]>
Commit | Line | Data |
---|---|---|
efcc7ae2 EB |
1 | /* |
2 | * fs/crypto/hooks.c | |
3 | * | |
4 | * Encryption hooks for higher-level filesystem operations. | |
5 | */ | |
6 | ||
7 | #include <linux/ratelimit.h> | |
8 | #include "fscrypt_private.h" | |
9 | ||
10 | /** | |
11 | * fscrypt_file_open - prepare to open a possibly-encrypted regular file | |
12 | * @inode: the inode being opened | |
13 | * @filp: the struct file being set up | |
14 | * | |
15 | * Currently, an encrypted regular file can only be opened if its encryption key | |
16 | * is available; access to the raw encrypted contents is not supported. | |
17 | * Therefore, we first set up the inode's encryption key (if not already done) | |
18 | * and return an error if it's unavailable. | |
19 | * | |
20 | * We also verify that if the parent directory (from the path via which the file | |
21 | * is being opened) is encrypted, then the inode being opened uses the same | |
22 | * encryption policy. This is needed as part of the enforcement that all files | |
23 | * in an encrypted directory tree use the same encryption policy, as a | |
24 | * protection against certain types of offline attacks. Note that this check is | |
25 | * needed even when opening an *unencrypted* file, since it's forbidden to have | |
26 | * an unencrypted file in an encrypted directory. | |
27 | * | |
28 | * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code | |
29 | */ | |
30 | int fscrypt_file_open(struct inode *inode, struct file *filp) | |
31 | { | |
32 | int err; | |
33 | struct dentry *dir; | |
34 | ||
35 | err = fscrypt_require_key(inode); | |
36 | if (err) | |
37 | return err; | |
38 | ||
39 | dir = dget_parent(file_dentry(filp)); | |
40 | if (IS_ENCRYPTED(d_inode(dir)) && | |
41 | !fscrypt_has_permitted_context(d_inode(dir), inode)) { | |
544d08fd EB |
42 | fscrypt_warn(inode->i_sb, |
43 | "inconsistent encryption contexts: %lu/%lu", | |
44 | d_inode(dir)->i_ino, inode->i_ino); | |
efcc7ae2 EB |
45 | err = -EPERM; |
46 | } | |
47 | dput(dir); | |
48 | return err; | |
49 | } | |
50 | EXPORT_SYMBOL_GPL(fscrypt_file_open); | |
0ea87a96 EB |
51 | |
52 | int __fscrypt_prepare_link(struct inode *inode, struct inode *dir) | |
53 | { | |
54 | int err; | |
55 | ||
56 | err = fscrypt_require_key(dir); | |
57 | if (err) | |
58 | return err; | |
59 | ||
60 | if (!fscrypt_has_permitted_context(dir, inode)) | |
61 | return -EPERM; | |
62 | ||
63 | return 0; | |
64 | } | |
65 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); | |
94b26f36 EB |
66 | |
67 | int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, | |
68 | struct inode *new_dir, struct dentry *new_dentry, | |
69 | unsigned int flags) | |
70 | { | |
71 | int err; | |
72 | ||
73 | err = fscrypt_require_key(old_dir); | |
74 | if (err) | |
75 | return err; | |
76 | ||
77 | err = fscrypt_require_key(new_dir); | |
78 | if (err) | |
79 | return err; | |
80 | ||
81 | if (old_dir != new_dir) { | |
82 | if (IS_ENCRYPTED(new_dir) && | |
83 | !fscrypt_has_permitted_context(new_dir, | |
84 | d_inode(old_dentry))) | |
85 | return -EPERM; | |
86 | ||
87 | if ((flags & RENAME_EXCHANGE) && | |
88 | IS_ENCRYPTED(old_dir) && | |
89 | !fscrypt_has_permitted_context(old_dir, | |
90 | d_inode(new_dentry))) | |
91 | return -EPERM; | |
92 | } | |
93 | return 0; | |
94 | } | |
95 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); | |
32c3cf02 EB |
96 | |
97 | int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry) | |
98 | { | |
99 | int err = fscrypt_get_encryption_info(dir); | |
100 | ||
101 | if (err) | |
102 | return err; | |
103 | ||
104 | if (fscrypt_has_encryption_key(dir)) { | |
105 | spin_lock(&dentry->d_lock); | |
106 | dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY; | |
107 | spin_unlock(&dentry->d_lock); | |
108 | } | |
109 | ||
110 | d_set_d_op(dentry, &fscrypt_d_ops); | |
111 | return 0; | |
112 | } | |
113 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); | |
76e81d6d EB |
114 | |
115 | int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len, | |
116 | unsigned int max_len, | |
117 | struct fscrypt_str *disk_link) | |
118 | { | |
119 | int err; | |
120 | ||
121 | /* | |
122 | * To calculate the size of the encrypted symlink target we need to know | |
123 | * the amount of NUL padding, which is determined by the flags set in | |
124 | * the encryption policy which will be inherited from the directory. | |
125 | * The easiest way to get access to this is to just load the directory's | |
126 | * fscrypt_info, since we'll need it to create the dir_entry anyway. | |
127 | * | |
128 | * Note: in test_dummy_encryption mode, @dir may be unencrypted. | |
129 | */ | |
130 | err = fscrypt_get_encryption_info(dir); | |
131 | if (err) | |
132 | return err; | |
133 | if (!fscrypt_has_encryption_key(dir)) | |
134 | return -ENOKEY; | |
135 | ||
136 | /* | |
137 | * Calculate the size of the encrypted symlink and verify it won't | |
138 | * exceed max_len. Note that for historical reasons, encrypted symlink | |
139 | * targets are prefixed with the ciphertext length, despite this | |
140 | * actually being redundant with i_size. This decreases by 2 bytes the | |
141 | * longest symlink target we can accept. | |
142 | * | |
143 | * We could recover 1 byte by not counting a null terminator, but | |
144 | * counting it (even though it is meaningless for ciphertext) is simpler | |
145 | * for now since filesystems will assume it is there and subtract it. | |
146 | */ | |
b9db0b4a EB |
147 | if (!fscrypt_fname_encrypted_size(dir, len, |
148 | max_len - sizeof(struct fscrypt_symlink_data), | |
149 | &disk_link->len)) | |
76e81d6d | 150 | return -ENAMETOOLONG; |
b9db0b4a EB |
151 | disk_link->len += sizeof(struct fscrypt_symlink_data); |
152 | ||
76e81d6d EB |
153 | disk_link->name = NULL; |
154 | return 0; | |
155 | } | |
156 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink); | |
157 | ||
158 | int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, | |
159 | unsigned int len, struct fscrypt_str *disk_link) | |
160 | { | |
161 | int err; | |
0b1dfa4c | 162 | struct qstr iname = QSTR_INIT(target, len); |
76e81d6d EB |
163 | struct fscrypt_symlink_data *sd; |
164 | unsigned int ciphertext_len; | |
76e81d6d EB |
165 | |
166 | err = fscrypt_require_key(inode); | |
167 | if (err) | |
168 | return err; | |
169 | ||
170 | if (disk_link->name) { | |
171 | /* filesystem-provided buffer */ | |
172 | sd = (struct fscrypt_symlink_data *)disk_link->name; | |
173 | } else { | |
174 | sd = kmalloc(disk_link->len, GFP_NOFS); | |
175 | if (!sd) | |
176 | return -ENOMEM; | |
177 | } | |
178 | ciphertext_len = disk_link->len - sizeof(*sd); | |
179 | sd->len = cpu_to_le16(ciphertext_len); | |
180 | ||
50c961de | 181 | err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len); |
76e81d6d EB |
182 | if (err) { |
183 | if (!disk_link->name) | |
184 | kfree(sd); | |
185 | return err; | |
186 | } | |
76e81d6d EB |
187 | /* |
188 | * Null-terminating the ciphertext doesn't make sense, but we still | |
189 | * count the null terminator in the length, so we might as well | |
190 | * initialize it just in case the filesystem writes it out. | |
191 | */ | |
192 | sd->encrypted_path[ciphertext_len] = '\0'; | |
193 | ||
194 | if (!disk_link->name) | |
195 | disk_link->name = (unsigned char *)sd; | |
196 | return 0; | |
197 | } | |
198 | EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); | |
3b0d8837 EB |
199 | |
200 | /** | |
201 | * fscrypt_get_symlink - get the target of an encrypted symlink | |
202 | * @inode: the symlink inode | |
203 | * @caddr: the on-disk contents of the symlink | |
204 | * @max_size: size of @caddr buffer | |
205 | * @done: if successful, will be set up to free the returned target | |
206 | * | |
207 | * If the symlink's encryption key is available, we decrypt its target. | |
208 | * Otherwise, we encode its target for presentation. | |
209 | * | |
210 | * This may sleep, so the filesystem must have dropped out of RCU mode already. | |
211 | * | |
212 | * Return: the presentable symlink target or an ERR_PTR() | |
213 | */ | |
214 | const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, | |
215 | unsigned int max_size, | |
216 | struct delayed_call *done) | |
217 | { | |
218 | const struct fscrypt_symlink_data *sd; | |
219 | struct fscrypt_str cstr, pstr; | |
220 | int err; | |
221 | ||
222 | /* This is for encrypted symlinks only */ | |
223 | if (WARN_ON(!IS_ENCRYPTED(inode))) | |
224 | return ERR_PTR(-EINVAL); | |
225 | ||
226 | /* | |
227 | * Try to set up the symlink's encryption key, but we can continue | |
228 | * regardless of whether the key is available or not. | |
229 | */ | |
230 | err = fscrypt_get_encryption_info(inode); | |
231 | if (err) | |
232 | return ERR_PTR(err); | |
233 | ||
234 | /* | |
235 | * For historical reasons, encrypted symlink targets are prefixed with | |
236 | * the ciphertext length, even though this is redundant with i_size. | |
237 | */ | |
238 | ||
239 | if (max_size < sizeof(*sd)) | |
240 | return ERR_PTR(-EUCLEAN); | |
241 | sd = caddr; | |
242 | cstr.name = (unsigned char *)sd->encrypted_path; | |
243 | cstr.len = le16_to_cpu(sd->len); | |
244 | ||
245 | if (cstr.len == 0) | |
246 | return ERR_PTR(-EUCLEAN); | |
247 | ||
248 | if (cstr.len + sizeof(*sd) - 1 > max_size) | |
249 | return ERR_PTR(-EUCLEAN); | |
250 | ||
251 | err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr); | |
252 | if (err) | |
253 | return ERR_PTR(err); | |
254 | ||
255 | err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); | |
256 | if (err) | |
257 | goto err_kfree; | |
258 | ||
259 | err = -EUCLEAN; | |
260 | if (pstr.name[0] == '\0') | |
261 | goto err_kfree; | |
262 | ||
263 | pstr.name[pstr.len] = '\0'; | |
264 | set_delayed_call(done, kfree_link, pstr.name); | |
265 | return pstr.name; | |
266 | ||
267 | err_kfree: | |
268 | kfree(pstr.name); | |
269 | return ERR_PTR(err); | |
270 | } | |
271 | EXPORT_SYMBOL_GPL(fscrypt_get_symlink); |