]>
Commit | Line | Data |
---|---|---|
b4d0d230 | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
3cb98950 DH |
2 | /* Generic associative array implementation. |
3 | * | |
48c40c26 | 4 | * See Documentation/core-api/assoc_array.rst for information. |
3cb98950 DH |
5 | * |
6 | * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. | |
7 | * Written by David Howells ([email protected]) | |
3cb98950 DH |
8 | */ |
9 | //#define DEBUG | |
990428b8 | 10 | #include <linux/rcupdate.h> |
3cb98950 | 11 | #include <linux/slab.h> |
b2a4df20 | 12 | #include <linux/err.h> |
3cb98950 DH |
13 | #include <linux/assoc_array_priv.h> |
14 | ||
15 | /* | |
16 | * Iterate over an associative array. The caller must hold the RCU read lock | |
17 | * or better. | |
18 | */ | |
19 | static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, | |
20 | const struct assoc_array_ptr *stop, | |
21 | int (*iterator)(const void *leaf, | |
22 | void *iterator_data), | |
23 | void *iterator_data) | |
24 | { | |
25 | const struct assoc_array_shortcut *shortcut; | |
26 | const struct assoc_array_node *node; | |
27 | const struct assoc_array_ptr *cursor, *ptr, *parent; | |
28 | unsigned long has_meta; | |
29 | int slot, ret; | |
30 | ||
31 | cursor = root; | |
32 | ||
33 | begin_node: | |
34 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
35 | /* Descend through a shortcut */ | |
36 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
516df050 | 37 | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
3cb98950 DH |
38 | } |
39 | ||
40 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 DH |
41 | slot = 0; |
42 | ||
43 | /* We perform two passes of each node. | |
44 | * | |
45 | * The first pass does all the leaves in this node. This means we | |
46 | * don't miss any leaves if the node is split up by insertion whilst | |
47 | * we're iterating over the branches rooted here (we may, however, see | |
48 | * some leaves twice). | |
49 | */ | |
50 | has_meta = 0; | |
51 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
516df050 | 52 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
53 | has_meta |= (unsigned long)ptr; |
54 | if (ptr && assoc_array_ptr_is_leaf(ptr)) { | |
516df050 PM |
55 | /* We need a barrier between the read of the pointer, |
56 | * which is supplied by the above READ_ONCE(). | |
3cb98950 | 57 | */ |
3cb98950 DH |
58 | /* Invoke the callback */ |
59 | ret = iterator(assoc_array_ptr_to_leaf(ptr), | |
60 | iterator_data); | |
61 | if (ret) | |
62 | return ret; | |
63 | } | |
64 | } | |
65 | ||
66 | /* The second pass attends to all the metadata pointers. If we follow | |
67 | * one of these we may find that we don't come back here, but rather go | |
68 | * back to a replacement node with the leaves in a different layout. | |
69 | * | |
70 | * We are guaranteed to make progress, however, as the slot number for | |
71 | * a particular portion of the key space cannot change - and we | |
72 | * continue at the back pointer + 1. | |
73 | */ | |
74 | if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) | |
75 | goto finished_node; | |
76 | slot = 0; | |
77 | ||
78 | continue_node: | |
79 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 | 80 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { |
516df050 | 81 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
82 | if (assoc_array_ptr_is_meta(ptr)) { |
83 | cursor = ptr; | |
84 | goto begin_node; | |
85 | } | |
86 | } | |
87 | ||
88 | finished_node: | |
89 | /* Move up to the parent (may need to skip back over a shortcut) */ | |
516df050 | 90 | parent = READ_ONCE(node->back_pointer); /* Address dependency. */ |
3cb98950 DH |
91 | slot = node->parent_slot; |
92 | if (parent == stop) | |
93 | return 0; | |
94 | ||
95 | if (assoc_array_ptr_is_shortcut(parent)) { | |
96 | shortcut = assoc_array_ptr_to_shortcut(parent); | |
3cb98950 | 97 | cursor = parent; |
516df050 | 98 | parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ |
3cb98950 DH |
99 | slot = shortcut->parent_slot; |
100 | if (parent == stop) | |
101 | return 0; | |
102 | } | |
103 | ||
104 | /* Ascend to next slot in parent node */ | |
105 | cursor = parent; | |
106 | slot++; | |
107 | goto continue_node; | |
108 | } | |
109 | ||
110 | /** | |
111 | * assoc_array_iterate - Pass all objects in the array to a callback | |
112 | * @array: The array to iterate over. | |
113 | * @iterator: The callback function. | |
114 | * @iterator_data: Private data for the callback function. | |
115 | * | |
116 | * Iterate over all the objects in an associative array. Each one will be | |
117 | * presented to the iterator function. | |
118 | * | |
119 | * If the array is being modified concurrently with the iteration then it is | |
120 | * possible that some objects in the array will be passed to the iterator | |
121 | * callback more than once - though every object should be passed at least | |
122 | * once. If this is undesirable then the caller must lock against modification | |
123 | * for the duration of this function. | |
124 | * | |
125 | * The function will return 0 if no objects were in the array or else it will | |
126 | * return the result of the last iterator function called. Iteration stops | |
127 | * immediately if any call to the iteration function results in a non-zero | |
128 | * return. | |
129 | * | |
130 | * The caller should hold the RCU read lock or better if concurrent | |
131 | * modification is possible. | |
132 | */ | |
133 | int assoc_array_iterate(const struct assoc_array *array, | |
134 | int (*iterator)(const void *object, | |
135 | void *iterator_data), | |
136 | void *iterator_data) | |
137 | { | |
516df050 | 138 | struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ |
3cb98950 DH |
139 | |
140 | if (!root) | |
141 | return 0; | |
142 | return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); | |
143 | } | |
144 | ||
145 | enum assoc_array_walk_status { | |
146 | assoc_array_walk_tree_empty, | |
147 | assoc_array_walk_found_terminal_node, | |
148 | assoc_array_walk_found_wrong_shortcut, | |
30b02c4b | 149 | }; |
3cb98950 DH |
150 | |
151 | struct assoc_array_walk_result { | |
152 | struct { | |
153 | struct assoc_array_node *node; /* Node in which leaf might be found */ | |
154 | int level; | |
155 | int slot; | |
156 | } terminal_node; | |
157 | struct { | |
158 | struct assoc_array_shortcut *shortcut; | |
159 | int level; | |
160 | int sc_level; | |
161 | unsigned long sc_segments; | |
162 | unsigned long dissimilarity; | |
163 | } wrong_shortcut; | |
164 | }; | |
165 | ||
166 | /* | |
167 | * Navigate through the internal tree looking for the closest node to the key. | |
168 | */ | |
169 | static enum assoc_array_walk_status | |
170 | assoc_array_walk(const struct assoc_array *array, | |
171 | const struct assoc_array_ops *ops, | |
172 | const void *index_key, | |
173 | struct assoc_array_walk_result *result) | |
174 | { | |
175 | struct assoc_array_shortcut *shortcut; | |
176 | struct assoc_array_node *node; | |
177 | struct assoc_array_ptr *cursor, *ptr; | |
178 | unsigned long sc_segments, dissimilarity; | |
179 | unsigned long segments; | |
180 | int level, sc_level, next_sc_level; | |
181 | int slot; | |
182 | ||
183 | pr_devel("-->%s()\n", __func__); | |
184 | ||
516df050 | 185 | cursor = READ_ONCE(array->root); /* Address dependency. */ |
3cb98950 DH |
186 | if (!cursor) |
187 | return assoc_array_walk_tree_empty; | |
188 | ||
189 | level = 0; | |
190 | ||
191 | /* Use segments from the key for the new leaf to navigate through the | |
192 | * internal tree, skipping through nodes and shortcuts that are on | |
193 | * route to the destination. Eventually we'll come to a slot that is | |
194 | * either empty or contains a leaf at which point we've found a node in | |
195 | * which the leaf we're looking for might be found or into which it | |
196 | * should be inserted. | |
197 | */ | |
198 | jumped: | |
199 | segments = ops->get_key_chunk(index_key, level); | |
200 | pr_devel("segments[%d]: %lx\n", level, segments); | |
201 | ||
202 | if (assoc_array_ptr_is_shortcut(cursor)) | |
203 | goto follow_shortcut; | |
204 | ||
205 | consider_node: | |
206 | node = assoc_array_ptr_to_node(cursor); | |
3cb98950 DH |
207 | slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); |
208 | slot &= ASSOC_ARRAY_FAN_MASK; | |
516df050 | 209 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
210 | |
211 | pr_devel("consider slot %x [ix=%d type=%lu]\n", | |
212 | slot, level, (unsigned long)ptr & 3); | |
213 | ||
214 | if (!assoc_array_ptr_is_meta(ptr)) { | |
215 | /* The node doesn't have a node/shortcut pointer in the slot | |
216 | * corresponding to the index key that we have to follow. | |
217 | */ | |
218 | result->terminal_node.node = node; | |
219 | result->terminal_node.level = level; | |
220 | result->terminal_node.slot = slot; | |
221 | pr_devel("<--%s() = terminal_node\n", __func__); | |
222 | return assoc_array_walk_found_terminal_node; | |
223 | } | |
224 | ||
225 | if (assoc_array_ptr_is_node(ptr)) { | |
226 | /* There is a pointer to a node in the slot corresponding to | |
227 | * this index key segment, so we need to follow it. | |
228 | */ | |
229 | cursor = ptr; | |
230 | level += ASSOC_ARRAY_LEVEL_STEP; | |
231 | if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) | |
232 | goto consider_node; | |
233 | goto jumped; | |
234 | } | |
235 | ||
236 | /* There is a shortcut in the slot corresponding to the index key | |
237 | * segment. We follow the shortcut if its partial index key matches | |
238 | * this leaf's. Otherwise we need to split the shortcut. | |
239 | */ | |
240 | cursor = ptr; | |
241 | follow_shortcut: | |
242 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
3cb98950 DH |
243 | pr_devel("shortcut to %d\n", shortcut->skip_to_level); |
244 | sc_level = level + ASSOC_ARRAY_LEVEL_STEP; | |
245 | BUG_ON(sc_level > shortcut->skip_to_level); | |
246 | ||
247 | do { | |
248 | /* Check the leaf against the shortcut's index key a word at a | |
249 | * time, trimming the final word (the shortcut stores the index | |
250 | * key completely from the root to the shortcut's target). | |
251 | */ | |
252 | if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) | |
253 | segments = ops->get_key_chunk(index_key, sc_level); | |
254 | ||
255 | sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; | |
256 | dissimilarity = segments ^ sc_segments; | |
257 | ||
258 | if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { | |
259 | /* Trim segments that are beyond the shortcut */ | |
260 | int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
261 | dissimilarity &= ~(ULONG_MAX << shift); | |
262 | next_sc_level = shortcut->skip_to_level; | |
263 | } else { | |
264 | next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; | |
265 | next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
266 | } | |
267 | ||
268 | if (dissimilarity != 0) { | |
269 | /* This shortcut points elsewhere */ | |
270 | result->wrong_shortcut.shortcut = shortcut; | |
271 | result->wrong_shortcut.level = level; | |
272 | result->wrong_shortcut.sc_level = sc_level; | |
273 | result->wrong_shortcut.sc_segments = sc_segments; | |
274 | result->wrong_shortcut.dissimilarity = dissimilarity; | |
275 | return assoc_array_walk_found_wrong_shortcut; | |
276 | } | |
277 | ||
278 | sc_level = next_sc_level; | |
279 | } while (sc_level < shortcut->skip_to_level); | |
280 | ||
281 | /* The shortcut matches the leaf's index to this point. */ | |
516df050 | 282 | cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ |
3cb98950 DH |
283 | if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { |
284 | level = sc_level; | |
285 | goto jumped; | |
286 | } else { | |
287 | level = sc_level; | |
288 | goto consider_node; | |
289 | } | |
290 | } | |
291 | ||
292 | /** | |
293 | * assoc_array_find - Find an object by index key | |
294 | * @array: The associative array to search. | |
295 | * @ops: The operations to use. | |
296 | * @index_key: The key to the object. | |
297 | * | |
298 | * Find an object in an associative array by walking through the internal tree | |
299 | * to the node that should contain the object and then searching the leaves | |
300 | * there. NULL is returned if the requested object was not found in the array. | |
301 | * | |
302 | * The caller must hold the RCU read lock or better. | |
303 | */ | |
304 | void *assoc_array_find(const struct assoc_array *array, | |
305 | const struct assoc_array_ops *ops, | |
306 | const void *index_key) | |
307 | { | |
308 | struct assoc_array_walk_result result; | |
309 | const struct assoc_array_node *node; | |
310 | const struct assoc_array_ptr *ptr; | |
311 | const void *leaf; | |
312 | int slot; | |
313 | ||
314 | if (assoc_array_walk(array, ops, index_key, &result) != | |
315 | assoc_array_walk_found_terminal_node) | |
316 | return NULL; | |
317 | ||
318 | node = result.terminal_node.node; | |
3cb98950 DH |
319 | |
320 | /* If the target key is available to us, it's has to be pointed to by | |
321 | * the terminal node. | |
322 | */ | |
323 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
516df050 | 324 | ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ |
3cb98950 DH |
325 | if (ptr && assoc_array_ptr_is_leaf(ptr)) { |
326 | /* We need a barrier between the read of the pointer | |
327 | * and dereferencing the pointer - but only if we are | |
328 | * actually going to dereference it. | |
329 | */ | |
330 | leaf = assoc_array_ptr_to_leaf(ptr); | |
3cb98950 DH |
331 | if (ops->compare_object(leaf, index_key)) |
332 | return (void *)leaf; | |
333 | } | |
334 | } | |
335 | ||
336 | return NULL; | |
337 | } | |
338 | ||
339 | /* | |
340 | * Destructively iterate over an associative array. The caller must prevent | |
341 | * other simultaneous accesses. | |
342 | */ | |
343 | static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, | |
344 | const struct assoc_array_ops *ops) | |
345 | { | |
346 | struct assoc_array_shortcut *shortcut; | |
347 | struct assoc_array_node *node; | |
348 | struct assoc_array_ptr *cursor, *parent = NULL; | |
349 | int slot = -1; | |
350 | ||
351 | pr_devel("-->%s()\n", __func__); | |
352 | ||
353 | cursor = root; | |
354 | if (!cursor) { | |
355 | pr_devel("empty\n"); | |
356 | return; | |
357 | } | |
358 | ||
359 | move_to_meta: | |
360 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
361 | /* Descend through a shortcut */ | |
362 | pr_devel("[%d] shortcut\n", slot); | |
363 | BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); | |
364 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
365 | BUG_ON(shortcut->back_pointer != parent); | |
366 | BUG_ON(slot != -1 && shortcut->parent_slot != slot); | |
367 | parent = cursor; | |
368 | cursor = shortcut->next_node; | |
369 | slot = -1; | |
370 | BUG_ON(!assoc_array_ptr_is_node(cursor)); | |
371 | } | |
372 | ||
373 | pr_devel("[%d] node\n", slot); | |
374 | node = assoc_array_ptr_to_node(cursor); | |
375 | BUG_ON(node->back_pointer != parent); | |
376 | BUG_ON(slot != -1 && node->parent_slot != slot); | |
377 | slot = 0; | |
378 | ||
379 | continue_node: | |
380 | pr_devel("Node %p [back=%p]\n", node, node->back_pointer); | |
381 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
382 | struct assoc_array_ptr *ptr = node->slots[slot]; | |
383 | if (!ptr) | |
384 | continue; | |
385 | if (assoc_array_ptr_is_meta(ptr)) { | |
386 | parent = cursor; | |
387 | cursor = ptr; | |
388 | goto move_to_meta; | |
389 | } | |
390 | ||
391 | if (ops) { | |
392 | pr_devel("[%d] free leaf\n", slot); | |
393 | ops->free_object(assoc_array_ptr_to_leaf(ptr)); | |
394 | } | |
395 | } | |
396 | ||
397 | parent = node->back_pointer; | |
398 | slot = node->parent_slot; | |
399 | pr_devel("free node\n"); | |
400 | kfree(node); | |
401 | if (!parent) | |
402 | return; /* Done */ | |
403 | ||
404 | /* Move back up to the parent (may need to free a shortcut on | |
405 | * the way up) */ | |
406 | if (assoc_array_ptr_is_shortcut(parent)) { | |
407 | shortcut = assoc_array_ptr_to_shortcut(parent); | |
408 | BUG_ON(shortcut->next_node != cursor); | |
409 | cursor = parent; | |
410 | parent = shortcut->back_pointer; | |
411 | slot = shortcut->parent_slot; | |
412 | pr_devel("free shortcut\n"); | |
413 | kfree(shortcut); | |
414 | if (!parent) | |
415 | return; | |
416 | ||
417 | BUG_ON(!assoc_array_ptr_is_node(parent)); | |
418 | } | |
419 | ||
420 | /* Ascend to next slot in parent node */ | |
421 | pr_devel("ascend to %p[%d]\n", parent, slot); | |
422 | cursor = parent; | |
423 | node = assoc_array_ptr_to_node(cursor); | |
424 | slot++; | |
425 | goto continue_node; | |
426 | } | |
427 | ||
428 | /** | |
429 | * assoc_array_destroy - Destroy an associative array | |
430 | * @array: The array to destroy. | |
431 | * @ops: The operations to use. | |
432 | * | |
433 | * Discard all metadata and free all objects in an associative array. The | |
434 | * array will be empty and ready to use again upon completion. This function | |
435 | * cannot fail. | |
436 | * | |
437 | * The caller must prevent all other accesses whilst this takes place as no | |
438 | * attempt is made to adjust pointers gracefully to permit RCU readlock-holding | |
439 | * accesses to continue. On the other hand, no memory allocation is required. | |
440 | */ | |
441 | void assoc_array_destroy(struct assoc_array *array, | |
442 | const struct assoc_array_ops *ops) | |
443 | { | |
444 | assoc_array_destroy_subtree(array->root, ops); | |
445 | array->root = NULL; | |
446 | } | |
447 | ||
448 | /* | |
449 | * Handle insertion into an empty tree. | |
450 | */ | |
451 | static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) | |
452 | { | |
453 | struct assoc_array_node *new_n0; | |
454 | ||
455 | pr_devel("-->%s()\n", __func__); | |
456 | ||
457 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
458 | if (!new_n0) | |
459 | return false; | |
460 | ||
461 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
462 | edit->leaf_p = &new_n0->slots[0]; | |
463 | edit->adjust_count_on = new_n0; | |
464 | edit->set[0].ptr = &edit->array->root; | |
465 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
466 | ||
467 | pr_devel("<--%s() = ok [no root]\n", __func__); | |
468 | return true; | |
469 | } | |
470 | ||
471 | /* | |
472 | * Handle insertion into a terminal node. | |
473 | */ | |
474 | static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, | |
475 | const struct assoc_array_ops *ops, | |
476 | const void *index_key, | |
477 | struct assoc_array_walk_result *result) | |
478 | { | |
479 | struct assoc_array_shortcut *shortcut, *new_s0; | |
480 | struct assoc_array_node *node, *new_n0, *new_n1, *side; | |
481 | struct assoc_array_ptr *ptr; | |
482 | unsigned long dissimilarity, base_seg, blank; | |
483 | size_t keylen; | |
484 | bool have_meta; | |
485 | int level, diff; | |
486 | int slot, next_slot, free_slot, i, j; | |
487 | ||
488 | node = result->terminal_node.node; | |
489 | level = result->terminal_node.level; | |
490 | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; | |
491 | ||
492 | pr_devel("-->%s()\n", __func__); | |
493 | ||
494 | /* We arrived at a node which doesn't have an onward node or shortcut | |
495 | * pointer that we have to follow. This means that (a) the leaf we | |
496 | * want must go here (either by insertion or replacement) or (b) we | |
497 | * need to split this node and insert in one of the fragments. | |
498 | */ | |
499 | free_slot = -1; | |
500 | ||
501 | /* Firstly, we have to check the leaves in this node to see if there's | |
502 | * a matching one we should replace in place. | |
503 | */ | |
504 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
505 | ptr = node->slots[i]; | |
506 | if (!ptr) { | |
507 | free_slot = i; | |
508 | continue; | |
509 | } | |
8d4a2ec1 JM |
510 | if (assoc_array_ptr_is_leaf(ptr) && |
511 | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | |
512 | index_key)) { | |
3cb98950 DH |
513 | pr_devel("replace in slot %d\n", i); |
514 | edit->leaf_p = &node->slots[i]; | |
515 | edit->dead_leaf = node->slots[i]; | |
516 | pr_devel("<--%s() = ok [replace]\n", __func__); | |
517 | return true; | |
518 | } | |
519 | } | |
520 | ||
521 | /* If there is a free slot in this node then we can just insert the | |
522 | * leaf here. | |
523 | */ | |
524 | if (free_slot >= 0) { | |
525 | pr_devel("insert in free slot %d\n", free_slot); | |
526 | edit->leaf_p = &node->slots[free_slot]; | |
527 | edit->adjust_count_on = node; | |
528 | pr_devel("<--%s() = ok [insert]\n", __func__); | |
529 | return true; | |
530 | } | |
531 | ||
532 | /* The node has no spare slots - so we're either going to have to split | |
533 | * it or insert another node before it. | |
534 | * | |
535 | * Whatever, we're going to need at least two new nodes - so allocate | |
536 | * those now. We may also need a new shortcut, but we deal with that | |
537 | * when we need it. | |
538 | */ | |
539 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
540 | if (!new_n0) | |
541 | return false; | |
542 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
543 | new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
544 | if (!new_n1) | |
545 | return false; | |
546 | edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); | |
547 | ||
548 | /* We need to find out how similar the leaves are. */ | |
549 | pr_devel("no spare slots\n"); | |
550 | have_meta = false; | |
551 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
552 | ptr = node->slots[i]; | |
553 | if (assoc_array_ptr_is_meta(ptr)) { | |
554 | edit->segment_cache[i] = 0xff; | |
555 | have_meta = true; | |
556 | continue; | |
557 | } | |
558 | base_seg = ops->get_object_key_chunk( | |
559 | assoc_array_ptr_to_leaf(ptr), level); | |
560 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
561 | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
562 | } | |
563 | ||
564 | if (have_meta) { | |
565 | pr_devel("have meta\n"); | |
566 | goto split_node; | |
567 | } | |
568 | ||
569 | /* The node contains only leaves */ | |
570 | dissimilarity = 0; | |
571 | base_seg = edit->segment_cache[0]; | |
572 | for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) | |
573 | dissimilarity |= edit->segment_cache[i] ^ base_seg; | |
574 | ||
575 | pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); | |
576 | ||
577 | if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { | |
578 | /* The old leaves all cluster in the same slot. We will need | |
579 | * to insert a shortcut if the new node wants to cluster with them. | |
580 | */ | |
581 | if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) | |
582 | goto all_leaves_cluster_together; | |
583 | ||
ea678998 DH |
584 | /* Otherwise all the old leaves cluster in the same slot, but |
585 | * the new leaf wants to go into a different slot - so we | |
586 | * create a new node (n0) to hold the new leaf and a pointer to | |
587 | * a new node (n1) holding all the old leaves. | |
588 | * | |
589 | * This can be done by falling through to the node splitting | |
590 | * path. | |
3cb98950 | 591 | */ |
ea678998 | 592 | pr_devel("present leaves cluster but not new leaf\n"); |
3cb98950 DH |
593 | } |
594 | ||
595 | split_node: | |
596 | pr_devel("split node\n"); | |
597 | ||
ea678998 DH |
598 | /* We need to split the current node. The node must contain anything |
599 | * from a single leaf (in the one leaf case, this leaf will cluster | |
600 | * with the new leaf) and the rest meta-pointers, to all leaves, some | |
601 | * of which may cluster. | |
602 | * | |
603 | * It won't contain the case in which all the current leaves plus the | |
604 | * new leaves want to cluster in the same slot. | |
3cb98950 DH |
605 | * |
606 | * We need to expel at least two leaves out of a set consisting of the | |
ea678998 DH |
607 | * leaves in the node and the new leaf. The current meta pointers can |
608 | * just be copied as they shouldn't cluster with any of the leaves. | |
3cb98950 DH |
609 | * |
610 | * We need a new node (n0) to replace the current one and a new node to | |
611 | * take the expelled nodes (n1). | |
612 | */ | |
613 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
614 | new_n0->back_pointer = node->back_pointer; | |
615 | new_n0->parent_slot = node->parent_slot; | |
616 | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
617 | new_n1->parent_slot = -1; /* Need to calculate this */ | |
618 | ||
619 | do_split_node: | |
620 | pr_devel("do_split_node\n"); | |
621 | ||
622 | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | |
623 | new_n1->nr_leaves_on_branch = 0; | |
624 | ||
625 | /* Begin by finding two matching leaves. There have to be at least two | |
626 | * that match - even if there are meta pointers - because any leaf that | |
627 | * would match a slot with a meta pointer in it must be somewhere | |
628 | * behind that meta pointer and cannot be here. Further, given N | |
629 | * remaining leaf slots, we now have N+1 leaves to go in them. | |
630 | */ | |
631 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
632 | slot = edit->segment_cache[i]; | |
633 | if (slot != 0xff) | |
634 | for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) | |
635 | if (edit->segment_cache[j] == slot) | |
636 | goto found_slot_for_multiple_occupancy; | |
637 | } | |
638 | found_slot_for_multiple_occupancy: | |
639 | pr_devel("same slot: %x %x [%02x]\n", i, j, slot); | |
640 | BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); | |
641 | BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); | |
642 | BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); | |
643 | ||
644 | new_n1->parent_slot = slot; | |
645 | ||
646 | /* Metadata pointers cannot change slot */ | |
647 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) | |
648 | if (assoc_array_ptr_is_meta(node->slots[i])) | |
649 | new_n0->slots[i] = node->slots[i]; | |
650 | else | |
651 | new_n0->slots[i] = NULL; | |
652 | BUG_ON(new_n0->slots[slot] != NULL); | |
653 | new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); | |
654 | ||
655 | /* Filter the leaf pointers between the new nodes */ | |
656 | free_slot = -1; | |
657 | next_slot = 0; | |
658 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
659 | if (assoc_array_ptr_is_meta(node->slots[i])) | |
660 | continue; | |
661 | if (edit->segment_cache[i] == slot) { | |
662 | new_n1->slots[next_slot++] = node->slots[i]; | |
663 | new_n1->nr_leaves_on_branch++; | |
664 | } else { | |
665 | do { | |
666 | free_slot++; | |
667 | } while (new_n0->slots[free_slot] != NULL); | |
668 | new_n0->slots[free_slot] = node->slots[i]; | |
669 | } | |
670 | } | |
671 | ||
672 | pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); | |
673 | ||
674 | if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { | |
675 | do { | |
676 | free_slot++; | |
677 | } while (new_n0->slots[free_slot] != NULL); | |
678 | edit->leaf_p = &new_n0->slots[free_slot]; | |
679 | edit->adjust_count_on = new_n0; | |
680 | } else { | |
681 | edit->leaf_p = &new_n1->slots[next_slot++]; | |
682 | edit->adjust_count_on = new_n1; | |
683 | } | |
684 | ||
685 | BUG_ON(next_slot <= 1); | |
686 | ||
687 | edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); | |
688 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
689 | if (edit->segment_cache[i] == 0xff) { | |
690 | ptr = node->slots[i]; | |
691 | BUG_ON(assoc_array_ptr_is_leaf(ptr)); | |
692 | if (assoc_array_ptr_is_node(ptr)) { | |
693 | side = assoc_array_ptr_to_node(ptr); | |
694 | edit->set_backpointers[i] = &side->back_pointer; | |
695 | } else { | |
696 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
697 | edit->set_backpointers[i] = &shortcut->back_pointer; | |
698 | } | |
699 | } | |
700 | } | |
701 | ||
702 | ptr = node->back_pointer; | |
703 | if (!ptr) | |
704 | edit->set[0].ptr = &edit->array->root; | |
705 | else if (assoc_array_ptr_is_node(ptr)) | |
706 | edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; | |
707 | else | |
708 | edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; | |
709 | edit->excised_meta[0] = assoc_array_node_to_ptr(node); | |
710 | pr_devel("<--%s() = ok [split node]\n", __func__); | |
711 | return true; | |
712 | ||
3cb98950 DH |
713 | all_leaves_cluster_together: |
714 | /* All the leaves, new and old, want to cluster together in this node | |
715 | * in the same slot, so we have to replace this node with a shortcut to | |
716 | * skip over the identical parts of the key and then place a pair of | |
717 | * nodes, one inside the other, at the end of the shortcut and | |
718 | * distribute the keys between them. | |
719 | * | |
720 | * Firstly we need to work out where the leaves start diverging as a | |
721 | * bit position into their keys so that we know how big the shortcut | |
722 | * needs to be. | |
723 | * | |
724 | * We only need to make a single pass of N of the N+1 leaves because if | |
725 | * any keys differ between themselves at bit X then at least one of | |
726 | * them must also differ with the base key at bit X or before. | |
727 | */ | |
728 | pr_devel("all leaves cluster together\n"); | |
729 | diff = INT_MAX; | |
730 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
23fd78d7 DH |
731 | int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), |
732 | index_key); | |
3cb98950 DH |
733 | if (x < diff) { |
734 | BUG_ON(x < 0); | |
735 | diff = x; | |
736 | } | |
737 | } | |
738 | BUG_ON(diff == INT_MAX); | |
739 | BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); | |
740 | ||
741 | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
742 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
743 | ||
2a12e000 | 744 | new_s0 = kzalloc(struct_size(new_s0, index_key, keylen), GFP_KERNEL); |
3cb98950 DH |
745 | if (!new_s0) |
746 | return false; | |
747 | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); | |
748 | ||
749 | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | |
750 | new_s0->back_pointer = node->back_pointer; | |
751 | new_s0->parent_slot = node->parent_slot; | |
752 | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | |
753 | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | |
754 | new_n0->parent_slot = 0; | |
755 | new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
756 | new_n1->parent_slot = -1; /* Need to calculate this */ | |
757 | ||
758 | new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; | |
759 | pr_devel("skip_to_level = %d [diff %d]\n", level, diff); | |
760 | BUG_ON(level <= 0); | |
761 | ||
762 | for (i = 0; i < keylen; i++) | |
763 | new_s0->index_key[i] = | |
764 | ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
765 | ||
bb2ba2d7 DH |
766 | if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) { |
767 | blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
768 | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); | |
769 | new_s0->index_key[keylen - 1] &= ~blank; | |
770 | } | |
3cb98950 DH |
771 | |
772 | /* This now reduces to a node splitting exercise for which we'll need | |
773 | * to regenerate the disparity table. | |
774 | */ | |
775 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
776 | ptr = node->slots[i]; | |
777 | base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), | |
778 | level); | |
779 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
780 | edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
781 | } | |
782 | ||
783 | base_seg = ops->get_key_chunk(index_key, level); | |
784 | base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; | |
785 | edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; | |
786 | goto do_split_node; | |
787 | } | |
788 | ||
789 | /* | |
790 | * Handle insertion into the middle of a shortcut. | |
791 | */ | |
792 | static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, | |
793 | const struct assoc_array_ops *ops, | |
794 | struct assoc_array_walk_result *result) | |
795 | { | |
796 | struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; | |
797 | struct assoc_array_node *node, *new_n0, *side; | |
798 | unsigned long sc_segments, dissimilarity, blank; | |
799 | size_t keylen; | |
800 | int level, sc_level, diff; | |
801 | int sc_slot; | |
802 | ||
803 | shortcut = result->wrong_shortcut.shortcut; | |
804 | level = result->wrong_shortcut.level; | |
805 | sc_level = result->wrong_shortcut.sc_level; | |
806 | sc_segments = result->wrong_shortcut.sc_segments; | |
807 | dissimilarity = result->wrong_shortcut.dissimilarity; | |
808 | ||
809 | pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", | |
810 | __func__, level, dissimilarity, sc_level); | |
811 | ||
812 | /* We need to split a shortcut and insert a node between the two | |
813 | * pieces. Zero-length pieces will be dispensed with entirely. | |
814 | * | |
815 | * First of all, we need to find out in which level the first | |
816 | * difference was. | |
817 | */ | |
818 | diff = __ffs(dissimilarity); | |
819 | diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; | |
820 | diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; | |
821 | pr_devel("diff=%d\n", diff); | |
822 | ||
823 | if (!shortcut->back_pointer) { | |
824 | edit->set[0].ptr = &edit->array->root; | |
825 | } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { | |
826 | node = assoc_array_ptr_to_node(shortcut->back_pointer); | |
827 | edit->set[0].ptr = &node->slots[shortcut->parent_slot]; | |
828 | } else { | |
829 | BUG(); | |
830 | } | |
831 | ||
832 | edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); | |
833 | ||
834 | /* Create a new node now since we're going to need it anyway */ | |
835 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
836 | if (!new_n0) | |
837 | return false; | |
838 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
839 | edit->adjust_count_on = new_n0; | |
840 | ||
841 | /* Insert a new shortcut before the new node if this segment isn't of | |
842 | * zero length - otherwise we just connect the new node directly to the | |
843 | * parent. | |
844 | */ | |
845 | level += ASSOC_ARRAY_LEVEL_STEP; | |
846 | if (diff > level) { | |
847 | pr_devel("pre-shortcut %d...%d\n", level, diff); | |
848 | keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
849 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
850 | ||
2a12e000 LB |
851 | new_s0 = kzalloc(struct_size(new_s0, index_key, keylen), |
852 | GFP_KERNEL); | |
3cb98950 DH |
853 | if (!new_s0) |
854 | return false; | |
855 | edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); | |
856 | edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); | |
857 | new_s0->back_pointer = shortcut->back_pointer; | |
858 | new_s0->parent_slot = shortcut->parent_slot; | |
859 | new_s0->next_node = assoc_array_node_to_ptr(new_n0); | |
860 | new_s0->skip_to_level = diff; | |
861 | ||
862 | new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); | |
863 | new_n0->parent_slot = 0; | |
864 | ||
865 | memcpy(new_s0->index_key, shortcut->index_key, | |
2a12e000 | 866 | flex_array_size(new_s0, index_key, keylen)); |
3cb98950 DH |
867 | |
868 | blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
869 | pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); | |
870 | new_s0->index_key[keylen - 1] &= ~blank; | |
871 | } else { | |
872 | pr_devel("no pre-shortcut\n"); | |
873 | edit->set[0].to = assoc_array_node_to_ptr(new_n0); | |
874 | new_n0->back_pointer = shortcut->back_pointer; | |
875 | new_n0->parent_slot = shortcut->parent_slot; | |
876 | } | |
877 | ||
878 | side = assoc_array_ptr_to_node(shortcut->next_node); | |
879 | new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; | |
880 | ||
881 | /* We need to know which slot in the new node is going to take a | |
882 | * metadata pointer. | |
883 | */ | |
884 | sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); | |
885 | sc_slot &= ASSOC_ARRAY_FAN_MASK; | |
886 | ||
887 | pr_devel("new slot %lx >> %d -> %d\n", | |
888 | sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); | |
889 | ||
890 | /* Determine whether we need to follow the new node with a replacement | |
891 | * for the current shortcut. We could in theory reuse the current | |
892 | * shortcut if its parent slot number doesn't change - but that's a | |
893 | * 1-in-16 chance so not worth expending the code upon. | |
894 | */ | |
895 | level = diff + ASSOC_ARRAY_LEVEL_STEP; | |
896 | if (level < shortcut->skip_to_level) { | |
897 | pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); | |
898 | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
899 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
900 | ||
2a12e000 LB |
901 | new_s1 = kzalloc(struct_size(new_s1, index_key, keylen), |
902 | GFP_KERNEL); | |
3cb98950 DH |
903 | if (!new_s1) |
904 | return false; | |
905 | edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); | |
906 | ||
907 | new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); | |
908 | new_s1->parent_slot = sc_slot; | |
909 | new_s1->next_node = shortcut->next_node; | |
910 | new_s1->skip_to_level = shortcut->skip_to_level; | |
911 | ||
912 | new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); | |
913 | ||
914 | memcpy(new_s1->index_key, shortcut->index_key, | |
2a12e000 | 915 | flex_array_size(new_s1, index_key, keylen)); |
3cb98950 DH |
916 | |
917 | edit->set[1].ptr = &side->back_pointer; | |
918 | edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); | |
919 | } else { | |
920 | pr_devel("no post-shortcut\n"); | |
921 | ||
922 | /* We don't have to replace the pointed-to node as long as we | |
923 | * use memory barriers to make sure the parent slot number is | |
924 | * changed before the back pointer (the parent slot number is | |
925 | * irrelevant to the old parent shortcut). | |
926 | */ | |
927 | new_n0->slots[sc_slot] = shortcut->next_node; | |
928 | edit->set_parent_slot[0].p = &side->parent_slot; | |
929 | edit->set_parent_slot[0].to = sc_slot; | |
930 | edit->set[1].ptr = &side->back_pointer; | |
931 | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | |
932 | } | |
933 | ||
934 | /* Install the new leaf in a spare slot in the new node. */ | |
935 | if (sc_slot == 0) | |
936 | edit->leaf_p = &new_n0->slots[1]; | |
937 | else | |
938 | edit->leaf_p = &new_n0->slots[0]; | |
939 | ||
940 | pr_devel("<--%s() = ok [split shortcut]\n", __func__); | |
941 | return edit; | |
942 | } | |
943 | ||
944 | /** | |
945 | * assoc_array_insert - Script insertion of an object into an associative array | |
946 | * @array: The array to insert into. | |
947 | * @ops: The operations to use. | |
948 | * @index_key: The key to insert at. | |
949 | * @object: The object to insert. | |
950 | * | |
951 | * Precalculate and preallocate a script for the insertion or replacement of an | |
952 | * object in an associative array. This results in an edit script that can | |
953 | * either be applied or cancelled. | |
954 | * | |
955 | * The function returns a pointer to an edit script or -ENOMEM. | |
956 | * | |
957 | * The caller should lock against other modifications and must continue to hold | |
958 | * the lock until assoc_array_apply_edit() has been called. | |
959 | * | |
960 | * Accesses to the tree may take place concurrently with this function, | |
961 | * provided they hold the RCU read lock. | |
962 | */ | |
963 | struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, | |
964 | const struct assoc_array_ops *ops, | |
965 | const void *index_key, | |
966 | void *object) | |
967 | { | |
968 | struct assoc_array_walk_result result; | |
969 | struct assoc_array_edit *edit; | |
970 | ||
971 | pr_devel("-->%s()\n", __func__); | |
972 | ||
973 | /* The leaf pointer we're given must not have the bottom bit set as we | |
974 | * use those for type-marking the pointer. NULL pointers are also not | |
975 | * allowed as they indicate an empty slot but we have to allow them | |
976 | * here as they can be updated later. | |
977 | */ | |
978 | BUG_ON(assoc_array_ptr_is_meta(object)); | |
979 | ||
980 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
981 | if (!edit) | |
982 | return ERR_PTR(-ENOMEM); | |
983 | edit->array = array; | |
984 | edit->ops = ops; | |
985 | edit->leaf = assoc_array_leaf_to_ptr(object); | |
986 | edit->adjust_count_by = 1; | |
987 | ||
988 | switch (assoc_array_walk(array, ops, index_key, &result)) { | |
989 | case assoc_array_walk_tree_empty: | |
990 | /* Allocate a root node if there isn't one yet */ | |
991 | if (!assoc_array_insert_in_empty_tree(edit)) | |
992 | goto enomem; | |
993 | return edit; | |
994 | ||
995 | case assoc_array_walk_found_terminal_node: | |
996 | /* We found a node that doesn't have a node/shortcut pointer in | |
997 | * the slot corresponding to the index key that we have to | |
998 | * follow. | |
999 | */ | |
1000 | if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, | |
1001 | &result)) | |
1002 | goto enomem; | |
1003 | return edit; | |
1004 | ||
1005 | case assoc_array_walk_found_wrong_shortcut: | |
1006 | /* We found a shortcut that didn't match our key in a slot we | |
1007 | * needed to follow. | |
1008 | */ | |
1009 | if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) | |
1010 | goto enomem; | |
1011 | return edit; | |
1012 | } | |
1013 | ||
1014 | enomem: | |
1015 | /* Clean up after an out of memory error */ | |
1016 | pr_devel("enomem\n"); | |
1017 | assoc_array_cancel_edit(edit); | |
1018 | return ERR_PTR(-ENOMEM); | |
1019 | } | |
1020 | ||
1021 | /** | |
1022 | * assoc_array_insert_set_object - Set the new object pointer in an edit script | |
1023 | * @edit: The edit script to modify. | |
1024 | * @object: The object pointer to set. | |
1025 | * | |
1026 | * Change the object to be inserted in an edit script. The object pointed to | |
1027 | * by the old object is not freed. This must be done prior to applying the | |
1028 | * script. | |
1029 | */ | |
1030 | void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) | |
1031 | { | |
1032 | BUG_ON(!object); | |
1033 | edit->leaf = assoc_array_leaf_to_ptr(object); | |
1034 | } | |
1035 | ||
1036 | struct assoc_array_delete_collapse_context { | |
1037 | struct assoc_array_node *node; | |
1038 | const void *skip_leaf; | |
1039 | int slot; | |
1040 | }; | |
1041 | ||
1042 | /* | |
1043 | * Subtree collapse to node iterator. | |
1044 | */ | |
1045 | static int assoc_array_delete_collapse_iterator(const void *leaf, | |
1046 | void *iterator_data) | |
1047 | { | |
1048 | struct assoc_array_delete_collapse_context *collapse = iterator_data; | |
1049 | ||
1050 | if (leaf == collapse->skip_leaf) | |
1051 | return 0; | |
1052 | ||
1053 | BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); | |
1054 | ||
1055 | collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); | |
1056 | return 0; | |
1057 | } | |
1058 | ||
1059 | /** | |
1060 | * assoc_array_delete - Script deletion of an object from an associative array | |
1061 | * @array: The array to search. | |
1062 | * @ops: The operations to use. | |
1063 | * @index_key: The key to the object. | |
1064 | * | |
1065 | * Precalculate and preallocate a script for the deletion of an object from an | |
1066 | * associative array. This results in an edit script that can either be | |
1067 | * applied or cancelled. | |
1068 | * | |
1069 | * The function returns a pointer to an edit script if the object was found, | |
1070 | * NULL if the object was not found or -ENOMEM. | |
1071 | * | |
1072 | * The caller should lock against other modifications and must continue to hold | |
1073 | * the lock until assoc_array_apply_edit() has been called. | |
1074 | * | |
1075 | * Accesses to the tree may take place concurrently with this function, | |
1076 | * provided they hold the RCU read lock. | |
1077 | */ | |
1078 | struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, | |
1079 | const struct assoc_array_ops *ops, | |
1080 | const void *index_key) | |
1081 | { | |
1082 | struct assoc_array_delete_collapse_context collapse; | |
1083 | struct assoc_array_walk_result result; | |
1084 | struct assoc_array_node *node, *new_n0; | |
1085 | struct assoc_array_edit *edit; | |
1086 | struct assoc_array_ptr *ptr; | |
1087 | bool has_meta; | |
1088 | int slot, i; | |
1089 | ||
1090 | pr_devel("-->%s()\n", __func__); | |
1091 | ||
1092 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1093 | if (!edit) | |
1094 | return ERR_PTR(-ENOMEM); | |
1095 | edit->array = array; | |
1096 | edit->ops = ops; | |
1097 | edit->adjust_count_by = -1; | |
1098 | ||
1099 | switch (assoc_array_walk(array, ops, index_key, &result)) { | |
1100 | case assoc_array_walk_found_terminal_node: | |
1101 | /* We found a node that should contain the leaf we've been | |
1102 | * asked to remove - *if* it's in the tree. | |
1103 | */ | |
1104 | pr_devel("terminal_node\n"); | |
1105 | node = result.terminal_node.node; | |
1106 | ||
1107 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1108 | ptr = node->slots[slot]; | |
1109 | if (ptr && | |
1110 | assoc_array_ptr_is_leaf(ptr) && | |
1111 | ops->compare_object(assoc_array_ptr_to_leaf(ptr), | |
1112 | index_key)) | |
1113 | goto found_leaf; | |
1114 | } | |
4c1ca831 | 1115 | fallthrough; |
3cb98950 DH |
1116 | case assoc_array_walk_tree_empty: |
1117 | case assoc_array_walk_found_wrong_shortcut: | |
1118 | default: | |
1119 | assoc_array_cancel_edit(edit); | |
1120 | pr_devel("not found\n"); | |
1121 | return NULL; | |
1122 | } | |
1123 | ||
1124 | found_leaf: | |
1125 | BUG_ON(array->nr_leaves_on_tree <= 0); | |
1126 | ||
1127 | /* In the simplest form of deletion we just clear the slot and release | |
1128 | * the leaf after a suitable interval. | |
1129 | */ | |
1130 | edit->dead_leaf = node->slots[slot]; | |
1131 | edit->set[0].ptr = &node->slots[slot]; | |
1132 | edit->set[0].to = NULL; | |
1133 | edit->adjust_count_on = node; | |
1134 | ||
1135 | /* If that concludes erasure of the last leaf, then delete the entire | |
1136 | * internal array. | |
1137 | */ | |
1138 | if (array->nr_leaves_on_tree == 1) { | |
1139 | edit->set[1].ptr = &array->root; | |
1140 | edit->set[1].to = NULL; | |
1141 | edit->adjust_count_on = NULL; | |
1142 | edit->excised_subtree = array->root; | |
1143 | pr_devel("all gone\n"); | |
1144 | return edit; | |
1145 | } | |
1146 | ||
1147 | /* However, we'd also like to clear up some metadata blocks if we | |
1148 | * possibly can. | |
1149 | * | |
1150 | * We go for a simple algorithm of: if this node has FAN_OUT or fewer | |
1151 | * leaves in it, then attempt to collapse it - and attempt to | |
1152 | * recursively collapse up the tree. | |
1153 | * | |
1154 | * We could also try and collapse in partially filled subtrees to take | |
1155 | * up space in this node. | |
1156 | */ | |
1157 | if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | |
1158 | struct assoc_array_node *parent, *grandparent; | |
1159 | struct assoc_array_ptr *ptr; | |
1160 | ||
1161 | /* First of all, we need to know if this node has metadata so | |
1162 | * that we don't try collapsing if all the leaves are already | |
1163 | * here. | |
1164 | */ | |
1165 | has_meta = false; | |
1166 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
1167 | ptr = node->slots[i]; | |
1168 | if (assoc_array_ptr_is_meta(ptr)) { | |
1169 | has_meta = true; | |
1170 | break; | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | pr_devel("leaves: %ld [m=%d]\n", | |
1175 | node->nr_leaves_on_branch - 1, has_meta); | |
1176 | ||
1177 | /* Look further up the tree to see if we can collapse this node | |
1178 | * into a more proximal node too. | |
1179 | */ | |
1180 | parent = node; | |
1181 | collapse_up: | |
1182 | pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); | |
1183 | ||
1184 | ptr = parent->back_pointer; | |
1185 | if (!ptr) | |
1186 | goto do_collapse; | |
1187 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1188 | struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); | |
1189 | ptr = s->back_pointer; | |
1190 | if (!ptr) | |
1191 | goto do_collapse; | |
1192 | } | |
1193 | ||
1194 | grandparent = assoc_array_ptr_to_node(ptr); | |
1195 | if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { | |
1196 | parent = grandparent; | |
1197 | goto collapse_up; | |
1198 | } | |
1199 | ||
1200 | do_collapse: | |
1201 | /* There's no point collapsing if the original node has no meta | |
1202 | * pointers to discard and if we didn't merge into one of that | |
1203 | * node's ancestry. | |
1204 | */ | |
1205 | if (has_meta || parent != node) { | |
1206 | node = parent; | |
1207 | ||
1208 | /* Create a new node to collapse into */ | |
1209 | new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
1210 | if (!new_n0) | |
1211 | goto enomem; | |
1212 | edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); | |
1213 | ||
1214 | new_n0->back_pointer = node->back_pointer; | |
1215 | new_n0->parent_slot = node->parent_slot; | |
1216 | new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; | |
1217 | edit->adjust_count_on = new_n0; | |
1218 | ||
1219 | collapse.node = new_n0; | |
1220 | collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); | |
1221 | collapse.slot = 0; | |
1222 | assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), | |
1223 | node->back_pointer, | |
1224 | assoc_array_delete_collapse_iterator, | |
1225 | &collapse); | |
1226 | pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); | |
1227 | BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); | |
1228 | ||
1229 | if (!node->back_pointer) { | |
1230 | edit->set[1].ptr = &array->root; | |
1231 | } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { | |
1232 | BUG(); | |
1233 | } else if (assoc_array_ptr_is_node(node->back_pointer)) { | |
1234 | struct assoc_array_node *p = | |
1235 | assoc_array_ptr_to_node(node->back_pointer); | |
1236 | edit->set[1].ptr = &p->slots[node->parent_slot]; | |
1237 | } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { | |
1238 | struct assoc_array_shortcut *s = | |
1239 | assoc_array_ptr_to_shortcut(node->back_pointer); | |
1240 | edit->set[1].ptr = &s->next_node; | |
1241 | } | |
1242 | edit->set[1].to = assoc_array_node_to_ptr(new_n0); | |
1243 | edit->excised_subtree = assoc_array_node_to_ptr(node); | |
1244 | } | |
1245 | } | |
1246 | ||
1247 | return edit; | |
1248 | ||
1249 | enomem: | |
1250 | /* Clean up after an out of memory error */ | |
1251 | pr_devel("enomem\n"); | |
1252 | assoc_array_cancel_edit(edit); | |
1253 | return ERR_PTR(-ENOMEM); | |
1254 | } | |
1255 | ||
1256 | /** | |
1257 | * assoc_array_clear - Script deletion of all objects from an associative array | |
1258 | * @array: The array to clear. | |
1259 | * @ops: The operations to use. | |
1260 | * | |
1261 | * Precalculate and preallocate a script for the deletion of all the objects | |
1262 | * from an associative array. This results in an edit script that can either | |
1263 | * be applied or cancelled. | |
1264 | * | |
1265 | * The function returns a pointer to an edit script if there are objects to be | |
1266 | * deleted, NULL if there are no objects in the array or -ENOMEM. | |
1267 | * | |
1268 | * The caller should lock against other modifications and must continue to hold | |
1269 | * the lock until assoc_array_apply_edit() has been called. | |
1270 | * | |
1271 | * Accesses to the tree may take place concurrently with this function, | |
1272 | * provided they hold the RCU read lock. | |
1273 | */ | |
1274 | struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, | |
1275 | const struct assoc_array_ops *ops) | |
1276 | { | |
1277 | struct assoc_array_edit *edit; | |
1278 | ||
1279 | pr_devel("-->%s()\n", __func__); | |
1280 | ||
1281 | if (!array->root) | |
1282 | return NULL; | |
1283 | ||
1284 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1285 | if (!edit) | |
1286 | return ERR_PTR(-ENOMEM); | |
1287 | edit->array = array; | |
1288 | edit->ops = ops; | |
1289 | edit->set[1].ptr = &array->root; | |
1290 | edit->set[1].to = NULL; | |
1291 | edit->excised_subtree = array->root; | |
1292 | edit->ops_for_excised_subtree = ops; | |
1293 | pr_devel("all gone\n"); | |
1294 | return edit; | |
1295 | } | |
1296 | ||
1297 | /* | |
1298 | * Handle the deferred destruction after an applied edit. | |
1299 | */ | |
1300 | static void assoc_array_rcu_cleanup(struct rcu_head *head) | |
1301 | { | |
1302 | struct assoc_array_edit *edit = | |
1303 | container_of(head, struct assoc_array_edit, rcu); | |
1304 | int i; | |
1305 | ||
1306 | pr_devel("-->%s()\n", __func__); | |
1307 | ||
1308 | if (edit->dead_leaf) | |
1309 | edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); | |
1310 | for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) | |
1311 | if (edit->excised_meta[i]) | |
1312 | kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); | |
1313 | ||
1314 | if (edit->excised_subtree) { | |
1315 | BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); | |
1316 | if (assoc_array_ptr_is_node(edit->excised_subtree)) { | |
1317 | struct assoc_array_node *n = | |
1318 | assoc_array_ptr_to_node(edit->excised_subtree); | |
1319 | n->back_pointer = NULL; | |
1320 | } else { | |
1321 | struct assoc_array_shortcut *s = | |
1322 | assoc_array_ptr_to_shortcut(edit->excised_subtree); | |
1323 | s->back_pointer = NULL; | |
1324 | } | |
1325 | assoc_array_destroy_subtree(edit->excised_subtree, | |
1326 | edit->ops_for_excised_subtree); | |
1327 | } | |
1328 | ||
1329 | kfree(edit); | |
1330 | } | |
1331 | ||
1332 | /** | |
1333 | * assoc_array_apply_edit - Apply an edit script to an associative array | |
1334 | * @edit: The script to apply. | |
1335 | * | |
1336 | * Apply an edit script to an associative array to effect an insertion, | |
1337 | * deletion or clearance. As the edit script includes preallocated memory, | |
1338 | * this is guaranteed not to fail. | |
1339 | * | |
1340 | * The edit script, dead objects and dead metadata will be scheduled for | |
1341 | * destruction after an RCU grace period to permit those doing read-only | |
1342 | * accesses on the array to continue to do so under the RCU read lock whilst | |
1343 | * the edit is taking place. | |
1344 | */ | |
1345 | void assoc_array_apply_edit(struct assoc_array_edit *edit) | |
1346 | { | |
1347 | struct assoc_array_shortcut *shortcut; | |
1348 | struct assoc_array_node *node; | |
1349 | struct assoc_array_ptr *ptr; | |
1350 | int i; | |
1351 | ||
1352 | pr_devel("-->%s()\n", __func__); | |
1353 | ||
1354 | smp_wmb(); | |
1355 | if (edit->leaf_p) | |
1356 | *edit->leaf_p = edit->leaf; | |
1357 | ||
1358 | smp_wmb(); | |
1359 | for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) | |
1360 | if (edit->set_parent_slot[i].p) | |
1361 | *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; | |
1362 | ||
1363 | smp_wmb(); | |
1364 | for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) | |
1365 | if (edit->set_backpointers[i]) | |
1366 | *edit->set_backpointers[i] = edit->set_backpointers_to; | |
1367 | ||
1368 | smp_wmb(); | |
1369 | for (i = 0; i < ARRAY_SIZE(edit->set); i++) | |
1370 | if (edit->set[i].ptr) | |
1371 | *edit->set[i].ptr = edit->set[i].to; | |
1372 | ||
1373 | if (edit->array->root == NULL) { | |
1374 | edit->array->nr_leaves_on_tree = 0; | |
1375 | } else if (edit->adjust_count_on) { | |
1376 | node = edit->adjust_count_on; | |
1377 | for (;;) { | |
1378 | node->nr_leaves_on_branch += edit->adjust_count_by; | |
1379 | ||
1380 | ptr = node->back_pointer; | |
1381 | if (!ptr) | |
1382 | break; | |
1383 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1384 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
1385 | ptr = shortcut->back_pointer; | |
1386 | if (!ptr) | |
1387 | break; | |
1388 | } | |
1389 | BUG_ON(!assoc_array_ptr_is_node(ptr)); | |
1390 | node = assoc_array_ptr_to_node(ptr); | |
1391 | } | |
1392 | ||
1393 | edit->array->nr_leaves_on_tree += edit->adjust_count_by; | |
1394 | } | |
1395 | ||
1396 | call_rcu(&edit->rcu, assoc_array_rcu_cleanup); | |
1397 | } | |
1398 | ||
1399 | /** | |
1400 | * assoc_array_cancel_edit - Discard an edit script. | |
1401 | * @edit: The script to discard. | |
1402 | * | |
1403 | * Free an edit script and all the preallocated data it holds without making | |
1404 | * any changes to the associative array it was intended for. | |
1405 | * | |
1406 | * NOTE! In the case of an insertion script, this does _not_ release the leaf | |
1407 | * that was to be inserted. That is left to the caller. | |
1408 | */ | |
1409 | void assoc_array_cancel_edit(struct assoc_array_edit *edit) | |
1410 | { | |
1411 | struct assoc_array_ptr *ptr; | |
1412 | int i; | |
1413 | ||
1414 | pr_devel("-->%s()\n", __func__); | |
1415 | ||
1416 | /* Clean up after an out of memory error */ | |
1417 | for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { | |
1418 | ptr = edit->new_meta[i]; | |
1419 | if (ptr) { | |
1420 | if (assoc_array_ptr_is_node(ptr)) | |
1421 | kfree(assoc_array_ptr_to_node(ptr)); | |
1422 | else | |
1423 | kfree(assoc_array_ptr_to_shortcut(ptr)); | |
1424 | } | |
1425 | } | |
1426 | kfree(edit); | |
1427 | } | |
1428 | ||
1429 | /** | |
1430 | * assoc_array_gc - Garbage collect an associative array. | |
1431 | * @array: The array to clean. | |
1432 | * @ops: The operations to use. | |
1433 | * @iterator: A callback function to pass judgement on each object. | |
1434 | * @iterator_data: Private data for the callback function. | |
1435 | * | |
1436 | * Collect garbage from an associative array and pack down the internal tree to | |
1437 | * save memory. | |
1438 | * | |
1439 | * The iterator function is asked to pass judgement upon each object in the | |
1440 | * array. If it returns false, the object is discard and if it returns true, | |
1441 | * the object is kept. If it returns true, it must increment the object's | |
1442 | * usage count (or whatever it needs to do to retain it) before returning. | |
1443 | * | |
1444 | * This function returns 0 if successful or -ENOMEM if out of memory. In the | |
1445 | * latter case, the array is not changed. | |
1446 | * | |
1447 | * The caller should lock against other modifications and must continue to hold | |
1448 | * the lock until assoc_array_apply_edit() has been called. | |
1449 | * | |
1450 | * Accesses to the tree may take place concurrently with this function, | |
1451 | * provided they hold the RCU read lock. | |
1452 | */ | |
1453 | int assoc_array_gc(struct assoc_array *array, | |
1454 | const struct assoc_array_ops *ops, | |
1455 | bool (*iterator)(void *object, void *iterator_data), | |
1456 | void *iterator_data) | |
1457 | { | |
1458 | struct assoc_array_shortcut *shortcut, *new_s; | |
1459 | struct assoc_array_node *node, *new_n; | |
1460 | struct assoc_array_edit *edit; | |
1461 | struct assoc_array_ptr *cursor, *ptr; | |
1462 | struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; | |
1463 | unsigned long nr_leaves_on_tree; | |
d1dc8776 | 1464 | bool retained; |
3cb98950 DH |
1465 | int keylen, slot, nr_free, next_slot, i; |
1466 | ||
1467 | pr_devel("-->%s()\n", __func__); | |
1468 | ||
1469 | if (!array->root) | |
1470 | return 0; | |
1471 | ||
1472 | edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); | |
1473 | if (!edit) | |
1474 | return -ENOMEM; | |
1475 | edit->array = array; | |
1476 | edit->ops = ops; | |
1477 | edit->ops_for_excised_subtree = ops; | |
1478 | edit->set[0].ptr = &array->root; | |
1479 | edit->excised_subtree = array->root; | |
1480 | ||
1481 | new_root = new_parent = NULL; | |
1482 | new_ptr_pp = &new_root; | |
1483 | cursor = array->root; | |
1484 | ||
1485 | descend: | |
1486 | /* If this point is a shortcut, then we need to duplicate it and | |
1487 | * advance the target cursor. | |
1488 | */ | |
1489 | if (assoc_array_ptr_is_shortcut(cursor)) { | |
1490 | shortcut = assoc_array_ptr_to_shortcut(cursor); | |
1491 | keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); | |
1492 | keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; | |
2a12e000 LB |
1493 | new_s = kmalloc(struct_size(new_s, index_key, keylen), |
1494 | GFP_KERNEL); | |
3cb98950 DH |
1495 | if (!new_s) |
1496 | goto enomem; | |
1497 | pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); | |
2a12e000 | 1498 | memcpy(new_s, shortcut, struct_size(new_s, index_key, keylen)); |
3cb98950 DH |
1499 | new_s->back_pointer = new_parent; |
1500 | new_s->parent_slot = shortcut->parent_slot; | |
1501 | *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); | |
1502 | new_ptr_pp = &new_s->next_node; | |
1503 | cursor = shortcut->next_node; | |
1504 | } | |
1505 | ||
1506 | /* Duplicate the node at this position */ | |
1507 | node = assoc_array_ptr_to_node(cursor); | |
1508 | new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); | |
1509 | if (!new_n) | |
1510 | goto enomem; | |
1511 | pr_devel("dup node %p -> %p\n", node, new_n); | |
1512 | new_n->back_pointer = new_parent; | |
1513 | new_n->parent_slot = node->parent_slot; | |
1514 | *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); | |
1515 | new_ptr_pp = NULL; | |
1516 | slot = 0; | |
1517 | ||
1518 | continue_node: | |
1519 | /* Filter across any leaves and gc any subtrees */ | |
1520 | for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1521 | ptr = node->slots[slot]; | |
1522 | if (!ptr) | |
1523 | continue; | |
1524 | ||
1525 | if (assoc_array_ptr_is_leaf(ptr)) { | |
1526 | if (iterator(assoc_array_ptr_to_leaf(ptr), | |
1527 | iterator_data)) | |
1528 | /* The iterator will have done any reference | |
1529 | * counting on the object for us. | |
1530 | */ | |
1531 | new_n->slots[slot] = ptr; | |
1532 | continue; | |
1533 | } | |
1534 | ||
1535 | new_ptr_pp = &new_n->slots[slot]; | |
1536 | cursor = ptr; | |
1537 | goto descend; | |
1538 | } | |
1539 | ||
d1dc8776 | 1540 | retry_compress: |
3cb98950 DH |
1541 | pr_devel("-- compress node %p --\n", new_n); |
1542 | ||
1543 | /* Count up the number of empty slots in this node and work out the | |
1544 | * subtree leaf count. | |
1545 | */ | |
1546 | new_n->nr_leaves_on_branch = 0; | |
1547 | nr_free = 0; | |
1548 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1549 | ptr = new_n->slots[slot]; | |
1550 | if (!ptr) | |
1551 | nr_free++; | |
1552 | else if (assoc_array_ptr_is_leaf(ptr)) | |
1553 | new_n->nr_leaves_on_branch++; | |
1554 | } | |
1555 | pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); | |
1556 | ||
1557 | /* See what we can fold in */ | |
d1dc8776 | 1558 | retained = false; |
3cb98950 DH |
1559 | next_slot = 0; |
1560 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { | |
1561 | struct assoc_array_shortcut *s; | |
1562 | struct assoc_array_node *child; | |
1563 | ||
1564 | ptr = new_n->slots[slot]; | |
1565 | if (!ptr || assoc_array_ptr_is_leaf(ptr)) | |
1566 | continue; | |
1567 | ||
1568 | s = NULL; | |
1569 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1570 | s = assoc_array_ptr_to_shortcut(ptr); | |
1571 | ptr = s->next_node; | |
1572 | } | |
1573 | ||
1574 | child = assoc_array_ptr_to_node(ptr); | |
1575 | new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; | |
1576 | ||
1577 | if (child->nr_leaves_on_branch <= nr_free + 1) { | |
1578 | /* Fold the child node into this one */ | |
1579 | pr_devel("[%d] fold node %lu/%d [nx %d]\n", | |
1580 | slot, child->nr_leaves_on_branch, nr_free + 1, | |
1581 | next_slot); | |
1582 | ||
1583 | /* We would already have reaped an intervening shortcut | |
1584 | * on the way back up the tree. | |
1585 | */ | |
1586 | BUG_ON(s); | |
1587 | ||
1588 | new_n->slots[slot] = NULL; | |
1589 | nr_free++; | |
1590 | if (slot < next_slot) | |
1591 | next_slot = slot; | |
1592 | for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { | |
1593 | struct assoc_array_ptr *p = child->slots[i]; | |
1594 | if (!p) | |
1595 | continue; | |
1596 | BUG_ON(assoc_array_ptr_is_meta(p)); | |
1597 | while (new_n->slots[next_slot]) | |
1598 | next_slot++; | |
1599 | BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); | |
1600 | new_n->slots[next_slot++] = p; | |
1601 | nr_free--; | |
1602 | } | |
1603 | kfree(child); | |
1604 | } else { | |
1605 | pr_devel("[%d] retain node %lu/%d [nx %d]\n", | |
1606 | slot, child->nr_leaves_on_branch, nr_free + 1, | |
1607 | next_slot); | |
d1dc8776 | 1608 | retained = true; |
3cb98950 DH |
1609 | } |
1610 | } | |
1611 | ||
d1dc8776 SB |
1612 | if (retained && new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { |
1613 | pr_devel("internal nodes remain despite enough space, retrying\n"); | |
1614 | goto retry_compress; | |
1615 | } | |
3cb98950 DH |
1616 | pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); |
1617 | ||
1618 | nr_leaves_on_tree = new_n->nr_leaves_on_branch; | |
1619 | ||
1620 | /* Excise this node if it is singly occupied by a shortcut */ | |
1621 | if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { | |
1622 | for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) | |
1623 | if ((ptr = new_n->slots[slot])) | |
1624 | break; | |
1625 | ||
1626 | if (assoc_array_ptr_is_meta(ptr) && | |
1627 | assoc_array_ptr_is_shortcut(ptr)) { | |
1628 | pr_devel("excise node %p with 1 shortcut\n", new_n); | |
1629 | new_s = assoc_array_ptr_to_shortcut(ptr); | |
1630 | new_parent = new_n->back_pointer; | |
1631 | slot = new_n->parent_slot; | |
1632 | kfree(new_n); | |
1633 | if (!new_parent) { | |
1634 | new_s->back_pointer = NULL; | |
1635 | new_s->parent_slot = 0; | |
1636 | new_root = ptr; | |
1637 | goto gc_complete; | |
1638 | } | |
1639 | ||
1640 | if (assoc_array_ptr_is_shortcut(new_parent)) { | |
1641 | /* We can discard any preceding shortcut also */ | |
1642 | struct assoc_array_shortcut *s = | |
1643 | assoc_array_ptr_to_shortcut(new_parent); | |
1644 | ||
1645 | pr_devel("excise preceding shortcut\n"); | |
1646 | ||
1647 | new_parent = new_s->back_pointer = s->back_pointer; | |
1648 | slot = new_s->parent_slot = s->parent_slot; | |
1649 | kfree(s); | |
1650 | if (!new_parent) { | |
1651 | new_s->back_pointer = NULL; | |
1652 | new_s->parent_slot = 0; | |
1653 | new_root = ptr; | |
1654 | goto gc_complete; | |
1655 | } | |
1656 | } | |
1657 | ||
1658 | new_s->back_pointer = new_parent; | |
1659 | new_s->parent_slot = slot; | |
1660 | new_n = assoc_array_ptr_to_node(new_parent); | |
1661 | new_n->slots[slot] = ptr; | |
1662 | goto ascend_old_tree; | |
1663 | } | |
1664 | } | |
1665 | ||
1666 | /* Excise any shortcuts we might encounter that point to nodes that | |
1667 | * only contain leaves. | |
1668 | */ | |
1669 | ptr = new_n->back_pointer; | |
1670 | if (!ptr) | |
1671 | goto gc_complete; | |
1672 | ||
1673 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1674 | new_s = assoc_array_ptr_to_shortcut(ptr); | |
1675 | new_parent = new_s->back_pointer; | |
1676 | slot = new_s->parent_slot; | |
1677 | ||
1678 | if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { | |
1679 | struct assoc_array_node *n; | |
1680 | ||
1681 | pr_devel("excise shortcut\n"); | |
1682 | new_n->back_pointer = new_parent; | |
1683 | new_n->parent_slot = slot; | |
1684 | kfree(new_s); | |
1685 | if (!new_parent) { | |
1686 | new_root = assoc_array_node_to_ptr(new_n); | |
1687 | goto gc_complete; | |
1688 | } | |
1689 | ||
1690 | n = assoc_array_ptr_to_node(new_parent); | |
1691 | n->slots[slot] = assoc_array_node_to_ptr(new_n); | |
1692 | } | |
1693 | } else { | |
1694 | new_parent = ptr; | |
1695 | } | |
1696 | new_n = assoc_array_ptr_to_node(new_parent); | |
1697 | ||
1698 | ascend_old_tree: | |
1699 | ptr = node->back_pointer; | |
1700 | if (assoc_array_ptr_is_shortcut(ptr)) { | |
1701 | shortcut = assoc_array_ptr_to_shortcut(ptr); | |
1702 | slot = shortcut->parent_slot; | |
1703 | cursor = shortcut->back_pointer; | |
95389b08 DH |
1704 | if (!cursor) |
1705 | goto gc_complete; | |
3cb98950 DH |
1706 | } else { |
1707 | slot = node->parent_slot; | |
1708 | cursor = ptr; | |
1709 | } | |
95389b08 | 1710 | BUG_ON(!cursor); |
3cb98950 DH |
1711 | node = assoc_array_ptr_to_node(cursor); |
1712 | slot++; | |
1713 | goto continue_node; | |
1714 | ||
1715 | gc_complete: | |
1716 | edit->set[0].to = new_root; | |
1717 | assoc_array_apply_edit(edit); | |
27419604 | 1718 | array->nr_leaves_on_tree = nr_leaves_on_tree; |
3cb98950 DH |
1719 | return 0; |
1720 | ||
1721 | enomem: | |
1722 | pr_devel("enomem\n"); | |
1723 | assoc_array_destroy_subtree(new_root, edit->ops); | |
1724 | kfree(edit); | |
1725 | return -ENOMEM; | |
1726 | } |