]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/ipc/sem.c | |
3 | * Copyright (C) 1992 Krishna Balasubramanian | |
4 | * Copyright (C) 1995 Eric Schenk, Bruno Haible | |
5 | * | |
1da177e4 LT |
6 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]> |
7 | * | |
8 | * SMP-threaded, sysctl's added | |
624dffcb | 9 | * (c) 1999 Manfred Spraul <[email protected]> |
1da177e4 | 10 | * Enforced range limit on SEM_UNDO |
046c6884 | 11 | * (c) 2001 Red Hat Inc |
1da177e4 LT |
12 | * Lockless wakeup |
13 | * (c) 2003 Manfred Spraul <[email protected]> | |
c5cf6359 MS |
14 | * Further wakeup optimizations, documentation |
15 | * (c) 2010 Manfred Spraul <[email protected]> | |
073115d6 SG |
16 | * |
17 | * support for audit of ipc object properties and permission changes | |
18 | * Dustin Kirkland <[email protected]> | |
e3893534 KK |
19 | * |
20 | * namespaces support | |
21 | * OpenVZ, SWsoft Inc. | |
22 | * Pavel Emelianov <[email protected]> | |
c5cf6359 MS |
23 | * |
24 | * Implementation notes: (May 2010) | |
25 | * This file implements System V semaphores. | |
26 | * | |
27 | * User space visible behavior: | |
28 | * - FIFO ordering for semop() operations (just FIFO, not starvation | |
29 | * protection) | |
30 | * - multiple semaphore operations that alter the same semaphore in | |
31 | * one semop() are handled. | |
32 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | |
33 | * SETALL calls. | |
34 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | |
35 | * - undo adjustments at process exit are limited to 0..SEMVMX. | |
36 | * - namespace are supported. | |
37 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | |
38 | * to /proc/sys/kernel/sem. | |
39 | * - statistics about the usage are reported in /proc/sysvipc/sem. | |
40 | * | |
41 | * Internals: | |
42 | * - scalability: | |
43 | * - all global variables are read-mostly. | |
44 | * - semop() calls and semctl(RMID) are synchronized by RCU. | |
45 | * - most operations do write operations (actually: spin_lock calls) to | |
46 | * the per-semaphore array structure. | |
47 | * Thus: Perfect SMP scaling between independent semaphore arrays. | |
48 | * If multiple semaphores in one array are used, then cache line | |
49 | * trashing on the semaphore array spinlock will limit the scaling. | |
50 | * - semncnt and semzcnt are calculated on demand in count_semncnt() and | |
51 | * count_semzcnt() | |
52 | * - the task that performs a successful semop() scans the list of all | |
53 | * sleeping tasks and completes any pending operations that can be fulfilled. | |
54 | * Semaphores are actively given to waiting tasks (necessary for FIFO). | |
55 | * (see update_queue()) | |
56 | * - To improve the scalability, the actual wake-up calls are performed after | |
57 | * dropping all locks. (see wake_up_sem_queue_prepare(), | |
58 | * wake_up_sem_queue_do()) | |
59 | * - All work is done by the waker, the woken up task does not have to do | |
60 | * anything - not even acquiring a lock or dropping a refcount. | |
61 | * - A woken up task may not even touch the semaphore array anymore, it may | |
62 | * have been destroyed already by a semctl(RMID). | |
63 | * - The synchronizations between wake-ups due to a timeout/signal and a | |
64 | * wake-up due to a completed semaphore operation is achieved by using an | |
65 | * intermediate state (IN_WAKEUP). | |
66 | * - UNDO values are stored in an array (one per process and per | |
67 | * semaphore array, lazily allocated). For backwards compatibility, multiple | |
68 | * modes for the UNDO variables are supported (per process, per thread) | |
69 | * (see copy_semundo, CLONE_SYSVSEM) | |
70 | * - There are two lists of the pending operations: a per-array list | |
71 | * and per-semaphore list (stored in the array). This allows to achieve FIFO | |
72 | * ordering without always scanning all pending operations. | |
73 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. | |
1da177e4 LT |
74 | */ |
75 | ||
1da177e4 LT |
76 | #include <linux/slab.h> |
77 | #include <linux/spinlock.h> | |
78 | #include <linux/init.h> | |
79 | #include <linux/proc_fs.h> | |
80 | #include <linux/time.h> | |
1da177e4 LT |
81 | #include <linux/security.h> |
82 | #include <linux/syscalls.h> | |
83 | #include <linux/audit.h> | |
c59ede7b | 84 | #include <linux/capability.h> |
19b4946c | 85 | #include <linux/seq_file.h> |
3e148c79 | 86 | #include <linux/rwsem.h> |
e3893534 | 87 | #include <linux/nsproxy.h> |
ae5e1b22 | 88 | #include <linux/ipc_namespace.h> |
5f921ae9 | 89 | |
1da177e4 LT |
90 | #include <asm/uaccess.h> |
91 | #include "util.h" | |
92 | ||
e57940d7 MS |
93 | /* One semaphore structure for each semaphore in the system. */ |
94 | struct sem { | |
95 | int semval; /* current value */ | |
96 | int sempid; /* pid of last operation */ | |
6062a8dc | 97 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
1a82e9e1 MS |
98 | struct list_head pending_alter; /* pending single-sop operations */ |
99 | /* that alter the semaphore */ | |
100 | struct list_head pending_const; /* pending single-sop operations */ | |
101 | /* that do not alter the semaphore*/ | |
d12e1e50 | 102 | time_t sem_otime; /* candidate for sem_otime */ |
f5c936c0 | 103 | } ____cacheline_aligned_in_smp; |
e57940d7 MS |
104 | |
105 | /* One queue for each sleeping process in the system. */ | |
106 | struct sem_queue { | |
e57940d7 MS |
107 | struct list_head list; /* queue of pending operations */ |
108 | struct task_struct *sleeper; /* this process */ | |
109 | struct sem_undo *undo; /* undo structure */ | |
110 | int pid; /* process id of requesting process */ | |
111 | int status; /* completion status of operation */ | |
112 | struct sembuf *sops; /* array of pending operations */ | |
113 | int nsops; /* number of operations */ | |
114 | int alter; /* does *sops alter the array? */ | |
115 | }; | |
116 | ||
117 | /* Each task has a list of undo requests. They are executed automatically | |
118 | * when the process exits. | |
119 | */ | |
120 | struct sem_undo { | |
121 | struct list_head list_proc; /* per-process list: * | |
122 | * all undos from one process | |
123 | * rcu protected */ | |
124 | struct rcu_head rcu; /* rcu struct for sem_undo */ | |
125 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ | |
126 | struct list_head list_id; /* per semaphore array list: | |
127 | * all undos for one array */ | |
128 | int semid; /* semaphore set identifier */ | |
129 | short *semadj; /* array of adjustments */ | |
130 | /* one per semaphore */ | |
131 | }; | |
132 | ||
133 | /* sem_undo_list controls shared access to the list of sem_undo structures | |
134 | * that may be shared among all a CLONE_SYSVSEM task group. | |
135 | */ | |
136 | struct sem_undo_list { | |
137 | atomic_t refcnt; | |
138 | spinlock_t lock; | |
139 | struct list_head list_proc; | |
140 | }; | |
141 | ||
142 | ||
ed2ddbf8 | 143 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
e3893534 | 144 | |
1b531f21 | 145 | #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
1da177e4 | 146 | |
7748dbfa | 147 | static int newary(struct ipc_namespace *, struct ipc_params *); |
01b8b07a | 148 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
1da177e4 | 149 | #ifdef CONFIG_PROC_FS |
19b4946c | 150 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
1da177e4 LT |
151 | #endif |
152 | ||
153 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ | |
154 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ | |
155 | ||
156 | /* | |
758a6ba3 | 157 | * Locking: |
1da177e4 | 158 | * sem_undo.id_next, |
758a6ba3 | 159 | * sem_array.complex_count, |
1a82e9e1 | 160 | * sem_array.pending{_alter,_cont}, |
758a6ba3 | 161 | * sem_array.sem_undo: global sem_lock() for read/write |
1da177e4 LT |
162 | * sem_undo.proc_next: only "current" is allowed to read/write that field. |
163 | * | |
758a6ba3 MS |
164 | * sem_array.sem_base[i].pending_{const,alter}: |
165 | * global or semaphore sem_lock() for read/write | |
1da177e4 LT |
166 | */ |
167 | ||
e3893534 KK |
168 | #define sc_semmsl sem_ctls[0] |
169 | #define sc_semmns sem_ctls[1] | |
170 | #define sc_semopm sem_ctls[2] | |
171 | #define sc_semmni sem_ctls[3] | |
172 | ||
ed2ddbf8 | 173 | void sem_init_ns(struct ipc_namespace *ns) |
e3893534 | 174 | { |
e3893534 KK |
175 | ns->sc_semmsl = SEMMSL; |
176 | ns->sc_semmns = SEMMNS; | |
177 | ns->sc_semopm = SEMOPM; | |
178 | ns->sc_semmni = SEMMNI; | |
179 | ns->used_sems = 0; | |
ed2ddbf8 | 180 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
e3893534 KK |
181 | } |
182 | ||
ae5e1b22 | 183 | #ifdef CONFIG_IPC_NS |
e3893534 KK |
184 | void sem_exit_ns(struct ipc_namespace *ns) |
185 | { | |
01b8b07a | 186 | free_ipcs(ns, &sem_ids(ns), freeary); |
7d6feeb2 | 187 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
e3893534 | 188 | } |
ae5e1b22 | 189 | #endif |
1da177e4 LT |
190 | |
191 | void __init sem_init (void) | |
192 | { | |
ed2ddbf8 | 193 | sem_init_ns(&init_ipc_ns); |
19b4946c MW |
194 | ipc_init_proc_interface("sysvipc/sem", |
195 | " key semid perms nsems uid gid cuid cgid otime ctime\n", | |
e3893534 | 196 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
1da177e4 LT |
197 | } |
198 | ||
f269f40a MS |
199 | /** |
200 | * unmerge_queues - unmerge queues, if possible. | |
201 | * @sma: semaphore array | |
202 | * | |
203 | * The function unmerges the wait queues if complex_count is 0. | |
204 | * It must be called prior to dropping the global semaphore array lock. | |
205 | */ | |
206 | static void unmerge_queues(struct sem_array *sma) | |
207 | { | |
208 | struct sem_queue *q, *tq; | |
209 | ||
210 | /* complex operations still around? */ | |
211 | if (sma->complex_count) | |
212 | return; | |
213 | /* | |
214 | * We will switch back to simple mode. | |
215 | * Move all pending operation back into the per-semaphore | |
216 | * queues. | |
217 | */ | |
218 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
219 | struct sem *curr; | |
220 | curr = &sma->sem_base[q->sops[0].sem_num]; | |
221 | ||
222 | list_add_tail(&q->list, &curr->pending_alter); | |
223 | } | |
224 | INIT_LIST_HEAD(&sma->pending_alter); | |
225 | } | |
226 | ||
227 | /** | |
228 | * merge_queues - Merge single semop queues into global queue | |
229 | * @sma: semaphore array | |
230 | * | |
231 | * This function merges all per-semaphore queues into the global queue. | |
232 | * It is necessary to achieve FIFO ordering for the pending single-sop | |
233 | * operations when a multi-semop operation must sleep. | |
234 | * Only the alter operations must be moved, the const operations can stay. | |
235 | */ | |
236 | static void merge_queues(struct sem_array *sma) | |
237 | { | |
238 | int i; | |
239 | for (i = 0; i < sma->sem_nsems; i++) { | |
240 | struct sem *sem = sma->sem_base + i; | |
241 | ||
242 | list_splice_init(&sem->pending_alter, &sma->pending_alter); | |
243 | } | |
244 | } | |
245 | ||
6062a8dc RR |
246 | /* |
247 | * If the request contains only one semaphore operation, and there are | |
248 | * no complex transactions pending, lock only the semaphore involved. | |
249 | * Otherwise, lock the entire semaphore array, since we either have | |
250 | * multiple semaphores in our own semops, or we need to look at | |
251 | * semaphores from other pending complex operations. | |
252 | * | |
253 | * Carefully guard against sma->complex_count changing between zero | |
254 | * and non-zero while we are spinning for the lock. The value of | |
255 | * sma->complex_count cannot change while we are holding the lock, | |
256 | * so sem_unlock should be fine. | |
257 | * | |
258 | * The global lock path checks that all the local locks have been released, | |
259 | * checking each local lock once. This means that the local lock paths | |
260 | * cannot start their critical sections while the global lock is held. | |
261 | */ | |
262 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, | |
263 | int nsops) | |
264 | { | |
265 | int locknum; | |
266 | again: | |
267 | if (nsops == 1 && !sma->complex_count) { | |
268 | struct sem *sem = sma->sem_base + sops->sem_num; | |
269 | ||
270 | /* Lock just the semaphore we are interested in. */ | |
271 | spin_lock(&sem->lock); | |
272 | ||
273 | /* | |
274 | * If sma->complex_count was set while we were spinning, | |
275 | * we may need to look at things we did not lock here. | |
276 | */ | |
277 | if (unlikely(sma->complex_count)) { | |
278 | spin_unlock(&sem->lock); | |
279 | goto lock_array; | |
280 | } | |
281 | ||
282 | /* | |
283 | * Another process is holding the global lock on the | |
284 | * sem_array; we cannot enter our critical section, | |
285 | * but have to wait for the global lock to be released. | |
286 | */ | |
287 | if (unlikely(spin_is_locked(&sma->sem_perm.lock))) { | |
288 | spin_unlock(&sem->lock); | |
289 | spin_unlock_wait(&sma->sem_perm.lock); | |
290 | goto again; | |
291 | } | |
292 | ||
293 | locknum = sops->sem_num; | |
294 | } else { | |
295 | int i; | |
296 | /* | |
297 | * Lock the semaphore array, and wait for all of the | |
298 | * individual semaphore locks to go away. The code | |
299 | * above ensures no new single-lock holders will enter | |
300 | * their critical section while the array lock is held. | |
301 | */ | |
302 | lock_array: | |
cf9d5d78 | 303 | ipc_lock_object(&sma->sem_perm); |
6062a8dc RR |
304 | for (i = 0; i < sma->sem_nsems; i++) { |
305 | struct sem *sem = sma->sem_base + i; | |
306 | spin_unlock_wait(&sem->lock); | |
307 | } | |
308 | locknum = -1; | |
309 | } | |
310 | return locknum; | |
311 | } | |
312 | ||
313 | static inline void sem_unlock(struct sem_array *sma, int locknum) | |
314 | { | |
315 | if (locknum == -1) { | |
f269f40a | 316 | unmerge_queues(sma); |
cf9d5d78 | 317 | ipc_unlock_object(&sma->sem_perm); |
6062a8dc RR |
318 | } else { |
319 | struct sem *sem = sma->sem_base + locknum; | |
320 | spin_unlock(&sem->lock); | |
321 | } | |
6062a8dc RR |
322 | } |
323 | ||
3e148c79 ND |
324 | /* |
325 | * sem_lock_(check_) routines are called in the paths where the rw_mutex | |
326 | * is not held. | |
321310ce LT |
327 | * |
328 | * The caller holds the RCU read lock. | |
3e148c79 | 329 | */ |
6062a8dc RR |
330 | static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, |
331 | int id, struct sembuf *sops, int nsops, int *locknum) | |
023a5355 | 332 | { |
c460b662 RR |
333 | struct kern_ipc_perm *ipcp; |
334 | struct sem_array *sma; | |
03f02c76 | 335 | |
c460b662 | 336 | ipcp = ipc_obtain_object(&sem_ids(ns), id); |
321310ce LT |
337 | if (IS_ERR(ipcp)) |
338 | return ERR_CAST(ipcp); | |
b1ed88b4 | 339 | |
6062a8dc RR |
340 | sma = container_of(ipcp, struct sem_array, sem_perm); |
341 | *locknum = sem_lock(sma, sops, nsops); | |
c460b662 RR |
342 | |
343 | /* ipc_rmid() may have already freed the ID while sem_lock | |
344 | * was spinning: verify that the structure is still valid | |
345 | */ | |
346 | if (!ipcp->deleted) | |
347 | return container_of(ipcp, struct sem_array, sem_perm); | |
348 | ||
6062a8dc | 349 | sem_unlock(sma, *locknum); |
321310ce | 350 | return ERR_PTR(-EINVAL); |
023a5355 ND |
351 | } |
352 | ||
16df3674 DB |
353 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
354 | { | |
355 | struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id); | |
356 | ||
357 | if (IS_ERR(ipcp)) | |
358 | return ERR_CAST(ipcp); | |
359 | ||
360 | return container_of(ipcp, struct sem_array, sem_perm); | |
361 | } | |
362 | ||
16df3674 DB |
363 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
364 | int id) | |
365 | { | |
366 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); | |
367 | ||
368 | if (IS_ERR(ipcp)) | |
369 | return ERR_CAST(ipcp); | |
b1ed88b4 | 370 | |
03f02c76 | 371 | return container_of(ipcp, struct sem_array, sem_perm); |
023a5355 ND |
372 | } |
373 | ||
6ff37972 PP |
374 | static inline void sem_lock_and_putref(struct sem_array *sma) |
375 | { | |
6062a8dc | 376 | sem_lock(sma, NULL, -1); |
6ff37972 PP |
377 | ipc_rcu_putref(sma); |
378 | } | |
379 | ||
6ff37972 PP |
380 | static inline void sem_putref(struct sem_array *sma) |
381 | { | |
73b29505 | 382 | ipc_rcu_putref(sma); |
6ff37972 PP |
383 | } |
384 | ||
7ca7e564 ND |
385 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
386 | { | |
387 | ipc_rmid(&sem_ids(ns), &s->sem_perm); | |
388 | } | |
389 | ||
1da177e4 LT |
390 | /* |
391 | * Lockless wakeup algorithm: | |
392 | * Without the check/retry algorithm a lockless wakeup is possible: | |
393 | * - queue.status is initialized to -EINTR before blocking. | |
394 | * - wakeup is performed by | |
1a82e9e1 | 395 | * * unlinking the queue entry from the pending list |
1da177e4 LT |
396 | * * setting queue.status to IN_WAKEUP |
397 | * This is the notification for the blocked thread that a | |
398 | * result value is imminent. | |
399 | * * call wake_up_process | |
400 | * * set queue.status to the final value. | |
401 | * - the previously blocked thread checks queue.status: | |
402 | * * if it's IN_WAKEUP, then it must wait until the value changes | |
403 | * * if it's not -EINTR, then the operation was completed by | |
404 | * update_queue. semtimedop can return queue.status without | |
5f921ae9 | 405 | * performing any operation on the sem array. |
1da177e4 LT |
406 | * * otherwise it must acquire the spinlock and check what's up. |
407 | * | |
408 | * The two-stage algorithm is necessary to protect against the following | |
409 | * races: | |
410 | * - if queue.status is set after wake_up_process, then the woken up idle | |
411 | * thread could race forward and try (and fail) to acquire sma->lock | |
412 | * before update_queue had a chance to set queue.status | |
413 | * - if queue.status is written before wake_up_process and if the | |
414 | * blocked process is woken up by a signal between writing | |
415 | * queue.status and the wake_up_process, then the woken up | |
416 | * process could return from semtimedop and die by calling | |
417 | * sys_exit before wake_up_process is called. Then wake_up_process | |
418 | * will oops, because the task structure is already invalid. | |
419 | * (yes, this happened on s390 with sysv msg). | |
420 | * | |
421 | */ | |
422 | #define IN_WAKEUP 1 | |
423 | ||
f4566f04 ND |
424 | /** |
425 | * newary - Create a new semaphore set | |
426 | * @ns: namespace | |
427 | * @params: ptr to the structure that contains key, semflg and nsems | |
428 | * | |
3e148c79 | 429 | * Called with sem_ids.rw_mutex held (as a writer) |
f4566f04 ND |
430 | */ |
431 | ||
7748dbfa | 432 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
1da177e4 LT |
433 | { |
434 | int id; | |
435 | int retval; | |
436 | struct sem_array *sma; | |
437 | int size; | |
7748dbfa ND |
438 | key_t key = params->key; |
439 | int nsems = params->u.nsems; | |
440 | int semflg = params->flg; | |
b97e820f | 441 | int i; |
1da177e4 LT |
442 | |
443 | if (!nsems) | |
444 | return -EINVAL; | |
e3893534 | 445 | if (ns->used_sems + nsems > ns->sc_semmns) |
1da177e4 LT |
446 | return -ENOSPC; |
447 | ||
448 | size = sizeof (*sma) + nsems * sizeof (struct sem); | |
449 | sma = ipc_rcu_alloc(size); | |
450 | if (!sma) { | |
451 | return -ENOMEM; | |
452 | } | |
453 | memset (sma, 0, size); | |
454 | ||
455 | sma->sem_perm.mode = (semflg & S_IRWXUGO); | |
456 | sma->sem_perm.key = key; | |
457 | ||
458 | sma->sem_perm.security = NULL; | |
459 | retval = security_sem_alloc(sma); | |
460 | if (retval) { | |
461 | ipc_rcu_putref(sma); | |
462 | return retval; | |
463 | } | |
464 | ||
e3893534 | 465 | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
283bb7fa | 466 | if (id < 0) { |
1da177e4 LT |
467 | security_sem_free(sma); |
468 | ipc_rcu_putref(sma); | |
283bb7fa | 469 | return id; |
1da177e4 | 470 | } |
e3893534 | 471 | ns->used_sems += nsems; |
1da177e4 LT |
472 | |
473 | sma->sem_base = (struct sem *) &sma[1]; | |
b97e820f | 474 | |
6062a8dc | 475 | for (i = 0; i < nsems; i++) { |
1a82e9e1 MS |
476 | INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); |
477 | INIT_LIST_HEAD(&sma->sem_base[i].pending_const); | |
6062a8dc RR |
478 | spin_lock_init(&sma->sem_base[i].lock); |
479 | } | |
b97e820f MS |
480 | |
481 | sma->complex_count = 0; | |
1a82e9e1 MS |
482 | INIT_LIST_HEAD(&sma->pending_alter); |
483 | INIT_LIST_HEAD(&sma->pending_const); | |
4daa28f6 | 484 | INIT_LIST_HEAD(&sma->list_id); |
1da177e4 LT |
485 | sma->sem_nsems = nsems; |
486 | sma->sem_ctime = get_seconds(); | |
6062a8dc | 487 | sem_unlock(sma, -1); |
6d49dab8 | 488 | rcu_read_unlock(); |
1da177e4 | 489 | |
7ca7e564 | 490 | return sma->sem_perm.id; |
1da177e4 LT |
491 | } |
492 | ||
7748dbfa | 493 | |
f4566f04 | 494 | /* |
3e148c79 | 495 | * Called with sem_ids.rw_mutex and ipcp locked. |
f4566f04 | 496 | */ |
03f02c76 | 497 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
7748dbfa | 498 | { |
03f02c76 ND |
499 | struct sem_array *sma; |
500 | ||
501 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
502 | return security_sem_associate(sma, semflg); | |
7748dbfa ND |
503 | } |
504 | ||
f4566f04 | 505 | /* |
3e148c79 | 506 | * Called with sem_ids.rw_mutex and ipcp locked. |
f4566f04 | 507 | */ |
03f02c76 ND |
508 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
509 | struct ipc_params *params) | |
7748dbfa | 510 | { |
03f02c76 ND |
511 | struct sem_array *sma; |
512 | ||
513 | sma = container_of(ipcp, struct sem_array, sem_perm); | |
514 | if (params->u.nsems > sma->sem_nsems) | |
7748dbfa ND |
515 | return -EINVAL; |
516 | ||
517 | return 0; | |
518 | } | |
519 | ||
d5460c99 | 520 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
1da177e4 | 521 | { |
e3893534 | 522 | struct ipc_namespace *ns; |
7748dbfa ND |
523 | struct ipc_ops sem_ops; |
524 | struct ipc_params sem_params; | |
e3893534 KK |
525 | |
526 | ns = current->nsproxy->ipc_ns; | |
1da177e4 | 527 | |
e3893534 | 528 | if (nsems < 0 || nsems > ns->sc_semmsl) |
1da177e4 | 529 | return -EINVAL; |
7ca7e564 | 530 | |
7748dbfa ND |
531 | sem_ops.getnew = newary; |
532 | sem_ops.associate = sem_security; | |
533 | sem_ops.more_checks = sem_more_checks; | |
534 | ||
535 | sem_params.key = key; | |
536 | sem_params.flg = semflg; | |
537 | sem_params.u.nsems = nsems; | |
1da177e4 | 538 | |
7748dbfa | 539 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
1da177e4 LT |
540 | } |
541 | ||
758a6ba3 MS |
542 | /** perform_atomic_semop - Perform (if possible) a semaphore operation |
543 | * @sma: semaphore array | |
544 | * @sops: array with operations that should be checked | |
545 | * @nsems: number of sops | |
546 | * @un: undo array | |
547 | * @pid: pid that did the change | |
548 | * | |
549 | * Returns 0 if the operation was possible. | |
550 | * Returns 1 if the operation is impossible, the caller must sleep. | |
551 | * Negative values are error codes. | |
1da177e4 LT |
552 | */ |
553 | ||
758a6ba3 | 554 | static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops, |
1da177e4 LT |
555 | int nsops, struct sem_undo *un, int pid) |
556 | { | |
557 | int result, sem_op; | |
558 | struct sembuf *sop; | |
559 | struct sem * curr; | |
560 | ||
561 | for (sop = sops; sop < sops + nsops; sop++) { | |
562 | curr = sma->sem_base + sop->sem_num; | |
563 | sem_op = sop->sem_op; | |
564 | result = curr->semval; | |
565 | ||
566 | if (!sem_op && result) | |
567 | goto would_block; | |
568 | ||
569 | result += sem_op; | |
570 | if (result < 0) | |
571 | goto would_block; | |
572 | if (result > SEMVMX) | |
573 | goto out_of_range; | |
574 | if (sop->sem_flg & SEM_UNDO) { | |
575 | int undo = un->semadj[sop->sem_num] - sem_op; | |
576 | /* | |
577 | * Exceeding the undo range is an error. | |
578 | */ | |
579 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | |
580 | goto out_of_range; | |
581 | } | |
582 | curr->semval = result; | |
583 | } | |
584 | ||
585 | sop--; | |
586 | while (sop >= sops) { | |
587 | sma->sem_base[sop->sem_num].sempid = pid; | |
588 | if (sop->sem_flg & SEM_UNDO) | |
589 | un->semadj[sop->sem_num] -= sop->sem_op; | |
590 | sop--; | |
591 | } | |
592 | ||
1da177e4 LT |
593 | return 0; |
594 | ||
595 | out_of_range: | |
596 | result = -ERANGE; | |
597 | goto undo; | |
598 | ||
599 | would_block: | |
600 | if (sop->sem_flg & IPC_NOWAIT) | |
601 | result = -EAGAIN; | |
602 | else | |
603 | result = 1; | |
604 | ||
605 | undo: | |
606 | sop--; | |
607 | while (sop >= sops) { | |
608 | sma->sem_base[sop->sem_num].semval -= sop->sem_op; | |
609 | sop--; | |
610 | } | |
611 | ||
612 | return result; | |
613 | } | |
614 | ||
0a2b9d4c MS |
615 | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up |
616 | * @q: queue entry that must be signaled | |
617 | * @error: Error value for the signal | |
618 | * | |
619 | * Prepare the wake-up of the queue entry q. | |
d4212093 | 620 | */ |
0a2b9d4c MS |
621 | static void wake_up_sem_queue_prepare(struct list_head *pt, |
622 | struct sem_queue *q, int error) | |
d4212093 | 623 | { |
0a2b9d4c MS |
624 | if (list_empty(pt)) { |
625 | /* | |
626 | * Hold preempt off so that we don't get preempted and have the | |
627 | * wakee busy-wait until we're scheduled back on. | |
628 | */ | |
629 | preempt_disable(); | |
630 | } | |
d4212093 | 631 | q->status = IN_WAKEUP; |
0a2b9d4c MS |
632 | q->pid = error; |
633 | ||
9f1bc2c9 | 634 | list_add_tail(&q->list, pt); |
0a2b9d4c MS |
635 | } |
636 | ||
637 | /** | |
638 | * wake_up_sem_queue_do(pt) - do the actual wake-up | |
639 | * @pt: list of tasks to be woken up | |
640 | * | |
641 | * Do the actual wake-up. | |
642 | * The function is called without any locks held, thus the semaphore array | |
643 | * could be destroyed already and the tasks can disappear as soon as the | |
644 | * status is set to the actual return code. | |
645 | */ | |
646 | static void wake_up_sem_queue_do(struct list_head *pt) | |
647 | { | |
648 | struct sem_queue *q, *t; | |
649 | int did_something; | |
650 | ||
651 | did_something = !list_empty(pt); | |
9f1bc2c9 | 652 | list_for_each_entry_safe(q, t, pt, list) { |
0a2b9d4c MS |
653 | wake_up_process(q->sleeper); |
654 | /* q can disappear immediately after writing q->status. */ | |
655 | smp_wmb(); | |
656 | q->status = q->pid; | |
657 | } | |
658 | if (did_something) | |
659 | preempt_enable(); | |
d4212093 NP |
660 | } |
661 | ||
b97e820f MS |
662 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
663 | { | |
664 | list_del(&q->list); | |
9f1bc2c9 | 665 | if (q->nsops > 1) |
b97e820f MS |
666 | sma->complex_count--; |
667 | } | |
668 | ||
fd5db422 MS |
669 | /** check_restart(sma, q) |
670 | * @sma: semaphore array | |
671 | * @q: the operation that just completed | |
672 | * | |
673 | * update_queue is O(N^2) when it restarts scanning the whole queue of | |
674 | * waiting operations. Therefore this function checks if the restart is | |
675 | * really necessary. It is called after a previously waiting operation | |
1a82e9e1 MS |
676 | * modified the array. |
677 | * Note that wait-for-zero operations are handled without restart. | |
fd5db422 MS |
678 | */ |
679 | static int check_restart(struct sem_array *sma, struct sem_queue *q) | |
680 | { | |
1a82e9e1 MS |
681 | /* pending complex alter operations are too difficult to analyse */ |
682 | if (!list_empty(&sma->pending_alter)) | |
fd5db422 MS |
683 | return 1; |
684 | ||
685 | /* we were a sleeping complex operation. Too difficult */ | |
686 | if (q->nsops > 1) | |
687 | return 1; | |
688 | ||
1a82e9e1 MS |
689 | /* It is impossible that someone waits for the new value: |
690 | * - complex operations always restart. | |
691 | * - wait-for-zero are handled seperately. | |
692 | * - q is a previously sleeping simple operation that | |
693 | * altered the array. It must be a decrement, because | |
694 | * simple increments never sleep. | |
695 | * - If there are older (higher priority) decrements | |
696 | * in the queue, then they have observed the original | |
697 | * semval value and couldn't proceed. The operation | |
698 | * decremented to value - thus they won't proceed either. | |
699 | */ | |
700 | return 0; | |
701 | } | |
fd5db422 | 702 | |
1a82e9e1 MS |
703 | /** |
704 | * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks | |
705 | * @sma: semaphore array. | |
706 | * @semnum: semaphore that was modified. | |
707 | * @pt: list head for the tasks that must be woken up. | |
708 | * | |
709 | * wake_const_ops must be called after a semaphore in a semaphore array | |
710 | * was set to 0. If complex const operations are pending, wake_const_ops must | |
711 | * be called with semnum = -1, as well as with the number of each modified | |
712 | * semaphore. | |
713 | * The tasks that must be woken up are added to @pt. The return code | |
714 | * is stored in q->pid. | |
715 | * The function returns 1 if at least one operation was completed successfully. | |
716 | */ | |
717 | static int wake_const_ops(struct sem_array *sma, int semnum, | |
718 | struct list_head *pt) | |
719 | { | |
720 | struct sem_queue *q; | |
721 | struct list_head *walk; | |
722 | struct list_head *pending_list; | |
723 | int semop_completed = 0; | |
724 | ||
725 | if (semnum == -1) | |
726 | pending_list = &sma->pending_const; | |
727 | else | |
728 | pending_list = &sma->sem_base[semnum].pending_const; | |
fd5db422 | 729 | |
1a82e9e1 MS |
730 | walk = pending_list->next; |
731 | while (walk != pending_list) { | |
732 | int error; | |
733 | ||
734 | q = container_of(walk, struct sem_queue, list); | |
735 | walk = walk->next; | |
736 | ||
758a6ba3 MS |
737 | error = perform_atomic_semop(sma, q->sops, q->nsops, |
738 | q->undo, q->pid); | |
1a82e9e1 MS |
739 | |
740 | if (error <= 0) { | |
741 | /* operation completed, remove from queue & wakeup */ | |
742 | ||
743 | unlink_queue(sma, q); | |
744 | ||
745 | wake_up_sem_queue_prepare(pt, q, error); | |
746 | if (error == 0) | |
747 | semop_completed = 1; | |
748 | } | |
749 | } | |
750 | return semop_completed; | |
751 | } | |
752 | ||
753 | /** | |
754 | * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks | |
755 | * @sma: semaphore array | |
756 | * @sops: operations that were performed | |
757 | * @nsops: number of operations | |
758 | * @pt: list head of the tasks that must be woken up. | |
759 | * | |
760 | * do_smart_wakeup_zero() checks all required queue for wait-for-zero | |
761 | * operations, based on the actual changes that were performed on the | |
762 | * semaphore array. | |
763 | * The function returns 1 if at least one operation was completed successfully. | |
764 | */ | |
765 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, | |
766 | int nsops, struct list_head *pt) | |
767 | { | |
768 | int i; | |
769 | int semop_completed = 0; | |
770 | int got_zero = 0; | |
771 | ||
772 | /* first: the per-semaphore queues, if known */ | |
773 | if (sops) { | |
774 | for (i = 0; i < nsops; i++) { | |
775 | int num = sops[i].sem_num; | |
776 | ||
777 | if (sma->sem_base[num].semval == 0) { | |
778 | got_zero = 1; | |
779 | semop_completed |= wake_const_ops(sma, num, pt); | |
780 | } | |
781 | } | |
782 | } else { | |
783 | /* | |
784 | * No sops means modified semaphores not known. | |
785 | * Assume all were changed. | |
fd5db422 | 786 | */ |
1a82e9e1 MS |
787 | for (i = 0; i < sma->sem_nsems; i++) { |
788 | if (sma->sem_base[i].semval == 0) { | |
789 | got_zero = 1; | |
790 | semop_completed |= wake_const_ops(sma, i, pt); | |
791 | } | |
792 | } | |
fd5db422 MS |
793 | } |
794 | /* | |
1a82e9e1 MS |
795 | * If one of the modified semaphores got 0, |
796 | * then check the global queue, too. | |
fd5db422 | 797 | */ |
1a82e9e1 MS |
798 | if (got_zero) |
799 | semop_completed |= wake_const_ops(sma, -1, pt); | |
fd5db422 | 800 | |
1a82e9e1 | 801 | return semop_completed; |
fd5db422 MS |
802 | } |
803 | ||
636c6be8 MS |
804 | |
805 | /** | |
806 | * update_queue(sma, semnum): Look for tasks that can be completed. | |
807 | * @sma: semaphore array. | |
808 | * @semnum: semaphore that was modified. | |
0a2b9d4c | 809 | * @pt: list head for the tasks that must be woken up. |
636c6be8 MS |
810 | * |
811 | * update_queue must be called after a semaphore in a semaphore array | |
9f1bc2c9 RR |
812 | * was modified. If multiple semaphores were modified, update_queue must |
813 | * be called with semnum = -1, as well as with the number of each modified | |
814 | * semaphore. | |
0a2b9d4c MS |
815 | * The tasks that must be woken up are added to @pt. The return code |
816 | * is stored in q->pid. | |
1a82e9e1 MS |
817 | * The function internally checks if const operations can now succeed. |
818 | * | |
0a2b9d4c | 819 | * The function return 1 if at least one semop was completed successfully. |
1da177e4 | 820 | */ |
0a2b9d4c | 821 | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) |
1da177e4 | 822 | { |
636c6be8 MS |
823 | struct sem_queue *q; |
824 | struct list_head *walk; | |
825 | struct list_head *pending_list; | |
0a2b9d4c | 826 | int semop_completed = 0; |
636c6be8 | 827 | |
9f1bc2c9 | 828 | if (semnum == -1) |
1a82e9e1 | 829 | pending_list = &sma->pending_alter; |
9f1bc2c9 | 830 | else |
1a82e9e1 | 831 | pending_list = &sma->sem_base[semnum].pending_alter; |
9cad200c NP |
832 | |
833 | again: | |
636c6be8 MS |
834 | walk = pending_list->next; |
835 | while (walk != pending_list) { | |
fd5db422 | 836 | int error, restart; |
636c6be8 | 837 | |
9f1bc2c9 | 838 | q = container_of(walk, struct sem_queue, list); |
636c6be8 | 839 | walk = walk->next; |
1da177e4 | 840 | |
d987f8b2 MS |
841 | /* If we are scanning the single sop, per-semaphore list of |
842 | * one semaphore and that semaphore is 0, then it is not | |
1a82e9e1 | 843 | * necessary to scan further: simple increments |
d987f8b2 MS |
844 | * that affect only one entry succeed immediately and cannot |
845 | * be in the per semaphore pending queue, and decrements | |
846 | * cannot be successful if the value is already 0. | |
847 | */ | |
1a82e9e1 | 848 | if (semnum != -1 && sma->sem_base[semnum].semval == 0) |
d987f8b2 MS |
849 | break; |
850 | ||
758a6ba3 | 851 | error = perform_atomic_semop(sma, q->sops, q->nsops, |
1da177e4 LT |
852 | q->undo, q->pid); |
853 | ||
854 | /* Does q->sleeper still need to sleep? */ | |
9cad200c NP |
855 | if (error > 0) |
856 | continue; | |
857 | ||
b97e820f | 858 | unlink_queue(sma, q); |
9cad200c | 859 | |
0a2b9d4c | 860 | if (error) { |
fd5db422 | 861 | restart = 0; |
0a2b9d4c MS |
862 | } else { |
863 | semop_completed = 1; | |
1a82e9e1 | 864 | do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); |
fd5db422 | 865 | restart = check_restart(sma, q); |
0a2b9d4c | 866 | } |
fd5db422 | 867 | |
0a2b9d4c | 868 | wake_up_sem_queue_prepare(pt, q, error); |
fd5db422 | 869 | if (restart) |
9cad200c | 870 | goto again; |
1da177e4 | 871 | } |
0a2b9d4c | 872 | return semop_completed; |
1da177e4 LT |
873 | } |
874 | ||
0a2b9d4c MS |
875 | /** |
876 | * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue | |
fd5db422 MS |
877 | * @sma: semaphore array |
878 | * @sops: operations that were performed | |
879 | * @nsops: number of operations | |
0a2b9d4c MS |
880 | * @otime: force setting otime |
881 | * @pt: list head of the tasks that must be woken up. | |
fd5db422 | 882 | * |
1a82e9e1 MS |
883 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
884 | * based on the actual changes that were performed on the semaphore array. | |
0a2b9d4c MS |
885 | * Note that the function does not do the actual wake-up: the caller is |
886 | * responsible for calling wake_up_sem_queue_do(@pt). | |
887 | * It is safe to perform this call after dropping all locks. | |
fd5db422 | 888 | */ |
0a2b9d4c MS |
889 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
890 | int otime, struct list_head *pt) | |
fd5db422 MS |
891 | { |
892 | int i; | |
893 | ||
1a82e9e1 MS |
894 | otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); |
895 | ||
f269f40a MS |
896 | if (!list_empty(&sma->pending_alter)) { |
897 | /* semaphore array uses the global queue - just process it. */ | |
898 | otime |= update_queue(sma, -1, pt); | |
899 | } else { | |
900 | if (!sops) { | |
901 | /* | |
902 | * No sops, thus the modified semaphores are not | |
903 | * known. Check all. | |
904 | */ | |
905 | for (i = 0; i < sma->sem_nsems; i++) | |
906 | otime |= update_queue(sma, i, pt); | |
907 | } else { | |
908 | /* | |
909 | * Check the semaphores that were increased: | |
910 | * - No complex ops, thus all sleeping ops are | |
911 | * decrease. | |
912 | * - if we decreased the value, then any sleeping | |
913 | * semaphore ops wont be able to run: If the | |
914 | * previous value was too small, then the new | |
915 | * value will be too small, too. | |
916 | */ | |
917 | for (i = 0; i < nsops; i++) { | |
918 | if (sops[i].sem_op > 0) { | |
919 | otime |= update_queue(sma, | |
920 | sops[i].sem_num, pt); | |
921 | } | |
ab465df9 | 922 | } |
9f1bc2c9 | 923 | } |
fd5db422 | 924 | } |
d12e1e50 MS |
925 | if (otime) { |
926 | if (sops == NULL) { | |
927 | sma->sem_base[0].sem_otime = get_seconds(); | |
928 | } else { | |
929 | sma->sem_base[sops[0].sem_num].sem_otime = | |
930 | get_seconds(); | |
931 | } | |
932 | } | |
fd5db422 MS |
933 | } |
934 | ||
935 | ||
1da177e4 LT |
936 | /* The following counts are associated to each semaphore: |
937 | * semncnt number of tasks waiting on semval being nonzero | |
938 | * semzcnt number of tasks waiting on semval being zero | |
939 | * This model assumes that a task waits on exactly one semaphore. | |
940 | * Since semaphore operations are to be performed atomically, tasks actually | |
941 | * wait on a whole sequence of semaphores simultaneously. | |
942 | * The counts we return here are a rough approximation, but still | |
943 | * warrant that semncnt+semzcnt>0 if the task is on the pending queue. | |
944 | */ | |
945 | static int count_semncnt (struct sem_array * sma, ushort semnum) | |
946 | { | |
947 | int semncnt; | |
948 | struct sem_queue * q; | |
949 | ||
950 | semncnt = 0; | |
1a82e9e1 | 951 | list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) { |
de2657f9 RR |
952 | struct sembuf * sops = q->sops; |
953 | BUG_ON(sops->sem_num != semnum); | |
954 | if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT)) | |
955 | semncnt++; | |
956 | } | |
957 | ||
1a82e9e1 | 958 | list_for_each_entry(q, &sma->pending_alter, list) { |
1da177e4 LT |
959 | struct sembuf * sops = q->sops; |
960 | int nsops = q->nsops; | |
961 | int i; | |
962 | for (i = 0; i < nsops; i++) | |
963 | if (sops[i].sem_num == semnum | |
964 | && (sops[i].sem_op < 0) | |
965 | && !(sops[i].sem_flg & IPC_NOWAIT)) | |
966 | semncnt++; | |
967 | } | |
968 | return semncnt; | |
969 | } | |
a1193f8e | 970 | |
1da177e4 LT |
971 | static int count_semzcnt (struct sem_array * sma, ushort semnum) |
972 | { | |
973 | int semzcnt; | |
974 | struct sem_queue * q; | |
975 | ||
976 | semzcnt = 0; | |
1a82e9e1 | 977 | list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) { |
ebc2e5e6 RR |
978 | struct sembuf * sops = q->sops; |
979 | BUG_ON(sops->sem_num != semnum); | |
980 | if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT)) | |
981 | semzcnt++; | |
982 | } | |
983 | ||
1a82e9e1 | 984 | list_for_each_entry(q, &sma->pending_const, list) { |
1da177e4 LT |
985 | struct sembuf * sops = q->sops; |
986 | int nsops = q->nsops; | |
987 | int i; | |
988 | for (i = 0; i < nsops; i++) | |
989 | if (sops[i].sem_num == semnum | |
990 | && (sops[i].sem_op == 0) | |
991 | && !(sops[i].sem_flg & IPC_NOWAIT)) | |
992 | semzcnt++; | |
993 | } | |
994 | return semzcnt; | |
995 | } | |
996 | ||
3e148c79 ND |
997 | /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked |
998 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex | |
999 | * remains locked on exit. | |
1da177e4 | 1000 | */ |
01b8b07a | 1001 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
1da177e4 | 1002 | { |
380af1b3 MS |
1003 | struct sem_undo *un, *tu; |
1004 | struct sem_queue *q, *tq; | |
01b8b07a | 1005 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
0a2b9d4c | 1006 | struct list_head tasks; |
9f1bc2c9 | 1007 | int i; |
1da177e4 | 1008 | |
380af1b3 | 1009 | /* Free the existing undo structures for this semaphore set. */ |
cf9d5d78 | 1010 | ipc_assert_locked_object(&sma->sem_perm); |
380af1b3 MS |
1011 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
1012 | list_del(&un->list_id); | |
1013 | spin_lock(&un->ulp->lock); | |
1da177e4 | 1014 | un->semid = -1; |
380af1b3 MS |
1015 | list_del_rcu(&un->list_proc); |
1016 | spin_unlock(&un->ulp->lock); | |
693a8b6e | 1017 | kfree_rcu(un, rcu); |
380af1b3 | 1018 | } |
1da177e4 LT |
1019 | |
1020 | /* Wake up all pending processes and let them fail with EIDRM. */ | |
0a2b9d4c | 1021 | INIT_LIST_HEAD(&tasks); |
1a82e9e1 MS |
1022 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
1023 | unlink_queue(sma, q); | |
1024 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1025 | } | |
1026 | ||
1027 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { | |
b97e820f | 1028 | unlink_queue(sma, q); |
0a2b9d4c | 1029 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
1da177e4 | 1030 | } |
9f1bc2c9 RR |
1031 | for (i = 0; i < sma->sem_nsems; i++) { |
1032 | struct sem *sem = sma->sem_base + i; | |
1a82e9e1 MS |
1033 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
1034 | unlink_queue(sma, q); | |
1035 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1036 | } | |
1037 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { | |
9f1bc2c9 RR |
1038 | unlink_queue(sma, q); |
1039 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | |
1040 | } | |
1041 | } | |
1da177e4 | 1042 | |
7ca7e564 ND |
1043 | /* Remove the semaphore set from the IDR */ |
1044 | sem_rmid(ns, sma); | |
6062a8dc | 1045 | sem_unlock(sma, -1); |
6d49dab8 | 1046 | rcu_read_unlock(); |
1da177e4 | 1047 | |
0a2b9d4c | 1048 | wake_up_sem_queue_do(&tasks); |
e3893534 | 1049 | ns->used_sems -= sma->sem_nsems; |
1da177e4 LT |
1050 | security_sem_free(sma); |
1051 | ipc_rcu_putref(sma); | |
1052 | } | |
1053 | ||
1054 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | |
1055 | { | |
1056 | switch(version) { | |
1057 | case IPC_64: | |
1058 | return copy_to_user(buf, in, sizeof(*in)); | |
1059 | case IPC_OLD: | |
1060 | { | |
1061 | struct semid_ds out; | |
1062 | ||
982f7c2b DR |
1063 | memset(&out, 0, sizeof(out)); |
1064 | ||
1da177e4 LT |
1065 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
1066 | ||
1067 | out.sem_otime = in->sem_otime; | |
1068 | out.sem_ctime = in->sem_ctime; | |
1069 | out.sem_nsems = in->sem_nsems; | |
1070 | ||
1071 | return copy_to_user(buf, &out, sizeof(out)); | |
1072 | } | |
1073 | default: | |
1074 | return -EINVAL; | |
1075 | } | |
1076 | } | |
1077 | ||
d12e1e50 MS |
1078 | static time_t get_semotime(struct sem_array *sma) |
1079 | { | |
1080 | int i; | |
1081 | time_t res; | |
1082 | ||
1083 | res = sma->sem_base[0].sem_otime; | |
1084 | for (i = 1; i < sma->sem_nsems; i++) { | |
1085 | time_t to = sma->sem_base[i].sem_otime; | |
1086 | ||
1087 | if (to > res) | |
1088 | res = to; | |
1089 | } | |
1090 | return res; | |
1091 | } | |
1092 | ||
4b9fcb0e | 1093 | static int semctl_nolock(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1094 | int cmd, int version, void __user *p) |
1da177e4 | 1095 | { |
e5cc9c7b | 1096 | int err; |
1da177e4 LT |
1097 | struct sem_array *sma; |
1098 | ||
1099 | switch(cmd) { | |
1100 | case IPC_INFO: | |
1101 | case SEM_INFO: | |
1102 | { | |
1103 | struct seminfo seminfo; | |
1104 | int max_id; | |
1105 | ||
1106 | err = security_sem_semctl(NULL, cmd); | |
1107 | if (err) | |
1108 | return err; | |
1109 | ||
1110 | memset(&seminfo,0,sizeof(seminfo)); | |
e3893534 KK |
1111 | seminfo.semmni = ns->sc_semmni; |
1112 | seminfo.semmns = ns->sc_semmns; | |
1113 | seminfo.semmsl = ns->sc_semmsl; | |
1114 | seminfo.semopm = ns->sc_semopm; | |
1da177e4 LT |
1115 | seminfo.semvmx = SEMVMX; |
1116 | seminfo.semmnu = SEMMNU; | |
1117 | seminfo.semmap = SEMMAP; | |
1118 | seminfo.semume = SEMUME; | |
3e148c79 | 1119 | down_read(&sem_ids(ns).rw_mutex); |
1da177e4 | 1120 | if (cmd == SEM_INFO) { |
e3893534 KK |
1121 | seminfo.semusz = sem_ids(ns).in_use; |
1122 | seminfo.semaem = ns->used_sems; | |
1da177e4 LT |
1123 | } else { |
1124 | seminfo.semusz = SEMUSZ; | |
1125 | seminfo.semaem = SEMAEM; | |
1126 | } | |
7ca7e564 | 1127 | max_id = ipc_get_maxid(&sem_ids(ns)); |
3e148c79 | 1128 | up_read(&sem_ids(ns).rw_mutex); |
e1fd1f49 | 1129 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) |
1da177e4 LT |
1130 | return -EFAULT; |
1131 | return (max_id < 0) ? 0: max_id; | |
1132 | } | |
4b9fcb0e | 1133 | case IPC_STAT: |
1da177e4 LT |
1134 | case SEM_STAT: |
1135 | { | |
1136 | struct semid64_ds tbuf; | |
16df3674 DB |
1137 | int id = 0; |
1138 | ||
1139 | memset(&tbuf, 0, sizeof(tbuf)); | |
1da177e4 | 1140 | |
941b0304 | 1141 | rcu_read_lock(); |
4b9fcb0e | 1142 | if (cmd == SEM_STAT) { |
16df3674 DB |
1143 | sma = sem_obtain_object(ns, semid); |
1144 | if (IS_ERR(sma)) { | |
1145 | err = PTR_ERR(sma); | |
1146 | goto out_unlock; | |
1147 | } | |
4b9fcb0e PP |
1148 | id = sma->sem_perm.id; |
1149 | } else { | |
16df3674 DB |
1150 | sma = sem_obtain_object_check(ns, semid); |
1151 | if (IS_ERR(sma)) { | |
1152 | err = PTR_ERR(sma); | |
1153 | goto out_unlock; | |
1154 | } | |
4b9fcb0e | 1155 | } |
1da177e4 LT |
1156 | |
1157 | err = -EACCES; | |
b0e77598 | 1158 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) |
1da177e4 LT |
1159 | goto out_unlock; |
1160 | ||
1161 | err = security_sem_semctl(sma, cmd); | |
1162 | if (err) | |
1163 | goto out_unlock; | |
1164 | ||
1da177e4 | 1165 | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
d12e1e50 MS |
1166 | tbuf.sem_otime = get_semotime(sma); |
1167 | tbuf.sem_ctime = sma->sem_ctime; | |
1168 | tbuf.sem_nsems = sma->sem_nsems; | |
16df3674 | 1169 | rcu_read_unlock(); |
e1fd1f49 | 1170 | if (copy_semid_to_user(p, &tbuf, version)) |
1da177e4 LT |
1171 | return -EFAULT; |
1172 | return id; | |
1173 | } | |
1174 | default: | |
1175 | return -EINVAL; | |
1176 | } | |
1da177e4 | 1177 | out_unlock: |
16df3674 | 1178 | rcu_read_unlock(); |
1da177e4 LT |
1179 | return err; |
1180 | } | |
1181 | ||
e1fd1f49 AV |
1182 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
1183 | unsigned long arg) | |
1184 | { | |
1185 | struct sem_undo *un; | |
1186 | struct sem_array *sma; | |
1187 | struct sem* curr; | |
1188 | int err; | |
e1fd1f49 AV |
1189 | struct list_head tasks; |
1190 | int val; | |
1191 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) | |
1192 | /* big-endian 64bit */ | |
1193 | val = arg >> 32; | |
1194 | #else | |
1195 | /* 32bit or little-endian 64bit */ | |
1196 | val = arg; | |
1197 | #endif | |
1198 | ||
6062a8dc RR |
1199 | if (val > SEMVMX || val < 0) |
1200 | return -ERANGE; | |
e1fd1f49 AV |
1201 | |
1202 | INIT_LIST_HEAD(&tasks); | |
e1fd1f49 | 1203 | |
6062a8dc RR |
1204 | rcu_read_lock(); |
1205 | sma = sem_obtain_object_check(ns, semid); | |
1206 | if (IS_ERR(sma)) { | |
1207 | rcu_read_unlock(); | |
1208 | return PTR_ERR(sma); | |
1209 | } | |
1210 | ||
1211 | if (semnum < 0 || semnum >= sma->sem_nsems) { | |
1212 | rcu_read_unlock(); | |
1213 | return -EINVAL; | |
1214 | } | |
1215 | ||
1216 | ||
1217 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { | |
1218 | rcu_read_unlock(); | |
1219 | return -EACCES; | |
1220 | } | |
e1fd1f49 AV |
1221 | |
1222 | err = security_sem_semctl(sma, SETVAL); | |
6062a8dc RR |
1223 | if (err) { |
1224 | rcu_read_unlock(); | |
1225 | return -EACCES; | |
1226 | } | |
e1fd1f49 | 1227 | |
6062a8dc | 1228 | sem_lock(sma, NULL, -1); |
e1fd1f49 AV |
1229 | |
1230 | curr = &sma->sem_base[semnum]; | |
1231 | ||
cf9d5d78 | 1232 | ipc_assert_locked_object(&sma->sem_perm); |
e1fd1f49 AV |
1233 | list_for_each_entry(un, &sma->list_id, list_id) |
1234 | un->semadj[semnum] = 0; | |
1235 | ||
1236 | curr->semval = val; | |
1237 | curr->sempid = task_tgid_vnr(current); | |
1238 | sma->sem_ctime = get_seconds(); | |
1239 | /* maybe some queued-up processes were waiting for this */ | |
1240 | do_smart_update(sma, NULL, 0, 0, &tasks); | |
6062a8dc | 1241 | sem_unlock(sma, -1); |
6d49dab8 | 1242 | rcu_read_unlock(); |
e1fd1f49 | 1243 | wake_up_sem_queue_do(&tasks); |
6062a8dc | 1244 | return 0; |
e1fd1f49 AV |
1245 | } |
1246 | ||
e3893534 | 1247 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
e1fd1f49 | 1248 | int cmd, void __user *p) |
1da177e4 LT |
1249 | { |
1250 | struct sem_array *sma; | |
1251 | struct sem* curr; | |
16df3674 | 1252 | int err, nsems; |
1da177e4 LT |
1253 | ushort fast_sem_io[SEMMSL_FAST]; |
1254 | ushort* sem_io = fast_sem_io; | |
0a2b9d4c | 1255 | struct list_head tasks; |
1da177e4 | 1256 | |
16df3674 DB |
1257 | INIT_LIST_HEAD(&tasks); |
1258 | ||
1259 | rcu_read_lock(); | |
1260 | sma = sem_obtain_object_check(ns, semid); | |
1261 | if (IS_ERR(sma)) { | |
1262 | rcu_read_unlock(); | |
023a5355 | 1263 | return PTR_ERR(sma); |
16df3674 | 1264 | } |
1da177e4 LT |
1265 | |
1266 | nsems = sma->sem_nsems; | |
1267 | ||
1da177e4 | 1268 | err = -EACCES; |
c728b9c8 LT |
1269 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
1270 | goto out_rcu_wakeup; | |
1da177e4 LT |
1271 | |
1272 | err = security_sem_semctl(sma, cmd); | |
c728b9c8 LT |
1273 | if (err) |
1274 | goto out_rcu_wakeup; | |
1da177e4 LT |
1275 | |
1276 | err = -EACCES; | |
1277 | switch (cmd) { | |
1278 | case GETALL: | |
1279 | { | |
e1fd1f49 | 1280 | ushort __user *array = p; |
1da177e4 LT |
1281 | int i; |
1282 | ||
ce857229 | 1283 | sem_lock(sma, NULL, -1); |
1da177e4 | 1284 | if(nsems > SEMMSL_FAST) { |
ce857229 AV |
1285 | if (!ipc_rcu_getref(sma)) { |
1286 | sem_unlock(sma, -1); | |
6d49dab8 | 1287 | rcu_read_unlock(); |
ce857229 AV |
1288 | err = -EIDRM; |
1289 | goto out_free; | |
1290 | } | |
1291 | sem_unlock(sma, -1); | |
6d49dab8 | 1292 | rcu_read_unlock(); |
1da177e4 LT |
1293 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
1294 | if(sem_io == NULL) { | |
6ff37972 | 1295 | sem_putref(sma); |
1da177e4 LT |
1296 | return -ENOMEM; |
1297 | } | |
1298 | ||
4091fd94 | 1299 | rcu_read_lock(); |
6ff37972 | 1300 | sem_lock_and_putref(sma); |
1da177e4 | 1301 | if (sma->sem_perm.deleted) { |
6062a8dc | 1302 | sem_unlock(sma, -1); |
6d49dab8 | 1303 | rcu_read_unlock(); |
1da177e4 LT |
1304 | err = -EIDRM; |
1305 | goto out_free; | |
1306 | } | |
ce857229 | 1307 | } |
1da177e4 LT |
1308 | for (i = 0; i < sma->sem_nsems; i++) |
1309 | sem_io[i] = sma->sem_base[i].semval; | |
6062a8dc | 1310 | sem_unlock(sma, -1); |
6d49dab8 | 1311 | rcu_read_unlock(); |
1da177e4 LT |
1312 | err = 0; |
1313 | if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) | |
1314 | err = -EFAULT; | |
1315 | goto out_free; | |
1316 | } | |
1317 | case SETALL: | |
1318 | { | |
1319 | int i; | |
1320 | struct sem_undo *un; | |
1321 | ||
6062a8dc RR |
1322 | if (!ipc_rcu_getref(sma)) { |
1323 | rcu_read_unlock(); | |
1324 | return -EIDRM; | |
1325 | } | |
16df3674 | 1326 | rcu_read_unlock(); |
1da177e4 LT |
1327 | |
1328 | if(nsems > SEMMSL_FAST) { | |
1329 | sem_io = ipc_alloc(sizeof(ushort)*nsems); | |
1330 | if(sem_io == NULL) { | |
6ff37972 | 1331 | sem_putref(sma); |
1da177e4 LT |
1332 | return -ENOMEM; |
1333 | } | |
1334 | } | |
1335 | ||
e1fd1f49 | 1336 | if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) { |
6ff37972 | 1337 | sem_putref(sma); |
1da177e4 LT |
1338 | err = -EFAULT; |
1339 | goto out_free; | |
1340 | } | |
1341 | ||
1342 | for (i = 0; i < nsems; i++) { | |
1343 | if (sem_io[i] > SEMVMX) { | |
6ff37972 | 1344 | sem_putref(sma); |
1da177e4 LT |
1345 | err = -ERANGE; |
1346 | goto out_free; | |
1347 | } | |
1348 | } | |
4091fd94 | 1349 | rcu_read_lock(); |
6ff37972 | 1350 | sem_lock_and_putref(sma); |
1da177e4 | 1351 | if (sma->sem_perm.deleted) { |
6062a8dc | 1352 | sem_unlock(sma, -1); |
6d49dab8 | 1353 | rcu_read_unlock(); |
1da177e4 LT |
1354 | err = -EIDRM; |
1355 | goto out_free; | |
1356 | } | |
1357 | ||
1358 | for (i = 0; i < nsems; i++) | |
1359 | sma->sem_base[i].semval = sem_io[i]; | |
4daa28f6 | 1360 | |
cf9d5d78 | 1361 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1362 | list_for_each_entry(un, &sma->list_id, list_id) { |
1da177e4 LT |
1363 | for (i = 0; i < nsems; i++) |
1364 | un->semadj[i] = 0; | |
4daa28f6 | 1365 | } |
1da177e4 LT |
1366 | sma->sem_ctime = get_seconds(); |
1367 | /* maybe some queued-up processes were waiting for this */ | |
0a2b9d4c | 1368 | do_smart_update(sma, NULL, 0, 0, &tasks); |
1da177e4 LT |
1369 | err = 0; |
1370 | goto out_unlock; | |
1371 | } | |
e1fd1f49 | 1372 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
1da177e4 LT |
1373 | } |
1374 | err = -EINVAL; | |
c728b9c8 LT |
1375 | if (semnum < 0 || semnum >= nsems) |
1376 | goto out_rcu_wakeup; | |
1da177e4 | 1377 | |
6062a8dc | 1378 | sem_lock(sma, NULL, -1); |
1da177e4 LT |
1379 | curr = &sma->sem_base[semnum]; |
1380 | ||
1381 | switch (cmd) { | |
1382 | case GETVAL: | |
1383 | err = curr->semval; | |
1384 | goto out_unlock; | |
1385 | case GETPID: | |
1386 | err = curr->sempid; | |
1387 | goto out_unlock; | |
1388 | case GETNCNT: | |
1389 | err = count_semncnt(sma,semnum); | |
1390 | goto out_unlock; | |
1391 | case GETZCNT: | |
1392 | err = count_semzcnt(sma,semnum); | |
1393 | goto out_unlock; | |
1da177e4 | 1394 | } |
16df3674 | 1395 | |
1da177e4 | 1396 | out_unlock: |
6062a8dc | 1397 | sem_unlock(sma, -1); |
c728b9c8 | 1398 | out_rcu_wakeup: |
6d49dab8 | 1399 | rcu_read_unlock(); |
0a2b9d4c | 1400 | wake_up_sem_queue_do(&tasks); |
1da177e4 LT |
1401 | out_free: |
1402 | if(sem_io != fast_sem_io) | |
1403 | ipc_free(sem_io, sizeof(ushort)*nsems); | |
1404 | return err; | |
1405 | } | |
1406 | ||
016d7132 PP |
1407 | static inline unsigned long |
1408 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | |
1da177e4 LT |
1409 | { |
1410 | switch(version) { | |
1411 | case IPC_64: | |
016d7132 | 1412 | if (copy_from_user(out, buf, sizeof(*out))) |
1da177e4 | 1413 | return -EFAULT; |
1da177e4 | 1414 | return 0; |
1da177e4 LT |
1415 | case IPC_OLD: |
1416 | { | |
1417 | struct semid_ds tbuf_old; | |
1418 | ||
1419 | if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) | |
1420 | return -EFAULT; | |
1421 | ||
016d7132 PP |
1422 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
1423 | out->sem_perm.gid = tbuf_old.sem_perm.gid; | |
1424 | out->sem_perm.mode = tbuf_old.sem_perm.mode; | |
1da177e4 LT |
1425 | |
1426 | return 0; | |
1427 | } | |
1428 | default: | |
1429 | return -EINVAL; | |
1430 | } | |
1431 | } | |
1432 | ||
522bb2a2 PP |
1433 | /* |
1434 | * This function handles some semctl commands which require the rw_mutex | |
1435 | * to be held in write mode. | |
1436 | * NOTE: no locks must be held, the rw_mutex is taken inside this function. | |
1437 | */ | |
21a4826a | 1438 | static int semctl_down(struct ipc_namespace *ns, int semid, |
e1fd1f49 | 1439 | int cmd, int version, void __user *p) |
1da177e4 LT |
1440 | { |
1441 | struct sem_array *sma; | |
1442 | int err; | |
016d7132 | 1443 | struct semid64_ds semid64; |
1da177e4 LT |
1444 | struct kern_ipc_perm *ipcp; |
1445 | ||
1446 | if(cmd == IPC_SET) { | |
e1fd1f49 | 1447 | if (copy_semid_from_user(&semid64, p, version)) |
1da177e4 | 1448 | return -EFAULT; |
1da177e4 | 1449 | } |
073115d6 | 1450 | |
7b4cc5d8 DB |
1451 | down_write(&sem_ids(ns).rw_mutex); |
1452 | rcu_read_lock(); | |
1453 | ||
16df3674 DB |
1454 | ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, |
1455 | &semid64.sem_perm, 0); | |
7b4cc5d8 DB |
1456 | if (IS_ERR(ipcp)) { |
1457 | err = PTR_ERR(ipcp); | |
7b4cc5d8 DB |
1458 | goto out_unlock1; |
1459 | } | |
073115d6 | 1460 | |
a5f75e7f | 1461 | sma = container_of(ipcp, struct sem_array, sem_perm); |
1da177e4 LT |
1462 | |
1463 | err = security_sem_semctl(sma, cmd); | |
7b4cc5d8 DB |
1464 | if (err) |
1465 | goto out_unlock1; | |
1da177e4 | 1466 | |
7b4cc5d8 | 1467 | switch (cmd) { |
1da177e4 | 1468 | case IPC_RMID: |
6062a8dc | 1469 | sem_lock(sma, NULL, -1); |
7b4cc5d8 | 1470 | /* freeary unlocks the ipc object and rcu */ |
01b8b07a | 1471 | freeary(ns, ipcp); |
522bb2a2 | 1472 | goto out_up; |
1da177e4 | 1473 | case IPC_SET: |
6062a8dc | 1474 | sem_lock(sma, NULL, -1); |
1efdb69b EB |
1475 | err = ipc_update_perm(&semid64.sem_perm, ipcp); |
1476 | if (err) | |
7b4cc5d8 | 1477 | goto out_unlock0; |
1da177e4 | 1478 | sma->sem_ctime = get_seconds(); |
1da177e4 LT |
1479 | break; |
1480 | default: | |
1da177e4 | 1481 | err = -EINVAL; |
7b4cc5d8 | 1482 | goto out_unlock1; |
1da177e4 | 1483 | } |
1da177e4 | 1484 | |
7b4cc5d8 | 1485 | out_unlock0: |
6062a8dc | 1486 | sem_unlock(sma, -1); |
7b4cc5d8 | 1487 | out_unlock1: |
6d49dab8 | 1488 | rcu_read_unlock(); |
522bb2a2 PP |
1489 | out_up: |
1490 | up_write(&sem_ids(ns).rw_mutex); | |
1da177e4 LT |
1491 | return err; |
1492 | } | |
1493 | ||
e1fd1f49 | 1494 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
1da177e4 | 1495 | { |
1da177e4 | 1496 | int version; |
e3893534 | 1497 | struct ipc_namespace *ns; |
e1fd1f49 | 1498 | void __user *p = (void __user *)arg; |
1da177e4 LT |
1499 | |
1500 | if (semid < 0) | |
1501 | return -EINVAL; | |
1502 | ||
1503 | version = ipc_parse_version(&cmd); | |
e3893534 | 1504 | ns = current->nsproxy->ipc_ns; |
1da177e4 LT |
1505 | |
1506 | switch(cmd) { | |
1507 | case IPC_INFO: | |
1508 | case SEM_INFO: | |
4b9fcb0e | 1509 | case IPC_STAT: |
1da177e4 | 1510 | case SEM_STAT: |
e1fd1f49 | 1511 | return semctl_nolock(ns, semid, cmd, version, p); |
1da177e4 LT |
1512 | case GETALL: |
1513 | case GETVAL: | |
1514 | case GETPID: | |
1515 | case GETNCNT: | |
1516 | case GETZCNT: | |
1da177e4 | 1517 | case SETALL: |
e1fd1f49 AV |
1518 | return semctl_main(ns, semid, semnum, cmd, p); |
1519 | case SETVAL: | |
1520 | return semctl_setval(ns, semid, semnum, arg); | |
1da177e4 LT |
1521 | case IPC_RMID: |
1522 | case IPC_SET: | |
e1fd1f49 | 1523 | return semctl_down(ns, semid, cmd, version, p); |
1da177e4 LT |
1524 | default: |
1525 | return -EINVAL; | |
1526 | } | |
1527 | } | |
1528 | ||
1da177e4 LT |
1529 | /* If the task doesn't already have a undo_list, then allocate one |
1530 | * here. We guarantee there is only one thread using this undo list, | |
1531 | * and current is THE ONE | |
1532 | * | |
1533 | * If this allocation and assignment succeeds, but later | |
1534 | * portions of this code fail, there is no need to free the sem_undo_list. | |
1535 | * Just let it stay associated with the task, and it'll be freed later | |
1536 | * at exit time. | |
1537 | * | |
1538 | * This can block, so callers must hold no locks. | |
1539 | */ | |
1540 | static inline int get_undo_list(struct sem_undo_list **undo_listp) | |
1541 | { | |
1542 | struct sem_undo_list *undo_list; | |
1da177e4 LT |
1543 | |
1544 | undo_list = current->sysvsem.undo_list; | |
1545 | if (!undo_list) { | |
2453a306 | 1546 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
1da177e4 LT |
1547 | if (undo_list == NULL) |
1548 | return -ENOMEM; | |
00a5dfdb | 1549 | spin_lock_init(&undo_list->lock); |
1da177e4 | 1550 | atomic_set(&undo_list->refcnt, 1); |
4daa28f6 MS |
1551 | INIT_LIST_HEAD(&undo_list->list_proc); |
1552 | ||
1da177e4 LT |
1553 | current->sysvsem.undo_list = undo_list; |
1554 | } | |
1555 | *undo_listp = undo_list; | |
1556 | return 0; | |
1557 | } | |
1558 | ||
bf17bb71 | 1559 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
1da177e4 | 1560 | { |
bf17bb71 | 1561 | struct sem_undo *un; |
4daa28f6 | 1562 | |
bf17bb71 NP |
1563 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
1564 | if (un->semid == semid) | |
1565 | return un; | |
1da177e4 | 1566 | } |
4daa28f6 | 1567 | return NULL; |
1da177e4 LT |
1568 | } |
1569 | ||
bf17bb71 NP |
1570 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
1571 | { | |
1572 | struct sem_undo *un; | |
1573 | ||
1574 | assert_spin_locked(&ulp->lock); | |
1575 | ||
1576 | un = __lookup_undo(ulp, semid); | |
1577 | if (un) { | |
1578 | list_del_rcu(&un->list_proc); | |
1579 | list_add_rcu(&un->list_proc, &ulp->list_proc); | |
1580 | } | |
1581 | return un; | |
1582 | } | |
1583 | ||
4daa28f6 MS |
1584 | /** |
1585 | * find_alloc_undo - Lookup (and if not present create) undo array | |
1586 | * @ns: namespace | |
1587 | * @semid: semaphore array id | |
1588 | * | |
1589 | * The function looks up (and if not present creates) the undo structure. | |
1590 | * The size of the undo structure depends on the size of the semaphore | |
1591 | * array, thus the alloc path is not that straightforward. | |
380af1b3 MS |
1592 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
1593 | * performs a rcu_read_lock(). | |
4daa28f6 MS |
1594 | */ |
1595 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | |
1da177e4 LT |
1596 | { |
1597 | struct sem_array *sma; | |
1598 | struct sem_undo_list *ulp; | |
1599 | struct sem_undo *un, *new; | |
6062a8dc | 1600 | int nsems, error; |
1da177e4 LT |
1601 | |
1602 | error = get_undo_list(&ulp); | |
1603 | if (error) | |
1604 | return ERR_PTR(error); | |
1605 | ||
380af1b3 | 1606 | rcu_read_lock(); |
c530c6ac | 1607 | spin_lock(&ulp->lock); |
1da177e4 | 1608 | un = lookup_undo(ulp, semid); |
c530c6ac | 1609 | spin_unlock(&ulp->lock); |
1da177e4 LT |
1610 | if (likely(un!=NULL)) |
1611 | goto out; | |
1612 | ||
1613 | /* no undo structure around - allocate one. */ | |
4daa28f6 | 1614 | /* step 1: figure out the size of the semaphore array */ |
16df3674 DB |
1615 | sma = sem_obtain_object_check(ns, semid); |
1616 | if (IS_ERR(sma)) { | |
1617 | rcu_read_unlock(); | |
4de85cd6 | 1618 | return ERR_CAST(sma); |
16df3674 | 1619 | } |
023a5355 | 1620 | |
1da177e4 | 1621 | nsems = sma->sem_nsems; |
6062a8dc RR |
1622 | if (!ipc_rcu_getref(sma)) { |
1623 | rcu_read_unlock(); | |
1624 | un = ERR_PTR(-EIDRM); | |
1625 | goto out; | |
1626 | } | |
16df3674 | 1627 | rcu_read_unlock(); |
1da177e4 | 1628 | |
4daa28f6 | 1629 | /* step 2: allocate new undo structure */ |
4668edc3 | 1630 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
1da177e4 | 1631 | if (!new) { |
6ff37972 | 1632 | sem_putref(sma); |
1da177e4 LT |
1633 | return ERR_PTR(-ENOMEM); |
1634 | } | |
1da177e4 | 1635 | |
380af1b3 | 1636 | /* step 3: Acquire the lock on semaphore array */ |
4091fd94 | 1637 | rcu_read_lock(); |
6ff37972 | 1638 | sem_lock_and_putref(sma); |
1da177e4 | 1639 | if (sma->sem_perm.deleted) { |
6062a8dc | 1640 | sem_unlock(sma, -1); |
6d49dab8 | 1641 | rcu_read_unlock(); |
1da177e4 LT |
1642 | kfree(new); |
1643 | un = ERR_PTR(-EIDRM); | |
1644 | goto out; | |
1645 | } | |
380af1b3 MS |
1646 | spin_lock(&ulp->lock); |
1647 | ||
1648 | /* | |
1649 | * step 4: check for races: did someone else allocate the undo struct? | |
1650 | */ | |
1651 | un = lookup_undo(ulp, semid); | |
1652 | if (un) { | |
1653 | kfree(new); | |
1654 | goto success; | |
1655 | } | |
4daa28f6 MS |
1656 | /* step 5: initialize & link new undo structure */ |
1657 | new->semadj = (short *) &new[1]; | |
380af1b3 | 1658 | new->ulp = ulp; |
4daa28f6 MS |
1659 | new->semid = semid; |
1660 | assert_spin_locked(&ulp->lock); | |
380af1b3 | 1661 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
cf9d5d78 | 1662 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 | 1663 | list_add(&new->list_id, &sma->list_id); |
380af1b3 | 1664 | un = new; |
4daa28f6 | 1665 | |
380af1b3 | 1666 | success: |
c530c6ac | 1667 | spin_unlock(&ulp->lock); |
6062a8dc | 1668 | sem_unlock(sma, -1); |
1da177e4 LT |
1669 | out: |
1670 | return un; | |
1671 | } | |
1672 | ||
c61284e9 MS |
1673 | |
1674 | /** | |
1675 | * get_queue_result - Retrieve the result code from sem_queue | |
1676 | * @q: Pointer to queue structure | |
1677 | * | |
1678 | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in | |
1679 | * q->status, then we must loop until the value is replaced with the final | |
1680 | * value: This may happen if a task is woken up by an unrelated event (e.g. | |
1681 | * signal) and in parallel the task is woken up by another task because it got | |
1682 | * the requested semaphores. | |
1683 | * | |
1684 | * The function can be called with or without holding the semaphore spinlock. | |
1685 | */ | |
1686 | static int get_queue_result(struct sem_queue *q) | |
1687 | { | |
1688 | int error; | |
1689 | ||
1690 | error = q->status; | |
1691 | while (unlikely(error == IN_WAKEUP)) { | |
1692 | cpu_relax(); | |
1693 | error = q->status; | |
1694 | } | |
1695 | ||
1696 | return error; | |
1697 | } | |
1698 | ||
d5460c99 HC |
1699 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
1700 | unsigned, nsops, const struct timespec __user *, timeout) | |
1da177e4 LT |
1701 | { |
1702 | int error = -EINVAL; | |
1703 | struct sem_array *sma; | |
1704 | struct sembuf fast_sops[SEMOPM_FAST]; | |
1705 | struct sembuf* sops = fast_sops, *sop; | |
1706 | struct sem_undo *un; | |
6062a8dc | 1707 | int undos = 0, alter = 0, max, locknum; |
1da177e4 LT |
1708 | struct sem_queue queue; |
1709 | unsigned long jiffies_left = 0; | |
e3893534 | 1710 | struct ipc_namespace *ns; |
0a2b9d4c | 1711 | struct list_head tasks; |
e3893534 KK |
1712 | |
1713 | ns = current->nsproxy->ipc_ns; | |
1da177e4 LT |
1714 | |
1715 | if (nsops < 1 || semid < 0) | |
1716 | return -EINVAL; | |
e3893534 | 1717 | if (nsops > ns->sc_semopm) |
1da177e4 LT |
1718 | return -E2BIG; |
1719 | if(nsops > SEMOPM_FAST) { | |
1720 | sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); | |
1721 | if(sops==NULL) | |
1722 | return -ENOMEM; | |
1723 | } | |
1724 | if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { | |
1725 | error=-EFAULT; | |
1726 | goto out_free; | |
1727 | } | |
1728 | if (timeout) { | |
1729 | struct timespec _timeout; | |
1730 | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { | |
1731 | error = -EFAULT; | |
1732 | goto out_free; | |
1733 | } | |
1734 | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || | |
1735 | _timeout.tv_nsec >= 1000000000L) { | |
1736 | error = -EINVAL; | |
1737 | goto out_free; | |
1738 | } | |
1739 | jiffies_left = timespec_to_jiffies(&_timeout); | |
1740 | } | |
1741 | max = 0; | |
1742 | for (sop = sops; sop < sops + nsops; sop++) { | |
1743 | if (sop->sem_num >= max) | |
1744 | max = sop->sem_num; | |
1745 | if (sop->sem_flg & SEM_UNDO) | |
b78755ab MS |
1746 | undos = 1; |
1747 | if (sop->sem_op != 0) | |
1da177e4 LT |
1748 | alter = 1; |
1749 | } | |
1da177e4 | 1750 | |
6062a8dc RR |
1751 | INIT_LIST_HEAD(&tasks); |
1752 | ||
1da177e4 | 1753 | if (undos) { |
6062a8dc | 1754 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
4daa28f6 | 1755 | un = find_alloc_undo(ns, semid); |
1da177e4 LT |
1756 | if (IS_ERR(un)) { |
1757 | error = PTR_ERR(un); | |
1758 | goto out_free; | |
1759 | } | |
6062a8dc | 1760 | } else { |
1da177e4 | 1761 | un = NULL; |
6062a8dc RR |
1762 | rcu_read_lock(); |
1763 | } | |
1da177e4 | 1764 | |
16df3674 | 1765 | sma = sem_obtain_object_check(ns, semid); |
023a5355 | 1766 | if (IS_ERR(sma)) { |
6062a8dc | 1767 | rcu_read_unlock(); |
023a5355 | 1768 | error = PTR_ERR(sma); |
1da177e4 | 1769 | goto out_free; |
023a5355 ND |
1770 | } |
1771 | ||
16df3674 | 1772 | error = -EFBIG; |
c728b9c8 LT |
1773 | if (max >= sma->sem_nsems) |
1774 | goto out_rcu_wakeup; | |
16df3674 DB |
1775 | |
1776 | error = -EACCES; | |
c728b9c8 LT |
1777 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
1778 | goto out_rcu_wakeup; | |
16df3674 DB |
1779 | |
1780 | error = security_sem_semop(sma, sops, nsops, alter); | |
c728b9c8 LT |
1781 | if (error) |
1782 | goto out_rcu_wakeup; | |
16df3674 | 1783 | |
1da177e4 | 1784 | /* |
4daa28f6 | 1785 | * semid identifiers are not unique - find_alloc_undo may have |
1da177e4 | 1786 | * allocated an undo structure, it was invalidated by an RMID |
4daa28f6 | 1787 | * and now a new array with received the same id. Check and fail. |
25985edc | 1788 | * This case can be detected checking un->semid. The existence of |
380af1b3 | 1789 | * "un" itself is guaranteed by rcu. |
1da177e4 | 1790 | */ |
4daa28f6 | 1791 | error = -EIDRM; |
6062a8dc RR |
1792 | locknum = sem_lock(sma, sops, nsops); |
1793 | if (un && un->semid == -1) | |
1794 | goto out_unlock_free; | |
4daa28f6 | 1795 | |
758a6ba3 MS |
1796 | error = perform_atomic_semop(sma, sops, nsops, un, |
1797 | task_tgid_vnr(current)); | |
1da177e4 LT |
1798 | if (error <= 0) { |
1799 | if (alter && error == 0) | |
0a2b9d4c | 1800 | do_smart_update(sma, sops, nsops, 1, &tasks); |
636c6be8 | 1801 | |
1da177e4 LT |
1802 | goto out_unlock_free; |
1803 | } | |
1804 | ||
1805 | /* We need to sleep on this operation, so we put the current | |
1806 | * task into the pending queue and go to sleep. | |
1807 | */ | |
1808 | ||
1da177e4 LT |
1809 | queue.sops = sops; |
1810 | queue.nsops = nsops; | |
1811 | queue.undo = un; | |
b488893a | 1812 | queue.pid = task_tgid_vnr(current); |
1da177e4 | 1813 | queue.alter = alter; |
1da177e4 | 1814 | |
b97e820f MS |
1815 | if (nsops == 1) { |
1816 | struct sem *curr; | |
1817 | curr = &sma->sem_base[sops->sem_num]; | |
1818 | ||
f269f40a MS |
1819 | if (alter) { |
1820 | if (sma->complex_count) { | |
1821 | list_add_tail(&queue.list, | |
1822 | &sma->pending_alter); | |
1823 | } else { | |
1824 | ||
1825 | list_add_tail(&queue.list, | |
1826 | &curr->pending_alter); | |
1827 | } | |
1828 | } else { | |
1a82e9e1 | 1829 | list_add_tail(&queue.list, &curr->pending_const); |
f269f40a | 1830 | } |
b97e820f | 1831 | } else { |
f269f40a MS |
1832 | if (!sma->complex_count) |
1833 | merge_queues(sma); | |
1834 | ||
9f1bc2c9 | 1835 | if (alter) |
1a82e9e1 | 1836 | list_add_tail(&queue.list, &sma->pending_alter); |
9f1bc2c9 | 1837 | else |
1a82e9e1 MS |
1838 | list_add_tail(&queue.list, &sma->pending_const); |
1839 | ||
b97e820f MS |
1840 | sma->complex_count++; |
1841 | } | |
1842 | ||
1da177e4 LT |
1843 | queue.status = -EINTR; |
1844 | queue.sleeper = current; | |
0b0577f6 MS |
1845 | |
1846 | sleep_again: | |
1da177e4 | 1847 | current->state = TASK_INTERRUPTIBLE; |
6062a8dc | 1848 | sem_unlock(sma, locknum); |
6d49dab8 | 1849 | rcu_read_unlock(); |
1da177e4 LT |
1850 | |
1851 | if (timeout) | |
1852 | jiffies_left = schedule_timeout(jiffies_left); | |
1853 | else | |
1854 | schedule(); | |
1855 | ||
c61284e9 | 1856 | error = get_queue_result(&queue); |
1da177e4 LT |
1857 | |
1858 | if (error != -EINTR) { | |
1859 | /* fast path: update_queue already obtained all requested | |
c61284e9 MS |
1860 | * resources. |
1861 | * Perform a smp_mb(): User space could assume that semop() | |
1862 | * is a memory barrier: Without the mb(), the cpu could | |
1863 | * speculatively read in user space stale data that was | |
1864 | * overwritten by the previous owner of the semaphore. | |
1865 | */ | |
1866 | smp_mb(); | |
1867 | ||
1da177e4 LT |
1868 | goto out_free; |
1869 | } | |
1870 | ||
321310ce | 1871 | rcu_read_lock(); |
6062a8dc | 1872 | sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); |
d694ad62 MS |
1873 | |
1874 | /* | |
1875 | * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. | |
1876 | */ | |
1877 | error = get_queue_result(&queue); | |
1878 | ||
1879 | /* | |
1880 | * Array removed? If yes, leave without sem_unlock(). | |
1881 | */ | |
023a5355 | 1882 | if (IS_ERR(sma)) { |
321310ce | 1883 | rcu_read_unlock(); |
1da177e4 LT |
1884 | goto out_free; |
1885 | } | |
1886 | ||
c61284e9 | 1887 | |
1da177e4 | 1888 | /* |
d694ad62 MS |
1889 | * If queue.status != -EINTR we are woken up by another process. |
1890 | * Leave without unlink_queue(), but with sem_unlock(). | |
1da177e4 | 1891 | */ |
c61284e9 | 1892 | |
1da177e4 LT |
1893 | if (error != -EINTR) { |
1894 | goto out_unlock_free; | |
1895 | } | |
1896 | ||
1897 | /* | |
1898 | * If an interrupt occurred we have to clean up the queue | |
1899 | */ | |
1900 | if (timeout && jiffies_left == 0) | |
1901 | error = -EAGAIN; | |
0b0577f6 MS |
1902 | |
1903 | /* | |
1904 | * If the wakeup was spurious, just retry | |
1905 | */ | |
1906 | if (error == -EINTR && !signal_pending(current)) | |
1907 | goto sleep_again; | |
1908 | ||
b97e820f | 1909 | unlink_queue(sma, &queue); |
1da177e4 LT |
1910 | |
1911 | out_unlock_free: | |
6062a8dc | 1912 | sem_unlock(sma, locknum); |
c728b9c8 | 1913 | out_rcu_wakeup: |
6d49dab8 | 1914 | rcu_read_unlock(); |
0a2b9d4c | 1915 | wake_up_sem_queue_do(&tasks); |
1da177e4 LT |
1916 | out_free: |
1917 | if(sops != fast_sops) | |
1918 | kfree(sops); | |
1919 | return error; | |
1920 | } | |
1921 | ||
d5460c99 HC |
1922 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
1923 | unsigned, nsops) | |
1da177e4 LT |
1924 | { |
1925 | return sys_semtimedop(semid, tsops, nsops, NULL); | |
1926 | } | |
1927 | ||
1928 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | |
1929 | * parent and child tasks. | |
1da177e4 LT |
1930 | */ |
1931 | ||
1932 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | |
1933 | { | |
1934 | struct sem_undo_list *undo_list; | |
1935 | int error; | |
1936 | ||
1937 | if (clone_flags & CLONE_SYSVSEM) { | |
1938 | error = get_undo_list(&undo_list); | |
1939 | if (error) | |
1940 | return error; | |
1da177e4 LT |
1941 | atomic_inc(&undo_list->refcnt); |
1942 | tsk->sysvsem.undo_list = undo_list; | |
1943 | } else | |
1944 | tsk->sysvsem.undo_list = NULL; | |
1945 | ||
1946 | return 0; | |
1947 | } | |
1948 | ||
1949 | /* | |
1950 | * add semadj values to semaphores, free undo structures. | |
1951 | * undo structures are not freed when semaphore arrays are destroyed | |
1952 | * so some of them may be out of date. | |
1953 | * IMPLEMENTATION NOTE: There is some confusion over whether the | |
1954 | * set of adjustments that needs to be done should be done in an atomic | |
1955 | * manner or not. That is, if we are attempting to decrement the semval | |
1956 | * should we queue up and wait until we can do so legally? | |
1957 | * The original implementation attempted to do this (queue and wait). | |
1958 | * The current implementation does not do so. The POSIX standard | |
1959 | * and SVID should be consulted to determine what behavior is mandated. | |
1960 | */ | |
1961 | void exit_sem(struct task_struct *tsk) | |
1962 | { | |
4daa28f6 | 1963 | struct sem_undo_list *ulp; |
1da177e4 | 1964 | |
4daa28f6 MS |
1965 | ulp = tsk->sysvsem.undo_list; |
1966 | if (!ulp) | |
1da177e4 | 1967 | return; |
9edff4ab | 1968 | tsk->sysvsem.undo_list = NULL; |
1da177e4 | 1969 | |
4daa28f6 | 1970 | if (!atomic_dec_and_test(&ulp->refcnt)) |
1da177e4 LT |
1971 | return; |
1972 | ||
380af1b3 | 1973 | for (;;) { |
1da177e4 | 1974 | struct sem_array *sma; |
380af1b3 | 1975 | struct sem_undo *un; |
0a2b9d4c | 1976 | struct list_head tasks; |
6062a8dc | 1977 | int semid, i; |
4daa28f6 | 1978 | |
380af1b3 | 1979 | rcu_read_lock(); |
05725f7e JP |
1980 | un = list_entry_rcu(ulp->list_proc.next, |
1981 | struct sem_undo, list_proc); | |
380af1b3 MS |
1982 | if (&un->list_proc == &ulp->list_proc) |
1983 | semid = -1; | |
1984 | else | |
1985 | semid = un->semid; | |
4daa28f6 | 1986 | |
6062a8dc RR |
1987 | if (semid == -1) { |
1988 | rcu_read_unlock(); | |
380af1b3 | 1989 | break; |
6062a8dc | 1990 | } |
1da177e4 | 1991 | |
6062a8dc | 1992 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); |
380af1b3 | 1993 | /* exit_sem raced with IPC_RMID, nothing to do */ |
6062a8dc RR |
1994 | if (IS_ERR(sma)) { |
1995 | rcu_read_unlock(); | |
380af1b3 | 1996 | continue; |
6062a8dc | 1997 | } |
1da177e4 | 1998 | |
6062a8dc | 1999 | sem_lock(sma, NULL, -1); |
bf17bb71 | 2000 | un = __lookup_undo(ulp, semid); |
380af1b3 MS |
2001 | if (un == NULL) { |
2002 | /* exit_sem raced with IPC_RMID+semget() that created | |
2003 | * exactly the same semid. Nothing to do. | |
2004 | */ | |
6062a8dc | 2005 | sem_unlock(sma, -1); |
6d49dab8 | 2006 | rcu_read_unlock(); |
380af1b3 MS |
2007 | continue; |
2008 | } | |
2009 | ||
2010 | /* remove un from the linked lists */ | |
cf9d5d78 | 2011 | ipc_assert_locked_object(&sma->sem_perm); |
4daa28f6 MS |
2012 | list_del(&un->list_id); |
2013 | ||
380af1b3 MS |
2014 | spin_lock(&ulp->lock); |
2015 | list_del_rcu(&un->list_proc); | |
2016 | spin_unlock(&ulp->lock); | |
2017 | ||
4daa28f6 MS |
2018 | /* perform adjustments registered in un */ |
2019 | for (i = 0; i < sma->sem_nsems; i++) { | |
5f921ae9 | 2020 | struct sem * semaphore = &sma->sem_base[i]; |
4daa28f6 MS |
2021 | if (un->semadj[i]) { |
2022 | semaphore->semval += un->semadj[i]; | |
1da177e4 LT |
2023 | /* |
2024 | * Range checks of the new semaphore value, | |
2025 | * not defined by sus: | |
2026 | * - Some unices ignore the undo entirely | |
2027 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) | |
2028 | * - some cap the value (e.g. FreeBSD caps | |
2029 | * at 0, but doesn't enforce SEMVMX) | |
2030 | * | |
2031 | * Linux caps the semaphore value, both at 0 | |
2032 | * and at SEMVMX. | |
2033 | * | |
2034 | * Manfred <[email protected]> | |
2035 | */ | |
5f921ae9 IM |
2036 | if (semaphore->semval < 0) |
2037 | semaphore->semval = 0; | |
2038 | if (semaphore->semval > SEMVMX) | |
2039 | semaphore->semval = SEMVMX; | |
b488893a | 2040 | semaphore->sempid = task_tgid_vnr(current); |
1da177e4 LT |
2041 | } |
2042 | } | |
1da177e4 | 2043 | /* maybe some queued-up processes were waiting for this */ |
0a2b9d4c MS |
2044 | INIT_LIST_HEAD(&tasks); |
2045 | do_smart_update(sma, NULL, 0, 1, &tasks); | |
6062a8dc | 2046 | sem_unlock(sma, -1); |
6d49dab8 | 2047 | rcu_read_unlock(); |
0a2b9d4c | 2048 | wake_up_sem_queue_do(&tasks); |
380af1b3 | 2049 | |
693a8b6e | 2050 | kfree_rcu(un, rcu); |
1da177e4 | 2051 | } |
4daa28f6 | 2052 | kfree(ulp); |
1da177e4 LT |
2053 | } |
2054 | ||
2055 | #ifdef CONFIG_PROC_FS | |
19b4946c | 2056 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
1da177e4 | 2057 | { |
1efdb69b | 2058 | struct user_namespace *user_ns = seq_user_ns(s); |
19b4946c | 2059 | struct sem_array *sma = it; |
d12e1e50 MS |
2060 | time_t sem_otime; |
2061 | ||
2062 | sem_otime = get_semotime(sma); | |
19b4946c MW |
2063 | |
2064 | return seq_printf(s, | |
b97e820f | 2065 | "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", |
19b4946c | 2066 | sma->sem_perm.key, |
7ca7e564 | 2067 | sma->sem_perm.id, |
19b4946c MW |
2068 | sma->sem_perm.mode, |
2069 | sma->sem_nsems, | |
1efdb69b EB |
2070 | from_kuid_munged(user_ns, sma->sem_perm.uid), |
2071 | from_kgid_munged(user_ns, sma->sem_perm.gid), | |
2072 | from_kuid_munged(user_ns, sma->sem_perm.cuid), | |
2073 | from_kgid_munged(user_ns, sma->sem_perm.cgid), | |
d12e1e50 | 2074 | sem_otime, |
19b4946c | 2075 | sma->sem_ctime); |
1da177e4 LT |
2076 | } |
2077 | #endif |