]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * kernel/cpuset.c | |
3 | * | |
4 | * Processor and Memory placement constraints for sets of tasks. | |
5 | * | |
6 | * Copyright (C) 2003 BULL SA. | |
7 | * Copyright (C) 2004 Silicon Graphics, Inc. | |
8 | * | |
9 | * Portions derived from Patrick Mochel's sysfs code. | |
10 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | |
11 | * Portions Copyright (c) 2004 Silicon Graphics, Inc. | |
12 | * | |
13 | * 2003-10-10 Written by Simon Derr <[email protected]> | |
14 | * 2003-10-22 Updates by Stephen Hemminger. | |
15 | * 2004 May-July Rework by Paul Jackson <[email protected]> | |
16 | * | |
17 | * This file is subject to the terms and conditions of the GNU General Public | |
18 | * License. See the file COPYING in the main directory of the Linux | |
19 | * distribution for more details. | |
20 | */ | |
21 | ||
22 | #include <linux/config.h> | |
23 | #include <linux/cpu.h> | |
24 | #include <linux/cpumask.h> | |
25 | #include <linux/cpuset.h> | |
26 | #include <linux/err.h> | |
27 | #include <linux/errno.h> | |
28 | #include <linux/file.h> | |
29 | #include <linux/fs.h> | |
30 | #include <linux/init.h> | |
31 | #include <linux/interrupt.h> | |
32 | #include <linux/kernel.h> | |
33 | #include <linux/kmod.h> | |
34 | #include <linux/list.h> | |
35 | #include <linux/mm.h> | |
36 | #include <linux/module.h> | |
37 | #include <linux/mount.h> | |
38 | #include <linux/namei.h> | |
39 | #include <linux/pagemap.h> | |
40 | #include <linux/proc_fs.h> | |
41 | #include <linux/sched.h> | |
42 | #include <linux/seq_file.h> | |
43 | #include <linux/slab.h> | |
44 | #include <linux/smp_lock.h> | |
45 | #include <linux/spinlock.h> | |
46 | #include <linux/stat.h> | |
47 | #include <linux/string.h> | |
48 | #include <linux/time.h> | |
49 | #include <linux/backing-dev.h> | |
50 | #include <linux/sort.h> | |
51 | ||
52 | #include <asm/uaccess.h> | |
53 | #include <asm/atomic.h> | |
54 | #include <asm/semaphore.h> | |
55 | ||
56 | #define CPUSET_SUPER_MAGIC 0x27e0eb | |
57 | ||
58 | struct cpuset { | |
59 | unsigned long flags; /* "unsigned long" so bitops work */ | |
60 | cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ | |
61 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ | |
62 | ||
63 | atomic_t count; /* count tasks using this cpuset */ | |
64 | ||
65 | /* | |
66 | * We link our 'sibling' struct into our parents 'children'. | |
67 | * Our children link their 'sibling' into our 'children'. | |
68 | */ | |
69 | struct list_head sibling; /* my parents children */ | |
70 | struct list_head children; /* my children */ | |
71 | ||
72 | struct cpuset *parent; /* my parent */ | |
73 | struct dentry *dentry; /* cpuset fs entry */ | |
74 | ||
75 | /* | |
76 | * Copy of global cpuset_mems_generation as of the most | |
77 | * recent time this cpuset changed its mems_allowed. | |
78 | */ | |
79 | int mems_generation; | |
80 | }; | |
81 | ||
82 | /* bits in struct cpuset flags field */ | |
83 | typedef enum { | |
84 | CS_CPU_EXCLUSIVE, | |
85 | CS_MEM_EXCLUSIVE, | |
86 | CS_REMOVED, | |
87 | CS_NOTIFY_ON_RELEASE | |
88 | } cpuset_flagbits_t; | |
89 | ||
90 | /* convenient tests for these bits */ | |
91 | static inline int is_cpu_exclusive(const struct cpuset *cs) | |
92 | { | |
93 | return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | |
94 | } | |
95 | ||
96 | static inline int is_mem_exclusive(const struct cpuset *cs) | |
97 | { | |
98 | return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | |
99 | } | |
100 | ||
101 | static inline int is_removed(const struct cpuset *cs) | |
102 | { | |
103 | return !!test_bit(CS_REMOVED, &cs->flags); | |
104 | } | |
105 | ||
106 | static inline int notify_on_release(const struct cpuset *cs) | |
107 | { | |
108 | return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | |
109 | } | |
110 | ||
111 | /* | |
112 | * Increment this atomic integer everytime any cpuset changes its | |
113 | * mems_allowed value. Users of cpusets can track this generation | |
114 | * number, and avoid having to lock and reload mems_allowed unless | |
115 | * the cpuset they're using changes generation. | |
116 | * | |
117 | * A single, global generation is needed because attach_task() could | |
118 | * reattach a task to a different cpuset, which must not have its | |
119 | * generation numbers aliased with those of that tasks previous cpuset. | |
120 | * | |
121 | * Generations are needed for mems_allowed because one task cannot | |
122 | * modify anothers memory placement. So we must enable every task, | |
123 | * on every visit to __alloc_pages(), to efficiently check whether | |
124 | * its current->cpuset->mems_allowed has changed, requiring an update | |
125 | * of its current->mems_allowed. | |
126 | */ | |
127 | static atomic_t cpuset_mems_generation = ATOMIC_INIT(1); | |
128 | ||
129 | static struct cpuset top_cpuset = { | |
130 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | |
131 | .cpus_allowed = CPU_MASK_ALL, | |
132 | .mems_allowed = NODE_MASK_ALL, | |
133 | .count = ATOMIC_INIT(0), | |
134 | .sibling = LIST_HEAD_INIT(top_cpuset.sibling), | |
135 | .children = LIST_HEAD_INIT(top_cpuset.children), | |
136 | .parent = NULL, | |
137 | .dentry = NULL, | |
138 | .mems_generation = 0, | |
139 | }; | |
140 | ||
141 | static struct vfsmount *cpuset_mount; | |
142 | static struct super_block *cpuset_sb = NULL; | |
143 | ||
144 | /* | |
145 | * cpuset_sem should be held by anyone who is depending on the children | |
146 | * or sibling lists of any cpuset, or performing non-atomic operations | |
147 | * on the flags or *_allowed values of a cpuset, such as raising the | |
148 | * CS_REMOVED flag bit iff it is not already raised, or reading and | |
149 | * conditionally modifying the *_allowed values. One kernel global | |
150 | * cpuset semaphore should be sufficient - these things don't change | |
151 | * that much. | |
152 | * | |
153 | * The code that modifies cpusets holds cpuset_sem across the entire | |
154 | * operation, from cpuset_common_file_write() down, single threading | |
155 | * all cpuset modifications (except for counter manipulations from | |
156 | * fork and exit) across the system. This presumes that cpuset | |
157 | * modifications are rare - better kept simple and safe, even if slow. | |
158 | * | |
159 | * The code that reads cpusets, such as in cpuset_common_file_read() | |
160 | * and below, only holds cpuset_sem across small pieces of code, such | |
161 | * as when reading out possibly multi-word cpumasks and nodemasks, as | |
162 | * the risks are less, and the desire for performance a little greater. | |
163 | * The proc_cpuset_show() routine needs to hold cpuset_sem to insure | |
164 | * that no cs->dentry is NULL, as it walks up the cpuset tree to root. | |
165 | * | |
166 | * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't | |
167 | * (usually) grab cpuset_sem. These are the two most performance | |
168 | * critical pieces of code here. The exception occurs on exit(), | |
2efe86b8 PJ |
169 | * when a task in a notify_on_release cpuset exits. Then cpuset_sem |
170 | * is taken, and if the cpuset count is zero, a usermode call made | |
1da177e4 LT |
171 | * to /sbin/cpuset_release_agent with the name of the cpuset (path |
172 | * relative to the root of cpuset file system) as the argument. | |
173 | * | |
174 | * A cpuset can only be deleted if both its 'count' of using tasks is | |
175 | * zero, and its list of 'children' cpusets is empty. Since all tasks | |
176 | * in the system use _some_ cpuset, and since there is always at least | |
177 | * one task in the system (init, pid == 1), therefore, top_cpuset | |
178 | * always has either children cpusets and/or using tasks. So no need | |
179 | * for any special hack to ensure that top_cpuset cannot be deleted. | |
180 | */ | |
181 | ||
182 | static DECLARE_MUTEX(cpuset_sem); | |
183 | ||
184 | /* | |
185 | * A couple of forward declarations required, due to cyclic reference loop: | |
186 | * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file | |
187 | * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir. | |
188 | */ | |
189 | ||
190 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode); | |
191 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry); | |
192 | ||
193 | static struct backing_dev_info cpuset_backing_dev_info = { | |
194 | .ra_pages = 0, /* No readahead */ | |
195 | .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | |
196 | }; | |
197 | ||
198 | static struct inode *cpuset_new_inode(mode_t mode) | |
199 | { | |
200 | struct inode *inode = new_inode(cpuset_sb); | |
201 | ||
202 | if (inode) { | |
203 | inode->i_mode = mode; | |
204 | inode->i_uid = current->fsuid; | |
205 | inode->i_gid = current->fsgid; | |
206 | inode->i_blksize = PAGE_CACHE_SIZE; | |
207 | inode->i_blocks = 0; | |
208 | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | |
209 | inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info; | |
210 | } | |
211 | return inode; | |
212 | } | |
213 | ||
214 | static void cpuset_diput(struct dentry *dentry, struct inode *inode) | |
215 | { | |
216 | /* is dentry a directory ? if so, kfree() associated cpuset */ | |
217 | if (S_ISDIR(inode->i_mode)) { | |
218 | struct cpuset *cs = dentry->d_fsdata; | |
219 | BUG_ON(!(is_removed(cs))); | |
220 | kfree(cs); | |
221 | } | |
222 | iput(inode); | |
223 | } | |
224 | ||
225 | static struct dentry_operations cpuset_dops = { | |
226 | .d_iput = cpuset_diput, | |
227 | }; | |
228 | ||
229 | static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name) | |
230 | { | |
5f45f1a7 | 231 | struct dentry *d = lookup_one_len(name, parent, strlen(name)); |
1da177e4 LT |
232 | if (!IS_ERR(d)) |
233 | d->d_op = &cpuset_dops; | |
234 | return d; | |
235 | } | |
236 | ||
237 | static void remove_dir(struct dentry *d) | |
238 | { | |
239 | struct dentry *parent = dget(d->d_parent); | |
240 | ||
241 | d_delete(d); | |
242 | simple_rmdir(parent->d_inode, d); | |
243 | dput(parent); | |
244 | } | |
245 | ||
246 | /* | |
247 | * NOTE : the dentry must have been dget()'ed | |
248 | */ | |
249 | static void cpuset_d_remove_dir(struct dentry *dentry) | |
250 | { | |
251 | struct list_head *node; | |
252 | ||
253 | spin_lock(&dcache_lock); | |
254 | node = dentry->d_subdirs.next; | |
255 | while (node != &dentry->d_subdirs) { | |
256 | struct dentry *d = list_entry(node, struct dentry, d_child); | |
257 | list_del_init(node); | |
258 | if (d->d_inode) { | |
259 | d = dget_locked(d); | |
260 | spin_unlock(&dcache_lock); | |
261 | d_delete(d); | |
262 | simple_unlink(dentry->d_inode, d); | |
263 | dput(d); | |
264 | spin_lock(&dcache_lock); | |
265 | } | |
266 | node = dentry->d_subdirs.next; | |
267 | } | |
268 | list_del_init(&dentry->d_child); | |
269 | spin_unlock(&dcache_lock); | |
270 | remove_dir(dentry); | |
271 | } | |
272 | ||
273 | static struct super_operations cpuset_ops = { | |
274 | .statfs = simple_statfs, | |
275 | .drop_inode = generic_delete_inode, | |
276 | }; | |
277 | ||
278 | static int cpuset_fill_super(struct super_block *sb, void *unused_data, | |
279 | int unused_silent) | |
280 | { | |
281 | struct inode *inode; | |
282 | struct dentry *root; | |
283 | ||
284 | sb->s_blocksize = PAGE_CACHE_SIZE; | |
285 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | |
286 | sb->s_magic = CPUSET_SUPER_MAGIC; | |
287 | sb->s_op = &cpuset_ops; | |
288 | cpuset_sb = sb; | |
289 | ||
290 | inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR); | |
291 | if (inode) { | |
292 | inode->i_op = &simple_dir_inode_operations; | |
293 | inode->i_fop = &simple_dir_operations; | |
294 | /* directories start off with i_nlink == 2 (for "." entry) */ | |
295 | inode->i_nlink++; | |
296 | } else { | |
297 | return -ENOMEM; | |
298 | } | |
299 | ||
300 | root = d_alloc_root(inode); | |
301 | if (!root) { | |
302 | iput(inode); | |
303 | return -ENOMEM; | |
304 | } | |
305 | sb->s_root = root; | |
306 | return 0; | |
307 | } | |
308 | ||
309 | static struct super_block *cpuset_get_sb(struct file_system_type *fs_type, | |
310 | int flags, const char *unused_dev_name, | |
311 | void *data) | |
312 | { | |
313 | return get_sb_single(fs_type, flags, data, cpuset_fill_super); | |
314 | } | |
315 | ||
316 | static struct file_system_type cpuset_fs_type = { | |
317 | .name = "cpuset", | |
318 | .get_sb = cpuset_get_sb, | |
319 | .kill_sb = kill_litter_super, | |
320 | }; | |
321 | ||
322 | /* struct cftype: | |
323 | * | |
324 | * The files in the cpuset filesystem mostly have a very simple read/write | |
325 | * handling, some common function will take care of it. Nevertheless some cases | |
326 | * (read tasks) are special and therefore I define this structure for every | |
327 | * kind of file. | |
328 | * | |
329 | * | |
330 | * When reading/writing to a file: | |
331 | * - the cpuset to use in file->f_dentry->d_parent->d_fsdata | |
332 | * - the 'cftype' of the file is file->f_dentry->d_fsdata | |
333 | */ | |
334 | ||
335 | struct cftype { | |
336 | char *name; | |
337 | int private; | |
338 | int (*open) (struct inode *inode, struct file *file); | |
339 | ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes, | |
340 | loff_t *ppos); | |
341 | int (*write) (struct file *file, const char __user *buf, size_t nbytes, | |
342 | loff_t *ppos); | |
343 | int (*release) (struct inode *inode, struct file *file); | |
344 | }; | |
345 | ||
346 | static inline struct cpuset *__d_cs(struct dentry *dentry) | |
347 | { | |
348 | return dentry->d_fsdata; | |
349 | } | |
350 | ||
351 | static inline struct cftype *__d_cft(struct dentry *dentry) | |
352 | { | |
353 | return dentry->d_fsdata; | |
354 | } | |
355 | ||
356 | /* | |
357 | * Call with cpuset_sem held. Writes path of cpuset into buf. | |
358 | * Returns 0 on success, -errno on error. | |
359 | */ | |
360 | ||
361 | static int cpuset_path(const struct cpuset *cs, char *buf, int buflen) | |
362 | { | |
363 | char *start; | |
364 | ||
365 | start = buf + buflen; | |
366 | ||
367 | *--start = '\0'; | |
368 | for (;;) { | |
369 | int len = cs->dentry->d_name.len; | |
370 | if ((start -= len) < buf) | |
371 | return -ENAMETOOLONG; | |
372 | memcpy(start, cs->dentry->d_name.name, len); | |
373 | cs = cs->parent; | |
374 | if (!cs) | |
375 | break; | |
376 | if (!cs->parent) | |
377 | continue; | |
378 | if (--start < buf) | |
379 | return -ENAMETOOLONG; | |
380 | *start = '/'; | |
381 | } | |
382 | memmove(buf, start, buf + buflen - start); | |
383 | return 0; | |
384 | } | |
385 | ||
386 | /* | |
387 | * Notify userspace when a cpuset is released, by running | |
388 | * /sbin/cpuset_release_agent with the name of the cpuset (path | |
389 | * relative to the root of cpuset file system) as the argument. | |
390 | * | |
391 | * Most likely, this user command will try to rmdir this cpuset. | |
392 | * | |
393 | * This races with the possibility that some other task will be | |
394 | * attached to this cpuset before it is removed, or that some other | |
395 | * user task will 'mkdir' a child cpuset of this cpuset. That's ok. | |
396 | * The presumed 'rmdir' will fail quietly if this cpuset is no longer | |
397 | * unused, and this cpuset will be reprieved from its death sentence, | |
398 | * to continue to serve a useful existence. Next time it's released, | |
399 | * we will get notified again, if it still has 'notify_on_release' set. | |
400 | * | |
401 | * Note final arg to call_usermodehelper() is 0 - that means | |
402 | * don't wait. Since we are holding the global cpuset_sem here, | |
403 | * and we are asking another thread (started from keventd) to rmdir a | |
404 | * cpuset, we can't wait - or we'd deadlock with the removing thread | |
405 | * on cpuset_sem. | |
406 | */ | |
407 | ||
408 | static int cpuset_release_agent(char *cpuset_str) | |
409 | { | |
410 | char *argv[3], *envp[3]; | |
411 | int i; | |
412 | ||
413 | i = 0; | |
414 | argv[i++] = "/sbin/cpuset_release_agent"; | |
415 | argv[i++] = cpuset_str; | |
416 | argv[i] = NULL; | |
417 | ||
418 | i = 0; | |
419 | /* minimal command environment */ | |
420 | envp[i++] = "HOME=/"; | |
421 | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | |
422 | envp[i] = NULL; | |
423 | ||
424 | return call_usermodehelper(argv[0], argv, envp, 0); | |
425 | } | |
426 | ||
427 | /* | |
428 | * Either cs->count of using tasks transitioned to zero, or the | |
429 | * cs->children list of child cpusets just became empty. If this | |
430 | * cs is notify_on_release() and now both the user count is zero and | |
431 | * the list of children is empty, send notice to user land. | |
432 | */ | |
433 | ||
434 | static void check_for_release(struct cpuset *cs) | |
435 | { | |
436 | if (notify_on_release(cs) && atomic_read(&cs->count) == 0 && | |
437 | list_empty(&cs->children)) { | |
438 | char *buf; | |
439 | ||
440 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | |
441 | if (!buf) | |
442 | return; | |
443 | if (cpuset_path(cs, buf, PAGE_SIZE) < 0) | |
444 | goto out; | |
445 | cpuset_release_agent(buf); | |
446 | out: | |
447 | kfree(buf); | |
448 | } | |
449 | } | |
450 | ||
451 | /* | |
452 | * Return in *pmask the portion of a cpusets's cpus_allowed that | |
453 | * are online. If none are online, walk up the cpuset hierarchy | |
454 | * until we find one that does have some online cpus. If we get | |
455 | * all the way to the top and still haven't found any online cpus, | |
456 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | |
457 | * task, return cpu_online_map. | |
458 | * | |
459 | * One way or another, we guarantee to return some non-empty subset | |
460 | * of cpu_online_map. | |
461 | * | |
462 | * Call with cpuset_sem held. | |
463 | */ | |
464 | ||
465 | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | |
466 | { | |
467 | while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) | |
468 | cs = cs->parent; | |
469 | if (cs) | |
470 | cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); | |
471 | else | |
472 | *pmask = cpu_online_map; | |
473 | BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); | |
474 | } | |
475 | ||
476 | /* | |
477 | * Return in *pmask the portion of a cpusets's mems_allowed that | |
478 | * are online. If none are online, walk up the cpuset hierarchy | |
479 | * until we find one that does have some online mems. If we get | |
480 | * all the way to the top and still haven't found any online mems, | |
481 | * return node_online_map. | |
482 | * | |
483 | * One way or another, we guarantee to return some non-empty subset | |
484 | * of node_online_map. | |
485 | * | |
486 | * Call with cpuset_sem held. | |
487 | */ | |
488 | ||
489 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | |
490 | { | |
491 | while (cs && !nodes_intersects(cs->mems_allowed, node_online_map)) | |
492 | cs = cs->parent; | |
493 | if (cs) | |
494 | nodes_and(*pmask, cs->mems_allowed, node_online_map); | |
495 | else | |
496 | *pmask = node_online_map; | |
497 | BUG_ON(!nodes_intersects(*pmask, node_online_map)); | |
498 | } | |
499 | ||
500 | /* | |
501 | * Refresh current tasks mems_allowed and mems_generation from | |
502 | * current tasks cpuset. Call with cpuset_sem held. | |
503 | * | |
504 | * Be sure to call refresh_mems() on any cpuset operation which | |
505 | * (1) holds cpuset_sem, and (2) might possibly alloc memory. | |
506 | * Call after obtaining cpuset_sem lock, before any possible | |
507 | * allocation. Otherwise one risks trying to allocate memory | |
508 | * while the task cpuset_mems_generation is not the same as | |
509 | * the mems_generation in its cpuset, which would deadlock on | |
510 | * cpuset_sem in cpuset_update_current_mems_allowed(). | |
511 | * | |
512 | * Since we hold cpuset_sem, once refresh_mems() is called, the | |
513 | * test (current->cpuset_mems_generation != cs->mems_generation) | |
514 | * in cpuset_update_current_mems_allowed() will remain false, | |
515 | * until we drop cpuset_sem. Anyone else who would change our | |
516 | * cpusets mems_generation needs to lock cpuset_sem first. | |
517 | */ | |
518 | ||
519 | static void refresh_mems(void) | |
520 | { | |
521 | struct cpuset *cs = current->cpuset; | |
522 | ||
523 | if (current->cpuset_mems_generation != cs->mems_generation) { | |
524 | guarantee_online_mems(cs, ¤t->mems_allowed); | |
525 | current->cpuset_mems_generation = cs->mems_generation; | |
526 | } | |
527 | } | |
528 | ||
529 | /* | |
530 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | |
531 | * | |
532 | * One cpuset is a subset of another if all its allowed CPUs and | |
533 | * Memory Nodes are a subset of the other, and its exclusive flags | |
534 | * are only set if the other's are set. | |
535 | */ | |
536 | ||
537 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | |
538 | { | |
539 | return cpus_subset(p->cpus_allowed, q->cpus_allowed) && | |
540 | nodes_subset(p->mems_allowed, q->mems_allowed) && | |
541 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | |
542 | is_mem_exclusive(p) <= is_mem_exclusive(q); | |
543 | } | |
544 | ||
545 | /* | |
546 | * validate_change() - Used to validate that any proposed cpuset change | |
547 | * follows the structural rules for cpusets. | |
548 | * | |
549 | * If we replaced the flag and mask values of the current cpuset | |
550 | * (cur) with those values in the trial cpuset (trial), would | |
551 | * our various subset and exclusive rules still be valid? Presumes | |
552 | * cpuset_sem held. | |
553 | * | |
554 | * 'cur' is the address of an actual, in-use cpuset. Operations | |
555 | * such as list traversal that depend on the actual address of the | |
556 | * cpuset in the list must use cur below, not trial. | |
557 | * | |
558 | * 'trial' is the address of bulk structure copy of cur, with | |
559 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | |
560 | * or flags changed to new, trial values. | |
561 | * | |
562 | * Return 0 if valid, -errno if not. | |
563 | */ | |
564 | ||
565 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | |
566 | { | |
567 | struct cpuset *c, *par; | |
568 | ||
569 | /* Each of our child cpusets must be a subset of us */ | |
570 | list_for_each_entry(c, &cur->children, sibling) { | |
571 | if (!is_cpuset_subset(c, trial)) | |
572 | return -EBUSY; | |
573 | } | |
574 | ||
575 | /* Remaining checks don't apply to root cpuset */ | |
576 | if ((par = cur->parent) == NULL) | |
577 | return 0; | |
578 | ||
579 | /* We must be a subset of our parent cpuset */ | |
580 | if (!is_cpuset_subset(trial, par)) | |
581 | return -EACCES; | |
582 | ||
583 | /* If either I or some sibling (!= me) is exclusive, we can't overlap */ | |
584 | list_for_each_entry(c, &par->children, sibling) { | |
585 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | |
586 | c != cur && | |
587 | cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) | |
588 | return -EINVAL; | |
589 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | |
590 | c != cur && | |
591 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | |
592 | return -EINVAL; | |
593 | } | |
594 | ||
595 | return 0; | |
596 | } | |
597 | ||
85d7b949 DG |
598 | /* |
599 | * For a given cpuset cur, partition the system as follows | |
600 | * a. All cpus in the parent cpuset's cpus_allowed that are not part of any | |
601 | * exclusive child cpusets | |
602 | * b. All cpus in the current cpuset's cpus_allowed that are not part of any | |
603 | * exclusive child cpusets | |
604 | * Build these two partitions by calling partition_sched_domains | |
605 | * | |
606 | * Call with cpuset_sem held. May nest a call to the | |
607 | * lock_cpu_hotplug()/unlock_cpu_hotplug() pair. | |
608 | */ | |
609 | static void update_cpu_domains(struct cpuset *cur) | |
610 | { | |
611 | struct cpuset *c, *par = cur->parent; | |
612 | cpumask_t pspan, cspan; | |
613 | ||
614 | if (par == NULL || cpus_empty(cur->cpus_allowed)) | |
615 | return; | |
616 | ||
617 | /* | |
618 | * Get all cpus from parent's cpus_allowed not part of exclusive | |
619 | * children | |
620 | */ | |
621 | pspan = par->cpus_allowed; | |
622 | list_for_each_entry(c, &par->children, sibling) { | |
623 | if (is_cpu_exclusive(c)) | |
624 | cpus_andnot(pspan, pspan, c->cpus_allowed); | |
625 | } | |
626 | if (is_removed(cur) || !is_cpu_exclusive(cur)) { | |
627 | cpus_or(pspan, pspan, cur->cpus_allowed); | |
628 | if (cpus_equal(pspan, cur->cpus_allowed)) | |
629 | return; | |
630 | cspan = CPU_MASK_NONE; | |
631 | } else { | |
632 | if (cpus_empty(pspan)) | |
633 | return; | |
634 | cspan = cur->cpus_allowed; | |
635 | /* | |
636 | * Get all cpus from current cpuset's cpus_allowed not part | |
637 | * of exclusive children | |
638 | */ | |
639 | list_for_each_entry(c, &cur->children, sibling) { | |
640 | if (is_cpu_exclusive(c)) | |
641 | cpus_andnot(cspan, cspan, c->cpus_allowed); | |
642 | } | |
643 | } | |
644 | ||
645 | lock_cpu_hotplug(); | |
646 | partition_sched_domains(&pspan, &cspan); | |
647 | unlock_cpu_hotplug(); | |
648 | } | |
649 | ||
1da177e4 LT |
650 | static int update_cpumask(struct cpuset *cs, char *buf) |
651 | { | |
652 | struct cpuset trialcs; | |
85d7b949 | 653 | int retval, cpus_unchanged; |
1da177e4 LT |
654 | |
655 | trialcs = *cs; | |
656 | retval = cpulist_parse(buf, trialcs.cpus_allowed); | |
657 | if (retval < 0) | |
658 | return retval; | |
659 | cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | |
660 | if (cpus_empty(trialcs.cpus_allowed)) | |
661 | return -ENOSPC; | |
662 | retval = validate_change(cs, &trialcs); | |
85d7b949 DG |
663 | if (retval < 0) |
664 | return retval; | |
665 | cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed); | |
666 | cs->cpus_allowed = trialcs.cpus_allowed; | |
667 | if (is_cpu_exclusive(cs) && !cpus_unchanged) | |
668 | update_cpu_domains(cs); | |
669 | return 0; | |
1da177e4 LT |
670 | } |
671 | ||
672 | static int update_nodemask(struct cpuset *cs, char *buf) | |
673 | { | |
674 | struct cpuset trialcs; | |
675 | int retval; | |
676 | ||
677 | trialcs = *cs; | |
678 | retval = nodelist_parse(buf, trialcs.mems_allowed); | |
679 | if (retval < 0) | |
680 | return retval; | |
681 | nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map); | |
682 | if (nodes_empty(trialcs.mems_allowed)) | |
683 | return -ENOSPC; | |
684 | retval = validate_change(cs, &trialcs); | |
685 | if (retval == 0) { | |
686 | cs->mems_allowed = trialcs.mems_allowed; | |
687 | atomic_inc(&cpuset_mems_generation); | |
688 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | |
689 | } | |
690 | return retval; | |
691 | } | |
692 | ||
693 | /* | |
694 | * update_flag - read a 0 or a 1 in a file and update associated flag | |
695 | * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, | |
696 | * CS_NOTIFY_ON_RELEASE) | |
697 | * cs: the cpuset to update | |
698 | * buf: the buffer where we read the 0 or 1 | |
699 | */ | |
700 | ||
701 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | |
702 | { | |
703 | int turning_on; | |
704 | struct cpuset trialcs; | |
85d7b949 | 705 | int err, cpu_exclusive_changed; |
1da177e4 LT |
706 | |
707 | turning_on = (simple_strtoul(buf, NULL, 10) != 0); | |
708 | ||
709 | trialcs = *cs; | |
710 | if (turning_on) | |
711 | set_bit(bit, &trialcs.flags); | |
712 | else | |
713 | clear_bit(bit, &trialcs.flags); | |
714 | ||
715 | err = validate_change(cs, &trialcs); | |
85d7b949 DG |
716 | if (err < 0) |
717 | return err; | |
718 | cpu_exclusive_changed = | |
719 | (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs)); | |
720 | if (turning_on) | |
721 | set_bit(bit, &cs->flags); | |
722 | else | |
723 | clear_bit(bit, &cs->flags); | |
724 | ||
725 | if (cpu_exclusive_changed) | |
726 | update_cpu_domains(cs); | |
727 | return 0; | |
1da177e4 LT |
728 | } |
729 | ||
730 | static int attach_task(struct cpuset *cs, char *buf) | |
731 | { | |
732 | pid_t pid; | |
733 | struct task_struct *tsk; | |
734 | struct cpuset *oldcs; | |
735 | cpumask_t cpus; | |
736 | ||
737 | if (sscanf(buf, "%d", &pid) != 1) | |
738 | return -EIO; | |
739 | if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | |
740 | return -ENOSPC; | |
741 | ||
742 | if (pid) { | |
743 | read_lock(&tasklist_lock); | |
744 | ||
745 | tsk = find_task_by_pid(pid); | |
746 | if (!tsk) { | |
747 | read_unlock(&tasklist_lock); | |
748 | return -ESRCH; | |
749 | } | |
750 | ||
751 | get_task_struct(tsk); | |
752 | read_unlock(&tasklist_lock); | |
753 | ||
754 | if ((current->euid) && (current->euid != tsk->uid) | |
755 | && (current->euid != tsk->suid)) { | |
756 | put_task_struct(tsk); | |
757 | return -EACCES; | |
758 | } | |
759 | } else { | |
760 | tsk = current; | |
761 | get_task_struct(tsk); | |
762 | } | |
763 | ||
764 | task_lock(tsk); | |
765 | oldcs = tsk->cpuset; | |
766 | if (!oldcs) { | |
767 | task_unlock(tsk); | |
768 | put_task_struct(tsk); | |
769 | return -ESRCH; | |
770 | } | |
771 | atomic_inc(&cs->count); | |
772 | tsk->cpuset = cs; | |
773 | task_unlock(tsk); | |
774 | ||
775 | guarantee_online_cpus(cs, &cpus); | |
776 | set_cpus_allowed(tsk, cpus); | |
777 | ||
778 | put_task_struct(tsk); | |
779 | if (atomic_dec_and_test(&oldcs->count)) | |
780 | check_for_release(oldcs); | |
781 | return 0; | |
782 | } | |
783 | ||
784 | /* The various types of files and directories in a cpuset file system */ | |
785 | ||
786 | typedef enum { | |
787 | FILE_ROOT, | |
788 | FILE_DIR, | |
789 | FILE_CPULIST, | |
790 | FILE_MEMLIST, | |
791 | FILE_CPU_EXCLUSIVE, | |
792 | FILE_MEM_EXCLUSIVE, | |
793 | FILE_NOTIFY_ON_RELEASE, | |
794 | FILE_TASKLIST, | |
795 | } cpuset_filetype_t; | |
796 | ||
797 | static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf, | |
798 | size_t nbytes, loff_t *unused_ppos) | |
799 | { | |
800 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | |
801 | struct cftype *cft = __d_cft(file->f_dentry); | |
802 | cpuset_filetype_t type = cft->private; | |
803 | char *buffer; | |
804 | int retval = 0; | |
805 | ||
806 | /* Crude upper limit on largest legitimate cpulist user might write. */ | |
807 | if (nbytes > 100 + 6 * NR_CPUS) | |
808 | return -E2BIG; | |
809 | ||
810 | /* +1 for nul-terminator */ | |
811 | if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0) | |
812 | return -ENOMEM; | |
813 | ||
814 | if (copy_from_user(buffer, userbuf, nbytes)) { | |
815 | retval = -EFAULT; | |
816 | goto out1; | |
817 | } | |
818 | buffer[nbytes] = 0; /* nul-terminate */ | |
819 | ||
820 | down(&cpuset_sem); | |
821 | ||
822 | if (is_removed(cs)) { | |
823 | retval = -ENODEV; | |
824 | goto out2; | |
825 | } | |
826 | ||
827 | switch (type) { | |
828 | case FILE_CPULIST: | |
829 | retval = update_cpumask(cs, buffer); | |
830 | break; | |
831 | case FILE_MEMLIST: | |
832 | retval = update_nodemask(cs, buffer); | |
833 | break; | |
834 | case FILE_CPU_EXCLUSIVE: | |
835 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer); | |
836 | break; | |
837 | case FILE_MEM_EXCLUSIVE: | |
838 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); | |
839 | break; | |
840 | case FILE_NOTIFY_ON_RELEASE: | |
841 | retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer); | |
842 | break; | |
843 | case FILE_TASKLIST: | |
844 | retval = attach_task(cs, buffer); | |
845 | break; | |
846 | default: | |
847 | retval = -EINVAL; | |
848 | goto out2; | |
849 | } | |
850 | ||
851 | if (retval == 0) | |
852 | retval = nbytes; | |
853 | out2: | |
854 | up(&cpuset_sem); | |
855 | out1: | |
856 | kfree(buffer); | |
857 | return retval; | |
858 | } | |
859 | ||
860 | static ssize_t cpuset_file_write(struct file *file, const char __user *buf, | |
861 | size_t nbytes, loff_t *ppos) | |
862 | { | |
863 | ssize_t retval = 0; | |
864 | struct cftype *cft = __d_cft(file->f_dentry); | |
865 | if (!cft) | |
866 | return -ENODEV; | |
867 | ||
868 | /* special function ? */ | |
869 | if (cft->write) | |
870 | retval = cft->write(file, buf, nbytes, ppos); | |
871 | else | |
872 | retval = cpuset_common_file_write(file, buf, nbytes, ppos); | |
873 | ||
874 | return retval; | |
875 | } | |
876 | ||
877 | /* | |
878 | * These ascii lists should be read in a single call, by using a user | |
879 | * buffer large enough to hold the entire map. If read in smaller | |
880 | * chunks, there is no guarantee of atomicity. Since the display format | |
881 | * used, list of ranges of sequential numbers, is variable length, | |
882 | * and since these maps can change value dynamically, one could read | |
883 | * gibberish by doing partial reads while a list was changing. | |
884 | * A single large read to a buffer that crosses a page boundary is | |
885 | * ok, because the result being copied to user land is not recomputed | |
886 | * across a page fault. | |
887 | */ | |
888 | ||
889 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | |
890 | { | |
891 | cpumask_t mask; | |
892 | ||
893 | down(&cpuset_sem); | |
894 | mask = cs->cpus_allowed; | |
895 | up(&cpuset_sem); | |
896 | ||
897 | return cpulist_scnprintf(page, PAGE_SIZE, mask); | |
898 | } | |
899 | ||
900 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | |
901 | { | |
902 | nodemask_t mask; | |
903 | ||
904 | down(&cpuset_sem); | |
905 | mask = cs->mems_allowed; | |
906 | up(&cpuset_sem); | |
907 | ||
908 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | |
909 | } | |
910 | ||
911 | static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, | |
912 | size_t nbytes, loff_t *ppos) | |
913 | { | |
914 | struct cftype *cft = __d_cft(file->f_dentry); | |
915 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | |
916 | cpuset_filetype_t type = cft->private; | |
917 | char *page; | |
918 | ssize_t retval = 0; | |
919 | char *s; | |
920 | char *start; | |
921 | size_t n; | |
922 | ||
923 | if (!(page = (char *)__get_free_page(GFP_KERNEL))) | |
924 | return -ENOMEM; | |
925 | ||
926 | s = page; | |
927 | ||
928 | switch (type) { | |
929 | case FILE_CPULIST: | |
930 | s += cpuset_sprintf_cpulist(s, cs); | |
931 | break; | |
932 | case FILE_MEMLIST: | |
933 | s += cpuset_sprintf_memlist(s, cs); | |
934 | break; | |
935 | case FILE_CPU_EXCLUSIVE: | |
936 | *s++ = is_cpu_exclusive(cs) ? '1' : '0'; | |
937 | break; | |
938 | case FILE_MEM_EXCLUSIVE: | |
939 | *s++ = is_mem_exclusive(cs) ? '1' : '0'; | |
940 | break; | |
941 | case FILE_NOTIFY_ON_RELEASE: | |
942 | *s++ = notify_on_release(cs) ? '1' : '0'; | |
943 | break; | |
944 | default: | |
945 | retval = -EINVAL; | |
946 | goto out; | |
947 | } | |
948 | *s++ = '\n'; | |
949 | *s = '\0'; | |
950 | ||
951 | start = page + *ppos; | |
952 | n = s - start; | |
953 | retval = n - copy_to_user(buf, start, min(n, nbytes)); | |
954 | *ppos += retval; | |
955 | out: | |
956 | free_page((unsigned long)page); | |
957 | return retval; | |
958 | } | |
959 | ||
960 | static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes, | |
961 | loff_t *ppos) | |
962 | { | |
963 | ssize_t retval = 0; | |
964 | struct cftype *cft = __d_cft(file->f_dentry); | |
965 | if (!cft) | |
966 | return -ENODEV; | |
967 | ||
968 | /* special function ? */ | |
969 | if (cft->read) | |
970 | retval = cft->read(file, buf, nbytes, ppos); | |
971 | else | |
972 | retval = cpuset_common_file_read(file, buf, nbytes, ppos); | |
973 | ||
974 | return retval; | |
975 | } | |
976 | ||
977 | static int cpuset_file_open(struct inode *inode, struct file *file) | |
978 | { | |
979 | int err; | |
980 | struct cftype *cft; | |
981 | ||
982 | err = generic_file_open(inode, file); | |
983 | if (err) | |
984 | return err; | |
985 | ||
986 | cft = __d_cft(file->f_dentry); | |
987 | if (!cft) | |
988 | return -ENODEV; | |
989 | if (cft->open) | |
990 | err = cft->open(inode, file); | |
991 | else | |
992 | err = 0; | |
993 | ||
994 | return err; | |
995 | } | |
996 | ||
997 | static int cpuset_file_release(struct inode *inode, struct file *file) | |
998 | { | |
999 | struct cftype *cft = __d_cft(file->f_dentry); | |
1000 | if (cft->release) | |
1001 | return cft->release(inode, file); | |
1002 | return 0; | |
1003 | } | |
1004 | ||
1005 | static struct file_operations cpuset_file_operations = { | |
1006 | .read = cpuset_file_read, | |
1007 | .write = cpuset_file_write, | |
1008 | .llseek = generic_file_llseek, | |
1009 | .open = cpuset_file_open, | |
1010 | .release = cpuset_file_release, | |
1011 | }; | |
1012 | ||
1013 | static struct inode_operations cpuset_dir_inode_operations = { | |
1014 | .lookup = simple_lookup, | |
1015 | .mkdir = cpuset_mkdir, | |
1016 | .rmdir = cpuset_rmdir, | |
1017 | }; | |
1018 | ||
1019 | static int cpuset_create_file(struct dentry *dentry, int mode) | |
1020 | { | |
1021 | struct inode *inode; | |
1022 | ||
1023 | if (!dentry) | |
1024 | return -ENOENT; | |
1025 | if (dentry->d_inode) | |
1026 | return -EEXIST; | |
1027 | ||
1028 | inode = cpuset_new_inode(mode); | |
1029 | if (!inode) | |
1030 | return -ENOMEM; | |
1031 | ||
1032 | if (S_ISDIR(mode)) { | |
1033 | inode->i_op = &cpuset_dir_inode_operations; | |
1034 | inode->i_fop = &simple_dir_operations; | |
1035 | ||
1036 | /* start off with i_nlink == 2 (for "." entry) */ | |
1037 | inode->i_nlink++; | |
1038 | } else if (S_ISREG(mode)) { | |
1039 | inode->i_size = 0; | |
1040 | inode->i_fop = &cpuset_file_operations; | |
1041 | } | |
1042 | ||
1043 | d_instantiate(dentry, inode); | |
1044 | dget(dentry); /* Extra count - pin the dentry in core */ | |
1045 | return 0; | |
1046 | } | |
1047 | ||
1048 | /* | |
1049 | * cpuset_create_dir - create a directory for an object. | |
1050 | * cs: the cpuset we create the directory for. | |
1051 | * It must have a valid ->parent field | |
1052 | * And we are going to fill its ->dentry field. | |
1053 | * name: The name to give to the cpuset directory. Will be copied. | |
1054 | * mode: mode to set on new directory. | |
1055 | */ | |
1056 | ||
1057 | static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode) | |
1058 | { | |
1059 | struct dentry *dentry = NULL; | |
1060 | struct dentry *parent; | |
1061 | int error = 0; | |
1062 | ||
1063 | parent = cs->parent->dentry; | |
1064 | dentry = cpuset_get_dentry(parent, name); | |
1065 | if (IS_ERR(dentry)) | |
1066 | return PTR_ERR(dentry); | |
1067 | error = cpuset_create_file(dentry, S_IFDIR | mode); | |
1068 | if (!error) { | |
1069 | dentry->d_fsdata = cs; | |
1070 | parent->d_inode->i_nlink++; | |
1071 | cs->dentry = dentry; | |
1072 | } | |
1073 | dput(dentry); | |
1074 | ||
1075 | return error; | |
1076 | } | |
1077 | ||
1078 | static int cpuset_add_file(struct dentry *dir, const struct cftype *cft) | |
1079 | { | |
1080 | struct dentry *dentry; | |
1081 | int error; | |
1082 | ||
1083 | down(&dir->d_inode->i_sem); | |
1084 | dentry = cpuset_get_dentry(dir, cft->name); | |
1085 | if (!IS_ERR(dentry)) { | |
1086 | error = cpuset_create_file(dentry, 0644 | S_IFREG); | |
1087 | if (!error) | |
1088 | dentry->d_fsdata = (void *)cft; | |
1089 | dput(dentry); | |
1090 | } else | |
1091 | error = PTR_ERR(dentry); | |
1092 | up(&dir->d_inode->i_sem); | |
1093 | return error; | |
1094 | } | |
1095 | ||
1096 | /* | |
1097 | * Stuff for reading the 'tasks' file. | |
1098 | * | |
1099 | * Reading this file can return large amounts of data if a cpuset has | |
1100 | * *lots* of attached tasks. So it may need several calls to read(), | |
1101 | * but we cannot guarantee that the information we produce is correct | |
1102 | * unless we produce it entirely atomically. | |
1103 | * | |
1104 | * Upon tasks file open(), a struct ctr_struct is allocated, that | |
1105 | * will have a pointer to an array (also allocated here). The struct | |
1106 | * ctr_struct * is stored in file->private_data. Its resources will | |
1107 | * be freed by release() when the file is closed. The array is used | |
1108 | * to sprintf the PIDs and then used by read(). | |
1109 | */ | |
1110 | ||
1111 | /* cpusets_tasks_read array */ | |
1112 | ||
1113 | struct ctr_struct { | |
1114 | char *buf; | |
1115 | int bufsz; | |
1116 | }; | |
1117 | ||
1118 | /* | |
1119 | * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'. | |
1120 | * Return actual number of pids loaded. | |
1121 | */ | |
1122 | static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs) | |
1123 | { | |
1124 | int n = 0; | |
1125 | struct task_struct *g, *p; | |
1126 | ||
1127 | read_lock(&tasklist_lock); | |
1128 | ||
1129 | do_each_thread(g, p) { | |
1130 | if (p->cpuset == cs) { | |
1131 | pidarray[n++] = p->pid; | |
1132 | if (unlikely(n == npids)) | |
1133 | goto array_full; | |
1134 | } | |
1135 | } while_each_thread(g, p); | |
1136 | ||
1137 | array_full: | |
1138 | read_unlock(&tasklist_lock); | |
1139 | return n; | |
1140 | } | |
1141 | ||
1142 | static int cmppid(const void *a, const void *b) | |
1143 | { | |
1144 | return *(pid_t *)a - *(pid_t *)b; | |
1145 | } | |
1146 | ||
1147 | /* | |
1148 | * Convert array 'a' of 'npids' pid_t's to a string of newline separated | |
1149 | * decimal pids in 'buf'. Don't write more than 'sz' chars, but return | |
1150 | * count 'cnt' of how many chars would be written if buf were large enough. | |
1151 | */ | |
1152 | static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | |
1153 | { | |
1154 | int cnt = 0; | |
1155 | int i; | |
1156 | ||
1157 | for (i = 0; i < npids; i++) | |
1158 | cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]); | |
1159 | return cnt; | |
1160 | } | |
1161 | ||
1162 | static int cpuset_tasks_open(struct inode *unused, struct file *file) | |
1163 | { | |
1164 | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | |
1165 | struct ctr_struct *ctr; | |
1166 | pid_t *pidarray; | |
1167 | int npids; | |
1168 | char c; | |
1169 | ||
1170 | if (!(file->f_mode & FMODE_READ)) | |
1171 | return 0; | |
1172 | ||
1173 | ctr = kmalloc(sizeof(*ctr), GFP_KERNEL); | |
1174 | if (!ctr) | |
1175 | goto err0; | |
1176 | ||
1177 | /* | |
1178 | * If cpuset gets more users after we read count, we won't have | |
1179 | * enough space - tough. This race is indistinguishable to the | |
1180 | * caller from the case that the additional cpuset users didn't | |
1181 | * show up until sometime later on. | |
1182 | */ | |
1183 | npids = atomic_read(&cs->count); | |
1184 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | |
1185 | if (!pidarray) | |
1186 | goto err1; | |
1187 | ||
1188 | npids = pid_array_load(pidarray, npids, cs); | |
1189 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | |
1190 | ||
1191 | /* Call pid_array_to_buf() twice, first just to get bufsz */ | |
1192 | ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1; | |
1193 | ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL); | |
1194 | if (!ctr->buf) | |
1195 | goto err2; | |
1196 | ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids); | |
1197 | ||
1198 | kfree(pidarray); | |
1199 | file->private_data = ctr; | |
1200 | return 0; | |
1201 | ||
1202 | err2: | |
1203 | kfree(pidarray); | |
1204 | err1: | |
1205 | kfree(ctr); | |
1206 | err0: | |
1207 | return -ENOMEM; | |
1208 | } | |
1209 | ||
1210 | static ssize_t cpuset_tasks_read(struct file *file, char __user *buf, | |
1211 | size_t nbytes, loff_t *ppos) | |
1212 | { | |
1213 | struct ctr_struct *ctr = file->private_data; | |
1214 | ||
1215 | if (*ppos + nbytes > ctr->bufsz) | |
1216 | nbytes = ctr->bufsz - *ppos; | |
1217 | if (copy_to_user(buf, ctr->buf + *ppos, nbytes)) | |
1218 | return -EFAULT; | |
1219 | *ppos += nbytes; | |
1220 | return nbytes; | |
1221 | } | |
1222 | ||
1223 | static int cpuset_tasks_release(struct inode *unused_inode, struct file *file) | |
1224 | { | |
1225 | struct ctr_struct *ctr; | |
1226 | ||
1227 | if (file->f_mode & FMODE_READ) { | |
1228 | ctr = file->private_data; | |
1229 | kfree(ctr->buf); | |
1230 | kfree(ctr); | |
1231 | } | |
1232 | return 0; | |
1233 | } | |
1234 | ||
1235 | /* | |
1236 | * for the common functions, 'private' gives the type of file | |
1237 | */ | |
1238 | ||
1239 | static struct cftype cft_tasks = { | |
1240 | .name = "tasks", | |
1241 | .open = cpuset_tasks_open, | |
1242 | .read = cpuset_tasks_read, | |
1243 | .release = cpuset_tasks_release, | |
1244 | .private = FILE_TASKLIST, | |
1245 | }; | |
1246 | ||
1247 | static struct cftype cft_cpus = { | |
1248 | .name = "cpus", | |
1249 | .private = FILE_CPULIST, | |
1250 | }; | |
1251 | ||
1252 | static struct cftype cft_mems = { | |
1253 | .name = "mems", | |
1254 | .private = FILE_MEMLIST, | |
1255 | }; | |
1256 | ||
1257 | static struct cftype cft_cpu_exclusive = { | |
1258 | .name = "cpu_exclusive", | |
1259 | .private = FILE_CPU_EXCLUSIVE, | |
1260 | }; | |
1261 | ||
1262 | static struct cftype cft_mem_exclusive = { | |
1263 | .name = "mem_exclusive", | |
1264 | .private = FILE_MEM_EXCLUSIVE, | |
1265 | }; | |
1266 | ||
1267 | static struct cftype cft_notify_on_release = { | |
1268 | .name = "notify_on_release", | |
1269 | .private = FILE_NOTIFY_ON_RELEASE, | |
1270 | }; | |
1271 | ||
1272 | static int cpuset_populate_dir(struct dentry *cs_dentry) | |
1273 | { | |
1274 | int err; | |
1275 | ||
1276 | if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) | |
1277 | return err; | |
1278 | if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) | |
1279 | return err; | |
1280 | if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) | |
1281 | return err; | |
1282 | if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) | |
1283 | return err; | |
1284 | if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) | |
1285 | return err; | |
1286 | if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) | |
1287 | return err; | |
1288 | return 0; | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * cpuset_create - create a cpuset | |
1293 | * parent: cpuset that will be parent of the new cpuset. | |
1294 | * name: name of the new cpuset. Will be strcpy'ed. | |
1295 | * mode: mode to set on new inode | |
1296 | * | |
1297 | * Must be called with the semaphore on the parent inode held | |
1298 | */ | |
1299 | ||
1300 | static long cpuset_create(struct cpuset *parent, const char *name, int mode) | |
1301 | { | |
1302 | struct cpuset *cs; | |
1303 | int err; | |
1304 | ||
1305 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | |
1306 | if (!cs) | |
1307 | return -ENOMEM; | |
1308 | ||
1309 | down(&cpuset_sem); | |
1310 | refresh_mems(); | |
1311 | cs->flags = 0; | |
1312 | if (notify_on_release(parent)) | |
1313 | set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | |
1314 | cs->cpus_allowed = CPU_MASK_NONE; | |
1315 | cs->mems_allowed = NODE_MASK_NONE; | |
1316 | atomic_set(&cs->count, 0); | |
1317 | INIT_LIST_HEAD(&cs->sibling); | |
1318 | INIT_LIST_HEAD(&cs->children); | |
1319 | atomic_inc(&cpuset_mems_generation); | |
1320 | cs->mems_generation = atomic_read(&cpuset_mems_generation); | |
1321 | ||
1322 | cs->parent = parent; | |
1323 | ||
1324 | list_add(&cs->sibling, &cs->parent->children); | |
1325 | ||
1326 | err = cpuset_create_dir(cs, name, mode); | |
1327 | if (err < 0) | |
1328 | goto err; | |
1329 | ||
1330 | /* | |
1331 | * Release cpuset_sem before cpuset_populate_dir() because it | |
1332 | * will down() this new directory's i_sem and if we race with | |
1333 | * another mkdir, we might deadlock. | |
1334 | */ | |
1335 | up(&cpuset_sem); | |
1336 | ||
1337 | err = cpuset_populate_dir(cs->dentry); | |
1338 | /* If err < 0, we have a half-filled directory - oh well ;) */ | |
1339 | return 0; | |
1340 | err: | |
1341 | list_del(&cs->sibling); | |
1342 | up(&cpuset_sem); | |
1343 | kfree(cs); | |
1344 | return err; | |
1345 | } | |
1346 | ||
1347 | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode) | |
1348 | { | |
1349 | struct cpuset *c_parent = dentry->d_parent->d_fsdata; | |
1350 | ||
1351 | /* the vfs holds inode->i_sem already */ | |
1352 | return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR); | |
1353 | } | |
1354 | ||
1355 | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | |
1356 | { | |
1357 | struct cpuset *cs = dentry->d_fsdata; | |
1358 | struct dentry *d; | |
1359 | struct cpuset *parent; | |
1360 | ||
1361 | /* the vfs holds both inode->i_sem already */ | |
1362 | ||
1363 | down(&cpuset_sem); | |
1364 | refresh_mems(); | |
1365 | if (atomic_read(&cs->count) > 0) { | |
1366 | up(&cpuset_sem); | |
1367 | return -EBUSY; | |
1368 | } | |
1369 | if (!list_empty(&cs->children)) { | |
1370 | up(&cpuset_sem); | |
1371 | return -EBUSY; | |
1372 | } | |
1da177e4 LT |
1373 | parent = cs->parent; |
1374 | set_bit(CS_REMOVED, &cs->flags); | |
85d7b949 DG |
1375 | if (is_cpu_exclusive(cs)) |
1376 | update_cpu_domains(cs); | |
1da177e4 LT |
1377 | list_del(&cs->sibling); /* delete my sibling from parent->children */ |
1378 | if (list_empty(&parent->children)) | |
1379 | check_for_release(parent); | |
85d7b949 | 1380 | spin_lock(&cs->dentry->d_lock); |
1da177e4 LT |
1381 | d = dget(cs->dentry); |
1382 | cs->dentry = NULL; | |
1383 | spin_unlock(&d->d_lock); | |
1384 | cpuset_d_remove_dir(d); | |
1385 | dput(d); | |
1386 | up(&cpuset_sem); | |
1387 | return 0; | |
1388 | } | |
1389 | ||
1390 | /** | |
1391 | * cpuset_init - initialize cpusets at system boot | |
1392 | * | |
1393 | * Description: Initialize top_cpuset and the cpuset internal file system, | |
1394 | **/ | |
1395 | ||
1396 | int __init cpuset_init(void) | |
1397 | { | |
1398 | struct dentry *root; | |
1399 | int err; | |
1400 | ||
1401 | top_cpuset.cpus_allowed = CPU_MASK_ALL; | |
1402 | top_cpuset.mems_allowed = NODE_MASK_ALL; | |
1403 | ||
1404 | atomic_inc(&cpuset_mems_generation); | |
1405 | top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation); | |
1406 | ||
1407 | init_task.cpuset = &top_cpuset; | |
1408 | ||
1409 | err = register_filesystem(&cpuset_fs_type); | |
1410 | if (err < 0) | |
1411 | goto out; | |
1412 | cpuset_mount = kern_mount(&cpuset_fs_type); | |
1413 | if (IS_ERR(cpuset_mount)) { | |
1414 | printk(KERN_ERR "cpuset: could not mount!\n"); | |
1415 | err = PTR_ERR(cpuset_mount); | |
1416 | cpuset_mount = NULL; | |
1417 | goto out; | |
1418 | } | |
1419 | root = cpuset_mount->mnt_sb->s_root; | |
1420 | root->d_fsdata = &top_cpuset; | |
1421 | root->d_inode->i_nlink++; | |
1422 | top_cpuset.dentry = root; | |
1423 | root->d_inode->i_op = &cpuset_dir_inode_operations; | |
1424 | err = cpuset_populate_dir(root); | |
1425 | out: | |
1426 | return err; | |
1427 | } | |
1428 | ||
1429 | /** | |
1430 | * cpuset_init_smp - initialize cpus_allowed | |
1431 | * | |
1432 | * Description: Finish top cpuset after cpu, node maps are initialized | |
1433 | **/ | |
1434 | ||
1435 | void __init cpuset_init_smp(void) | |
1436 | { | |
1437 | top_cpuset.cpus_allowed = cpu_online_map; | |
1438 | top_cpuset.mems_allowed = node_online_map; | |
1439 | } | |
1440 | ||
1441 | /** | |
1442 | * cpuset_fork - attach newly forked task to its parents cpuset. | |
1443 | * @p: pointer to task_struct of forking parent process. | |
1444 | * | |
1445 | * Description: By default, on fork, a task inherits its | |
1446 | * parents cpuset. The pointer to the shared cpuset is | |
1447 | * automatically copied in fork.c by dup_task_struct(). | |
1448 | * This cpuset_fork() routine need only increment the usage | |
1449 | * counter in that cpuset. | |
1450 | **/ | |
1451 | ||
1452 | void cpuset_fork(struct task_struct *tsk) | |
1453 | { | |
1454 | atomic_inc(&tsk->cpuset->count); | |
1455 | } | |
1456 | ||
1457 | /** | |
1458 | * cpuset_exit - detach cpuset from exiting task | |
1459 | * @tsk: pointer to task_struct of exiting process | |
1460 | * | |
1461 | * Description: Detach cpuset from @tsk and release it. | |
1462 | * | |
2efe86b8 PJ |
1463 | * Note that cpusets marked notify_on_release force every task |
1464 | * in them to take the global cpuset_sem semaphore when exiting. | |
1465 | * This could impact scaling on very large systems. Be reluctant | |
1466 | * to use notify_on_release cpusets where very high task exit | |
1467 | * scaling is required on large systems. | |
1468 | * | |
1469 | * Don't even think about derefencing 'cs' after the cpuset use | |
1470 | * count goes to zero, except inside a critical section guarded | |
1471 | * by the cpuset_sem semaphore. If you don't hold cpuset_sem, | |
1472 | * then a zero cpuset use count is a license to any other task to | |
1473 | * nuke the cpuset immediately. | |
1474 | * | |
1da177e4 LT |
1475 | **/ |
1476 | ||
1477 | void cpuset_exit(struct task_struct *tsk) | |
1478 | { | |
1479 | struct cpuset *cs; | |
1480 | ||
1481 | task_lock(tsk); | |
1482 | cs = tsk->cpuset; | |
1483 | tsk->cpuset = NULL; | |
1484 | task_unlock(tsk); | |
1485 | ||
2efe86b8 | 1486 | if (notify_on_release(cs)) { |
1da177e4 | 1487 | down(&cpuset_sem); |
2efe86b8 PJ |
1488 | if (atomic_dec_and_test(&cs->count)) |
1489 | check_for_release(cs); | |
1da177e4 | 1490 | up(&cpuset_sem); |
2efe86b8 PJ |
1491 | } else { |
1492 | atomic_dec(&cs->count); | |
1da177e4 LT |
1493 | } |
1494 | } | |
1495 | ||
1496 | /** | |
1497 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | |
1498 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | |
1499 | * | |
1500 | * Description: Returns the cpumask_t cpus_allowed of the cpuset | |
1501 | * attached to the specified @tsk. Guaranteed to return some non-empty | |
1502 | * subset of cpu_online_map, even if this means going outside the | |
1503 | * tasks cpuset. | |
1504 | **/ | |
1505 | ||
9a848896 | 1506 | cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk) |
1da177e4 LT |
1507 | { |
1508 | cpumask_t mask; | |
1509 | ||
1510 | down(&cpuset_sem); | |
1511 | task_lock((struct task_struct *)tsk); | |
1512 | guarantee_online_cpus(tsk->cpuset, &mask); | |
1513 | task_unlock((struct task_struct *)tsk); | |
1514 | up(&cpuset_sem); | |
1515 | ||
1516 | return mask; | |
1517 | } | |
1518 | ||
1519 | void cpuset_init_current_mems_allowed(void) | |
1520 | { | |
1521 | current->mems_allowed = NODE_MASK_ALL; | |
1522 | } | |
1523 | ||
1524 | /* | |
1525 | * If the current tasks cpusets mems_allowed changed behind our backs, | |
1526 | * update current->mems_allowed and mems_generation to the new value. | |
1527 | * Do not call this routine if in_interrupt(). | |
1528 | */ | |
1529 | ||
1530 | void cpuset_update_current_mems_allowed(void) | |
1531 | { | |
1532 | struct cpuset *cs = current->cpuset; | |
1533 | ||
1534 | if (!cs) | |
1535 | return; /* task is exiting */ | |
1536 | if (current->cpuset_mems_generation != cs->mems_generation) { | |
1537 | down(&cpuset_sem); | |
1538 | refresh_mems(); | |
1539 | up(&cpuset_sem); | |
1540 | } | |
1541 | } | |
1542 | ||
1543 | void cpuset_restrict_to_mems_allowed(unsigned long *nodes) | |
1544 | { | |
1545 | bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed), | |
1546 | MAX_NUMNODES); | |
1547 | } | |
1548 | ||
1549 | /* | |
1550 | * Are any of the nodes on zonelist zl allowed in current->mems_allowed? | |
1551 | */ | |
1552 | int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl) | |
1553 | { | |
1554 | int i; | |
1555 | ||
1556 | for (i = 0; zl->zones[i]; i++) { | |
1557 | int nid = zl->zones[i]->zone_pgdat->node_id; | |
1558 | ||
1559 | if (node_isset(nid, current->mems_allowed)) | |
1560 | return 1; | |
1561 | } | |
1562 | return 0; | |
1563 | } | |
1564 | ||
1565 | /* | |
1566 | * Is 'current' valid, and is zone z allowed in current->mems_allowed? | |
1567 | */ | |
1568 | int cpuset_zone_allowed(struct zone *z) | |
1569 | { | |
1570 | return in_interrupt() || | |
1571 | node_isset(z->zone_pgdat->node_id, current->mems_allowed); | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * proc_cpuset_show() | |
1576 | * - Print tasks cpuset path into seq_file. | |
1577 | * - Used for /proc/<pid>/cpuset. | |
1578 | */ | |
1579 | ||
1580 | static int proc_cpuset_show(struct seq_file *m, void *v) | |
1581 | { | |
1582 | struct cpuset *cs; | |
1583 | struct task_struct *tsk; | |
1584 | char *buf; | |
1585 | int retval = 0; | |
1586 | ||
1587 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | |
1588 | if (!buf) | |
1589 | return -ENOMEM; | |
1590 | ||
1591 | tsk = m->private; | |
1592 | down(&cpuset_sem); | |
1593 | task_lock(tsk); | |
1594 | cs = tsk->cpuset; | |
1595 | task_unlock(tsk); | |
1596 | if (!cs) { | |
1597 | retval = -EINVAL; | |
1598 | goto out; | |
1599 | } | |
1600 | ||
1601 | retval = cpuset_path(cs, buf, PAGE_SIZE); | |
1602 | if (retval < 0) | |
1603 | goto out; | |
1604 | seq_puts(m, buf); | |
1605 | seq_putc(m, '\n'); | |
1606 | out: | |
1607 | up(&cpuset_sem); | |
1608 | kfree(buf); | |
1609 | return retval; | |
1610 | } | |
1611 | ||
1612 | static int cpuset_open(struct inode *inode, struct file *file) | |
1613 | { | |
1614 | struct task_struct *tsk = PROC_I(inode)->task; | |
1615 | return single_open(file, proc_cpuset_show, tsk); | |
1616 | } | |
1617 | ||
1618 | struct file_operations proc_cpuset_operations = { | |
1619 | .open = cpuset_open, | |
1620 | .read = seq_read, | |
1621 | .llseek = seq_lseek, | |
1622 | .release = single_release, | |
1623 | }; | |
1624 | ||
1625 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | |
1626 | char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) | |
1627 | { | |
1628 | buffer += sprintf(buffer, "Cpus_allowed:\t"); | |
1629 | buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed); | |
1630 | buffer += sprintf(buffer, "\n"); | |
1631 | buffer += sprintf(buffer, "Mems_allowed:\t"); | |
1632 | buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed); | |
1633 | buffer += sprintf(buffer, "\n"); | |
1634 | return buffer; | |
1635 | } |