]>
Commit | Line | Data |
---|---|---|
bf0f6f24 IM |
1 | /* |
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | |
3 | * | |
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <[email protected]> | |
5 | * | |
6 | * Interactivity improvements by Mike Galbraith | |
7 | * (C) 2007 Mike Galbraith <[email protected]> | |
8 | * | |
9 | * Various enhancements by Dmitry Adamushko. | |
10 | * (C) 2007 Dmitry Adamushko <[email protected]> | |
11 | * | |
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | |
13 | * Copyright IBM Corporation, 2007 | |
14 | * Author: Srivatsa Vaddagiri <[email protected]> | |
15 | * | |
16 | * Scaled math optimizations by Thomas Gleixner | |
17 | * Copyright (C) 2007, Thomas Gleixner <[email protected]> | |
21805085 PZ |
18 | * |
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | |
20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <[email protected]> | |
bf0f6f24 IM |
21 | */ |
22 | ||
9745512c AV |
23 | #include <linux/latencytop.h> |
24 | ||
bf0f6f24 | 25 | /* |
21805085 | 26 | * Targeted preemption latency for CPU-bound tasks: |
172e082a | 27 | * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) |
bf0f6f24 | 28 | * |
21805085 | 29 | * NOTE: this latency value is not the same as the concept of |
d274a4ce IM |
30 | * 'timeslice length' - timeslices in CFS are of variable length |
31 | * and have no persistent notion like in traditional, time-slice | |
32 | * based scheduling concepts. | |
bf0f6f24 | 33 | * |
d274a4ce IM |
34 | * (to see the precise effective timeslice length of your workload, |
35 | * run vmstat and monitor the context-switches (cs) field) | |
bf0f6f24 | 36 | */ |
172e082a | 37 | unsigned int sysctl_sched_latency = 5000000ULL; |
2bd8e6d4 IM |
38 | |
39 | /* | |
b2be5e96 | 40 | * Minimal preemption granularity for CPU-bound tasks: |
172e082a | 41 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
2bd8e6d4 | 42 | */ |
172e082a | 43 | unsigned int sysctl_sched_min_granularity = 1000000ULL; |
21805085 PZ |
44 | |
45 | /* | |
b2be5e96 PZ |
46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
47 | */ | |
722aab0c | 48 | static unsigned int sched_nr_latency = 5; |
b2be5e96 PZ |
49 | |
50 | /* | |
2bba22c5 | 51 | * After fork, child runs first. If set to 0 (default) then |
b2be5e96 | 52 | * parent will (try to) run first. |
21805085 | 53 | */ |
2bba22c5 | 54 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
bf0f6f24 | 55 | |
1799e35d IM |
56 | /* |
57 | * sys_sched_yield() compat mode | |
58 | * | |
59 | * This option switches the agressive yield implementation of the | |
60 | * old scheduler back on. | |
61 | */ | |
62 | unsigned int __read_mostly sysctl_sched_compat_yield; | |
63 | ||
bf0f6f24 IM |
64 | /* |
65 | * SCHED_OTHER wake-up granularity. | |
172e082a | 66 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
bf0f6f24 IM |
67 | * |
68 | * This option delays the preemption effects of decoupled workloads | |
69 | * and reduces their over-scheduling. Synchronous workloads will still | |
70 | * have immediate wakeup/sleep latencies. | |
71 | */ | |
172e082a | 72 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
bf0f6f24 | 73 | |
da84d961 IM |
74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
75 | ||
a4c2f00f PZ |
76 | static const struct sched_class fair_sched_class; |
77 | ||
bf0f6f24 IM |
78 | /************************************************************** |
79 | * CFS operations on generic schedulable entities: | |
80 | */ | |
81 | ||
62160e3f | 82 | #ifdef CONFIG_FAIR_GROUP_SCHED |
bf0f6f24 | 83 | |
62160e3f | 84 | /* cpu runqueue to which this cfs_rq is attached */ |
bf0f6f24 IM |
85 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
86 | { | |
62160e3f | 87 | return cfs_rq->rq; |
bf0f6f24 IM |
88 | } |
89 | ||
62160e3f IM |
90 | /* An entity is a task if it doesn't "own" a runqueue */ |
91 | #define entity_is_task(se) (!se->my_q) | |
bf0f6f24 | 92 | |
8f48894f PZ |
93 | static inline struct task_struct *task_of(struct sched_entity *se) |
94 | { | |
95 | #ifdef CONFIG_SCHED_DEBUG | |
96 | WARN_ON_ONCE(!entity_is_task(se)); | |
97 | #endif | |
98 | return container_of(se, struct task_struct, se); | |
99 | } | |
100 | ||
b758149c PZ |
101 | /* Walk up scheduling entities hierarchy */ |
102 | #define for_each_sched_entity(se) \ | |
103 | for (; se; se = se->parent) | |
104 | ||
105 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | |
106 | { | |
107 | return p->se.cfs_rq; | |
108 | } | |
109 | ||
110 | /* runqueue on which this entity is (to be) queued */ | |
111 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | |
112 | { | |
113 | return se->cfs_rq; | |
114 | } | |
115 | ||
116 | /* runqueue "owned" by this group */ | |
117 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
118 | { | |
119 | return grp->my_q; | |
120 | } | |
121 | ||
122 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | |
123 | * another cpu ('this_cpu') | |
124 | */ | |
125 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | |
126 | { | |
127 | return cfs_rq->tg->cfs_rq[this_cpu]; | |
128 | } | |
129 | ||
130 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | |
131 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | |
132 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | |
133 | ||
134 | /* Do the two (enqueued) entities belong to the same group ? */ | |
135 | static inline int | |
136 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | |
137 | { | |
138 | if (se->cfs_rq == pse->cfs_rq) | |
139 | return 1; | |
140 | ||
141 | return 0; | |
142 | } | |
143 | ||
144 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
145 | { | |
146 | return se->parent; | |
147 | } | |
148 | ||
464b7527 PZ |
149 | /* return depth at which a sched entity is present in the hierarchy */ |
150 | static inline int depth_se(struct sched_entity *se) | |
151 | { | |
152 | int depth = 0; | |
153 | ||
154 | for_each_sched_entity(se) | |
155 | depth++; | |
156 | ||
157 | return depth; | |
158 | } | |
159 | ||
160 | static void | |
161 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
162 | { | |
163 | int se_depth, pse_depth; | |
164 | ||
165 | /* | |
166 | * preemption test can be made between sibling entities who are in the | |
167 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | |
168 | * both tasks until we find their ancestors who are siblings of common | |
169 | * parent. | |
170 | */ | |
171 | ||
172 | /* First walk up until both entities are at same depth */ | |
173 | se_depth = depth_se(*se); | |
174 | pse_depth = depth_se(*pse); | |
175 | ||
176 | while (se_depth > pse_depth) { | |
177 | se_depth--; | |
178 | *se = parent_entity(*se); | |
179 | } | |
180 | ||
181 | while (pse_depth > se_depth) { | |
182 | pse_depth--; | |
183 | *pse = parent_entity(*pse); | |
184 | } | |
185 | ||
186 | while (!is_same_group(*se, *pse)) { | |
187 | *se = parent_entity(*se); | |
188 | *pse = parent_entity(*pse); | |
189 | } | |
190 | } | |
191 | ||
8f48894f PZ |
192 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
193 | ||
194 | static inline struct task_struct *task_of(struct sched_entity *se) | |
195 | { | |
196 | return container_of(se, struct task_struct, se); | |
197 | } | |
bf0f6f24 | 198 | |
62160e3f IM |
199 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
200 | { | |
201 | return container_of(cfs_rq, struct rq, cfs); | |
bf0f6f24 IM |
202 | } |
203 | ||
204 | #define entity_is_task(se) 1 | |
205 | ||
b758149c PZ |
206 | #define for_each_sched_entity(se) \ |
207 | for (; se; se = NULL) | |
bf0f6f24 | 208 | |
b758149c | 209 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
bf0f6f24 | 210 | { |
b758149c | 211 | return &task_rq(p)->cfs; |
bf0f6f24 IM |
212 | } |
213 | ||
b758149c PZ |
214 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
215 | { | |
216 | struct task_struct *p = task_of(se); | |
217 | struct rq *rq = task_rq(p); | |
218 | ||
219 | return &rq->cfs; | |
220 | } | |
221 | ||
222 | /* runqueue "owned" by this group */ | |
223 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | |
224 | { | |
225 | return NULL; | |
226 | } | |
227 | ||
228 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | |
229 | { | |
230 | return &cpu_rq(this_cpu)->cfs; | |
231 | } | |
232 | ||
233 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | |
234 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | |
235 | ||
236 | static inline int | |
237 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | |
238 | { | |
239 | return 1; | |
240 | } | |
241 | ||
242 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | |
243 | { | |
244 | return NULL; | |
245 | } | |
246 | ||
464b7527 PZ |
247 | static inline void |
248 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | |
249 | { | |
250 | } | |
251 | ||
b758149c PZ |
252 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
253 | ||
bf0f6f24 IM |
254 | |
255 | /************************************************************** | |
256 | * Scheduling class tree data structure manipulation methods: | |
257 | */ | |
258 | ||
0702e3eb | 259 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) |
02e0431a | 260 | { |
368059a9 PZ |
261 | s64 delta = (s64)(vruntime - min_vruntime); |
262 | if (delta > 0) | |
02e0431a PZ |
263 | min_vruntime = vruntime; |
264 | ||
265 | return min_vruntime; | |
266 | } | |
267 | ||
0702e3eb | 268 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
b0ffd246 PZ |
269 | { |
270 | s64 delta = (s64)(vruntime - min_vruntime); | |
271 | if (delta < 0) | |
272 | min_vruntime = vruntime; | |
273 | ||
274 | return min_vruntime; | |
275 | } | |
276 | ||
54fdc581 FC |
277 | static inline int entity_before(struct sched_entity *a, |
278 | struct sched_entity *b) | |
279 | { | |
280 | return (s64)(a->vruntime - b->vruntime) < 0; | |
281 | } | |
282 | ||
0702e3eb | 283 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
9014623c | 284 | { |
30cfdcfc | 285 | return se->vruntime - cfs_rq->min_vruntime; |
9014623c PZ |
286 | } |
287 | ||
1af5f730 PZ |
288 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
289 | { | |
290 | u64 vruntime = cfs_rq->min_vruntime; | |
291 | ||
292 | if (cfs_rq->curr) | |
293 | vruntime = cfs_rq->curr->vruntime; | |
294 | ||
295 | if (cfs_rq->rb_leftmost) { | |
296 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | |
297 | struct sched_entity, | |
298 | run_node); | |
299 | ||
e17036da | 300 | if (!cfs_rq->curr) |
1af5f730 PZ |
301 | vruntime = se->vruntime; |
302 | else | |
303 | vruntime = min_vruntime(vruntime, se->vruntime); | |
304 | } | |
305 | ||
306 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | |
307 | } | |
308 | ||
bf0f6f24 IM |
309 | /* |
310 | * Enqueue an entity into the rb-tree: | |
311 | */ | |
0702e3eb | 312 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
313 | { |
314 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | |
315 | struct rb_node *parent = NULL; | |
316 | struct sched_entity *entry; | |
9014623c | 317 | s64 key = entity_key(cfs_rq, se); |
bf0f6f24 IM |
318 | int leftmost = 1; |
319 | ||
320 | /* | |
321 | * Find the right place in the rbtree: | |
322 | */ | |
323 | while (*link) { | |
324 | parent = *link; | |
325 | entry = rb_entry(parent, struct sched_entity, run_node); | |
326 | /* | |
327 | * We dont care about collisions. Nodes with | |
328 | * the same key stay together. | |
329 | */ | |
9014623c | 330 | if (key < entity_key(cfs_rq, entry)) { |
bf0f6f24 IM |
331 | link = &parent->rb_left; |
332 | } else { | |
333 | link = &parent->rb_right; | |
334 | leftmost = 0; | |
335 | } | |
336 | } | |
337 | ||
338 | /* | |
339 | * Maintain a cache of leftmost tree entries (it is frequently | |
340 | * used): | |
341 | */ | |
1af5f730 | 342 | if (leftmost) |
57cb499d | 343 | cfs_rq->rb_leftmost = &se->run_node; |
bf0f6f24 IM |
344 | |
345 | rb_link_node(&se->run_node, parent, link); | |
346 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | |
bf0f6f24 IM |
347 | } |
348 | ||
0702e3eb | 349 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 350 | { |
3fe69747 PZ |
351 | if (cfs_rq->rb_leftmost == &se->run_node) { |
352 | struct rb_node *next_node; | |
3fe69747 PZ |
353 | |
354 | next_node = rb_next(&se->run_node); | |
355 | cfs_rq->rb_leftmost = next_node; | |
3fe69747 | 356 | } |
e9acbff6 | 357 | |
bf0f6f24 | 358 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
bf0f6f24 IM |
359 | } |
360 | ||
bf0f6f24 IM |
361 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) |
362 | { | |
f4b6755f PZ |
363 | struct rb_node *left = cfs_rq->rb_leftmost; |
364 | ||
365 | if (!left) | |
366 | return NULL; | |
367 | ||
368 | return rb_entry(left, struct sched_entity, run_node); | |
bf0f6f24 IM |
369 | } |
370 | ||
f4b6755f | 371 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
aeb73b04 | 372 | { |
7eee3e67 | 373 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
aeb73b04 | 374 | |
70eee74b BS |
375 | if (!last) |
376 | return NULL; | |
7eee3e67 IM |
377 | |
378 | return rb_entry(last, struct sched_entity, run_node); | |
aeb73b04 PZ |
379 | } |
380 | ||
bf0f6f24 IM |
381 | /************************************************************** |
382 | * Scheduling class statistics methods: | |
383 | */ | |
384 | ||
b2be5e96 PZ |
385 | #ifdef CONFIG_SCHED_DEBUG |
386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | |
387 | struct file *filp, void __user *buffer, size_t *lenp, | |
388 | loff_t *ppos) | |
389 | { | |
390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | |
391 | ||
392 | if (ret || !write) | |
393 | return ret; | |
394 | ||
395 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | |
396 | sysctl_sched_min_granularity); | |
397 | ||
398 | return 0; | |
399 | } | |
400 | #endif | |
647e7cac | 401 | |
a7be37ac | 402 | /* |
f9c0b095 | 403 | * delta /= w |
a7be37ac PZ |
404 | */ |
405 | static inline unsigned long | |
406 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | |
407 | { | |
f9c0b095 PZ |
408 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
409 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | |
a7be37ac PZ |
410 | |
411 | return delta; | |
412 | } | |
413 | ||
647e7cac IM |
414 | /* |
415 | * The idea is to set a period in which each task runs once. | |
416 | * | |
417 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | |
418 | * this period because otherwise the slices get too small. | |
419 | * | |
420 | * p = (nr <= nl) ? l : l*nr/nl | |
421 | */ | |
4d78e7b6 PZ |
422 | static u64 __sched_period(unsigned long nr_running) |
423 | { | |
424 | u64 period = sysctl_sched_latency; | |
b2be5e96 | 425 | unsigned long nr_latency = sched_nr_latency; |
4d78e7b6 PZ |
426 | |
427 | if (unlikely(nr_running > nr_latency)) { | |
4bf0b771 | 428 | period = sysctl_sched_min_granularity; |
4d78e7b6 | 429 | period *= nr_running; |
4d78e7b6 PZ |
430 | } |
431 | ||
432 | return period; | |
433 | } | |
434 | ||
647e7cac IM |
435 | /* |
436 | * We calculate the wall-time slice from the period by taking a part | |
437 | * proportional to the weight. | |
438 | * | |
f9c0b095 | 439 | * s = p*P[w/rw] |
647e7cac | 440 | */ |
6d0f0ebd | 441 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
21805085 | 442 | { |
0a582440 | 443 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
f9c0b095 | 444 | |
0a582440 | 445 | for_each_sched_entity(se) { |
6272d68c | 446 | struct load_weight *load; |
3104bf03 | 447 | struct load_weight lw; |
6272d68c LM |
448 | |
449 | cfs_rq = cfs_rq_of(se); | |
450 | load = &cfs_rq->load; | |
f9c0b095 | 451 | |
0a582440 | 452 | if (unlikely(!se->on_rq)) { |
3104bf03 | 453 | lw = cfs_rq->load; |
0a582440 MG |
454 | |
455 | update_load_add(&lw, se->load.weight); | |
456 | load = &lw; | |
457 | } | |
458 | slice = calc_delta_mine(slice, se->load.weight, load); | |
459 | } | |
460 | return slice; | |
bf0f6f24 IM |
461 | } |
462 | ||
647e7cac | 463 | /* |
ac884dec | 464 | * We calculate the vruntime slice of a to be inserted task |
647e7cac | 465 | * |
f9c0b095 | 466 | * vs = s/w |
647e7cac | 467 | */ |
f9c0b095 | 468 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
67e9fb2a | 469 | { |
f9c0b095 | 470 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
a7be37ac PZ |
471 | } |
472 | ||
bf0f6f24 IM |
473 | /* |
474 | * Update the current task's runtime statistics. Skip current tasks that | |
475 | * are not in our scheduling class. | |
476 | */ | |
477 | static inline void | |
8ebc91d9 IM |
478 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, |
479 | unsigned long delta_exec) | |
bf0f6f24 | 480 | { |
bbdba7c0 | 481 | unsigned long delta_exec_weighted; |
bf0f6f24 | 482 | |
8179ca23 | 483 | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); |
bf0f6f24 IM |
484 | |
485 | curr->sum_exec_runtime += delta_exec; | |
7a62eabc | 486 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
a7be37ac | 487 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); |
e9acbff6 | 488 | curr->vruntime += delta_exec_weighted; |
1af5f730 | 489 | update_min_vruntime(cfs_rq); |
bf0f6f24 IM |
490 | } |
491 | ||
b7cc0896 | 492 | static void update_curr(struct cfs_rq *cfs_rq) |
bf0f6f24 | 493 | { |
429d43bc | 494 | struct sched_entity *curr = cfs_rq->curr; |
8ebc91d9 | 495 | u64 now = rq_of(cfs_rq)->clock; |
bf0f6f24 IM |
496 | unsigned long delta_exec; |
497 | ||
498 | if (unlikely(!curr)) | |
499 | return; | |
500 | ||
501 | /* | |
502 | * Get the amount of time the current task was running | |
503 | * since the last time we changed load (this cannot | |
504 | * overflow on 32 bits): | |
505 | */ | |
8ebc91d9 | 506 | delta_exec = (unsigned long)(now - curr->exec_start); |
34f28ecd PZ |
507 | if (!delta_exec) |
508 | return; | |
bf0f6f24 | 509 | |
8ebc91d9 IM |
510 | __update_curr(cfs_rq, curr, delta_exec); |
511 | curr->exec_start = now; | |
d842de87 SV |
512 | |
513 | if (entity_is_task(curr)) { | |
514 | struct task_struct *curtask = task_of(curr); | |
515 | ||
516 | cpuacct_charge(curtask, delta_exec); | |
f06febc9 | 517 | account_group_exec_runtime(curtask, delta_exec); |
d842de87 | 518 | } |
bf0f6f24 IM |
519 | } |
520 | ||
521 | static inline void | |
5870db5b | 522 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 523 | { |
d281918d | 524 | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); |
bf0f6f24 IM |
525 | } |
526 | ||
bf0f6f24 IM |
527 | /* |
528 | * Task is being enqueued - update stats: | |
529 | */ | |
d2417e5a | 530 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 531 | { |
bf0f6f24 IM |
532 | /* |
533 | * Are we enqueueing a waiting task? (for current tasks | |
534 | * a dequeue/enqueue event is a NOP) | |
535 | */ | |
429d43bc | 536 | if (se != cfs_rq->curr) |
5870db5b | 537 | update_stats_wait_start(cfs_rq, se); |
bf0f6f24 IM |
538 | } |
539 | ||
bf0f6f24 | 540 | static void |
9ef0a961 | 541 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 542 | { |
bbdba7c0 IM |
543 | schedstat_set(se->wait_max, max(se->wait_max, |
544 | rq_of(cfs_rq)->clock - se->wait_start)); | |
6d082592 AV |
545 | schedstat_set(se->wait_count, se->wait_count + 1); |
546 | schedstat_set(se->wait_sum, se->wait_sum + | |
547 | rq_of(cfs_rq)->clock - se->wait_start); | |
768d0c27 PZ |
548 | #ifdef CONFIG_SCHEDSTATS |
549 | if (entity_is_task(se)) { | |
550 | trace_sched_stat_wait(task_of(se), | |
551 | rq_of(cfs_rq)->clock - se->wait_start); | |
552 | } | |
553 | #endif | |
e1f84508 | 554 | schedstat_set(se->wait_start, 0); |
bf0f6f24 IM |
555 | } |
556 | ||
557 | static inline void | |
19b6a2e3 | 558 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 559 | { |
bf0f6f24 IM |
560 | /* |
561 | * Mark the end of the wait period if dequeueing a | |
562 | * waiting task: | |
563 | */ | |
429d43bc | 564 | if (se != cfs_rq->curr) |
9ef0a961 | 565 | update_stats_wait_end(cfs_rq, se); |
bf0f6f24 IM |
566 | } |
567 | ||
568 | /* | |
569 | * We are picking a new current task - update its stats: | |
570 | */ | |
571 | static inline void | |
79303e9e | 572 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 IM |
573 | { |
574 | /* | |
575 | * We are starting a new run period: | |
576 | */ | |
d281918d | 577 | se->exec_start = rq_of(cfs_rq)->clock; |
bf0f6f24 IM |
578 | } |
579 | ||
bf0f6f24 IM |
580 | /************************************************** |
581 | * Scheduling class queueing methods: | |
582 | */ | |
583 | ||
c09595f6 PZ |
584 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED |
585 | static void | |
586 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | |
587 | { | |
588 | cfs_rq->task_weight += weight; | |
589 | } | |
590 | #else | |
591 | static inline void | |
592 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | |
593 | { | |
594 | } | |
595 | #endif | |
596 | ||
30cfdcfc DA |
597 | static void |
598 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
599 | { | |
600 | update_load_add(&cfs_rq->load, se->load.weight); | |
c09595f6 PZ |
601 | if (!parent_entity(se)) |
602 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | |
b87f1724 | 603 | if (entity_is_task(se)) { |
c09595f6 | 604 | add_cfs_task_weight(cfs_rq, se->load.weight); |
b87f1724 BR |
605 | list_add(&se->group_node, &cfs_rq->tasks); |
606 | } | |
30cfdcfc DA |
607 | cfs_rq->nr_running++; |
608 | se->on_rq = 1; | |
609 | } | |
610 | ||
611 | static void | |
612 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |
613 | { | |
614 | update_load_sub(&cfs_rq->load, se->load.weight); | |
c09595f6 PZ |
615 | if (!parent_entity(se)) |
616 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | |
b87f1724 | 617 | if (entity_is_task(se)) { |
c09595f6 | 618 | add_cfs_task_weight(cfs_rq, -se->load.weight); |
b87f1724 BR |
619 | list_del_init(&se->group_node); |
620 | } | |
30cfdcfc DA |
621 | cfs_rq->nr_running--; |
622 | se->on_rq = 0; | |
623 | } | |
624 | ||
2396af69 | 625 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 626 | { |
bf0f6f24 | 627 | #ifdef CONFIG_SCHEDSTATS |
e414314c PZ |
628 | struct task_struct *tsk = NULL; |
629 | ||
630 | if (entity_is_task(se)) | |
631 | tsk = task_of(se); | |
632 | ||
bf0f6f24 | 633 | if (se->sleep_start) { |
d281918d | 634 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; |
bf0f6f24 IM |
635 | |
636 | if ((s64)delta < 0) | |
637 | delta = 0; | |
638 | ||
639 | if (unlikely(delta > se->sleep_max)) | |
640 | se->sleep_max = delta; | |
641 | ||
642 | se->sleep_start = 0; | |
643 | se->sum_sleep_runtime += delta; | |
9745512c | 644 | |
768d0c27 | 645 | if (tsk) { |
e414314c | 646 | account_scheduler_latency(tsk, delta >> 10, 1); |
768d0c27 PZ |
647 | trace_sched_stat_sleep(tsk, delta); |
648 | } | |
bf0f6f24 IM |
649 | } |
650 | if (se->block_start) { | |
d281918d | 651 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; |
bf0f6f24 IM |
652 | |
653 | if ((s64)delta < 0) | |
654 | delta = 0; | |
655 | ||
656 | if (unlikely(delta > se->block_max)) | |
657 | se->block_max = delta; | |
658 | ||
659 | se->block_start = 0; | |
660 | se->sum_sleep_runtime += delta; | |
30084fbd | 661 | |
e414314c | 662 | if (tsk) { |
8f0dfc34 AV |
663 | if (tsk->in_iowait) { |
664 | se->iowait_sum += delta; | |
665 | se->iowait_count++; | |
768d0c27 | 666 | trace_sched_stat_iowait(tsk, delta); |
8f0dfc34 AV |
667 | } |
668 | ||
e414314c PZ |
669 | /* |
670 | * Blocking time is in units of nanosecs, so shift by | |
671 | * 20 to get a milliseconds-range estimation of the | |
672 | * amount of time that the task spent sleeping: | |
673 | */ | |
674 | if (unlikely(prof_on == SLEEP_PROFILING)) { | |
675 | profile_hits(SLEEP_PROFILING, | |
676 | (void *)get_wchan(tsk), | |
677 | delta >> 20); | |
678 | } | |
679 | account_scheduler_latency(tsk, delta >> 10, 0); | |
30084fbd | 680 | } |
bf0f6f24 IM |
681 | } |
682 | #endif | |
683 | } | |
684 | ||
ddc97297 PZ |
685 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
686 | { | |
687 | #ifdef CONFIG_SCHED_DEBUG | |
688 | s64 d = se->vruntime - cfs_rq->min_vruntime; | |
689 | ||
690 | if (d < 0) | |
691 | d = -d; | |
692 | ||
693 | if (d > 3*sysctl_sched_latency) | |
694 | schedstat_inc(cfs_rq, nr_spread_over); | |
695 | #endif | |
696 | } | |
697 | ||
aeb73b04 PZ |
698 | static void |
699 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |
700 | { | |
1af5f730 | 701 | u64 vruntime = cfs_rq->min_vruntime; |
94dfb5e7 | 702 | |
2cb8600e PZ |
703 | /* |
704 | * The 'current' period is already promised to the current tasks, | |
705 | * however the extra weight of the new task will slow them down a | |
706 | * little, place the new task so that it fits in the slot that | |
707 | * stays open at the end. | |
708 | */ | |
94dfb5e7 | 709 | if (initial && sched_feat(START_DEBIT)) |
f9c0b095 | 710 | vruntime += sched_vslice(cfs_rq, se); |
aeb73b04 | 711 | |
8465e792 | 712 | if (!initial) { |
2cb8600e | 713 | /* sleeps upto a single latency don't count. */ |
51e0304c | 714 | if (sched_feat(FAIR_SLEEPERS)) { |
a7be37ac PZ |
715 | unsigned long thresh = sysctl_sched_latency; |
716 | ||
717 | /* | |
6bc912b7 PZ |
718 | * Convert the sleeper threshold into virtual time. |
719 | * SCHED_IDLE is a special sub-class. We care about | |
720 | * fairness only relative to other SCHED_IDLE tasks, | |
721 | * all of which have the same weight. | |
a7be37ac | 722 | */ |
6bc912b7 | 723 | if (sched_feat(NORMALIZED_SLEEPER) && |
d07387b4 PT |
724 | (!entity_is_task(se) || |
725 | task_of(se)->policy != SCHED_IDLE)) | |
a7be37ac PZ |
726 | thresh = calc_delta_fair(thresh, se); |
727 | ||
51e0304c IM |
728 | /* |
729 | * Halve their sleep time's effect, to allow | |
730 | * for a gentler effect of sleepers: | |
731 | */ | |
732 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | |
733 | thresh >>= 1; | |
734 | ||
a7be37ac PZ |
735 | vruntime -= thresh; |
736 | } | |
aeb73b04 PZ |
737 | } |
738 | ||
b5d9d734 MG |
739 | /* ensure we never gain time by being placed backwards. */ |
740 | vruntime = max_vruntime(se->vruntime, vruntime); | |
741 | ||
67e9fb2a | 742 | se->vruntime = vruntime; |
aeb73b04 PZ |
743 | } |
744 | ||
bf0f6f24 | 745 | static void |
83b699ed | 746 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) |
bf0f6f24 IM |
747 | { |
748 | /* | |
a2a2d680 | 749 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 750 | */ |
b7cc0896 | 751 | update_curr(cfs_rq); |
a992241d | 752 | account_entity_enqueue(cfs_rq, se); |
bf0f6f24 | 753 | |
e9acbff6 | 754 | if (wakeup) { |
aeb73b04 | 755 | place_entity(cfs_rq, se, 0); |
2396af69 | 756 | enqueue_sleeper(cfs_rq, se); |
e9acbff6 | 757 | } |
bf0f6f24 | 758 | |
d2417e5a | 759 | update_stats_enqueue(cfs_rq, se); |
ddc97297 | 760 | check_spread(cfs_rq, se); |
83b699ed SV |
761 | if (se != cfs_rq->curr) |
762 | __enqueue_entity(cfs_rq, se); | |
bf0f6f24 IM |
763 | } |
764 | ||
a571bbea | 765 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
2002c695 PZ |
766 | { |
767 | if (cfs_rq->last == se) | |
768 | cfs_rq->last = NULL; | |
769 | ||
770 | if (cfs_rq->next == se) | |
771 | cfs_rq->next = NULL; | |
772 | } | |
773 | ||
a571bbea PZ |
774 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
775 | { | |
776 | for_each_sched_entity(se) | |
777 | __clear_buddies(cfs_rq_of(se), se); | |
778 | } | |
779 | ||
bf0f6f24 | 780 | static void |
525c2716 | 781 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) |
bf0f6f24 | 782 | { |
a2a2d680 DA |
783 | /* |
784 | * Update run-time statistics of the 'current'. | |
785 | */ | |
786 | update_curr(cfs_rq); | |
787 | ||
19b6a2e3 | 788 | update_stats_dequeue(cfs_rq, se); |
db36cc7d | 789 | if (sleep) { |
67e9fb2a | 790 | #ifdef CONFIG_SCHEDSTATS |
bf0f6f24 IM |
791 | if (entity_is_task(se)) { |
792 | struct task_struct *tsk = task_of(se); | |
793 | ||
794 | if (tsk->state & TASK_INTERRUPTIBLE) | |
d281918d | 795 | se->sleep_start = rq_of(cfs_rq)->clock; |
bf0f6f24 | 796 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
d281918d | 797 | se->block_start = rq_of(cfs_rq)->clock; |
bf0f6f24 | 798 | } |
db36cc7d | 799 | #endif |
67e9fb2a PZ |
800 | } |
801 | ||
2002c695 | 802 | clear_buddies(cfs_rq, se); |
4793241b | 803 | |
83b699ed | 804 | if (se != cfs_rq->curr) |
30cfdcfc DA |
805 | __dequeue_entity(cfs_rq, se); |
806 | account_entity_dequeue(cfs_rq, se); | |
1af5f730 | 807 | update_min_vruntime(cfs_rq); |
bf0f6f24 IM |
808 | } |
809 | ||
810 | /* | |
811 | * Preempt the current task with a newly woken task if needed: | |
812 | */ | |
7c92e54f | 813 | static void |
2e09bf55 | 814 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
bf0f6f24 | 815 | { |
11697830 PZ |
816 | unsigned long ideal_runtime, delta_exec; |
817 | ||
6d0f0ebd | 818 | ideal_runtime = sched_slice(cfs_rq, curr); |
11697830 | 819 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
a9f3e2b5 | 820 | if (delta_exec > ideal_runtime) { |
bf0f6f24 | 821 | resched_task(rq_of(cfs_rq)->curr); |
a9f3e2b5 MG |
822 | /* |
823 | * The current task ran long enough, ensure it doesn't get | |
824 | * re-elected due to buddy favours. | |
825 | */ | |
826 | clear_buddies(cfs_rq, curr); | |
827 | } | |
bf0f6f24 IM |
828 | } |
829 | ||
83b699ed | 830 | static void |
8494f412 | 831 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
bf0f6f24 | 832 | { |
83b699ed SV |
833 | /* 'current' is not kept within the tree. */ |
834 | if (se->on_rq) { | |
835 | /* | |
836 | * Any task has to be enqueued before it get to execute on | |
837 | * a CPU. So account for the time it spent waiting on the | |
838 | * runqueue. | |
839 | */ | |
840 | update_stats_wait_end(cfs_rq, se); | |
841 | __dequeue_entity(cfs_rq, se); | |
842 | } | |
843 | ||
79303e9e | 844 | update_stats_curr_start(cfs_rq, se); |
429d43bc | 845 | cfs_rq->curr = se; |
eba1ed4b IM |
846 | #ifdef CONFIG_SCHEDSTATS |
847 | /* | |
848 | * Track our maximum slice length, if the CPU's load is at | |
849 | * least twice that of our own weight (i.e. dont track it | |
850 | * when there are only lesser-weight tasks around): | |
851 | */ | |
495eca49 | 852 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
eba1ed4b IM |
853 | se->slice_max = max(se->slice_max, |
854 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | |
855 | } | |
856 | #endif | |
4a55b450 | 857 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
bf0f6f24 IM |
858 | } |
859 | ||
3f3a4904 PZ |
860 | static int |
861 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | |
862 | ||
f4b6755f | 863 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) |
aa2ac252 | 864 | { |
f4b6755f PZ |
865 | struct sched_entity *se = __pick_next_entity(cfs_rq); |
866 | ||
4793241b PZ |
867 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1) |
868 | return cfs_rq->next; | |
aa2ac252 | 869 | |
4793241b PZ |
870 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1) |
871 | return cfs_rq->last; | |
872 | ||
873 | return se; | |
aa2ac252 PZ |
874 | } |
875 | ||
ab6cde26 | 876 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
bf0f6f24 IM |
877 | { |
878 | /* | |
879 | * If still on the runqueue then deactivate_task() | |
880 | * was not called and update_curr() has to be done: | |
881 | */ | |
882 | if (prev->on_rq) | |
b7cc0896 | 883 | update_curr(cfs_rq); |
bf0f6f24 | 884 | |
ddc97297 | 885 | check_spread(cfs_rq, prev); |
30cfdcfc | 886 | if (prev->on_rq) { |
5870db5b | 887 | update_stats_wait_start(cfs_rq, prev); |
30cfdcfc DA |
888 | /* Put 'current' back into the tree. */ |
889 | __enqueue_entity(cfs_rq, prev); | |
890 | } | |
429d43bc | 891 | cfs_rq->curr = NULL; |
bf0f6f24 IM |
892 | } |
893 | ||
8f4d37ec PZ |
894 | static void |
895 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | |
bf0f6f24 | 896 | { |
bf0f6f24 | 897 | /* |
30cfdcfc | 898 | * Update run-time statistics of the 'current'. |
bf0f6f24 | 899 | */ |
30cfdcfc | 900 | update_curr(cfs_rq); |
bf0f6f24 | 901 | |
8f4d37ec PZ |
902 | #ifdef CONFIG_SCHED_HRTICK |
903 | /* | |
904 | * queued ticks are scheduled to match the slice, so don't bother | |
905 | * validating it and just reschedule. | |
906 | */ | |
983ed7a6 HH |
907 | if (queued) { |
908 | resched_task(rq_of(cfs_rq)->curr); | |
909 | return; | |
910 | } | |
8f4d37ec PZ |
911 | /* |
912 | * don't let the period tick interfere with the hrtick preemption | |
913 | */ | |
914 | if (!sched_feat(DOUBLE_TICK) && | |
915 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | |
916 | return; | |
917 | #endif | |
918 | ||
ce6c1311 | 919 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) |
2e09bf55 | 920 | check_preempt_tick(cfs_rq, curr); |
bf0f6f24 IM |
921 | } |
922 | ||
923 | /************************************************** | |
924 | * CFS operations on tasks: | |
925 | */ | |
926 | ||
8f4d37ec PZ |
927 | #ifdef CONFIG_SCHED_HRTICK |
928 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
929 | { | |
8f4d37ec PZ |
930 | struct sched_entity *se = &p->se; |
931 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | |
932 | ||
933 | WARN_ON(task_rq(p) != rq); | |
934 | ||
935 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | |
936 | u64 slice = sched_slice(cfs_rq, se); | |
937 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | |
938 | s64 delta = slice - ran; | |
939 | ||
940 | if (delta < 0) { | |
941 | if (rq->curr == p) | |
942 | resched_task(p); | |
943 | return; | |
944 | } | |
945 | ||
946 | /* | |
947 | * Don't schedule slices shorter than 10000ns, that just | |
948 | * doesn't make sense. Rely on vruntime for fairness. | |
949 | */ | |
31656519 | 950 | if (rq->curr != p) |
157124c1 | 951 | delta = max_t(s64, 10000LL, delta); |
8f4d37ec | 952 | |
31656519 | 953 | hrtick_start(rq, delta); |
8f4d37ec PZ |
954 | } |
955 | } | |
a4c2f00f PZ |
956 | |
957 | /* | |
958 | * called from enqueue/dequeue and updates the hrtick when the | |
959 | * current task is from our class and nr_running is low enough | |
960 | * to matter. | |
961 | */ | |
962 | static void hrtick_update(struct rq *rq) | |
963 | { | |
964 | struct task_struct *curr = rq->curr; | |
965 | ||
966 | if (curr->sched_class != &fair_sched_class) | |
967 | return; | |
968 | ||
969 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | |
970 | hrtick_start_fair(rq, curr); | |
971 | } | |
55e12e5e | 972 | #else /* !CONFIG_SCHED_HRTICK */ |
8f4d37ec PZ |
973 | static inline void |
974 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | |
975 | { | |
976 | } | |
a4c2f00f PZ |
977 | |
978 | static inline void hrtick_update(struct rq *rq) | |
979 | { | |
980 | } | |
8f4d37ec PZ |
981 | #endif |
982 | ||
bf0f6f24 IM |
983 | /* |
984 | * The enqueue_task method is called before nr_running is | |
985 | * increased. Here we update the fair scheduling stats and | |
986 | * then put the task into the rbtree: | |
987 | */ | |
fd390f6a | 988 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) |
bf0f6f24 IM |
989 | { |
990 | struct cfs_rq *cfs_rq; | |
62fb1851 | 991 | struct sched_entity *se = &p->se; |
bf0f6f24 IM |
992 | |
993 | for_each_sched_entity(se) { | |
62fb1851 | 994 | if (se->on_rq) |
bf0f6f24 IM |
995 | break; |
996 | cfs_rq = cfs_rq_of(se); | |
83b699ed | 997 | enqueue_entity(cfs_rq, se, wakeup); |
b9fa3df3 | 998 | wakeup = 1; |
bf0f6f24 | 999 | } |
8f4d37ec | 1000 | |
a4c2f00f | 1001 | hrtick_update(rq); |
bf0f6f24 IM |
1002 | } |
1003 | ||
1004 | /* | |
1005 | * The dequeue_task method is called before nr_running is | |
1006 | * decreased. We remove the task from the rbtree and | |
1007 | * update the fair scheduling stats: | |
1008 | */ | |
f02231e5 | 1009 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) |
bf0f6f24 IM |
1010 | { |
1011 | struct cfs_rq *cfs_rq; | |
62fb1851 | 1012 | struct sched_entity *se = &p->se; |
bf0f6f24 IM |
1013 | |
1014 | for_each_sched_entity(se) { | |
1015 | cfs_rq = cfs_rq_of(se); | |
525c2716 | 1016 | dequeue_entity(cfs_rq, se, sleep); |
bf0f6f24 | 1017 | /* Don't dequeue parent if it has other entities besides us */ |
62fb1851 | 1018 | if (cfs_rq->load.weight) |
bf0f6f24 | 1019 | break; |
b9fa3df3 | 1020 | sleep = 1; |
bf0f6f24 | 1021 | } |
8f4d37ec | 1022 | |
a4c2f00f | 1023 | hrtick_update(rq); |
bf0f6f24 IM |
1024 | } |
1025 | ||
1026 | /* | |
1799e35d IM |
1027 | * sched_yield() support is very simple - we dequeue and enqueue. |
1028 | * | |
1029 | * If compat_yield is turned on then we requeue to the end of the tree. | |
bf0f6f24 | 1030 | */ |
4530d7ab | 1031 | static void yield_task_fair(struct rq *rq) |
bf0f6f24 | 1032 | { |
db292ca3 IM |
1033 | struct task_struct *curr = rq->curr; |
1034 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | |
1035 | struct sched_entity *rightmost, *se = &curr->se; | |
bf0f6f24 IM |
1036 | |
1037 | /* | |
1799e35d IM |
1038 | * Are we the only task in the tree? |
1039 | */ | |
1040 | if (unlikely(cfs_rq->nr_running == 1)) | |
1041 | return; | |
1042 | ||
2002c695 PZ |
1043 | clear_buddies(cfs_rq, se); |
1044 | ||
db292ca3 | 1045 | if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { |
3e51f33f | 1046 | update_rq_clock(rq); |
1799e35d | 1047 | /* |
a2a2d680 | 1048 | * Update run-time statistics of the 'current'. |
1799e35d | 1049 | */ |
2b1e315d | 1050 | update_curr(cfs_rq); |
1799e35d IM |
1051 | |
1052 | return; | |
1053 | } | |
1054 | /* | |
1055 | * Find the rightmost entry in the rbtree: | |
bf0f6f24 | 1056 | */ |
2b1e315d | 1057 | rightmost = __pick_last_entity(cfs_rq); |
1799e35d IM |
1058 | /* |
1059 | * Already in the rightmost position? | |
1060 | */ | |
54fdc581 | 1061 | if (unlikely(!rightmost || entity_before(rightmost, se))) |
1799e35d IM |
1062 | return; |
1063 | ||
1064 | /* | |
1065 | * Minimally necessary key value to be last in the tree: | |
2b1e315d DA |
1066 | * Upon rescheduling, sched_class::put_prev_task() will place |
1067 | * 'current' within the tree based on its new key value. | |
1799e35d | 1068 | */ |
30cfdcfc | 1069 | se->vruntime = rightmost->vruntime + 1; |
bf0f6f24 IM |
1070 | } |
1071 | ||
e7693a36 | 1072 | #ifdef CONFIG_SMP |
098fb9db | 1073 | |
bb3469ac | 1074 | #ifdef CONFIG_FAIR_GROUP_SCHED |
f5bfb7d9 PZ |
1075 | /* |
1076 | * effective_load() calculates the load change as seen from the root_task_group | |
1077 | * | |
1078 | * Adding load to a group doesn't make a group heavier, but can cause movement | |
1079 | * of group shares between cpus. Assuming the shares were perfectly aligned one | |
1080 | * can calculate the shift in shares. | |
1081 | * | |
1082 | * The problem is that perfectly aligning the shares is rather expensive, hence | |
1083 | * we try to avoid doing that too often - see update_shares(), which ratelimits | |
1084 | * this change. | |
1085 | * | |
1086 | * We compensate this by not only taking the current delta into account, but | |
1087 | * also considering the delta between when the shares were last adjusted and | |
1088 | * now. | |
1089 | * | |
1090 | * We still saw a performance dip, some tracing learned us that between | |
1091 | * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased | |
1092 | * significantly. Therefore try to bias the error in direction of failing | |
1093 | * the affine wakeup. | |
1094 | * | |
1095 | */ | |
f1d239f7 PZ |
1096 | static long effective_load(struct task_group *tg, int cpu, |
1097 | long wl, long wg) | |
bb3469ac | 1098 | { |
4be9daaa | 1099 | struct sched_entity *se = tg->se[cpu]; |
f1d239f7 PZ |
1100 | |
1101 | if (!tg->parent) | |
1102 | return wl; | |
1103 | ||
f5bfb7d9 PZ |
1104 | /* |
1105 | * By not taking the decrease of shares on the other cpu into | |
1106 | * account our error leans towards reducing the affine wakeups. | |
1107 | */ | |
1108 | if (!wl && sched_feat(ASYM_EFF_LOAD)) | |
1109 | return wl; | |
1110 | ||
4be9daaa | 1111 | for_each_sched_entity(se) { |
cb5ef42a | 1112 | long S, rw, s, a, b; |
940959e9 PZ |
1113 | long more_w; |
1114 | ||
1115 | /* | |
1116 | * Instead of using this increment, also add the difference | |
1117 | * between when the shares were last updated and now. | |
1118 | */ | |
1119 | more_w = se->my_q->load.weight - se->my_q->rq_weight; | |
1120 | wl += more_w; | |
1121 | wg += more_w; | |
4be9daaa PZ |
1122 | |
1123 | S = se->my_q->tg->shares; | |
1124 | s = se->my_q->shares; | |
f1d239f7 | 1125 | rw = se->my_q->rq_weight; |
bb3469ac | 1126 | |
cb5ef42a PZ |
1127 | a = S*(rw + wl); |
1128 | b = S*rw + s*wg; | |
4be9daaa | 1129 | |
940959e9 PZ |
1130 | wl = s*(a-b); |
1131 | ||
1132 | if (likely(b)) | |
1133 | wl /= b; | |
1134 | ||
83378269 PZ |
1135 | /* |
1136 | * Assume the group is already running and will | |
1137 | * thus already be accounted for in the weight. | |
1138 | * | |
1139 | * That is, moving shares between CPUs, does not | |
1140 | * alter the group weight. | |
1141 | */ | |
4be9daaa | 1142 | wg = 0; |
4be9daaa | 1143 | } |
bb3469ac | 1144 | |
4be9daaa | 1145 | return wl; |
bb3469ac | 1146 | } |
4be9daaa | 1147 | |
bb3469ac | 1148 | #else |
4be9daaa | 1149 | |
83378269 PZ |
1150 | static inline unsigned long effective_load(struct task_group *tg, int cpu, |
1151 | unsigned long wl, unsigned long wg) | |
4be9daaa | 1152 | { |
83378269 | 1153 | return wl; |
bb3469ac | 1154 | } |
4be9daaa | 1155 | |
bb3469ac PZ |
1156 | #endif |
1157 | ||
c88d5910 | 1158 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
098fb9db | 1159 | { |
c88d5910 PZ |
1160 | struct task_struct *curr = current; |
1161 | unsigned long this_load, load; | |
1162 | int idx, this_cpu, prev_cpu; | |
098fb9db | 1163 | unsigned long tl_per_task; |
c88d5910 PZ |
1164 | unsigned int imbalance; |
1165 | struct task_group *tg; | |
83378269 | 1166 | unsigned long weight; |
b3137bc8 | 1167 | int balanced; |
098fb9db | 1168 | |
c88d5910 PZ |
1169 | idx = sd->wake_idx; |
1170 | this_cpu = smp_processor_id(); | |
1171 | prev_cpu = task_cpu(p); | |
1172 | load = source_load(prev_cpu, idx); | |
1173 | this_load = target_load(this_cpu, idx); | |
098fb9db | 1174 | |
e69b0f1b PZ |
1175 | if (sync) { |
1176 | if (sched_feat(SYNC_LESS) && | |
1177 | (curr->se.avg_overlap > sysctl_sched_migration_cost || | |
1178 | p->se.avg_overlap > sysctl_sched_migration_cost)) | |
1179 | sync = 0; | |
1180 | } else { | |
1181 | if (sched_feat(SYNC_MORE) && | |
1182 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | |
1183 | p->se.avg_overlap < sysctl_sched_migration_cost)) | |
1184 | sync = 1; | |
1185 | } | |
fc631c82 | 1186 | |
b3137bc8 MG |
1187 | /* |
1188 | * If sync wakeup then subtract the (maximum possible) | |
1189 | * effect of the currently running task from the load | |
1190 | * of the current CPU: | |
1191 | */ | |
83378269 PZ |
1192 | if (sync) { |
1193 | tg = task_group(current); | |
1194 | weight = current->se.load.weight; | |
1195 | ||
c88d5910 | 1196 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
83378269 PZ |
1197 | load += effective_load(tg, prev_cpu, 0, -weight); |
1198 | } | |
b3137bc8 | 1199 | |
83378269 PZ |
1200 | tg = task_group(p); |
1201 | weight = p->se.load.weight; | |
b3137bc8 | 1202 | |
c88d5910 PZ |
1203 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; |
1204 | ||
71a29aa7 PZ |
1205 | /* |
1206 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | |
c88d5910 PZ |
1207 | * due to the sync cause above having dropped this_load to 0, we'll |
1208 | * always have an imbalance, but there's really nothing you can do | |
1209 | * about that, so that's good too. | |
71a29aa7 PZ |
1210 | * |
1211 | * Otherwise check if either cpus are near enough in load to allow this | |
1212 | * task to be woken on this_cpu. | |
1213 | */ | |
c88d5910 PZ |
1214 | balanced = !this_load || |
1215 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= | |
83378269 | 1216 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
b3137bc8 | 1217 | |
098fb9db | 1218 | /* |
4ae7d5ce IM |
1219 | * If the currently running task will sleep within |
1220 | * a reasonable amount of time then attract this newly | |
1221 | * woken task: | |
098fb9db | 1222 | */ |
2fb7635c PZ |
1223 | if (sync && balanced) |
1224 | return 1; | |
098fb9db IM |
1225 | |
1226 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | |
1227 | tl_per_task = cpu_avg_load_per_task(this_cpu); | |
1228 | ||
c88d5910 PZ |
1229 | if (balanced || |
1230 | (this_load <= load && | |
1231 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | |
098fb9db IM |
1232 | /* |
1233 | * This domain has SD_WAKE_AFFINE and | |
1234 | * p is cache cold in this domain, and | |
1235 | * there is no bad imbalance. | |
1236 | */ | |
c88d5910 | 1237 | schedstat_inc(sd, ttwu_move_affine); |
098fb9db IM |
1238 | schedstat_inc(p, se.nr_wakeups_affine); |
1239 | ||
1240 | return 1; | |
1241 | } | |
1242 | return 0; | |
1243 | } | |
1244 | ||
aaee1203 PZ |
1245 | /* |
1246 | * find_idlest_group finds and returns the least busy CPU group within the | |
1247 | * domain. | |
1248 | */ | |
1249 | static struct sched_group * | |
78e7ed53 | 1250 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
5158f4e4 | 1251 | int this_cpu, int load_idx) |
aaee1203 PZ |
1252 | { |
1253 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | |
1254 | unsigned long min_load = ULONG_MAX, this_load = 0; | |
aaee1203 PZ |
1255 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
1256 | ||
1257 | do { | |
1258 | unsigned long load, avg_load; | |
1259 | int local_group; | |
1260 | int i; | |
1261 | ||
1262 | /* Skip over this group if it has no CPUs allowed */ | |
1263 | if (!cpumask_intersects(sched_group_cpus(group), | |
1264 | &p->cpus_allowed)) | |
1265 | continue; | |
1266 | ||
1267 | local_group = cpumask_test_cpu(this_cpu, | |
1268 | sched_group_cpus(group)); | |
1269 | ||
1270 | /* Tally up the load of all CPUs in the group */ | |
1271 | avg_load = 0; | |
1272 | ||
1273 | for_each_cpu(i, sched_group_cpus(group)) { | |
1274 | /* Bias balancing toward cpus of our domain */ | |
1275 | if (local_group) | |
1276 | load = source_load(i, load_idx); | |
1277 | else | |
1278 | load = target_load(i, load_idx); | |
1279 | ||
1280 | avg_load += load; | |
1281 | } | |
1282 | ||
1283 | /* Adjust by relative CPU power of the group */ | |
1284 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | |
1285 | ||
1286 | if (local_group) { | |
1287 | this_load = avg_load; | |
1288 | this = group; | |
1289 | } else if (avg_load < min_load) { | |
1290 | min_load = avg_load; | |
1291 | idlest = group; | |
1292 | } | |
1293 | } while (group = group->next, group != sd->groups); | |
1294 | ||
1295 | if (!idlest || 100*this_load < imbalance*min_load) | |
1296 | return NULL; | |
1297 | return idlest; | |
1298 | } | |
1299 | ||
1300 | /* | |
1301 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | |
1302 | */ | |
1303 | static int | |
1304 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |
1305 | { | |
1306 | unsigned long load, min_load = ULONG_MAX; | |
1307 | int idlest = -1; | |
1308 | int i; | |
1309 | ||
1310 | /* Traverse only the allowed CPUs */ | |
1311 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | |
1312 | load = weighted_cpuload(i); | |
1313 | ||
1314 | if (load < min_load || (load == min_load && i == this_cpu)) { | |
1315 | min_load = load; | |
1316 | idlest = i; | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | return idlest; | |
1321 | } | |
1322 | ||
1323 | /* | |
1324 | * sched_balance_self: balance the current task (running on cpu) in domains | |
1325 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | |
1326 | * SD_BALANCE_EXEC. | |
1327 | * | |
1328 | * Balance, ie. select the least loaded group. | |
1329 | * | |
1330 | * Returns the target CPU number, or the same CPU if no balancing is needed. | |
1331 | * | |
1332 | * preempt must be disabled. | |
1333 | */ | |
5158f4e4 | 1334 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) |
aaee1203 | 1335 | { |
3b640894 | 1336 | struct sched_domain *tmp, *shares = NULL, *sd = NULL; |
c88d5910 PZ |
1337 | int cpu = smp_processor_id(); |
1338 | int prev_cpu = task_cpu(p); | |
1339 | int new_cpu = cpu; | |
1340 | int want_affine = 0; | |
5158f4e4 | 1341 | int sync = wake_flags & WF_SYNC; |
c88d5910 | 1342 | |
0763a660 | 1343 | if (sd_flag & SD_BALANCE_WAKE) { |
c88d5910 PZ |
1344 | if (sched_feat(AFFINE_WAKEUPS)) |
1345 | want_affine = 1; | |
1346 | new_cpu = prev_cpu; | |
1347 | } | |
aaee1203 | 1348 | |
83f54960 | 1349 | rcu_read_lock(); |
aaee1203 PZ |
1350 | for_each_domain(cpu, tmp) { |
1351 | /* | |
ae154be1 PZ |
1352 | * If power savings logic is enabled for a domain, see if we |
1353 | * are not overloaded, if so, don't balance wider. | |
aaee1203 | 1354 | */ |
59abf026 | 1355 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { |
ae154be1 PZ |
1356 | unsigned long power = 0; |
1357 | unsigned long nr_running = 0; | |
1358 | unsigned long capacity; | |
1359 | int i; | |
1360 | ||
1361 | for_each_cpu(i, sched_domain_span(tmp)) { | |
1362 | power += power_of(i); | |
1363 | nr_running += cpu_rq(i)->cfs.nr_running; | |
1364 | } | |
1365 | ||
1366 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | |
1367 | ||
59abf026 PZ |
1368 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
1369 | nr_running /= 2; | |
1370 | ||
1371 | if (nr_running < capacity) | |
ae154be1 PZ |
1372 | break; |
1373 | } | |
aaee1203 | 1374 | |
c88d5910 PZ |
1375 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
1376 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | |
1377 | ||
3b640894 PZ |
1378 | if (sched_feat(LB_SHARES_UPDATE)) { |
1379 | update_shares(tmp); | |
1380 | shares = tmp; | |
1381 | } | |
1382 | ||
83f54960 PZ |
1383 | if (wake_affine(tmp, p, sync)) { |
1384 | new_cpu = cpu; | |
1385 | goto out; | |
1386 | } | |
c88d5910 PZ |
1387 | |
1388 | want_affine = 0; | |
1389 | } | |
1390 | ||
0763a660 | 1391 | if (!(tmp->flags & sd_flag)) |
c88d5910 PZ |
1392 | continue; |
1393 | ||
1394 | sd = tmp; | |
1395 | } | |
aaee1203 | 1396 | |
3b640894 PZ |
1397 | if (sd && sd != shares && sched_feat(LB_SHARES_UPDATE)) |
1398 | update_shares(sd); | |
1399 | ||
aaee1203 | 1400 | while (sd) { |
5158f4e4 | 1401 | int load_idx = sd->forkexec_idx; |
aaee1203 | 1402 | struct sched_group *group; |
c88d5910 | 1403 | int weight; |
aaee1203 | 1404 | |
0763a660 | 1405 | if (!(sd->flags & sd_flag)) { |
aaee1203 PZ |
1406 | sd = sd->child; |
1407 | continue; | |
1408 | } | |
1409 | ||
5158f4e4 PZ |
1410 | if (sd_flag & SD_BALANCE_WAKE) |
1411 | load_idx = sd->wake_idx; | |
1412 | ||
1413 | group = find_idlest_group(sd, p, cpu, load_idx); | |
aaee1203 PZ |
1414 | if (!group) { |
1415 | sd = sd->child; | |
1416 | continue; | |
1417 | } | |
1418 | ||
d7c33c49 | 1419 | new_cpu = find_idlest_cpu(group, p, cpu); |
aaee1203 PZ |
1420 | if (new_cpu == -1 || new_cpu == cpu) { |
1421 | /* Now try balancing at a lower domain level of cpu */ | |
1422 | sd = sd->child; | |
1423 | continue; | |
1424 | } | |
1425 | ||
1426 | /* Now try balancing at a lower domain level of new_cpu */ | |
1427 | cpu = new_cpu; | |
1428 | weight = cpumask_weight(sched_domain_span(sd)); | |
1429 | sd = NULL; | |
1430 | for_each_domain(cpu, tmp) { | |
1431 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | |
1432 | break; | |
0763a660 | 1433 | if (tmp->flags & sd_flag) |
aaee1203 PZ |
1434 | sd = tmp; |
1435 | } | |
1436 | /* while loop will break here if sd == NULL */ | |
1437 | } | |
1438 | ||
83f54960 PZ |
1439 | out: |
1440 | rcu_read_unlock(); | |
c88d5910 | 1441 | return new_cpu; |
aaee1203 | 1442 | } |
e7693a36 GH |
1443 | #endif /* CONFIG_SMP */ |
1444 | ||
e52fb7c0 PZ |
1445 | /* |
1446 | * Adaptive granularity | |
1447 | * | |
1448 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | |
1449 | * with the limit of wakeup_gran -- when it never does a wakeup. | |
1450 | * | |
1451 | * So the smaller avg_wakeup is the faster we want this task to preempt, | |
1452 | * but we don't want to treat the preemptee unfairly and therefore allow it | |
1453 | * to run for at least the amount of time we'd like to run. | |
1454 | * | |
1455 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | |
1456 | * | |
1457 | * NOTE: we use *nr_running to scale with load, this nicely matches the | |
1458 | * degrading latency on load. | |
1459 | */ | |
1460 | static unsigned long | |
1461 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | |
1462 | { | |
1463 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | |
1464 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | |
1465 | u64 gran = 0; | |
1466 | ||
1467 | if (this_run < expected_wakeup) | |
1468 | gran = expected_wakeup - this_run; | |
1469 | ||
1470 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | |
1471 | } | |
1472 | ||
1473 | static unsigned long | |
1474 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | |
0bbd3336 PZ |
1475 | { |
1476 | unsigned long gran = sysctl_sched_wakeup_granularity; | |
1477 | ||
e52fb7c0 PZ |
1478 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) |
1479 | gran = adaptive_gran(curr, se); | |
1480 | ||
0bbd3336 | 1481 | /* |
e52fb7c0 PZ |
1482 | * Since its curr running now, convert the gran from real-time |
1483 | * to virtual-time in his units. | |
0bbd3336 | 1484 | */ |
e52fb7c0 PZ |
1485 | if (sched_feat(ASYM_GRAN)) { |
1486 | /* | |
1487 | * By using 'se' instead of 'curr' we penalize light tasks, so | |
1488 | * they get preempted easier. That is, if 'se' < 'curr' then | |
1489 | * the resulting gran will be larger, therefore penalizing the | |
1490 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | |
1491 | * be smaller, again penalizing the lighter task. | |
1492 | * | |
1493 | * This is especially important for buddies when the leftmost | |
1494 | * task is higher priority than the buddy. | |
1495 | */ | |
1496 | if (unlikely(se->load.weight != NICE_0_LOAD)) | |
1497 | gran = calc_delta_fair(gran, se); | |
1498 | } else { | |
1499 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | |
1500 | gran = calc_delta_fair(gran, curr); | |
1501 | } | |
0bbd3336 PZ |
1502 | |
1503 | return gran; | |
1504 | } | |
1505 | ||
464b7527 PZ |
1506 | /* |
1507 | * Should 'se' preempt 'curr'. | |
1508 | * | |
1509 | * |s1 | |
1510 | * |s2 | |
1511 | * |s3 | |
1512 | * g | |
1513 | * |<--->|c | |
1514 | * | |
1515 | * w(c, s1) = -1 | |
1516 | * w(c, s2) = 0 | |
1517 | * w(c, s3) = 1 | |
1518 | * | |
1519 | */ | |
1520 | static int | |
1521 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | |
1522 | { | |
1523 | s64 gran, vdiff = curr->vruntime - se->vruntime; | |
1524 | ||
1525 | if (vdiff <= 0) | |
1526 | return -1; | |
1527 | ||
e52fb7c0 | 1528 | gran = wakeup_gran(curr, se); |
464b7527 PZ |
1529 | if (vdiff > gran) |
1530 | return 1; | |
1531 | ||
1532 | return 0; | |
1533 | } | |
1534 | ||
02479099 PZ |
1535 | static void set_last_buddy(struct sched_entity *se) |
1536 | { | |
6bc912b7 PZ |
1537 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1538 | for_each_sched_entity(se) | |
1539 | cfs_rq_of(se)->last = se; | |
1540 | } | |
02479099 PZ |
1541 | } |
1542 | ||
1543 | static void set_next_buddy(struct sched_entity *se) | |
1544 | { | |
6bc912b7 PZ |
1545 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1546 | for_each_sched_entity(se) | |
1547 | cfs_rq_of(se)->next = se; | |
1548 | } | |
02479099 PZ |
1549 | } |
1550 | ||
bf0f6f24 IM |
1551 | /* |
1552 | * Preempt the current task with a newly woken task if needed: | |
1553 | */ | |
5a9b86f6 | 1554 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
bf0f6f24 IM |
1555 | { |
1556 | struct task_struct *curr = rq->curr; | |
8651a86c | 1557 | struct sched_entity *se = &curr->se, *pse = &p->se; |
03e89e45 | 1558 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
5a9b86f6 | 1559 | int sync = wake_flags & WF_SYNC; |
bf0f6f24 | 1560 | |
03e89e45 | 1561 | update_curr(cfs_rq); |
4793241b | 1562 | |
03e89e45 | 1563 | if (unlikely(rt_prio(p->prio))) { |
bf0f6f24 IM |
1564 | resched_task(curr); |
1565 | return; | |
1566 | } | |
aa2ac252 | 1567 | |
d95f98d0 PZ |
1568 | if (unlikely(p->sched_class != &fair_sched_class)) |
1569 | return; | |
1570 | ||
4ae7d5ce IM |
1571 | if (unlikely(se == pse)) |
1572 | return; | |
1573 | ||
4793241b PZ |
1574 | /* |
1575 | * Only set the backward buddy when the current task is still on the | |
1576 | * rq. This can happen when a wakeup gets interleaved with schedule on | |
1577 | * the ->pre_schedule() or idle_balance() point, either of which can | |
1578 | * drop the rq lock. | |
1579 | * | |
1580 | * Also, during early boot the idle thread is in the fair class, for | |
1581 | * obvious reasons its a bad idea to schedule back to the idle thread. | |
1582 | */ | |
1583 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | |
02479099 | 1584 | set_last_buddy(se); |
5a9b86f6 | 1585 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
3cb63d52 | 1586 | set_next_buddy(pse); |
57fdc26d | 1587 | |
aec0a514 BR |
1588 | /* |
1589 | * We can come here with TIF_NEED_RESCHED already set from new task | |
1590 | * wake up path. | |
1591 | */ | |
1592 | if (test_tsk_need_resched(curr)) | |
1593 | return; | |
1594 | ||
91c234b4 | 1595 | /* |
6bc912b7 | 1596 | * Batch and idle tasks do not preempt (their preemption is driven by |
91c234b4 IM |
1597 | * the tick): |
1598 | */ | |
6bc912b7 | 1599 | if (unlikely(p->policy != SCHED_NORMAL)) |
91c234b4 | 1600 | return; |
bf0f6f24 | 1601 | |
6bc912b7 PZ |
1602 | /* Idle tasks are by definition preempted by everybody. */ |
1603 | if (unlikely(curr->policy == SCHED_IDLE)) { | |
1604 | resched_task(curr); | |
91c234b4 | 1605 | return; |
6bc912b7 | 1606 | } |
bf0f6f24 | 1607 | |
e6b1b2c9 PZ |
1608 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
1609 | (sched_feat(WAKEUP_OVERLAP) && | |
1610 | (se->avg_overlap < sysctl_sched_migration_cost && | |
1611 | pse->avg_overlap < sysctl_sched_migration_cost))) { | |
15afe09b PZ |
1612 | resched_task(curr); |
1613 | return; | |
1614 | } | |
1615 | ||
ad4b78bb PZ |
1616 | if (sched_feat(WAKEUP_RUNNING)) { |
1617 | if (pse->avg_running < se->avg_running) { | |
1618 | set_next_buddy(pse); | |
1619 | resched_task(curr); | |
1620 | return; | |
1621 | } | |
1622 | } | |
1623 | ||
1624 | if (!sched_feat(WAKEUP_PREEMPT)) | |
1625 | return; | |
1626 | ||
464b7527 PZ |
1627 | find_matching_se(&se, &pse); |
1628 | ||
002f128b | 1629 | BUG_ON(!pse); |
464b7527 | 1630 | |
002f128b PT |
1631 | if (wakeup_preempt_entity(se, pse) == 1) |
1632 | resched_task(curr); | |
bf0f6f24 IM |
1633 | } |
1634 | ||
fb8d4724 | 1635 | static struct task_struct *pick_next_task_fair(struct rq *rq) |
bf0f6f24 | 1636 | { |
8f4d37ec | 1637 | struct task_struct *p; |
bf0f6f24 IM |
1638 | struct cfs_rq *cfs_rq = &rq->cfs; |
1639 | struct sched_entity *se; | |
1640 | ||
1641 | if (unlikely(!cfs_rq->nr_running)) | |
1642 | return NULL; | |
1643 | ||
1644 | do { | |
9948f4b2 | 1645 | se = pick_next_entity(cfs_rq); |
a9f3e2b5 MG |
1646 | /* |
1647 | * If se was a buddy, clear it so that it will have to earn | |
1648 | * the favour again. | |
1649 | */ | |
a571bbea | 1650 | __clear_buddies(cfs_rq, se); |
f4b6755f | 1651 | set_next_entity(cfs_rq, se); |
bf0f6f24 IM |
1652 | cfs_rq = group_cfs_rq(se); |
1653 | } while (cfs_rq); | |
1654 | ||
8f4d37ec PZ |
1655 | p = task_of(se); |
1656 | hrtick_start_fair(rq, p); | |
1657 | ||
1658 | return p; | |
bf0f6f24 IM |
1659 | } |
1660 | ||
1661 | /* | |
1662 | * Account for a descheduled task: | |
1663 | */ | |
31ee529c | 1664 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
bf0f6f24 IM |
1665 | { |
1666 | struct sched_entity *se = &prev->se; | |
1667 | struct cfs_rq *cfs_rq; | |
1668 | ||
1669 | for_each_sched_entity(se) { | |
1670 | cfs_rq = cfs_rq_of(se); | |
ab6cde26 | 1671 | put_prev_entity(cfs_rq, se); |
bf0f6f24 IM |
1672 | } |
1673 | } | |
1674 | ||
681f3e68 | 1675 | #ifdef CONFIG_SMP |
bf0f6f24 IM |
1676 | /************************************************** |
1677 | * Fair scheduling class load-balancing methods: | |
1678 | */ | |
1679 | ||
1680 | /* | |
1681 | * Load-balancing iterator. Note: while the runqueue stays locked | |
1682 | * during the whole iteration, the current task might be | |
1683 | * dequeued so the iterator has to be dequeue-safe. Here we | |
1684 | * achieve that by always pre-iterating before returning | |
1685 | * the current task: | |
1686 | */ | |
a9957449 | 1687 | static struct task_struct * |
4a55bd5e | 1688 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) |
bf0f6f24 | 1689 | { |
354d60c2 DG |
1690 | struct task_struct *p = NULL; |
1691 | struct sched_entity *se; | |
bf0f6f24 | 1692 | |
77ae6513 MG |
1693 | if (next == &cfs_rq->tasks) |
1694 | return NULL; | |
1695 | ||
b87f1724 BR |
1696 | se = list_entry(next, struct sched_entity, group_node); |
1697 | p = task_of(se); | |
1698 | cfs_rq->balance_iterator = next->next; | |
77ae6513 | 1699 | |
bf0f6f24 IM |
1700 | return p; |
1701 | } | |
1702 | ||
1703 | static struct task_struct *load_balance_start_fair(void *arg) | |
1704 | { | |
1705 | struct cfs_rq *cfs_rq = arg; | |
1706 | ||
4a55bd5e | 1707 | return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); |
bf0f6f24 IM |
1708 | } |
1709 | ||
1710 | static struct task_struct *load_balance_next_fair(void *arg) | |
1711 | { | |
1712 | struct cfs_rq *cfs_rq = arg; | |
1713 | ||
4a55bd5e | 1714 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); |
bf0f6f24 IM |
1715 | } |
1716 | ||
c09595f6 PZ |
1717 | static unsigned long |
1718 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1719 | unsigned long max_load_move, struct sched_domain *sd, | |
1720 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | |
1721 | struct cfs_rq *cfs_rq) | |
62fb1851 | 1722 | { |
c09595f6 | 1723 | struct rq_iterator cfs_rq_iterator; |
62fb1851 | 1724 | |
c09595f6 PZ |
1725 | cfs_rq_iterator.start = load_balance_start_fair; |
1726 | cfs_rq_iterator.next = load_balance_next_fair; | |
1727 | cfs_rq_iterator.arg = cfs_rq; | |
62fb1851 | 1728 | |
c09595f6 PZ |
1729 | return balance_tasks(this_rq, this_cpu, busiest, |
1730 | max_load_move, sd, idle, all_pinned, | |
1731 | this_best_prio, &cfs_rq_iterator); | |
62fb1851 | 1732 | } |
62fb1851 | 1733 | |
c09595f6 | 1734 | #ifdef CONFIG_FAIR_GROUP_SCHED |
43010659 | 1735 | static unsigned long |
bf0f6f24 | 1736 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
e1d1484f | 1737 | unsigned long max_load_move, |
a4ac01c3 PW |
1738 | struct sched_domain *sd, enum cpu_idle_type idle, |
1739 | int *all_pinned, int *this_best_prio) | |
bf0f6f24 | 1740 | { |
bf0f6f24 | 1741 | long rem_load_move = max_load_move; |
c09595f6 PZ |
1742 | int busiest_cpu = cpu_of(busiest); |
1743 | struct task_group *tg; | |
18d95a28 | 1744 | |
c09595f6 | 1745 | rcu_read_lock(); |
c8cba857 | 1746 | update_h_load(busiest_cpu); |
18d95a28 | 1747 | |
caea8a03 | 1748 | list_for_each_entry_rcu(tg, &task_groups, list) { |
c8cba857 | 1749 | struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; |
42a3ac7d PZ |
1750 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; |
1751 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | |
243e0e7b | 1752 | u64 rem_load, moved_load; |
18d95a28 | 1753 | |
c09595f6 PZ |
1754 | /* |
1755 | * empty group | |
1756 | */ | |
c8cba857 | 1757 | if (!busiest_cfs_rq->task_weight) |
bf0f6f24 IM |
1758 | continue; |
1759 | ||
243e0e7b SV |
1760 | rem_load = (u64)rem_load_move * busiest_weight; |
1761 | rem_load = div_u64(rem_load, busiest_h_load + 1); | |
bf0f6f24 | 1762 | |
c09595f6 | 1763 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, |
53fecd8a | 1764 | rem_load, sd, idle, all_pinned, this_best_prio, |
c09595f6 | 1765 | tg->cfs_rq[busiest_cpu]); |
bf0f6f24 | 1766 | |
c09595f6 | 1767 | if (!moved_load) |
bf0f6f24 IM |
1768 | continue; |
1769 | ||
42a3ac7d | 1770 | moved_load *= busiest_h_load; |
243e0e7b | 1771 | moved_load = div_u64(moved_load, busiest_weight + 1); |
bf0f6f24 | 1772 | |
c09595f6 PZ |
1773 | rem_load_move -= moved_load; |
1774 | if (rem_load_move < 0) | |
bf0f6f24 IM |
1775 | break; |
1776 | } | |
c09595f6 | 1777 | rcu_read_unlock(); |
bf0f6f24 | 1778 | |
43010659 | 1779 | return max_load_move - rem_load_move; |
bf0f6f24 | 1780 | } |
c09595f6 PZ |
1781 | #else |
1782 | static unsigned long | |
1783 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1784 | unsigned long max_load_move, | |
1785 | struct sched_domain *sd, enum cpu_idle_type idle, | |
1786 | int *all_pinned, int *this_best_prio) | |
1787 | { | |
1788 | return __load_balance_fair(this_rq, this_cpu, busiest, | |
1789 | max_load_move, sd, idle, all_pinned, | |
1790 | this_best_prio, &busiest->cfs); | |
1791 | } | |
1792 | #endif | |
bf0f6f24 | 1793 | |
e1d1484f PW |
1794 | static int |
1795 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | |
1796 | struct sched_domain *sd, enum cpu_idle_type idle) | |
1797 | { | |
1798 | struct cfs_rq *busy_cfs_rq; | |
1799 | struct rq_iterator cfs_rq_iterator; | |
1800 | ||
1801 | cfs_rq_iterator.start = load_balance_start_fair; | |
1802 | cfs_rq_iterator.next = load_balance_next_fair; | |
1803 | ||
1804 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | |
1805 | /* | |
1806 | * pass busy_cfs_rq argument into | |
1807 | * load_balance_[start|next]_fair iterators | |
1808 | */ | |
1809 | cfs_rq_iterator.arg = busy_cfs_rq; | |
1810 | if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, | |
1811 | &cfs_rq_iterator)) | |
1812 | return 1; | |
1813 | } | |
1814 | ||
1815 | return 0; | |
1816 | } | |
55e12e5e | 1817 | #endif /* CONFIG_SMP */ |
e1d1484f | 1818 | |
bf0f6f24 IM |
1819 | /* |
1820 | * scheduler tick hitting a task of our scheduling class: | |
1821 | */ | |
8f4d37ec | 1822 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
bf0f6f24 IM |
1823 | { |
1824 | struct cfs_rq *cfs_rq; | |
1825 | struct sched_entity *se = &curr->se; | |
1826 | ||
1827 | for_each_sched_entity(se) { | |
1828 | cfs_rq = cfs_rq_of(se); | |
8f4d37ec | 1829 | entity_tick(cfs_rq, se, queued); |
bf0f6f24 IM |
1830 | } |
1831 | } | |
1832 | ||
1833 | /* | |
1834 | * Share the fairness runtime between parent and child, thus the | |
1835 | * total amount of pressure for CPU stays equal - new tasks | |
1836 | * get a chance to run but frequent forkers are not allowed to | |
1837 | * monopolize the CPU. Note: the parent runqueue is locked, | |
1838 | * the child is not running yet. | |
1839 | */ | |
ee0827d8 | 1840 | static void task_new_fair(struct rq *rq, struct task_struct *p) |
bf0f6f24 IM |
1841 | { |
1842 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | |
429d43bc | 1843 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; |
00bf7bfc | 1844 | int this_cpu = smp_processor_id(); |
bf0f6f24 IM |
1845 | |
1846 | sched_info_queued(p); | |
1847 | ||
7109c442 | 1848 | update_curr(cfs_rq); |
b5d9d734 MG |
1849 | if (curr) |
1850 | se->vruntime = curr->vruntime; | |
aeb73b04 | 1851 | place_entity(cfs_rq, se, 1); |
4d78e7b6 | 1852 | |
3c90e6e9 | 1853 | /* 'curr' will be NULL if the child belongs to a different group */ |
00bf7bfc | 1854 | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && |
54fdc581 | 1855 | curr && entity_before(curr, se)) { |
87fefa38 | 1856 | /* |
edcb60a3 IM |
1857 | * Upon rescheduling, sched_class::put_prev_task() will place |
1858 | * 'current' within the tree based on its new key value. | |
1859 | */ | |
4d78e7b6 | 1860 | swap(curr->vruntime, se->vruntime); |
aec0a514 | 1861 | resched_task(rq->curr); |
4d78e7b6 | 1862 | } |
bf0f6f24 | 1863 | |
b9dca1e0 | 1864 | enqueue_task_fair(rq, p, 0); |
bf0f6f24 IM |
1865 | } |
1866 | ||
cb469845 SR |
1867 | /* |
1868 | * Priority of the task has changed. Check to see if we preempt | |
1869 | * the current task. | |
1870 | */ | |
1871 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, | |
1872 | int oldprio, int running) | |
1873 | { | |
1874 | /* | |
1875 | * Reschedule if we are currently running on this runqueue and | |
1876 | * our priority decreased, or if we are not currently running on | |
1877 | * this runqueue and our priority is higher than the current's | |
1878 | */ | |
1879 | if (running) { | |
1880 | if (p->prio > oldprio) | |
1881 | resched_task(rq->curr); | |
1882 | } else | |
15afe09b | 1883 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
1884 | } |
1885 | ||
1886 | /* | |
1887 | * We switched to the sched_fair class. | |
1888 | */ | |
1889 | static void switched_to_fair(struct rq *rq, struct task_struct *p, | |
1890 | int running) | |
1891 | { | |
1892 | /* | |
1893 | * We were most likely switched from sched_rt, so | |
1894 | * kick off the schedule if running, otherwise just see | |
1895 | * if we can still preempt the current task. | |
1896 | */ | |
1897 | if (running) | |
1898 | resched_task(rq->curr); | |
1899 | else | |
15afe09b | 1900 | check_preempt_curr(rq, p, 0); |
cb469845 SR |
1901 | } |
1902 | ||
83b699ed SV |
1903 | /* Account for a task changing its policy or group. |
1904 | * | |
1905 | * This routine is mostly called to set cfs_rq->curr field when a task | |
1906 | * migrates between groups/classes. | |
1907 | */ | |
1908 | static void set_curr_task_fair(struct rq *rq) | |
1909 | { | |
1910 | struct sched_entity *se = &rq->curr->se; | |
1911 | ||
1912 | for_each_sched_entity(se) | |
1913 | set_next_entity(cfs_rq_of(se), se); | |
1914 | } | |
1915 | ||
810b3817 PZ |
1916 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1917 | static void moved_group_fair(struct task_struct *p) | |
1918 | { | |
1919 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | |
1920 | ||
1921 | update_curr(cfs_rq); | |
1922 | place_entity(cfs_rq, &p->se, 1); | |
1923 | } | |
1924 | #endif | |
1925 | ||
bf0f6f24 IM |
1926 | /* |
1927 | * All the scheduling class methods: | |
1928 | */ | |
5522d5d5 IM |
1929 | static const struct sched_class fair_sched_class = { |
1930 | .next = &idle_sched_class, | |
bf0f6f24 IM |
1931 | .enqueue_task = enqueue_task_fair, |
1932 | .dequeue_task = dequeue_task_fair, | |
1933 | .yield_task = yield_task_fair, | |
1934 | ||
2e09bf55 | 1935 | .check_preempt_curr = check_preempt_wakeup, |
bf0f6f24 IM |
1936 | |
1937 | .pick_next_task = pick_next_task_fair, | |
1938 | .put_prev_task = put_prev_task_fair, | |
1939 | ||
681f3e68 | 1940 | #ifdef CONFIG_SMP |
4ce72a2c LZ |
1941 | .select_task_rq = select_task_rq_fair, |
1942 | ||
bf0f6f24 | 1943 | .load_balance = load_balance_fair, |
e1d1484f | 1944 | .move_one_task = move_one_task_fair, |
681f3e68 | 1945 | #endif |
bf0f6f24 | 1946 | |
83b699ed | 1947 | .set_curr_task = set_curr_task_fair, |
bf0f6f24 IM |
1948 | .task_tick = task_tick_fair, |
1949 | .task_new = task_new_fair, | |
cb469845 SR |
1950 | |
1951 | .prio_changed = prio_changed_fair, | |
1952 | .switched_to = switched_to_fair, | |
810b3817 PZ |
1953 | |
1954 | #ifdef CONFIG_FAIR_GROUP_SCHED | |
1955 | .moved_group = moved_group_fair, | |
1956 | #endif | |
bf0f6f24 IM |
1957 | }; |
1958 | ||
1959 | #ifdef CONFIG_SCHED_DEBUG | |
5cef9eca | 1960 | static void print_cfs_stats(struct seq_file *m, int cpu) |
bf0f6f24 | 1961 | { |
bf0f6f24 IM |
1962 | struct cfs_rq *cfs_rq; |
1963 | ||
5973e5b9 | 1964 | rcu_read_lock(); |
c3b64f1e | 1965 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) |
5cef9eca | 1966 | print_cfs_rq(m, cpu, cfs_rq); |
5973e5b9 | 1967 | rcu_read_unlock(); |
bf0f6f24 IM |
1968 | } |
1969 | #endif |