (atomic_read(&log_root_tree->log_commit[index2])) { | |
8cef4e16 | 2045 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
12fcfd22 CM |
2046 | wait_log_commit(trans, log_root_tree, |
2047 | log_root_tree->log_transid); | |
7237f183 | 2048 | mutex_unlock(&log_root_tree->log_mutex); |
b31eabd8 | 2049 | ret = 0; |
7237f183 YZ |
2050 | goto out; |
2051 | } | |
2052 | atomic_set(&log_root_tree->log_commit[index2], 1); | |
2053 | ||
12fcfd22 CM |
2054 | if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { |
2055 | wait_log_commit(trans, log_root_tree, | |
2056 | log_root_tree->log_transid - 1); | |
2057 | } | |
2058 | ||
2059 | wait_for_writer(trans, log_root_tree); | |
7237f183 | 2060 | |
12fcfd22 CM |
2061 | /* |
2062 | * now that we've moved on to the tree of log tree roots, | |
2063 | * check the full commit flag again | |
2064 | */ | |
2065 | if (root->fs_info->last_trans_log_full_commit == trans->transid) { | |
8cef4e16 | 2066 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
12fcfd22 CM |
2067 | mutex_unlock(&log_root_tree->log_mutex); |
2068 | ret = -EAGAIN; | |
2069 | goto out_wake_log_root; | |
2070 | } | |
7237f183 YZ |
2071 | |
2072 | ret = btrfs_write_and_wait_marked_extents(log_root_tree, | |
8cef4e16 YZ |
2073 | &log_root_tree->dirty_log_pages, |
2074 | EXTENT_DIRTY | EXTENT_NEW); | |
e02119d5 | 2075 | BUG_ON(ret); |
8cef4e16 | 2076 | btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); |
e02119d5 CM |
2077 | |
2078 | btrfs_set_super_log_root(&root->fs_info->super_for_commit, | |
7237f183 | 2079 | log_root_tree->node->start); |
e02119d5 | 2080 | btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, |
7237f183 | 2081 | btrfs_header_level(log_root_tree->node)); |
e02119d5 | 2082 | |
7237f183 YZ |
2083 | log_root_tree->log_batch = 0; |
2084 | log_root_tree->log_transid++; | |
e02119d5 | 2085 | smp_mb(); |
7237f183 YZ |
2086 | |
2087 | mutex_unlock(&log_root_tree->log_mutex); | |
2088 | ||
2089 | /* | |
2090 | * nobody else is going to jump in and write the the ctree | |
2091 | * super here because the log_commit atomic below is protecting | |
2092 | * us. We must be called with a transaction handle pinning | |
2093 | * the running transaction open, so a full commit can't hop | |
2094 | * in and cause problems either. | |
2095 | */ | |
4722607d | 2096 | write_ctree_super(trans, root->fs_info->tree_root, 1); |
12fcfd22 | 2097 | ret = 0; |
7237f183 | 2098 | |
257c62e1 CM |
2099 | mutex_lock(&root->log_mutex); |
2100 | if (root->last_log_commit < log_transid) | |
2101 | root->last_log_commit = log_transid; | |
2102 | mutex_unlock(&root->log_mutex); | |
2103 | ||
12fcfd22 | 2104 | out_wake_log_root: |
7237f183 YZ |
2105 | atomic_set(&log_root_tree->log_commit[index2], 0); |
2106 | smp_mb(); | |
2107 | if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) | |
2108 | wake_up(&log_root_tree->log_commit_wait[index2]); | |
e02119d5 | 2109 | out: |
7237f183 YZ |
2110 | atomic_set(&root->log_commit[index1], 0); |
2111 | smp_mb(); | |
2112 | if (waitqueue_active(&root->log_commit_wait[index1])) | |
2113 | wake_up(&root->log_commit_wait[index1]); | |
b31eabd8 | 2114 | return ret; |
e02119d5 CM |
2115 | } |
2116 | ||
4a500fd1 YZ |
2117 | static void free_log_tree(struct btrfs_trans_handle *trans, |
2118 | struct btrfs_root *log) | |
e02119d5 CM |
2119 | { |
2120 | int ret; | |
d0c803c4 CM |
2121 | u64 start; |
2122 | u64 end; | |
e02119d5 CM |
2123 | struct walk_control wc = { |
2124 | .free = 1, | |
2125 | .process_func = process_one_buffer | |
2126 | }; | |
2127 | ||
e02119d5 CM |
2128 | ret = walk_log_tree(trans, log, &wc); |
2129 | BUG_ON(ret); | |
2130 | ||
d397712b | 2131 | while (1) { |
d0c803c4 | 2132 | ret = find_first_extent_bit(&log->dirty_log_pages, |
8cef4e16 | 2133 | 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); |
d0c803c4 CM |
2134 | if (ret) |
2135 | break; | |
2136 | ||
8cef4e16 YZ |
2137 | clear_extent_bits(&log->dirty_log_pages, start, end, |
2138 | EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); | |
d0c803c4 CM |
2139 | } |
2140 | ||
7237f183 YZ |
2141 | free_extent_buffer(log->node); |
2142 | kfree(log); | |
4a500fd1 YZ |
2143 | } |
2144 | ||
2145 | /* | |
2146 | * free all the extents used by the tree log. This should be called | |
2147 | * at commit time of the full transaction | |
2148 | */ | |
2149 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | |
2150 | { | |
2151 | if (root->log_root) { | |
2152 | free_log_tree(trans, root->log_root); | |
2153 | root->log_root = NULL; | |
2154 | } | |
2155 | return 0; | |
2156 | } | |
2157 | ||
2158 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | |
2159 | struct btrfs_fs_info *fs_info) | |
2160 | { | |
2161 | if (fs_info->log_root_tree) { | |
2162 | free_log_tree(trans, fs_info->log_root_tree); | |
2163 | fs_info->log_root_tree = NULL; | |
2164 | } | |
e02119d5 CM |
2165 | return 0; |
2166 | } | |
2167 | ||
e02119d5 CM |
2168 | /* |
2169 | * If both a file and directory are logged, and unlinks or renames are | |
2170 | * mixed in, we have a few interesting corners: | |
2171 | * | |
2172 | * create file X in dir Y | |
2173 | * link file X to X.link in dir Y | |
2174 | * fsync file X | |
2175 | * unlink file X but leave X.link | |
2176 | * fsync dir Y | |
2177 | * | |
2178 | * After a crash we would expect only X.link to exist. But file X | |
2179 | * didn't get fsync'd again so the log has back refs for X and X.link. | |
2180 | * | |
2181 | * We solve this by removing directory entries and inode backrefs from the | |
2182 | * log when a file that was logged in the current transaction is | |
2183 | * unlinked. Any later fsync will include the updated log entries, and | |
2184 | * we'll be able to reconstruct the proper directory items from backrefs. | |
2185 | * | |
2186 | * This optimizations allows us to avoid relogging the entire inode | |
2187 | * or the entire directory. | |
2188 | */ | |
2189 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | |
2190 | struct btrfs_root *root, | |
2191 | const char *name, int name_len, | |
2192 | struct inode *dir, u64 index) | |
2193 | { | |
2194 | struct btrfs_root *log; | |
2195 | struct btrfs_dir_item *di; | |
2196 | struct btrfs_path *path; | |
2197 | int ret; | |
4a500fd1 | 2198 | int err = 0; |
e02119d5 CM |
2199 | int bytes_del = 0; |
2200 | ||
3a5f1d45 CM |
2201 | if (BTRFS_I(dir)->logged_trans < trans->transid) |
2202 | return 0; | |
2203 | ||
e02119d5 CM |
2204 | ret = join_running_log_trans(root); |
2205 | if (ret) | |
2206 | return 0; | |
2207 | ||
2208 | mutex_lock(&BTRFS_I(dir)->log_mutex); | |
2209 | ||
2210 | log = root->log_root; | |
2211 | path = btrfs_alloc_path(); | |
a62f44a5 TI |
2212 | if (!path) { |
2213 | err = -ENOMEM; | |
2214 | goto out_unlock; | |
2215 | } | |
2a29edc6 | 2216 | |
e02119d5 CM |
2217 | di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, |
2218 | name, name_len, -1); | |
4a500fd1 YZ |
2219 | if (IS_ERR(di)) { |
2220 | err = PTR_ERR(di); | |
2221 | goto fail; | |
2222 | } | |
2223 | if (di) { | |
e02119d5 CM |
2224 | ret = btrfs_delete_one_dir_name(trans, log, path, di); |
2225 | bytes_del += name_len; | |
2226 | BUG_ON(ret); | |
2227 | } | |
b3b4aa74 | 2228 | btrfs_release_path(path); |
e02119d5 CM |
2229 | di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, |
2230 | index, name, name_len, -1); | |
4a500fd1 YZ |
2231 | if (IS_ERR(di)) { |
2232 | err = PTR_ERR(di); | |
2233 | goto fail; | |
2234 | } | |
2235 | if (di) { | |
e02119d5 CM |
2236 | ret = btrfs_delete_one_dir_name(trans, log, path, di); |
2237 | bytes_del += name_len; | |
2238 | BUG_ON(ret); | |
2239 | } | |
2240 | ||
2241 | /* update the directory size in the log to reflect the names | |
2242 | * we have removed | |
2243 | */ | |
2244 | if (bytes_del) { | |
2245 | struct btrfs_key key; | |
2246 | ||
2247 | key.objectid = dir->i_ino; | |
2248 | key.offset = 0; | |
2249 | key.type = BTRFS_INODE_ITEM_KEY; | |
b3b4aa74 | 2250 | btrfs_release_path(path); |
e02119d5 CM |
2251 | |
2252 | ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | |
4a500fd1 YZ |
2253 | if (ret < 0) { |
2254 | err = ret; | |
2255 | goto fail; | |
2256 | } | |
e02119d5 CM |
2257 | if (ret == 0) { |
2258 | struct btrfs_inode_item *item; | |
2259 | u64 i_size; | |
2260 | ||
2261 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
2262 | struct btrfs_inode_item); | |
2263 | i_size = btrfs_inode_size(path->nodes[0], item); | |
2264 | if (i_size > bytes_del) | |
2265 | i_size -= bytes_del; | |
2266 | else | |
2267 | i_size = 0; | |
2268 | btrfs_set_inode_size(path->nodes[0], item, i_size); | |
2269 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
2270 | } else | |
2271 | ret = 0; | |
b3b4aa74 | 2272 | btrfs_release_path(path); |
e02119d5 | 2273 | } |
4a500fd1 | 2274 | fail: |
e02119d5 | 2275 | btrfs_free_path(path); |
a62f44a5 | 2276 | out_unlock: |
e02119d5 | 2277 | mutex_unlock(&BTRFS_I(dir)->log_mutex); |
4a500fd1 YZ |
2278 | if (ret == -ENOSPC) { |
2279 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
2280 | ret = 0; | |
2281 | } | |
12fcfd22 | 2282 | btrfs_end_log_trans(root); |
e02119d5 | 2283 | |
411fc6bc | 2284 | return err; |
e02119d5 CM |
2285 | } |
2286 | ||
2287 | /* see comments for btrfs_del_dir_entries_in_log */ | |
2288 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | |
2289 | struct btrfs_root *root, | |
2290 | const char *name, int name_len, | |
2291 | struct inode *inode, u64 dirid) | |
2292 | { | |
2293 | struct btrfs_root *log; | |
2294 | u64 index; | |
2295 | int ret; | |
2296 | ||
3a5f1d45 CM |
2297 | if (BTRFS_I(inode)->logged_trans < trans->transid) |
2298 | return 0; | |
2299 | ||
e02119d5 CM |
2300 | ret = join_running_log_trans(root); |
2301 | if (ret) | |
2302 | return 0; | |
2303 | log = root->log_root; | |
2304 | mutex_lock(&BTRFS_I(inode)->log_mutex); | |
2305 | ||
2306 | ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, | |
2307 | dirid, &index); | |
2308 | mutex_unlock(&BTRFS_I(inode)->log_mutex); | |
4a500fd1 YZ |
2309 | if (ret == -ENOSPC) { |
2310 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
2311 | ret = 0; | |
2312 | } | |
12fcfd22 | 2313 | btrfs_end_log_trans(root); |
e02119d5 | 2314 | |
e02119d5 CM |
2315 | return ret; |
2316 | } | |
2317 | ||
2318 | /* | |
2319 | * creates a range item in the log for 'dirid'. first_offset and | |
2320 | * last_offset tell us which parts of the key space the log should | |
2321 | * be considered authoritative for. | |
2322 | */ | |
2323 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | |
2324 | struct btrfs_root *log, | |
2325 | struct btrfs_path *path, | |
2326 | int key_type, u64 dirid, | |
2327 | u64 first_offset, u64 last_offset) | |
2328 | { | |
2329 | int ret; | |
2330 | struct btrfs_key key; | |
2331 | struct btrfs_dir_log_item *item; | |
2332 | ||
2333 | key.objectid = dirid; | |
2334 | key.offset = first_offset; | |
2335 | if (key_type == BTRFS_DIR_ITEM_KEY) | |
2336 | key.type = BTRFS_DIR_LOG_ITEM_KEY; | |
2337 | else | |
2338 | key.type = BTRFS_DIR_LOG_INDEX_KEY; | |
2339 | ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | |
4a500fd1 YZ |
2340 | if (ret) |
2341 | return ret; | |
e02119d5 CM |
2342 | |
2343 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], | |
2344 | struct btrfs_dir_log_item); | |
2345 | btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | |
2346 | btrfs_mark_buffer_dirty(path->nodes[0]); | |
b3b4aa74 | 2347 | btrfs_release_path(path); |
e02119d5 CM |
2348 | return 0; |
2349 | } | |
2350 | ||
2351 | /* | |
2352 | * log all the items included in the current transaction for a given | |
2353 | * directory. This also creates the range items in the log tree required | |
2354 | * to replay anything deleted before the fsync | |
2355 | */ | |
2356 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | |
2357 | struct btrfs_root *root, struct inode *inode, | |
2358 | struct btrfs_path *path, | |
2359 | struct btrfs_path *dst_path, int key_type, | |
2360 | u64 min_offset, u64 *last_offset_ret) | |
2361 | { | |
2362 | struct btrfs_key min_key; | |
2363 | struct btrfs_key max_key; | |
2364 | struct btrfs_root *log = root->log_root; | |
2365 | struct extent_buffer *src; | |
4a500fd1 | 2366 | int err = 0; |
e02119d5 CM |
2367 | int ret; |
2368 | int i; | |
2369 | int nritems; | |
2370 | u64 first_offset = min_offset; | |
2371 | u64 last_offset = (u64)-1; | |
2372 | ||
2373 | log = root->log_root; | |
2374 | max_key.objectid = inode->i_ino; | |
2375 | max_key.offset = (u64)-1; | |
2376 | max_key.type = key_type; | |
2377 | ||
2378 | min_key.objectid = inode->i_ino; | |
2379 | min_key.type = key_type; | |
2380 | min_key.offset = min_offset; | |
2381 | ||
2382 | path->keep_locks = 1; | |
2383 | ||
2384 | ret = btrfs_search_forward(root, &min_key, &max_key, | |
2385 | path, 0, trans->transid); | |
2386 | ||
2387 | /* | |
2388 | * we didn't find anything from this transaction, see if there | |
2389 | * is anything at all | |
2390 | */ | |
2391 | if (ret != 0 || min_key.objectid != inode->i_ino || | |
2392 | min_key.type != key_type) { | |
2393 | min_key.objectid = inode->i_ino; | |
2394 | min_key.type = key_type; | |
2395 | min_key.offset = (u64)-1; | |
b3b4aa74 | 2396 | btrfs_release_path(path); |
e02119d5 CM |
2397 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); |
2398 | if (ret < 0) { | |
b3b4aa74 | 2399 | btrfs_release_path(path); |
e02119d5 CM |
2400 | return ret; |
2401 | } | |
2402 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | |
2403 | ||
2404 | /* if ret == 0 there are items for this type, | |
2405 | * create a range to tell us the last key of this type. | |
2406 | * otherwise, there are no items in this directory after | |
2407 | * *min_offset, and we create a range to indicate that. | |
2408 | */ | |
2409 | if (ret == 0) { | |
2410 | struct btrfs_key tmp; | |
2411 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, | |
2412 | path->slots[0]); | |
d397712b | 2413 | if (key_type == tmp.type) |
e02119d5 | 2414 | first_offset = max(min_offset, tmp.offset) + 1; |
e02119d5 CM |
2415 | } |
2416 | goto done; | |
2417 | } | |
2418 | ||
2419 | /* go backward to find any previous key */ | |
2420 | ret = btrfs_previous_item(root, path, inode->i_ino, key_type); | |
2421 | if (ret == 0) { | |
2422 | struct btrfs_key tmp; | |
2423 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | |
2424 | if (key_type == tmp.type) { | |
2425 | first_offset = tmp.offset; | |
2426 | ret = overwrite_item(trans, log, dst_path, | |
2427 | path->nodes[0], path->slots[0], | |
2428 | &tmp); | |
4a500fd1 YZ |
2429 | if (ret) { |
2430 | err = ret; | |
2431 | goto done; | |
2432 | } | |
e02119d5 CM |
2433 | } |
2434 | } | |
b3b4aa74 | 2435 | btrfs_release_path(path); |
e02119d5 CM |
2436 | |
2437 | /* find the first key from this transaction again */ | |
2438 | ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | |
2439 | if (ret != 0) { | |
2440 | WARN_ON(1); | |
2441 | goto done; | |
2442 | } | |
2443 | ||
2444 | /* | |
2445 | * we have a block from this transaction, log every item in it | |
2446 | * from our directory | |
2447 | */ | |
d397712b | 2448 | while (1) { |
e02119d5 CM |
2449 | struct btrfs_key tmp; |
2450 | src = path->nodes[0]; | |
2451 | nritems = btrfs_header_nritems(src); | |
2452 | for (i = path->slots[0]; i < nritems; i++) { | |
2453 | btrfs_item_key_to_cpu(src, &min_key, i); | |
2454 | ||
2455 | if (min_key.objectid != inode->i_ino || | |
2456 | min_key.type != key_type) | |
2457 | goto done; | |
2458 | ret = overwrite_item(trans, log, dst_path, src, i, | |
2459 | &min_key); | |
4a500fd1 YZ |
2460 | if (ret) { |
2461 | err = ret; | |
2462 | goto done; | |
2463 | } | |
e02119d5 CM |
2464 | } |
2465 | path->slots[0] = nritems; | |
2466 | ||
2467 | /* | |
2468 | * look ahead to the next item and see if it is also | |
2469 | * from this directory and from this transaction | |
2470 | */ | |
2471 | ret = btrfs_next_leaf(root, path); | |
2472 | if (ret == 1) { | |
2473 | last_offset = (u64)-1; | |
2474 | goto done; | |
2475 | } | |
2476 | btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | |
2477 | if (tmp.objectid != inode->i_ino || tmp.type != key_type) { | |
2478 | last_offset = (u64)-1; | |
2479 | goto done; | |
2480 | } | |
2481 | if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | |
2482 | ret = overwrite_item(trans, log, dst_path, | |
2483 | path->nodes[0], path->slots[0], | |
2484 | &tmp); | |
4a500fd1 YZ |
2485 | if (ret) |
2486 | err = ret; | |
2487 | else | |
2488 | last_offset = tmp.offset; | |
e02119d5 CM |
2489 | goto done; |
2490 | } | |
2491 | } | |
2492 | done: | |
b3b4aa74 DS |
2493 | btrfs_release_path(path); |
2494 | btrfs_release_path(dst_path); | |
e02119d5 | 2495 | |
4a500fd1 YZ |
2496 | if (err == 0) { |
2497 | *last_offset_ret = last_offset; | |
2498 | /* | |
2499 | * insert the log range keys to indicate where the log | |
2500 | * is valid | |
2501 | */ | |
2502 | ret = insert_dir_log_key(trans, log, path, key_type, | |
2503 | inode->i_ino, first_offset, | |
2504 | last_offset); | |
2505 | if (ret) | |
2506 | err = ret; | |
2507 | } | |
2508 | return err; | |
e02119d5 CM |
2509 | } |
2510 | ||
2511 | /* | |
2512 | * logging directories is very similar to logging inodes, We find all the items | |
2513 | * from the current transaction and write them to the log. | |
2514 | * | |
2515 | * The recovery code scans the directory in the subvolume, and if it finds a | |
2516 | * key in the range logged that is not present in the log tree, then it means | |
2517 | * that dir entry was unlinked during the transaction. | |
2518 | * | |
2519 | * In order for that scan to work, we must include one key smaller than | |
2520 | * the smallest logged by this transaction and one key larger than the largest | |
2521 | * key logged by this transaction. | |
2522 | */ | |
2523 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | |
2524 | struct btrfs_root *root, struct inode *inode, | |
2525 | struct btrfs_path *path, | |
2526 | struct btrfs_path *dst_path) | |
2527 | { | |
2528 | u64 min_key; | |
2529 | u64 max_key; | |
2530 | int ret; | |
2531 | int key_type = BTRFS_DIR_ITEM_KEY; | |
2532 | ||
2533 | again: | |
2534 | min_key = 0; | |
2535 | max_key = 0; | |
d397712b | 2536 | while (1) { |
e02119d5 CM |
2537 | ret = log_dir_items(trans, root, inode, path, |
2538 | dst_path, key_type, min_key, | |
2539 | &max_key); | |
4a500fd1 YZ |
2540 | if (ret) |
2541 | return ret; | |
e02119d5 CM |
2542 | if (max_key == (u64)-1) |
2543 | break; | |
2544 | min_key = max_key + 1; | |
2545 | } | |
2546 | ||
2547 | if (key_type == BTRFS_DIR_ITEM_KEY) { | |
2548 | key_type = BTRFS_DIR_INDEX_KEY; | |
2549 | goto again; | |
2550 | } | |
2551 | return 0; | |
2552 | } | |
2553 | ||
2554 | /* | |
2555 | * a helper function to drop items from the log before we relog an | |
2556 | * inode. max_key_type indicates the highest item type to remove. | |
2557 | * This cannot be run for file data extents because it does not | |
2558 | * free the extents they point to. | |
2559 | */ | |
2560 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | |
2561 | struct btrfs_root *log, | |
2562 | struct btrfs_path *path, | |
2563 | u64 objectid, int max_key_type) | |
2564 | { | |
2565 | int ret; | |
2566 | struct btrfs_key key; | |
2567 | struct btrfs_key found_key; | |
2568 | ||
2569 | key.objectid = objectid; | |
2570 | key.type = max_key_type; | |
2571 | key.offset = (u64)-1; | |
2572 | ||
d397712b | 2573 | while (1) { |
e02119d5 | 2574 | ret = btrfs_search_slot(trans, log, &key, path, -1, 1); |
4a500fd1 YZ |
2575 | BUG_ON(ret == 0); |
2576 | if (ret < 0) | |
e02119d5 CM |
2577 | break; |
2578 | ||
2579 | if (path->slots[0] == 0) | |
2580 | break; | |
2581 | ||
2582 | path->slots[0]--; | |
2583 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
2584 | path->slots[0]); | |
2585 | ||
2586 | if (found_key.objectid != objectid) | |
2587 | break; | |
2588 | ||
2589 | ret = btrfs_del_item(trans, log, path); | |
2590 | BUG_ON(ret); | |
b3b4aa74 | 2591 | btrfs_release_path(path); |
e02119d5 | 2592 | } |
b3b4aa74 | 2593 | btrfs_release_path(path); |
4a500fd1 | 2594 | return ret; |
e02119d5 CM |
2595 | } |
2596 | ||
31ff1cd2 CM |
2597 | static noinline int copy_items(struct btrfs_trans_handle *trans, |
2598 | struct btrfs_root *log, | |
2599 | struct btrfs_path *dst_path, | |
2600 | struct extent_buffer *src, | |
2601 | int start_slot, int nr, int inode_only) | |
2602 | { | |
2603 | unsigned long src_offset; | |
2604 | unsigned long dst_offset; | |
2605 | struct btrfs_file_extent_item *extent; | |
2606 | struct btrfs_inode_item *inode_item; | |
2607 | int ret; | |
2608 | struct btrfs_key *ins_keys; | |
2609 | u32 *ins_sizes; | |
2610 | char *ins_data; | |
2611 | int i; | |
d20f7043 CM |
2612 | struct list_head ordered_sums; |
2613 | ||
2614 | INIT_LIST_HEAD(&ordered_sums); | |
31ff1cd2 CM |
2615 | |
2616 | ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | |
2617 | nr * sizeof(u32), GFP_NOFS); | |
2a29edc6 | 2618 | if (!ins_data) |
2619 | return -ENOMEM; | |
2620 | ||
31ff1cd2 CM |
2621 | ins_sizes = (u32 *)ins_data; |
2622 | ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | |
2623 | ||
2624 | for (i = 0; i < nr; i++) { | |
2625 | ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | |
2626 | btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | |
2627 | } | |
2628 | ret = btrfs_insert_empty_items(trans, log, dst_path, | |
2629 | ins_keys, ins_sizes, nr); | |
4a500fd1 YZ |
2630 | if (ret) { |
2631 | kfree(ins_data); | |
2632 | return ret; | |
2633 | } | |
31ff1cd2 | 2634 | |
5d4f98a2 | 2635 | for (i = 0; i < nr; i++, dst_path->slots[0]++) { |
31ff1cd2 CM |
2636 | dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], |
2637 | dst_path->slots[0]); | |
2638 | ||
2639 | src_offset = btrfs_item_ptr_offset(src, start_slot + i); | |
2640 | ||
2641 | copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | |
2642 | src_offset, ins_sizes[i]); | |
2643 | ||
2644 | if (inode_only == LOG_INODE_EXISTS && | |
2645 | ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | |
2646 | inode_item = btrfs_item_ptr(dst_path->nodes[0], | |
2647 | dst_path->slots[0], | |
2648 | struct btrfs_inode_item); | |
2649 | btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); | |
2650 | ||
2651 | /* set the generation to zero so the recover code | |
2652 | * can tell the difference between an logging | |
2653 | * just to say 'this inode exists' and a logging | |
2654 | * to say 'update this inode with these values' | |
2655 | */ | |
2656 | btrfs_set_inode_generation(dst_path->nodes[0], | |
2657 | inode_item, 0); | |
2658 | } | |
2659 | /* take a reference on file data extents so that truncates | |
2660 | * or deletes of this inode don't have to relog the inode | |
2661 | * again | |
2662 | */ | |
2663 | if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { | |
2664 | int found_type; | |
2665 | extent = btrfs_item_ptr(src, start_slot + i, | |
2666 | struct btrfs_file_extent_item); | |
2667 | ||
2668 | found_type = btrfs_file_extent_type(src, extent); | |
d899e052 YZ |
2669 | if (found_type == BTRFS_FILE_EXTENT_REG || |
2670 | found_type == BTRFS_FILE_EXTENT_PREALLOC) { | |
5d4f98a2 YZ |
2671 | u64 ds, dl, cs, cl; |
2672 | ds = btrfs_file_extent_disk_bytenr(src, | |
2673 | extent); | |
2674 | /* ds == 0 is a hole */ | |
2675 | if (ds == 0) | |
2676 | continue; | |
2677 | ||
2678 | dl = btrfs_file_extent_disk_num_bytes(src, | |
2679 | extent); | |
2680 | cs = btrfs_file_extent_offset(src, extent); | |
2681 | cl = btrfs_file_extent_num_bytes(src, | |
a419aef8 | 2682 | extent); |
580afd76 CM |
2683 | if (btrfs_file_extent_compression(src, |
2684 | extent)) { | |
2685 | cs = 0; | |
2686 | cl = dl; | |
2687 | } | |
5d4f98a2 YZ |
2688 | |
2689 | ret = btrfs_lookup_csums_range( | |
2690 | log->fs_info->csum_root, | |
2691 | ds + cs, ds + cs + cl - 1, | |
2692 | &ordered_sums); | |
2693 | BUG_ON(ret); | |
31ff1cd2 CM |
2694 | } |
2695 | } | |
31ff1cd2 CM |
2696 | } |
2697 | ||
2698 | btrfs_mark_buffer_dirty(dst_path->nodes[0]); | |
b3b4aa74 | 2699 | btrfs_release_path(dst_path); |
31ff1cd2 | 2700 | kfree(ins_data); |
d20f7043 CM |
2701 | |
2702 | /* | |
2703 | * we have to do this after the loop above to avoid changing the | |
2704 | * log tree while trying to change the log tree. | |
2705 | */ | |
4a500fd1 | 2706 | ret = 0; |
d397712b | 2707 | while (!list_empty(&ordered_sums)) { |
d20f7043 CM |
2708 | struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, |
2709 | struct btrfs_ordered_sum, | |
2710 | list); | |
4a500fd1 YZ |
2711 | if (!ret) |
2712 | ret = btrfs_csum_file_blocks(trans, log, sums); | |
d20f7043 CM |
2713 | list_del(&sums->list); |
2714 | kfree(sums); | |
2715 | } | |
4a500fd1 | 2716 | return ret; |
31ff1cd2 CM |
2717 | } |
2718 | ||
e02119d5 CM |
2719 | /* log a single inode in the tree log. |
2720 | * At least one parent directory for this inode must exist in the tree | |
2721 | * or be logged already. | |
2722 | * | |
2723 | * Any items from this inode changed by the current transaction are copied | |
2724 | * to the log tree. An extra reference is taken on any extents in this | |
2725 | * file, allowing us to avoid a whole pile of corner cases around logging | |
2726 | * blocks that have been removed from the tree. | |
2727 | * | |
2728 | * See LOG_INODE_ALL and related defines for a description of what inode_only | |
2729 | * does. | |
2730 | * | |
2731 | * This handles both files and directories. | |
2732 | */ | |
12fcfd22 | 2733 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, |
e02119d5 CM |
2734 | struct btrfs_root *root, struct inode *inode, |
2735 | int inode_only) | |
2736 | { | |
2737 | struct btrfs_path *path; | |
2738 | struct btrfs_path *dst_path; | |
2739 | struct btrfs_key min_key; | |
2740 | struct btrfs_key max_key; | |
2741 | struct btrfs_root *log = root->log_root; | |
31ff1cd2 | 2742 | struct extent_buffer *src = NULL; |
4a500fd1 | 2743 | int err = 0; |
e02119d5 | 2744 | int ret; |
3a5f1d45 | 2745 | int nritems; |
31ff1cd2 CM |
2746 | int ins_start_slot = 0; |
2747 | int ins_nr; | |
e02119d5 CM |
2748 | |
2749 | log = root->log_root; | |
2750 | ||
2751 | path = btrfs_alloc_path(); | |
5df67083 TI |
2752 | if (!path) |
2753 | return -ENOMEM; | |
e02119d5 | 2754 | dst_path = btrfs_alloc_path(); |
5df67083 TI |
2755 | if (!dst_path) { |
2756 | btrfs_free_path(path); | |
2757 | return -ENOMEM; | |
2758 | } | |
e02119d5 CM |
2759 | |
2760 | min_key.objectid = inode->i_ino; | |
2761 | min_key.type = BTRFS_INODE_ITEM_KEY; | |
2762 | min_key.offset = 0; | |
2763 | ||
2764 | max_key.objectid = inode->i_ino; | |
12fcfd22 CM |
2765 | |
2766 | /* today the code can only do partial logging of directories */ | |
2767 | if (!S_ISDIR(inode->i_mode)) | |
2768 | inode_only = LOG_INODE_ALL; | |
2769 | ||
e02119d5 CM |
2770 | if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) |
2771 | max_key.type = BTRFS_XATTR_ITEM_KEY; | |
2772 | else | |
2773 | max_key.type = (u8)-1; | |
2774 | max_key.offset = (u64)-1; | |
2775 | ||
e02119d5 CM |
2776 | mutex_lock(&BTRFS_I(inode)->log_mutex); |
2777 | ||
2778 | /* | |
2779 | * a brute force approach to making sure we get the most uptodate | |
2780 | * copies of everything. | |
2781 | */ | |
2782 | if (S_ISDIR(inode->i_mode)) { | |
2783 | int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | |
2784 | ||
2785 | if (inode_only == LOG_INODE_EXISTS) | |
2786 | max_key_type = BTRFS_XATTR_ITEM_KEY; | |
2787 | ret = drop_objectid_items(trans, log, path, | |
2788 | inode->i_ino, max_key_type); | |
2789 | } else { | |
2790 | ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); | |
2791 | } | |
4a500fd1 YZ |
2792 | if (ret) { |
2793 | err = ret; | |
2794 | goto out_unlock; | |
2795 | } | |
e02119d5 CM |
2796 | path->keep_locks = 1; |
2797 | ||
d397712b | 2798 | while (1) { |
31ff1cd2 | 2799 | ins_nr = 0; |
e02119d5 CM |
2800 | ret = btrfs_search_forward(root, &min_key, &max_key, |
2801 | path, 0, trans->transid); | |
2802 | if (ret != 0) | |
2803 | break; | |
3a5f1d45 | 2804 | again: |
31ff1cd2 | 2805 | /* note, ins_nr might be > 0 here, cleanup outside the loop */ |
e02119d5 CM |
2806 | if (min_key.objectid != inode->i_ino) |
2807 | break; | |
2808 | if (min_key.type > max_key.type) | |
2809 | break; | |
31ff1cd2 | 2810 | |
e02119d5 | 2811 | src = path->nodes[0]; |
31ff1cd2 CM |
2812 | if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { |
2813 | ins_nr++; | |
2814 | goto next_slot; | |
2815 | } else if (!ins_nr) { | |
2816 | ins_start_slot = path->slots[0]; | |
2817 | ins_nr = 1; | |
2818 | goto next_slot; | |
e02119d5 CM |
2819 | } |
2820 | ||
31ff1cd2 CM |
2821 | ret = copy_items(trans, log, dst_path, src, ins_start_slot, |
2822 | ins_nr, inode_only); | |
4a500fd1 YZ |
2823 | if (ret) { |
2824 | err = ret; | |
2825 | goto out_unlock; | |
2826 | } | |
31ff1cd2 CM |
2827 | ins_nr = 1; |
2828 | ins_start_slot = path->slots[0]; | |
2829 | next_slot: | |
e02119d5 | 2830 | |
3a5f1d45 CM |
2831 | nritems = btrfs_header_nritems(path->nodes[0]); |
2832 | path->slots[0]++; | |
2833 | if (path->slots[0] < nritems) { | |
2834 | btrfs_item_key_to_cpu(path->nodes[0], &min_key, | |
2835 | path->slots[0]); | |
2836 | goto again; | |
2837 | } | |
31ff1cd2 CM |
2838 | if (ins_nr) { |
2839 | ret = copy_items(trans, log, dst_path, src, | |
2840 | ins_start_slot, | |
2841 | ins_nr, inode_only); | |
4a500fd1 YZ |
2842 | if (ret) { |
2843 | err = ret; | |
2844 | goto out_unlock; | |
2845 | } | |
31ff1cd2 CM |
2846 | ins_nr = 0; |
2847 | } | |
b3b4aa74 | 2848 | btrfs_release_path(path); |
3a5f1d45 | 2849 | |
e02119d5 CM |
2850 | if (min_key.offset < (u64)-1) |
2851 | min_key.offset++; | |
2852 | else if (min_key.type < (u8)-1) | |
2853 | min_key.type++; | |
2854 | else if (min_key.objectid < (u64)-1) | |
2855 | min_key.objectid++; | |
2856 | else | |
2857 | break; | |
2858 | } | |
31ff1cd2 CM |
2859 | if (ins_nr) { |
2860 | ret = copy_items(trans, log, dst_path, src, | |
2861 | ins_start_slot, | |
2862 | ins_nr, inode_only); | |
4a500fd1 YZ |
2863 | if (ret) { |
2864 | err = ret; | |
2865 | goto out_unlock; | |
2866 | } | |
31ff1cd2 CM |
2867 | ins_nr = 0; |
2868 | } | |
2869 | WARN_ON(ins_nr); | |
9623f9a3 | 2870 | if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { |
b3b4aa74 DS |
2871 | btrfs_release_path(path); |
2872 | btrfs_release_path(dst_path); | |
e02119d5 | 2873 | ret = log_directory_changes(trans, root, inode, path, dst_path); |
4a500fd1 YZ |
2874 | if (ret) { |
2875 | err = ret; | |
2876 | goto out_unlock; | |
2877 | } | |
e02119d5 | 2878 | } |
3a5f1d45 | 2879 | BTRFS_I(inode)->logged_trans = trans->transid; |
4a500fd1 | 2880 | out_unlock: |
e02119d5 CM |
2881 | mutex_unlock(&BTRFS_I(inode)->log_mutex); |
2882 | ||
2883 | btrfs_free_path(path); | |
2884 | btrfs_free_path(dst_path); | |
4a500fd1 | 2885 | return err; |
e02119d5 CM |
2886 | } |
2887 | ||
12fcfd22 CM |
2888 | /* |
2889 | * follow the dentry parent pointers up the chain and see if any | |
2890 | * of the directories in it require a full commit before they can | |
2891 | * be logged. Returns zero if nothing special needs to be done or 1 if | |
2892 | * a full commit is required. | |
2893 | */ | |
2894 | static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, | |
2895 | struct inode *inode, | |
2896 | struct dentry *parent, | |
2897 | struct super_block *sb, | |
2898 | u64 last_committed) | |
e02119d5 | 2899 | { |
12fcfd22 CM |
2900 | int ret = 0; |
2901 | struct btrfs_root *root; | |
6a912213 | 2902 | struct dentry *old_parent = NULL; |
e02119d5 | 2903 | |
af4176b4 CM |
2904 | /* |
2905 | * for regular files, if its inode is already on disk, we don't | |
2906 | * have to worry about the parents at all. This is because | |
2907 | * we can use the last_unlink_trans field to record renames | |
2908 | * and other fun in this file. | |
2909 | */ | |
2910 | if (S_ISREG(inode->i_mode) && | |
2911 | BTRFS_I(inode)->generation <= last_committed && | |
2912 | BTRFS_I(inode)->last_unlink_trans <= last_committed) | |
2913 | goto out; | |
2914 | ||
12fcfd22 CM |
2915 | if (!S_ISDIR(inode->i_mode)) { |
2916 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
2917 | goto out; | |
2918 | inode = parent->d_inode; | |
2919 | } | |
2920 | ||
2921 | while (1) { | |
2922 | BTRFS_I(inode)->logged_trans = trans->transid; | |
2923 | smp_mb(); | |
2924 | ||
2925 | if (BTRFS_I(inode)->last_unlink_trans > last_committed) { | |
2926 | root = BTRFS_I(inode)->root; | |
2927 | ||
2928 | /* | |
2929 | * make sure any commits to the log are forced | |
2930 | * to be full commits | |
2931 | */ | |
2932 | root->fs_info->last_trans_log_full_commit = | |
2933 | trans->transid; | |
2934 | ret = 1; | |
2935 | break; | |
2936 | } | |
2937 | ||
2938 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
2939 | break; | |
2940 | ||
76dda93c | 2941 | if (IS_ROOT(parent)) |
12fcfd22 CM |
2942 | break; |
2943 | ||
6a912213 JB |
2944 | parent = dget_parent(parent); |
2945 | dput(old_parent); | |
2946 | old_parent = parent; | |
12fcfd22 CM |
2947 | inode = parent->d_inode; |
2948 | ||
2949 | } | |
6a912213 | 2950 | dput(old_parent); |
12fcfd22 | 2951 | out: |
e02119d5 CM |
2952 | return ret; |
2953 | } | |
2954 | ||
257c62e1 CM |
2955 | static int inode_in_log(struct btrfs_trans_handle *trans, |
2956 | struct inode *inode) | |
2957 | { | |
2958 | struct btrfs_root *root = BTRFS_I(inode)->root; | |
2959 | int ret = 0; | |
2960 | ||
2961 | mutex_lock(&root->log_mutex); | |
2962 | if (BTRFS_I(inode)->logged_trans == trans->transid && | |
2963 | BTRFS_I(inode)->last_sub_trans <= root->last_log_commit) | |
2964 | ret = 1; | |
2965 | mutex_unlock(&root->log_mutex); | |
2966 | return ret; | |
2967 | } | |
2968 | ||
2969 | ||
e02119d5 CM |
2970 | /* |
2971 | * helper function around btrfs_log_inode to make sure newly created | |
2972 | * parent directories also end up in the log. A minimal inode and backref | |
2973 | * only logging is done of any parent directories that are older than | |
2974 | * the last committed transaction | |
2975 | */ | |
12fcfd22 CM |
2976 | int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, |
2977 | struct btrfs_root *root, struct inode *inode, | |
2978 | struct dentry *parent, int exists_only) | |
e02119d5 | 2979 | { |
12fcfd22 | 2980 | int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; |
e02119d5 | 2981 | struct super_block *sb; |
6a912213 | 2982 | struct dentry *old_parent = NULL; |
12fcfd22 CM |
2983 | int ret = 0; |
2984 | u64 last_committed = root->fs_info->last_trans_committed; | |
2985 | ||
2986 | sb = inode->i_sb; | |
2987 | ||
3a5e1404 SW |
2988 | if (btrfs_test_opt(root, NOTREELOG)) { |
2989 | ret = 1; | |
2990 | goto end_no_trans; | |
2991 | } | |
2992 | ||
12fcfd22 CM |
2993 | if (root->fs_info->last_trans_log_full_commit > |
2994 | root->fs_info->last_trans_committed) { | |
2995 | ret = 1; | |
2996 | goto end_no_trans; | |
2997 | } | |
2998 | ||
76dda93c YZ |
2999 | if (root != BTRFS_I(inode)->root || |
3000 | btrfs_root_refs(&root->root_item) == 0) { | |
3001 | ret = 1; | |
3002 | goto end_no_trans; | |
3003 | } | |
3004 | ||
12fcfd22 CM |
3005 | ret = check_parent_dirs_for_sync(trans, inode, parent, |
3006 | sb, last_committed); | |
3007 | if (ret) | |
3008 | goto end_no_trans; | |
e02119d5 | 3009 | |
257c62e1 CM |
3010 | if (inode_in_log(trans, inode)) { |
3011 | ret = BTRFS_NO_LOG_SYNC; | |
3012 | goto end_no_trans; | |
3013 | } | |
3014 | ||
4a500fd1 YZ |
3015 | ret = start_log_trans(trans, root); |
3016 | if (ret) | |
3017 | goto end_trans; | |
e02119d5 | 3018 | |
12fcfd22 | 3019 | ret = btrfs_log_inode(trans, root, inode, inode_only); |
4a500fd1 YZ |
3020 | if (ret) |
3021 | goto end_trans; | |
12fcfd22 | 3022 | |
af4176b4 CM |
3023 | /* |
3024 | * for regular files, if its inode is already on disk, we don't | |
3025 | * have to worry about the parents at all. This is because | |
3026 | * we can use the last_unlink_trans field to record renames | |
3027 | * and other fun in this file. | |
3028 | */ | |
3029 | if (S_ISREG(inode->i_mode) && | |
3030 | BTRFS_I(inode)->generation <= last_committed && | |
4a500fd1 YZ |
3031 | BTRFS_I(inode)->last_unlink_trans <= last_committed) { |
3032 | ret = 0; | |
3033 | goto end_trans; | |
3034 | } | |
af4176b4 CM |
3035 | |
3036 | inode_only = LOG_INODE_EXISTS; | |
12fcfd22 CM |
3037 | while (1) { |
3038 | if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) | |
e02119d5 CM |
3039 | break; |
3040 | ||
12fcfd22 | 3041 | inode = parent->d_inode; |
76dda93c YZ |
3042 | if (root != BTRFS_I(inode)->root) |
3043 | break; | |
3044 | ||
12fcfd22 CM |
3045 | if (BTRFS_I(inode)->generation > |
3046 | root->fs_info->last_trans_committed) { | |
3047 | ret = btrfs_log_inode(trans, root, inode, inode_only); | |
4a500fd1 YZ |
3048 | if (ret) |
3049 | goto end_trans; | |
12fcfd22 | 3050 | } |
76dda93c | 3051 | if (IS_ROOT(parent)) |
e02119d5 | 3052 | break; |
12fcfd22 | 3053 | |
6a912213 JB |
3054 | parent = dget_parent(parent); |
3055 | dput(old_parent); | |
3056 | old_parent = parent; | |
e02119d5 | 3057 | } |
12fcfd22 | 3058 | ret = 0; |
4a500fd1 | 3059 | end_trans: |
6a912213 | 3060 | dput(old_parent); |
4a500fd1 YZ |
3061 | if (ret < 0) { |
3062 | BUG_ON(ret != -ENOSPC); | |
3063 | root->fs_info->last_trans_log_full_commit = trans->transid; | |
3064 | ret = 1; | |
3065 | } | |
12fcfd22 CM |
3066 | btrfs_end_log_trans(root); |
3067 | end_no_trans: | |
3068 | return ret; | |
e02119d5 CM |
3069 | } |
3070 | ||
3071 | /* | |
3072 | * it is not safe to log dentry if the chunk root has added new | |
3073 | * chunks. This returns 0 if the dentry was logged, and 1 otherwise. | |
3074 | * If this returns 1, you must commit the transaction to safely get your | |
3075 | * data on disk. | |
3076 | */ | |
3077 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | |
3078 | struct btrfs_root *root, struct dentry *dentry) | |
3079 | { | |
6a912213 JB |
3080 | struct dentry *parent = dget_parent(dentry); |
3081 | int ret; | |
3082 | ||
3083 | ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); | |
3084 | dput(parent); | |
3085 | ||
3086 | return ret; | |
e02119d5 CM |
3087 | } |
3088 | ||
3089 | /* | |
3090 | * should be called during mount to recover any replay any log trees | |
3091 | * from the FS | |
3092 | */ | |
3093 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | |
3094 | { | |
3095 | int ret; | |
3096 | struct btrfs_path *path; | |
3097 | struct btrfs_trans_handle *trans; | |
3098 | struct btrfs_key key; | |
3099 | struct btrfs_key found_key; | |
3100 | struct btrfs_key tmp_key; | |
3101 | struct btrfs_root *log; | |
3102 | struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | |
3103 | struct walk_control wc = { | |
3104 | .process_func = process_one_buffer, | |
3105 | .stage = 0, | |
3106 | }; | |
3107 | ||
e02119d5 | 3108 | path = btrfs_alloc_path(); |
db5b493a TI |
3109 | if (!path) |
3110 | return -ENOMEM; | |
3111 | ||
3112 | fs_info->log_root_recovering = 1; | |
e02119d5 | 3113 | |
4a500fd1 | 3114 | trans = btrfs_start_transaction(fs_info->tree_root, 0); |
98d5dc13 | 3115 | BUG_ON(IS_ERR(trans)); |
e02119d5 CM |
3116 | |
3117 | wc.trans = trans; | |
3118 | wc.pin = 1; | |
3119 | ||
db5b493a TI |
3120 | ret = walk_log_tree(trans, log_root_tree, &wc); |
3121 | BUG_ON(ret); | |
e02119d5 CM |
3122 | |
3123 | again: | |
3124 | key.objectid = BTRFS_TREE_LOG_OBJECTID; | |
3125 | key.offset = (u64)-1; | |
3126 | btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); | |
3127 | ||
d397712b | 3128 | while (1) { |
e02119d5 CM |
3129 | ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); |
3130 | if (ret < 0) | |
3131 | break; | |
3132 | if (ret > 0) { | |
3133 | if (path->slots[0] == 0) | |
3134 | break; | |
3135 | path->slots[0]--; | |
3136 | } | |
3137 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | |
3138 | path->slots[0]); | |
b3b4aa74 | 3139 | btrfs_release_path(path); |
e02119d5 CM |
3140 | if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) |
3141 | break; | |
3142 | ||
3143 | log = btrfs_read_fs_root_no_radix(log_root_tree, | |
3144 | &found_key); | |
db5b493a | 3145 | BUG_ON(IS_ERR(log)); |
e02119d5 CM |
3146 | |
3147 | tmp_key.objectid = found_key.offset; | |
3148 | tmp_key.type = BTRFS_ROOT_ITEM_KEY; | |
3149 | tmp_key.offset = (u64)-1; | |
3150 | ||
3151 | wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | |
e02119d5 CM |
3152 | BUG_ON(!wc.replay_dest); |
3153 | ||
07d400a6 | 3154 | wc.replay_dest->log_root = log; |
5d4f98a2 | 3155 | btrfs_record_root_in_trans(trans, wc.replay_dest); |
e02119d5 CM |
3156 | ret = walk_log_tree(trans, log, &wc); |
3157 | BUG_ON(ret); | |
3158 | ||
3159 | if (wc.stage == LOG_WALK_REPLAY_ALL) { | |
3160 | ret = fixup_inode_link_counts(trans, wc.replay_dest, | |
3161 | path); | |
3162 | BUG_ON(ret); | |
3163 | } | |
3164 | ||
3165 | key.offset = found_key.offset - 1; | |
07d400a6 | 3166 | wc.replay_dest->log_root = NULL; |
e02119d5 | 3167 | free_extent_buffer(log->node); |
b263c2c8 | 3168 | free_extent_buffer(log->commit_root); |
e02119d5 CM |
3169 | kfree(log); |
3170 | ||
3171 | if (found_key.offset == 0) | |
3172 | break; | |
3173 | } | |
b3b4aa74 | 3174 | btrfs_release_path(path); |
e02119d5 CM |
3175 | |
3176 | /* step one is to pin it all, step two is to replay just inodes */ | |
3177 | if (wc.pin) { | |
3178 | wc.pin = 0; | |
3179 | wc.process_func = replay_one_buffer; | |
3180 | wc.stage = LOG_WALK_REPLAY_INODES; | |
3181 | goto again; | |
3182 | } | |
3183 | /* step three is to replay everything */ | |
3184 | if (wc.stage < LOG_WALK_REPLAY_ALL) { | |
3185 | wc.stage++; | |
3186 | goto again; | |
3187 | } | |
3188 | ||
3189 | btrfs_free_path(path); | |
3190 | ||
3191 | free_extent_buffer(log_root_tree->node); | |
3192 | log_root_tree->log_root = NULL; | |
3193 | fs_info->log_root_recovering = 0; | |
3194 | ||
3195 | /* step 4: commit the transaction, which also unpins the blocks */ | |
3196 | btrfs_commit_transaction(trans, fs_info->tree_root); | |
3197 | ||
3198 | kfree(log_root_tree); | |
3199 | return 0; | |
3200 | } | |
12fcfd22 CM |
3201 | |
3202 | /* | |
3203 | * there are some corner cases where we want to force a full | |
3204 | * commit instead of allowing a directory to be logged. | |
3205 | * | |
3206 | * They revolve around files there were unlinked from the directory, and | |
3207 | * this function updates the parent directory so that a full commit is | |
3208 | * properly done if it is fsync'd later after the unlinks are done. | |
3209 | */ | |
3210 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | |
3211 | struct inode *dir, struct inode *inode, | |
3212 | int for_rename) | |
3213 | { | |
af4176b4 CM |
3214 | /* |
3215 | * when we're logging a file, if it hasn't been renamed | |
3216 | * or unlinked, and its inode is fully committed on disk, | |
3217 | * we don't have to worry about walking up the directory chain | |
3218 | * to log its parents. | |
3219 | * | |
3220 | * So, we use the last_unlink_trans field to put this transid | |
3221 | * into the file. When the file is logged we check it and | |
3222 | * don't log the parents if the file is fully on disk. | |
3223 | */ | |
3224 | if (S_ISREG(inode->i_mode)) | |
3225 | BTRFS_I(inode)->last_unlink_trans = trans->transid; | |
3226 | ||
12fcfd22 CM |
3227 | /* |
3228 | * if this directory was already logged any new | |
3229 | * names for this file/dir will get recorded | |
3230 | */ | |
3231 | smp_mb(); | |
3232 | if (BTRFS_I(dir)->logged_trans == trans->transid) | |
3233 | return; | |
3234 | ||
3235 | /* | |
3236 | * if the inode we're about to unlink was logged, | |
3237 | * the log will be properly updated for any new names | |
3238 | */ | |
3239 | if (BTRFS_I(inode)->logged_trans == trans->transid) | |
3240 | return; | |
3241 | ||
3242 | /* | |
3243 | * when renaming files across directories, if the directory | |
3244 | * there we're unlinking from gets fsync'd later on, there's | |
3245 | * no way to find the destination directory later and fsync it | |
3246 | * properly. So, we have to be conservative and force commits | |
3247 | * so the new name gets discovered. | |
3248 | */ | |
3249 | if (for_rename) | |
3250 | goto record; | |
3251 | ||
3252 | /* we can safely do the unlink without any special recording */ | |
3253 | return; | |
3254 | ||
3255 | record: | |
3256 | BTRFS_I(dir)->last_unlink_trans = trans->transid; | |
3257 | } | |
3258 | ||
3259 | /* | |
3260 | * Call this after adding a new name for a file and it will properly | |
3261 | * update the log to reflect the new name. | |
3262 | * | |
3263 | * It will return zero if all goes well, and it will return 1 if a | |
3264 | * full transaction commit is required. | |
3265 | */ | |
3266 | int btrfs_log_new_name(struct btrfs_trans_handle *trans, | |
3267 | struct inode *inode, struct inode *old_dir, | |
3268 | struct dentry *parent) | |
3269 | { | |
3270 | struct btrfs_root * root = BTRFS_I(inode)->root; | |
3271 | ||
af4176b4 CM |
3272 | /* |
3273 | * this will force the logging code to walk the dentry chain | |
3274 | * up for the file | |
3275 | */ | |
3276 | if (S_ISREG(inode->i_mode)) | |
3277 | BTRFS_I(inode)->last_unlink_trans = trans->transid; | |
3278 | ||
12fcfd22 CM |
3279 | /* |
3280 | * if this inode hasn't been logged and directory we're renaming it | |
3281 | * from hasn't been logged, we don't need to log it | |
3282 | */ | |
3283 | if (BTRFS_I(inode)->logged_trans <= | |
3284 | root->fs_info->last_trans_committed && | |
3285 | (!old_dir || BTRFS_I(old_dir)->logged_trans <= | |
3286 | root->fs_info->last_trans_committed)) | |
3287 | return 0; | |
3288 | ||
3289 | return btrfs_log_inode_parent(trans, root, inode, parent, 1); | |
3290 | } | |
3291 |