]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/mpage.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * Contains functions related to preparing and submitting BIOs which contain | |
7 | * multiple pagecache pages. | |
8 | * | |
e1f8e874 | 9 | * 15May2002 Andrew Morton |
1da177e4 LT |
10 | * Initial version |
11 | * 27Jun2002 [email protected] | |
12 | * use bio_add_page() to build bio's just the right size | |
13 | */ | |
14 | ||
15 | #include <linux/kernel.h> | |
16 | #include <linux/module.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/kdev_t.h> | |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/bio.h> |
21 | #include <linux/fs.h> | |
22 | #include <linux/buffer_head.h> | |
23 | #include <linux/blkdev.h> | |
24 | #include <linux/highmem.h> | |
25 | #include <linux/prefetch.h> | |
26 | #include <linux/mpage.h> | |
27 | #include <linux/writeback.h> | |
28 | #include <linux/backing-dev.h> | |
29 | #include <linux/pagevec.h> | |
c515e1fd | 30 | #include <linux/cleancache.h> |
1da177e4 LT |
31 | |
32 | /* | |
33 | * I/O completion handler for multipage BIOs. | |
34 | * | |
35 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
36 | * If a page does not map to a contiguous run of blocks then it simply falls | |
37 | * back to block_read_full_page(). | |
38 | * | |
39 | * Why is this? If a page's completion depends on a number of different BIOs | |
40 | * which can complete in any order (or at the same time) then determining the | |
41 | * status of that page is hard. See end_buffer_async_read() for the details. | |
42 | * There is no point in duplicating all that complexity. | |
43 | */ | |
c32b0d4b | 44 | static void mpage_end_io(struct bio *bio, int err) |
1da177e4 LT |
45 | { |
46 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | |
47 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | |
48 | ||
1da177e4 LT |
49 | do { |
50 | struct page *page = bvec->bv_page; | |
51 | ||
52 | if (--bvec >= bio->bi_io_vec) | |
53 | prefetchw(&bvec->bv_page->flags); | |
c32b0d4b HS |
54 | if (bio_data_dir(bio) == READ) { |
55 | if (uptodate) { | |
56 | SetPageUptodate(page); | |
57 | } else { | |
58 | ClearPageUptodate(page); | |
59 | SetPageError(page); | |
60 | } | |
61 | unlock_page(page); | |
62 | } else { /* bio_data_dir(bio) == WRITE */ | |
63 | if (!uptodate) { | |
64 | SetPageError(page); | |
65 | if (page->mapping) | |
66 | set_bit(AS_EIO, &page->mapping->flags); | |
67 | } | |
68 | end_page_writeback(page); | |
854715be | 69 | } |
1da177e4 LT |
70 | } while (bvec >= bio->bi_io_vec); |
71 | bio_put(bio); | |
1da177e4 LT |
72 | } |
73 | ||
ced117c7 | 74 | static struct bio *mpage_bio_submit(int rw, struct bio *bio) |
1da177e4 | 75 | { |
c32b0d4b | 76 | bio->bi_end_io = mpage_end_io; |
1da177e4 LT |
77 | submit_bio(rw, bio); |
78 | return NULL; | |
79 | } | |
80 | ||
81 | static struct bio * | |
82 | mpage_alloc(struct block_device *bdev, | |
83 | sector_t first_sector, int nr_vecs, | |
dd0fc66f | 84 | gfp_t gfp_flags) |
1da177e4 LT |
85 | { |
86 | struct bio *bio; | |
87 | ||
88 | bio = bio_alloc(gfp_flags, nr_vecs); | |
89 | ||
90 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | |
91 | while (!bio && (nr_vecs /= 2)) | |
92 | bio = bio_alloc(gfp_flags, nr_vecs); | |
93 | } | |
94 | ||
95 | if (bio) { | |
96 | bio->bi_bdev = bdev; | |
97 | bio->bi_sector = first_sector; | |
98 | } | |
99 | return bio; | |
100 | } | |
101 | ||
102 | /* | |
103 | * support function for mpage_readpages. The fs supplied get_block might | |
104 | * return an up to date buffer. This is used to map that buffer into | |
105 | * the page, which allows readpage to avoid triggering a duplicate call | |
106 | * to get_block. | |
107 | * | |
108 | * The idea is to avoid adding buffers to pages that don't already have | |
109 | * them. So when the buffer is up to date and the page size == block size, | |
110 | * this marks the page up to date instead of adding new buffers. | |
111 | */ | |
112 | static void | |
113 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | |
114 | { | |
115 | struct inode *inode = page->mapping->host; | |
116 | struct buffer_head *page_bh, *head; | |
117 | int block = 0; | |
118 | ||
119 | if (!page_has_buffers(page)) { | |
120 | /* | |
121 | * don't make any buffers if there is only one buffer on | |
122 | * the page and the page just needs to be set up to date | |
123 | */ | |
124 | if (inode->i_blkbits == PAGE_CACHE_SHIFT && | |
125 | buffer_uptodate(bh)) { | |
126 | SetPageUptodate(page); | |
127 | return; | |
128 | } | |
129 | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | |
130 | } | |
131 | head = page_buffers(page); | |
132 | page_bh = head; | |
133 | do { | |
134 | if (block == page_block) { | |
135 | page_bh->b_state = bh->b_state; | |
136 | page_bh->b_bdev = bh->b_bdev; | |
137 | page_bh->b_blocknr = bh->b_blocknr; | |
138 | break; | |
139 | } | |
140 | page_bh = page_bh->b_this_page; | |
141 | block++; | |
142 | } while (page_bh != head); | |
143 | } | |
144 | ||
fa30bd05 BP |
145 | /* |
146 | * This is the worker routine which does all the work of mapping the disk | |
147 | * blocks and constructs largest possible bios, submits them for IO if the | |
148 | * blocks are not contiguous on the disk. | |
149 | * | |
150 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
151 | * represent the validity of its disk mapping and to decide when to do the next | |
152 | * get_block() call. | |
153 | */ | |
1da177e4 LT |
154 | static struct bio * |
155 | do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, | |
fa30bd05 BP |
156 | sector_t *last_block_in_bio, struct buffer_head *map_bh, |
157 | unsigned long *first_logical_block, get_block_t get_block) | |
1da177e4 LT |
158 | { |
159 | struct inode *inode = page->mapping->host; | |
160 | const unsigned blkbits = inode->i_blkbits; | |
161 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
162 | const unsigned blocksize = 1 << blkbits; | |
163 | sector_t block_in_file; | |
164 | sector_t last_block; | |
fa30bd05 | 165 | sector_t last_block_in_file; |
1da177e4 LT |
166 | sector_t blocks[MAX_BUF_PER_PAGE]; |
167 | unsigned page_block; | |
168 | unsigned first_hole = blocks_per_page; | |
169 | struct block_device *bdev = NULL; | |
1da177e4 LT |
170 | int length; |
171 | int fully_mapped = 1; | |
fa30bd05 BP |
172 | unsigned nblocks; |
173 | unsigned relative_block; | |
1da177e4 LT |
174 | |
175 | if (page_has_buffers(page)) | |
176 | goto confused; | |
177 | ||
54b21a79 | 178 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
fa30bd05 BP |
179 | last_block = block_in_file + nr_pages * blocks_per_page; |
180 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; | |
181 | if (last_block > last_block_in_file) | |
182 | last_block = last_block_in_file; | |
183 | page_block = 0; | |
184 | ||
185 | /* | |
186 | * Map blocks using the result from the previous get_blocks call first. | |
187 | */ | |
188 | nblocks = map_bh->b_size >> blkbits; | |
189 | if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && | |
190 | block_in_file < (*first_logical_block + nblocks)) { | |
191 | unsigned map_offset = block_in_file - *first_logical_block; | |
192 | unsigned last = nblocks - map_offset; | |
193 | ||
194 | for (relative_block = 0; ; relative_block++) { | |
195 | if (relative_block == last) { | |
196 | clear_buffer_mapped(map_bh); | |
197 | break; | |
198 | } | |
199 | if (page_block == blocks_per_page) | |
200 | break; | |
201 | blocks[page_block] = map_bh->b_blocknr + map_offset + | |
202 | relative_block; | |
203 | page_block++; | |
204 | block_in_file++; | |
205 | } | |
206 | bdev = map_bh->b_bdev; | |
207 | } | |
208 | ||
209 | /* | |
210 | * Then do more get_blocks calls until we are done with this page. | |
211 | */ | |
212 | map_bh->b_page = page; | |
213 | while (page_block < blocks_per_page) { | |
214 | map_bh->b_state = 0; | |
215 | map_bh->b_size = 0; | |
1da177e4 | 216 | |
1da177e4 | 217 | if (block_in_file < last_block) { |
fa30bd05 BP |
218 | map_bh->b_size = (last_block-block_in_file) << blkbits; |
219 | if (get_block(inode, block_in_file, map_bh, 0)) | |
1da177e4 | 220 | goto confused; |
fa30bd05 | 221 | *first_logical_block = block_in_file; |
1da177e4 LT |
222 | } |
223 | ||
fa30bd05 | 224 | if (!buffer_mapped(map_bh)) { |
1da177e4 LT |
225 | fully_mapped = 0; |
226 | if (first_hole == blocks_per_page) | |
227 | first_hole = page_block; | |
fa30bd05 BP |
228 | page_block++; |
229 | block_in_file++; | |
1da177e4 LT |
230 | continue; |
231 | } | |
232 | ||
233 | /* some filesystems will copy data into the page during | |
234 | * the get_block call, in which case we don't want to | |
235 | * read it again. map_buffer_to_page copies the data | |
236 | * we just collected from get_block into the page's buffers | |
237 | * so readpage doesn't have to repeat the get_block call | |
238 | */ | |
fa30bd05 BP |
239 | if (buffer_uptodate(map_bh)) { |
240 | map_buffer_to_page(page, map_bh, page_block); | |
1da177e4 LT |
241 | goto confused; |
242 | } | |
243 | ||
244 | if (first_hole != blocks_per_page) | |
245 | goto confused; /* hole -> non-hole */ | |
246 | ||
247 | /* Contiguous blocks? */ | |
fa30bd05 | 248 | if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) |
1da177e4 | 249 | goto confused; |
fa30bd05 BP |
250 | nblocks = map_bh->b_size >> blkbits; |
251 | for (relative_block = 0; ; relative_block++) { | |
252 | if (relative_block == nblocks) { | |
253 | clear_buffer_mapped(map_bh); | |
254 | break; | |
255 | } else if (page_block == blocks_per_page) | |
256 | break; | |
257 | blocks[page_block] = map_bh->b_blocknr+relative_block; | |
258 | page_block++; | |
259 | block_in_file++; | |
260 | } | |
261 | bdev = map_bh->b_bdev; | |
1da177e4 LT |
262 | } |
263 | ||
264 | if (first_hole != blocks_per_page) { | |
eebd2aa3 | 265 | zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); |
1da177e4 LT |
266 | if (first_hole == 0) { |
267 | SetPageUptodate(page); | |
268 | unlock_page(page); | |
269 | goto out; | |
270 | } | |
271 | } else if (fully_mapped) { | |
272 | SetPageMappedToDisk(page); | |
273 | } | |
274 | ||
c515e1fd DM |
275 | if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && |
276 | cleancache_get_page(page) == 0) { | |
277 | SetPageUptodate(page); | |
278 | goto confused; | |
279 | } | |
280 | ||
1da177e4 LT |
281 | /* |
282 | * This page will go to BIO. Do we need to send this BIO off first? | |
283 | */ | |
284 | if (bio && (*last_block_in_bio != blocks[0] - 1)) | |
285 | bio = mpage_bio_submit(READ, bio); | |
286 | ||
287 | alloc_new: | |
288 | if (bio == NULL) { | |
289 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
290 | min_t(int, nr_pages, bio_get_nr_vecs(bdev)), | |
291 | GFP_KERNEL); | |
292 | if (bio == NULL) | |
293 | goto confused; | |
294 | } | |
295 | ||
296 | length = first_hole << blkbits; | |
297 | if (bio_add_page(bio, page, length, 0) < length) { | |
298 | bio = mpage_bio_submit(READ, bio); | |
299 | goto alloc_new; | |
300 | } | |
301 | ||
38c8e618 MS |
302 | relative_block = block_in_file - *first_logical_block; |
303 | nblocks = map_bh->b_size >> blkbits; | |
304 | if ((buffer_boundary(map_bh) && relative_block == nblocks) || | |
305 | (first_hole != blocks_per_page)) | |
1da177e4 LT |
306 | bio = mpage_bio_submit(READ, bio); |
307 | else | |
308 | *last_block_in_bio = blocks[blocks_per_page - 1]; | |
309 | out: | |
310 | return bio; | |
311 | ||
312 | confused: | |
313 | if (bio) | |
314 | bio = mpage_bio_submit(READ, bio); | |
315 | if (!PageUptodate(page)) | |
316 | block_read_full_page(page, get_block); | |
317 | else | |
318 | unlock_page(page); | |
319 | goto out; | |
320 | } | |
321 | ||
67be2dd1 | 322 | /** |
78a4a50a | 323 | * mpage_readpages - populate an address space with some pages & start reads against them |
67be2dd1 MW |
324 | * @mapping: the address_space |
325 | * @pages: The address of a list_head which contains the target pages. These | |
326 | * pages have their ->index populated and are otherwise uninitialised. | |
67be2dd1 MW |
327 | * The page at @pages->prev has the lowest file offset, and reads should be |
328 | * issued in @pages->prev to @pages->next order. | |
67be2dd1 MW |
329 | * @nr_pages: The number of pages at *@pages |
330 | * @get_block: The filesystem's block mapper function. | |
331 | * | |
332 | * This function walks the pages and the blocks within each page, building and | |
333 | * emitting large BIOs. | |
334 | * | |
335 | * If anything unusual happens, such as: | |
336 | * | |
337 | * - encountering a page which has buffers | |
338 | * - encountering a page which has a non-hole after a hole | |
339 | * - encountering a page with non-contiguous blocks | |
340 | * | |
341 | * then this code just gives up and calls the buffer_head-based read function. | |
342 | * It does handle a page which has holes at the end - that is a common case: | |
343 | * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. | |
344 | * | |
345 | * BH_Boundary explanation: | |
346 | * | |
347 | * There is a problem. The mpage read code assembles several pages, gets all | |
348 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
349 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
350 | * | |
351 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
352 | * submitted in the following order: | |
353 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | |
78a4a50a | 354 | * |
67be2dd1 MW |
355 | * because the indirect block has to be read to get the mappings of blocks |
356 | * 13,14,15,16. Obviously, this impacts performance. | |
357 | * | |
358 | * So what we do it to allow the filesystem's get_block() function to set | |
359 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
360 | * after this one will require I/O against a block which is probably close to | |
361 | * this one. So you should push what I/O you have currently accumulated. | |
362 | * | |
363 | * This all causes the disk requests to be issued in the correct order. | |
364 | */ | |
1da177e4 LT |
365 | int |
366 | mpage_readpages(struct address_space *mapping, struct list_head *pages, | |
367 | unsigned nr_pages, get_block_t get_block) | |
368 | { | |
369 | struct bio *bio = NULL; | |
370 | unsigned page_idx; | |
371 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
372 | struct buffer_head map_bh; |
373 | unsigned long first_logical_block = 0; | |
2ed1a6bc JA |
374 | struct blk_plug plug; |
375 | ||
376 | blk_start_plug(&plug); | |
1da177e4 | 377 | |
79ffab34 AK |
378 | map_bh.b_state = 0; |
379 | map_bh.b_size = 0; | |
1da177e4 LT |
380 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { |
381 | struct page *page = list_entry(pages->prev, struct page, lru); | |
382 | ||
383 | prefetchw(&page->flags); | |
384 | list_del(&page->lru); | |
eb2be189 | 385 | if (!add_to_page_cache_lru(page, mapping, |
1da177e4 LT |
386 | page->index, GFP_KERNEL)) { |
387 | bio = do_mpage_readpage(bio, page, | |
388 | nr_pages - page_idx, | |
fa30bd05 BP |
389 | &last_block_in_bio, &map_bh, |
390 | &first_logical_block, | |
391 | get_block); | |
1da177e4 | 392 | } |
eb2be189 | 393 | page_cache_release(page); |
1da177e4 | 394 | } |
1da177e4 LT |
395 | BUG_ON(!list_empty(pages)); |
396 | if (bio) | |
397 | mpage_bio_submit(READ, bio); | |
2ed1a6bc | 398 | blk_finish_plug(&plug); |
1da177e4 LT |
399 | return 0; |
400 | } | |
401 | EXPORT_SYMBOL(mpage_readpages); | |
402 | ||
403 | /* | |
404 | * This isn't called much at all | |
405 | */ | |
406 | int mpage_readpage(struct page *page, get_block_t get_block) | |
407 | { | |
408 | struct bio *bio = NULL; | |
409 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
410 | struct buffer_head map_bh; |
411 | unsigned long first_logical_block = 0; | |
1da177e4 | 412 | |
79ffab34 AK |
413 | map_bh.b_state = 0; |
414 | map_bh.b_size = 0; | |
fa30bd05 BP |
415 | bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, |
416 | &map_bh, &first_logical_block, get_block); | |
1da177e4 LT |
417 | if (bio) |
418 | mpage_bio_submit(READ, bio); | |
419 | return 0; | |
420 | } | |
421 | EXPORT_SYMBOL(mpage_readpage); | |
422 | ||
423 | /* | |
424 | * Writing is not so simple. | |
425 | * | |
426 | * If the page has buffers then they will be used for obtaining the disk | |
427 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
428 | * special case for pages which are unmapped at the end: end-of-file. | |
429 | * | |
430 | * If the page has no buffers (preferred) then the page is mapped here. | |
431 | * | |
432 | * If all blocks are found to be contiguous then the page can go into the | |
433 | * BIO. Otherwise fall back to the mapping's writepage(). | |
434 | * | |
435 | * FIXME: This code wants an estimate of how many pages are still to be | |
436 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
437 | * just allocate full-size (16-page) BIOs. | |
438 | */ | |
0ea97180 | 439 | |
ced117c7 DV |
440 | struct mpage_data { |
441 | struct bio *bio; | |
442 | sector_t last_block_in_bio; | |
443 | get_block_t *get_block; | |
444 | unsigned use_writepage; | |
445 | }; | |
446 | ||
447 | static int __mpage_writepage(struct page *page, struct writeback_control *wbc, | |
29a814d2 | 448 | void *data) |
1da177e4 | 449 | { |
0ea97180 MS |
450 | struct mpage_data *mpd = data; |
451 | struct bio *bio = mpd->bio; | |
1da177e4 LT |
452 | struct address_space *mapping = page->mapping; |
453 | struct inode *inode = page->mapping->host; | |
454 | const unsigned blkbits = inode->i_blkbits; | |
455 | unsigned long end_index; | |
456 | const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; | |
457 | sector_t last_block; | |
458 | sector_t block_in_file; | |
459 | sector_t blocks[MAX_BUF_PER_PAGE]; | |
460 | unsigned page_block; | |
461 | unsigned first_unmapped = blocks_per_page; | |
462 | struct block_device *bdev = NULL; | |
463 | int boundary = 0; | |
464 | sector_t boundary_block = 0; | |
465 | struct block_device *boundary_bdev = NULL; | |
466 | int length; | |
467 | struct buffer_head map_bh; | |
468 | loff_t i_size = i_size_read(inode); | |
0ea97180 | 469 | int ret = 0; |
1da177e4 LT |
470 | |
471 | if (page_has_buffers(page)) { | |
472 | struct buffer_head *head = page_buffers(page); | |
473 | struct buffer_head *bh = head; | |
474 | ||
475 | /* If they're all mapped and dirty, do it */ | |
476 | page_block = 0; | |
477 | do { | |
478 | BUG_ON(buffer_locked(bh)); | |
479 | if (!buffer_mapped(bh)) { | |
480 | /* | |
481 | * unmapped dirty buffers are created by | |
482 | * __set_page_dirty_buffers -> mmapped data | |
483 | */ | |
484 | if (buffer_dirty(bh)) | |
485 | goto confused; | |
486 | if (first_unmapped == blocks_per_page) | |
487 | first_unmapped = page_block; | |
488 | continue; | |
489 | } | |
490 | ||
491 | if (first_unmapped != blocks_per_page) | |
492 | goto confused; /* hole -> non-hole */ | |
493 | ||
494 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
495 | goto confused; | |
496 | if (page_block) { | |
497 | if (bh->b_blocknr != blocks[page_block-1] + 1) | |
498 | goto confused; | |
499 | } | |
500 | blocks[page_block++] = bh->b_blocknr; | |
501 | boundary = buffer_boundary(bh); | |
502 | if (boundary) { | |
503 | boundary_block = bh->b_blocknr; | |
504 | boundary_bdev = bh->b_bdev; | |
505 | } | |
506 | bdev = bh->b_bdev; | |
507 | } while ((bh = bh->b_this_page) != head); | |
508 | ||
509 | if (first_unmapped) | |
510 | goto page_is_mapped; | |
511 | ||
512 | /* | |
513 | * Page has buffers, but they are all unmapped. The page was | |
514 | * created by pagein or read over a hole which was handled by | |
515 | * block_read_full_page(). If this address_space is also | |
516 | * using mpage_readpages then this can rarely happen. | |
517 | */ | |
518 | goto confused; | |
519 | } | |
520 | ||
521 | /* | |
522 | * The page has no buffers: map it to disk | |
523 | */ | |
524 | BUG_ON(!PageUptodate(page)); | |
54b21a79 | 525 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
526 | last_block = (i_size - 1) >> blkbits; |
527 | map_bh.b_page = page; | |
528 | for (page_block = 0; page_block < blocks_per_page; ) { | |
529 | ||
530 | map_bh.b_state = 0; | |
b0cf2321 | 531 | map_bh.b_size = 1 << blkbits; |
0ea97180 | 532 | if (mpd->get_block(inode, block_in_file, &map_bh, 1)) |
1da177e4 LT |
533 | goto confused; |
534 | if (buffer_new(&map_bh)) | |
535 | unmap_underlying_metadata(map_bh.b_bdev, | |
536 | map_bh.b_blocknr); | |
537 | if (buffer_boundary(&map_bh)) { | |
538 | boundary_block = map_bh.b_blocknr; | |
539 | boundary_bdev = map_bh.b_bdev; | |
540 | } | |
541 | if (page_block) { | |
542 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | |
543 | goto confused; | |
544 | } | |
545 | blocks[page_block++] = map_bh.b_blocknr; | |
546 | boundary = buffer_boundary(&map_bh); | |
547 | bdev = map_bh.b_bdev; | |
548 | if (block_in_file == last_block) | |
549 | break; | |
550 | block_in_file++; | |
551 | } | |
552 | BUG_ON(page_block == 0); | |
553 | ||
554 | first_unmapped = page_block; | |
555 | ||
556 | page_is_mapped: | |
557 | end_index = i_size >> PAGE_CACHE_SHIFT; | |
558 | if (page->index >= end_index) { | |
559 | /* | |
560 | * The page straddles i_size. It must be zeroed out on each | |
2a61aa40 | 561 | * and every writepage invocation because it may be mmapped. |
1da177e4 LT |
562 | * "A file is mapped in multiples of the page size. For a file |
563 | * that is not a multiple of the page size, the remaining memory | |
564 | * is zeroed when mapped, and writes to that region are not | |
565 | * written out to the file." | |
566 | */ | |
567 | unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); | |
1da177e4 LT |
568 | |
569 | if (page->index > end_index || !offset) | |
570 | goto confused; | |
eebd2aa3 | 571 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
572 | } |
573 | ||
574 | /* | |
575 | * This page will go to BIO. Do we need to send this BIO off first? | |
576 | */ | |
0ea97180 | 577 | if (bio && mpd->last_block_in_bio != blocks[0] - 1) |
1da177e4 LT |
578 | bio = mpage_bio_submit(WRITE, bio); |
579 | ||
580 | alloc_new: | |
581 | if (bio == NULL) { | |
582 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), | |
583 | bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); | |
584 | if (bio == NULL) | |
585 | goto confused; | |
586 | } | |
587 | ||
588 | /* | |
589 | * Must try to add the page before marking the buffer clean or | |
590 | * the confused fail path above (OOM) will be very confused when | |
591 | * it finds all bh marked clean (i.e. it will not write anything) | |
592 | */ | |
593 | length = first_unmapped << blkbits; | |
594 | if (bio_add_page(bio, page, length, 0) < length) { | |
595 | bio = mpage_bio_submit(WRITE, bio); | |
596 | goto alloc_new; | |
597 | } | |
598 | ||
599 | /* | |
600 | * OK, we have our BIO, so we can now mark the buffers clean. Make | |
601 | * sure to only clean buffers which we know we'll be writing. | |
602 | */ | |
603 | if (page_has_buffers(page)) { | |
604 | struct buffer_head *head = page_buffers(page); | |
605 | struct buffer_head *bh = head; | |
606 | unsigned buffer_counter = 0; | |
607 | ||
608 | do { | |
609 | if (buffer_counter++ == first_unmapped) | |
610 | break; | |
611 | clear_buffer_dirty(bh); | |
612 | bh = bh->b_this_page; | |
613 | } while (bh != head); | |
614 | ||
615 | /* | |
616 | * we cannot drop the bh if the page is not uptodate | |
617 | * or a concurrent readpage would fail to serialize with the bh | |
618 | * and it would read from disk before we reach the platter. | |
619 | */ | |
620 | if (buffer_heads_over_limit && PageUptodate(page)) | |
621 | try_to_free_buffers(page); | |
622 | } | |
623 | ||
624 | BUG_ON(PageWriteback(page)); | |
625 | set_page_writeback(page); | |
626 | unlock_page(page); | |
627 | if (boundary || (first_unmapped != blocks_per_page)) { | |
628 | bio = mpage_bio_submit(WRITE, bio); | |
629 | if (boundary_block) { | |
630 | write_boundary_block(boundary_bdev, | |
631 | boundary_block, 1 << blkbits); | |
632 | } | |
633 | } else { | |
0ea97180 | 634 | mpd->last_block_in_bio = blocks[blocks_per_page - 1]; |
1da177e4 LT |
635 | } |
636 | goto out; | |
637 | ||
638 | confused: | |
639 | if (bio) | |
640 | bio = mpage_bio_submit(WRITE, bio); | |
641 | ||
0ea97180 MS |
642 | if (mpd->use_writepage) { |
643 | ret = mapping->a_ops->writepage(page, wbc); | |
1da177e4 | 644 | } else { |
0ea97180 | 645 | ret = -EAGAIN; |
1da177e4 LT |
646 | goto out; |
647 | } | |
648 | /* | |
649 | * The caller has a ref on the inode, so *mapping is stable | |
650 | */ | |
0ea97180 | 651 | mapping_set_error(mapping, ret); |
1da177e4 | 652 | out: |
0ea97180 MS |
653 | mpd->bio = bio; |
654 | return ret; | |
1da177e4 LT |
655 | } |
656 | ||
657 | /** | |
78a4a50a | 658 | * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them |
1da177e4 LT |
659 | * @mapping: address space structure to write |
660 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
661 | * @get_block: the filesystem's block mapper function. | |
662 | * If this is NULL then use a_ops->writepage. Otherwise, go | |
663 | * direct-to-BIO. | |
664 | * | |
665 | * This is a library function, which implements the writepages() | |
666 | * address_space_operation. | |
667 | * | |
668 | * If a page is already under I/O, generic_writepages() skips it, even | |
669 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | |
670 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
671 | * and msync() need to guarantee that all the data which was dirty at the time | |
672 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
673 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
674 | * existing IO to complete. | |
675 | */ | |
676 | int | |
677 | mpage_writepages(struct address_space *mapping, | |
678 | struct writeback_control *wbc, get_block_t get_block) | |
1da177e4 | 679 | { |
2ed1a6bc | 680 | struct blk_plug plug; |
0ea97180 MS |
681 | int ret; |
682 | ||
2ed1a6bc JA |
683 | blk_start_plug(&plug); |
684 | ||
0ea97180 MS |
685 | if (!get_block) |
686 | ret = generic_writepages(mapping, wbc); | |
687 | else { | |
688 | struct mpage_data mpd = { | |
689 | .bio = NULL, | |
690 | .last_block_in_bio = 0, | |
691 | .get_block = get_block, | |
692 | .use_writepage = 1, | |
693 | }; | |
694 | ||
695 | ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); | |
696 | if (mpd.bio) | |
697 | mpage_bio_submit(WRITE, mpd.bio); | |
1da177e4 | 698 | } |
2ed1a6bc | 699 | blk_finish_plug(&plug); |
1da177e4 LT |
700 | return ret; |
701 | } | |
702 | EXPORT_SYMBOL(mpage_writepages); | |
1da177e4 LT |
703 | |
704 | int mpage_writepage(struct page *page, get_block_t get_block, | |
705 | struct writeback_control *wbc) | |
706 | { | |
0ea97180 MS |
707 | struct mpage_data mpd = { |
708 | .bio = NULL, | |
709 | .last_block_in_bio = 0, | |
710 | .get_block = get_block, | |
711 | .use_writepage = 0, | |
712 | }; | |
713 | int ret = __mpage_writepage(page, wbc, &mpd); | |
714 | if (mpd.bio) | |
715 | mpage_bio_submit(WRITE, mpd.bio); | |
1da177e4 LT |
716 | return ret; |
717 | } | |
718 | EXPORT_SYMBOL(mpage_writepage); |