]>
Commit | Line | Data |
---|---|---|
3904b28e LW |
1 | /* |
2 | * MPU3050 gyroscope driver | |
3 | * | |
4 | * Copyright (C) 2016 Linaro Ltd. | |
5 | * Author: Linus Walleij <[email protected]> | |
6 | * | |
7 | * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd | |
8 | * Joseph Lai <[email protected]> and trimmed down by | |
9 | * Alan Cox <[email protected]> in turn based on bma023.c. | |
10 | * Device behaviour based on a misc driver posted by Nathan Royer in 2011. | |
11 | * | |
12 | * TODO: add support for setting up the low pass 3dB frequency. | |
13 | */ | |
14 | ||
15 | #include <linux/bitops.h> | |
16 | #include <linux/delay.h> | |
17 | #include <linux/err.h> | |
18 | #include <linux/iio/buffer.h> | |
19 | #include <linux/iio/iio.h> | |
20 | #include <linux/iio/sysfs.h> | |
21 | #include <linux/iio/trigger.h> | |
22 | #include <linux/iio/trigger_consumer.h> | |
23 | #include <linux/iio/triggered_buffer.h> | |
24 | #include <linux/interrupt.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/pm_runtime.h> | |
27 | #include <linux/random.h> | |
28 | #include <linux/slab.h> | |
29 | ||
30 | #include "mpu3050.h" | |
31 | ||
409a51e0 SL |
32 | #define MPU3050_CHIP_ID 0x68 |
33 | #define MPU3050_CHIP_ID_MASK 0x7E | |
3904b28e LW |
34 | |
35 | /* | |
36 | * Register map: anything suffixed *_H is a big-endian high byte and always | |
37 | * followed by the corresponding low byte (*_L) even though these are not | |
38 | * explicitly included in the register definitions. | |
39 | */ | |
40 | #define MPU3050_CHIP_ID_REG 0x00 | |
41 | #define MPU3050_PRODUCT_ID_REG 0x01 | |
42 | #define MPU3050_XG_OFFS_TC 0x05 | |
43 | #define MPU3050_YG_OFFS_TC 0x08 | |
44 | #define MPU3050_ZG_OFFS_TC 0x0B | |
45 | #define MPU3050_X_OFFS_USR_H 0x0C | |
46 | #define MPU3050_Y_OFFS_USR_H 0x0E | |
47 | #define MPU3050_Z_OFFS_USR_H 0x10 | |
48 | #define MPU3050_FIFO_EN 0x12 | |
49 | #define MPU3050_AUX_VDDIO 0x13 | |
50 | #define MPU3050_SLV_ADDR 0x14 | |
51 | #define MPU3050_SMPLRT_DIV 0x15 | |
52 | #define MPU3050_DLPF_FS_SYNC 0x16 | |
53 | #define MPU3050_INT_CFG 0x17 | |
54 | #define MPU3050_AUX_ADDR 0x18 | |
55 | #define MPU3050_INT_STATUS 0x1A | |
56 | #define MPU3050_TEMP_H 0x1B | |
57 | #define MPU3050_XOUT_H 0x1D | |
58 | #define MPU3050_YOUT_H 0x1F | |
59 | #define MPU3050_ZOUT_H 0x21 | |
60 | #define MPU3050_DMP_CFG1 0x35 | |
61 | #define MPU3050_DMP_CFG2 0x36 | |
62 | #define MPU3050_BANK_SEL 0x37 | |
63 | #define MPU3050_MEM_START_ADDR 0x38 | |
64 | #define MPU3050_MEM_R_W 0x39 | |
65 | #define MPU3050_FIFO_COUNT_H 0x3A | |
66 | #define MPU3050_FIFO_R 0x3C | |
67 | #define MPU3050_USR_CTRL 0x3D | |
68 | #define MPU3050_PWR_MGM 0x3E | |
69 | ||
70 | /* MPU memory bank read options */ | |
71 | #define MPU3050_MEM_PRFTCH BIT(5) | |
72 | #define MPU3050_MEM_USER_BANK BIT(4) | |
73 | /* Bits 8-11 select memory bank */ | |
74 | #define MPU3050_MEM_RAM_BANK_0 0 | |
75 | #define MPU3050_MEM_RAM_BANK_1 1 | |
76 | #define MPU3050_MEM_RAM_BANK_2 2 | |
77 | #define MPU3050_MEM_RAM_BANK_3 3 | |
78 | #define MPU3050_MEM_OTP_BANK_0 4 | |
79 | ||
80 | #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2)) | |
81 | ||
82 | /* Register bits */ | |
83 | ||
84 | /* FIFO Enable */ | |
85 | #define MPU3050_FIFO_EN_FOOTER BIT(0) | |
86 | #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1) | |
87 | #define MPU3050_FIFO_EN_AUX_YOUT BIT(2) | |
88 | #define MPU3050_FIFO_EN_AUX_XOUT BIT(3) | |
89 | #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4) | |
90 | #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5) | |
91 | #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6) | |
92 | #define MPU3050_FIFO_EN_TEMP_OUT BIT(7) | |
93 | ||
94 | /* | |
95 | * Digital Low Pass filter (DLPF) | |
96 | * Full Scale (FS) | |
97 | * and Synchronization | |
98 | */ | |
99 | #define MPU3050_EXT_SYNC_NONE 0x00 | |
100 | #define MPU3050_EXT_SYNC_TEMP 0x20 | |
101 | #define MPU3050_EXT_SYNC_GYROX 0x40 | |
102 | #define MPU3050_EXT_SYNC_GYROY 0x60 | |
103 | #define MPU3050_EXT_SYNC_GYROZ 0x80 | |
104 | #define MPU3050_EXT_SYNC_ACCELX 0xA0 | |
105 | #define MPU3050_EXT_SYNC_ACCELY 0xC0 | |
106 | #define MPU3050_EXT_SYNC_ACCELZ 0xE0 | |
107 | #define MPU3050_EXT_SYNC_MASK 0xE0 | |
108 | #define MPU3050_EXT_SYNC_SHIFT 5 | |
109 | ||
110 | #define MPU3050_FS_250DPS 0x00 | |
111 | #define MPU3050_FS_500DPS 0x08 | |
112 | #define MPU3050_FS_1000DPS 0x10 | |
113 | #define MPU3050_FS_2000DPS 0x18 | |
114 | #define MPU3050_FS_MASK 0x18 | |
115 | #define MPU3050_FS_SHIFT 3 | |
116 | ||
117 | #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00 | |
118 | #define MPU3050_DLPF_CFG_188HZ 0x01 | |
119 | #define MPU3050_DLPF_CFG_98HZ 0x02 | |
120 | #define MPU3050_DLPF_CFG_42HZ 0x03 | |
121 | #define MPU3050_DLPF_CFG_20HZ 0x04 | |
122 | #define MPU3050_DLPF_CFG_10HZ 0x05 | |
123 | #define MPU3050_DLPF_CFG_5HZ 0x06 | |
124 | #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07 | |
125 | #define MPU3050_DLPF_CFG_MASK 0x07 | |
126 | #define MPU3050_DLPF_CFG_SHIFT 0 | |
127 | ||
128 | /* Interrupt config */ | |
129 | #define MPU3050_INT_RAW_RDY_EN BIT(0) | |
130 | #define MPU3050_INT_DMP_DONE_EN BIT(1) | |
131 | #define MPU3050_INT_MPU_RDY_EN BIT(2) | |
132 | #define MPU3050_INT_ANYRD_2CLEAR BIT(4) | |
133 | #define MPU3050_INT_LATCH_EN BIT(5) | |
134 | #define MPU3050_INT_OPEN BIT(6) | |
135 | #define MPU3050_INT_ACTL BIT(7) | |
136 | /* Interrupt status */ | |
137 | #define MPU3050_INT_STATUS_RAW_RDY BIT(0) | |
138 | #define MPU3050_INT_STATUS_DMP_DONE BIT(1) | |
139 | #define MPU3050_INT_STATUS_MPU_RDY BIT(2) | |
140 | #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7) | |
141 | /* USR_CTRL */ | |
142 | #define MPU3050_USR_CTRL_FIFO_EN BIT(6) | |
143 | #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5) | |
144 | #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3) | |
145 | #define MPU3050_USR_CTRL_FIFO_RST BIT(1) | |
146 | #define MPU3050_USR_CTRL_GYRO_RST BIT(0) | |
147 | /* PWR_MGM */ | |
148 | #define MPU3050_PWR_MGM_PLL_X 0x01 | |
149 | #define MPU3050_PWR_MGM_PLL_Y 0x02 | |
150 | #define MPU3050_PWR_MGM_PLL_Z 0x03 | |
151 | #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07 | |
152 | #define MPU3050_PWR_MGM_STBY_ZG BIT(3) | |
153 | #define MPU3050_PWR_MGM_STBY_YG BIT(4) | |
154 | #define MPU3050_PWR_MGM_STBY_XG BIT(5) | |
155 | #define MPU3050_PWR_MGM_SLEEP BIT(6) | |
156 | #define MPU3050_PWR_MGM_RESET BIT(7) | |
157 | #define MPU3050_PWR_MGM_MASK 0xff | |
158 | ||
159 | /* | |
160 | * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full | |
161 | * scale is actually 500 deg/s. All 16 bits are then used to cover this scale, | |
162 | * in two's complement. | |
163 | */ | |
164 | static unsigned int mpu3050_fs_precision[] = { | |
165 | IIO_DEGREE_TO_RAD(250), | |
166 | IIO_DEGREE_TO_RAD(500), | |
167 | IIO_DEGREE_TO_RAD(1000), | |
168 | IIO_DEGREE_TO_RAD(2000) | |
169 | }; | |
170 | ||
171 | /* | |
172 | * Regulator names | |
173 | */ | |
174 | static const char mpu3050_reg_vdd[] = "vdd"; | |
175 | static const char mpu3050_reg_vlogic[] = "vlogic"; | |
176 | ||
177 | static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050) | |
178 | { | |
179 | unsigned int freq; | |
180 | ||
181 | if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2) | |
182 | freq = 8000; | |
183 | else | |
184 | freq = 1000; | |
185 | freq /= (mpu3050->divisor + 1); | |
186 | ||
187 | return freq; | |
188 | } | |
189 | ||
190 | static int mpu3050_start_sampling(struct mpu3050 *mpu3050) | |
191 | { | |
192 | __be16 raw_val[3]; | |
193 | int ret; | |
194 | int i; | |
195 | ||
196 | /* Reset */ | |
197 | ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, | |
198 | MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET); | |
199 | if (ret) | |
200 | return ret; | |
201 | ||
202 | /* Turn on the Z-axis PLL */ | |
203 | ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, | |
204 | MPU3050_PWR_MGM_CLKSEL_MASK, | |
205 | MPU3050_PWR_MGM_PLL_Z); | |
206 | if (ret) | |
207 | return ret; | |
208 | ||
209 | /* Write calibration offset registers */ | |
210 | for (i = 0; i < 3; i++) | |
211 | raw_val[i] = cpu_to_be16(mpu3050->calibration[i]); | |
212 | ||
213 | ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val, | |
214 | sizeof(raw_val)); | |
215 | if (ret) | |
216 | return ret; | |
217 | ||
218 | /* Set low pass filter (sample rate), sync and full scale */ | |
219 | ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC, | |
220 | MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT | | |
221 | mpu3050->fullscale << MPU3050_FS_SHIFT | | |
222 | mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT); | |
223 | if (ret) | |
224 | return ret; | |
225 | ||
226 | /* Set up sampling frequency */ | |
227 | ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor); | |
228 | if (ret) | |
229 | return ret; | |
230 | ||
231 | /* | |
232 | * Max 50 ms start-up time after setting DLPF_FS_SYNC | |
233 | * according to the data sheet, then wait for the next sample | |
234 | * at this frequency T = 1000/f ms. | |
235 | */ | |
236 | msleep(50 + 1000 / mpu3050_get_freq(mpu3050)); | |
237 | ||
238 | return 0; | |
239 | } | |
240 | ||
241 | static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050) | |
242 | { | |
243 | int ret; | |
244 | u8 divisor; | |
245 | enum mpu3050_lpf lpf; | |
246 | ||
247 | lpf = mpu3050->lpf; | |
248 | divisor = mpu3050->divisor; | |
249 | ||
250 | mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */ | |
251 | mpu3050->divisor = 0; /* Divide by 1 */ | |
252 | ret = mpu3050_start_sampling(mpu3050); | |
253 | ||
254 | mpu3050->lpf = lpf; | |
255 | mpu3050->divisor = divisor; | |
256 | ||
257 | return ret; | |
258 | } | |
259 | ||
260 | static int mpu3050_read_raw(struct iio_dev *indio_dev, | |
261 | struct iio_chan_spec const *chan, | |
262 | int *val, int *val2, | |
263 | long mask) | |
264 | { | |
265 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
266 | int ret; | |
267 | __be16 raw_val; | |
268 | ||
269 | switch (mask) { | |
270 | case IIO_CHAN_INFO_OFFSET: | |
271 | switch (chan->type) { | |
272 | case IIO_TEMP: | |
273 | /* The temperature scaling is (x+23000)/280 Celsius */ | |
274 | *val = 23000; | |
275 | return IIO_VAL_INT; | |
276 | default: | |
277 | return -EINVAL; | |
278 | } | |
279 | case IIO_CHAN_INFO_CALIBBIAS: | |
280 | switch (chan->type) { | |
281 | case IIO_ANGL_VEL: | |
282 | *val = mpu3050->calibration[chan->scan_index-1]; | |
283 | return IIO_VAL_INT; | |
284 | default: | |
285 | return -EINVAL; | |
286 | } | |
287 | case IIO_CHAN_INFO_SAMP_FREQ: | |
288 | *val = mpu3050_get_freq(mpu3050); | |
289 | return IIO_VAL_INT; | |
290 | case IIO_CHAN_INFO_SCALE: | |
291 | switch (chan->type) { | |
292 | case IIO_TEMP: | |
293 | /* Millidegrees, see about temperature scaling above */ | |
294 | *val = 1000; | |
295 | *val2 = 280; | |
296 | return IIO_VAL_FRACTIONAL; | |
297 | case IIO_ANGL_VEL: | |
298 | /* | |
299 | * Convert to the corresponding full scale in | |
300 | * radians. All 16 bits are used with sign to | |
301 | * span the available scale: to account for the one | |
302 | * missing value if we multiply by 1/S16_MAX, instead | |
303 | * multiply with 2/U16_MAX. | |
304 | */ | |
305 | *val = mpu3050_fs_precision[mpu3050->fullscale] * 2; | |
306 | *val2 = U16_MAX; | |
307 | return IIO_VAL_FRACTIONAL; | |
308 | default: | |
309 | return -EINVAL; | |
310 | } | |
311 | case IIO_CHAN_INFO_RAW: | |
312 | /* Resume device */ | |
313 | pm_runtime_get_sync(mpu3050->dev); | |
314 | mutex_lock(&mpu3050->lock); | |
315 | ||
316 | ret = mpu3050_set_8khz_samplerate(mpu3050); | |
317 | if (ret) | |
318 | goto out_read_raw_unlock; | |
319 | ||
320 | switch (chan->type) { | |
321 | case IIO_TEMP: | |
322 | ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, | |
323 | &raw_val, sizeof(raw_val)); | |
324 | if (ret) { | |
325 | dev_err(mpu3050->dev, | |
326 | "error reading temperature\n"); | |
327 | goto out_read_raw_unlock; | |
328 | } | |
329 | ||
330 | *val = be16_to_cpu(raw_val); | |
331 | ret = IIO_VAL_INT; | |
332 | ||
333 | goto out_read_raw_unlock; | |
334 | case IIO_ANGL_VEL: | |
335 | ret = regmap_bulk_read(mpu3050->map, | |
336 | MPU3050_AXIS_REGS(chan->scan_index-1), | |
337 | &raw_val, | |
338 | sizeof(raw_val)); | |
339 | if (ret) { | |
340 | dev_err(mpu3050->dev, | |
341 | "error reading axis data\n"); | |
342 | goto out_read_raw_unlock; | |
343 | } | |
344 | ||
345 | *val = be16_to_cpu(raw_val); | |
346 | ret = IIO_VAL_INT; | |
347 | ||
348 | goto out_read_raw_unlock; | |
349 | default: | |
350 | ret = -EINVAL; | |
351 | goto out_read_raw_unlock; | |
352 | } | |
353 | default: | |
354 | break; | |
355 | } | |
356 | ||
357 | return -EINVAL; | |
358 | ||
359 | out_read_raw_unlock: | |
360 | mutex_unlock(&mpu3050->lock); | |
361 | pm_runtime_mark_last_busy(mpu3050->dev); | |
362 | pm_runtime_put_autosuspend(mpu3050->dev); | |
363 | ||
364 | return ret; | |
365 | } | |
366 | ||
367 | static int mpu3050_write_raw(struct iio_dev *indio_dev, | |
368 | const struct iio_chan_spec *chan, | |
369 | int val, int val2, long mask) | |
370 | { | |
371 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
372 | /* | |
373 | * Couldn't figure out a way to precalculate these at compile time. | |
374 | */ | |
375 | unsigned int fs250 = | |
376 | DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2, | |
377 | U16_MAX); | |
378 | unsigned int fs500 = | |
379 | DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2, | |
380 | U16_MAX); | |
381 | unsigned int fs1000 = | |
382 | DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2, | |
383 | U16_MAX); | |
384 | unsigned int fs2000 = | |
385 | DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2, | |
386 | U16_MAX); | |
387 | ||
388 | switch (mask) { | |
389 | case IIO_CHAN_INFO_CALIBBIAS: | |
390 | if (chan->type != IIO_ANGL_VEL) | |
391 | return -EINVAL; | |
392 | mpu3050->calibration[chan->scan_index-1] = val; | |
393 | return 0; | |
394 | case IIO_CHAN_INFO_SAMP_FREQ: | |
395 | /* | |
396 | * The max samplerate is 8000 Hz, the minimum | |
397 | * 1000 / 256 ~= 4 Hz | |
398 | */ | |
399 | if (val < 4 || val > 8000) | |
400 | return -EINVAL; | |
401 | ||
402 | /* | |
403 | * Above 1000 Hz we must turn off the digital low pass filter | |
404 | * so we get a base frequency of 8kHz to the divider | |
405 | */ | |
406 | if (val > 1000) { | |
407 | mpu3050->lpf = LPF_256_HZ_NOLPF; | |
408 | mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1; | |
409 | return 0; | |
410 | } | |
411 | ||
412 | mpu3050->lpf = LPF_188_HZ; | |
413 | mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1; | |
414 | return 0; | |
415 | case IIO_CHAN_INFO_SCALE: | |
416 | if (chan->type != IIO_ANGL_VEL) | |
417 | return -EINVAL; | |
418 | /* | |
419 | * We support +/-250, +/-500, +/-1000 and +/2000 deg/s | |
420 | * which means we need to round to the closest radians | |
421 | * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35 | |
422 | * rad/s. The scale is then for the 16 bits used to cover | |
423 | * it 2/(2^16) of that. | |
424 | */ | |
425 | ||
426 | /* Just too large, set the max range */ | |
427 | if (val != 0) { | |
428 | mpu3050->fullscale = FS_2000_DPS; | |
429 | return 0; | |
430 | } | |
431 | ||
432 | /* | |
433 | * Now we're dealing with fractions below zero in millirad/s | |
434 | * do some integer interpolation and match with the closest | |
435 | * fullscale in the table. | |
436 | */ | |
437 | if (val2 <= fs250 || | |
438 | val2 < ((fs500 + fs250) / 2)) | |
439 | mpu3050->fullscale = FS_250_DPS; | |
440 | else if (val2 <= fs500 || | |
441 | val2 < ((fs1000 + fs500) / 2)) | |
442 | mpu3050->fullscale = FS_500_DPS; | |
443 | else if (val2 <= fs1000 || | |
444 | val2 < ((fs2000 + fs1000) / 2)) | |
445 | mpu3050->fullscale = FS_1000_DPS; | |
446 | else | |
447 | /* Catch-all */ | |
448 | mpu3050->fullscale = FS_2000_DPS; | |
449 | return 0; | |
450 | default: | |
451 | break; | |
452 | } | |
453 | ||
454 | return -EINVAL; | |
455 | } | |
456 | ||
457 | static irqreturn_t mpu3050_trigger_handler(int irq, void *p) | |
458 | { | |
459 | const struct iio_poll_func *pf = p; | |
460 | struct iio_dev *indio_dev = pf->indio_dev; | |
461 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
462 | int ret; | |
463 | /* | |
464 | * Temperature 1*16 bits | |
465 | * Three axes 3*16 bits | |
466 | * Timestamp 64 bits (4*16 bits) | |
467 | * Sum total 8*16 bits | |
468 | */ | |
469 | __be16 hw_values[8]; | |
470 | s64 timestamp; | |
471 | unsigned int datums_from_fifo = 0; | |
472 | ||
473 | /* | |
474 | * If we're using the hardware trigger, get the precise timestamp from | |
475 | * the top half of the threaded IRQ handler. Otherwise get the | |
476 | * timestamp here so it will be close in time to the actual values | |
477 | * read from the registers. | |
478 | */ | |
479 | if (iio_trigger_using_own(indio_dev)) | |
480 | timestamp = mpu3050->hw_timestamp; | |
481 | else | |
482 | timestamp = iio_get_time_ns(indio_dev); | |
483 | ||
484 | mutex_lock(&mpu3050->lock); | |
485 | ||
486 | /* Using the hardware IRQ trigger? Check the buffer then. */ | |
487 | if (mpu3050->hw_irq_trigger) { | |
488 | __be16 raw_fifocnt; | |
489 | u16 fifocnt; | |
490 | /* X, Y, Z + temperature */ | |
491 | unsigned int bytes_per_datum = 8; | |
492 | bool fifo_overflow = false; | |
493 | ||
494 | ret = regmap_bulk_read(mpu3050->map, | |
495 | MPU3050_FIFO_COUNT_H, | |
496 | &raw_fifocnt, | |
497 | sizeof(raw_fifocnt)); | |
498 | if (ret) | |
499 | goto out_trigger_unlock; | |
500 | fifocnt = be16_to_cpu(raw_fifocnt); | |
501 | ||
502 | if (fifocnt == 512) { | |
503 | dev_info(mpu3050->dev, | |
504 | "FIFO overflow! Emptying and resetting FIFO\n"); | |
505 | fifo_overflow = true; | |
506 | /* Reset and enable the FIFO */ | |
507 | ret = regmap_update_bits(mpu3050->map, | |
508 | MPU3050_USR_CTRL, | |
509 | MPU3050_USR_CTRL_FIFO_EN | | |
510 | MPU3050_USR_CTRL_FIFO_RST, | |
511 | MPU3050_USR_CTRL_FIFO_EN | | |
512 | MPU3050_USR_CTRL_FIFO_RST); | |
513 | if (ret) { | |
514 | dev_info(mpu3050->dev, "error resetting FIFO\n"); | |
515 | goto out_trigger_unlock; | |
516 | } | |
517 | mpu3050->pending_fifo_footer = false; | |
518 | } | |
519 | ||
520 | if (fifocnt) | |
521 | dev_dbg(mpu3050->dev, | |
522 | "%d bytes in the FIFO\n", | |
523 | fifocnt); | |
524 | ||
525 | while (!fifo_overflow && fifocnt > bytes_per_datum) { | |
526 | unsigned int toread; | |
527 | unsigned int offset; | |
528 | __be16 fifo_values[5]; | |
529 | ||
530 | /* | |
531 | * If there is a FIFO footer in the pipe, first clear | |
532 | * that out. This follows the complex algorithm in the | |
533 | * datasheet that states that you may never leave the | |
534 | * FIFO empty after the first reading: you have to | |
535 | * always leave two footer bytes in it. The footer is | |
536 | * in practice just two zero bytes. | |
537 | */ | |
538 | if (mpu3050->pending_fifo_footer) { | |
539 | toread = bytes_per_datum + 2; | |
540 | offset = 0; | |
541 | } else { | |
542 | toread = bytes_per_datum; | |
543 | offset = 1; | |
544 | /* Put in some dummy value */ | |
545 | fifo_values[0] = 0xAAAA; | |
546 | } | |
547 | ||
548 | ret = regmap_bulk_read(mpu3050->map, | |
549 | MPU3050_FIFO_R, | |
550 | &fifo_values[offset], | |
551 | toread); | |
552 | ||
553 | dev_dbg(mpu3050->dev, | |
554 | "%04x %04x %04x %04x %04x\n", | |
555 | fifo_values[0], | |
556 | fifo_values[1], | |
557 | fifo_values[2], | |
558 | fifo_values[3], | |
559 | fifo_values[4]); | |
560 | ||
561 | /* Index past the footer (fifo_values[0]) and push */ | |
562 | iio_push_to_buffers_with_timestamp(indio_dev, | |
563 | &fifo_values[1], | |
564 | timestamp); | |
565 | ||
566 | fifocnt -= toread; | |
567 | datums_from_fifo++; | |
568 | mpu3050->pending_fifo_footer = true; | |
569 | ||
570 | /* | |
571 | * If we're emptying the FIFO, just make sure to | |
572 | * check if something new appeared. | |
573 | */ | |
574 | if (fifocnt < bytes_per_datum) { | |
575 | ret = regmap_bulk_read(mpu3050->map, | |
576 | MPU3050_FIFO_COUNT_H, | |
577 | &raw_fifocnt, | |
578 | sizeof(raw_fifocnt)); | |
579 | if (ret) | |
580 | goto out_trigger_unlock; | |
581 | fifocnt = be16_to_cpu(raw_fifocnt); | |
582 | } | |
583 | ||
584 | if (fifocnt < bytes_per_datum) | |
585 | dev_dbg(mpu3050->dev, | |
586 | "%d bytes left in the FIFO\n", | |
587 | fifocnt); | |
588 | ||
589 | /* | |
590 | * At this point, the timestamp that triggered the | |
591 | * hardware interrupt is no longer valid for what | |
592 | * we are reading (the interrupt likely fired for | |
593 | * the value on the top of the FIFO), so set the | |
594 | * timestamp to zero and let userspace deal with it. | |
595 | */ | |
596 | timestamp = 0; | |
597 | } | |
598 | } | |
599 | ||
600 | /* | |
601 | * If we picked some datums from the FIFO that's enough, else | |
602 | * fall through and just read from the current value registers. | |
603 | * This happens in two cases: | |
604 | * | |
605 | * - We are using some other trigger (external, like an HRTimer) | |
606 | * than the sensor's own sample generator. In this case the | |
607 | * sensor is just set to the max sampling frequency and we give | |
608 | * the trigger a copy of the latest value every time we get here. | |
609 | * | |
610 | * - The hardware trigger is active but unused and we actually use | |
611 | * another trigger which calls here with a frequency higher | |
612 | * than what the device provides data. We will then just read | |
613 | * duplicate values directly from the hardware registers. | |
614 | */ | |
615 | if (datums_from_fifo) { | |
616 | dev_dbg(mpu3050->dev, | |
617 | "read %d datums from the FIFO\n", | |
618 | datums_from_fifo); | |
619 | goto out_trigger_unlock; | |
620 | } | |
621 | ||
622 | ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values, | |
623 | sizeof(hw_values)); | |
624 | if (ret) { | |
625 | dev_err(mpu3050->dev, | |
626 | "error reading axis data\n"); | |
627 | goto out_trigger_unlock; | |
628 | } | |
629 | ||
630 | iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp); | |
631 | ||
632 | out_trigger_unlock: | |
633 | mutex_unlock(&mpu3050->lock); | |
634 | iio_trigger_notify_done(indio_dev->trig); | |
635 | ||
636 | return IRQ_HANDLED; | |
637 | } | |
638 | ||
639 | static int mpu3050_buffer_preenable(struct iio_dev *indio_dev) | |
640 | { | |
641 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
642 | ||
643 | pm_runtime_get_sync(mpu3050->dev); | |
644 | ||
645 | /* Unless we have OUR trigger active, run at full speed */ | |
646 | if (!mpu3050->hw_irq_trigger) | |
647 | return mpu3050_set_8khz_samplerate(mpu3050); | |
648 | ||
649 | return 0; | |
650 | } | |
651 | ||
652 | static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev) | |
653 | { | |
654 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
655 | ||
656 | pm_runtime_mark_last_busy(mpu3050->dev); | |
657 | pm_runtime_put_autosuspend(mpu3050->dev); | |
658 | ||
659 | return 0; | |
660 | } | |
661 | ||
662 | static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = { | |
663 | .preenable = mpu3050_buffer_preenable, | |
664 | .postenable = iio_triggered_buffer_postenable, | |
665 | .predisable = iio_triggered_buffer_predisable, | |
666 | .postdisable = mpu3050_buffer_postdisable, | |
667 | }; | |
668 | ||
669 | static const struct iio_mount_matrix * | |
670 | mpu3050_get_mount_matrix(const struct iio_dev *indio_dev, | |
671 | const struct iio_chan_spec *chan) | |
672 | { | |
673 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
674 | ||
675 | return &mpu3050->orientation; | |
676 | } | |
677 | ||
678 | static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = { | |
679 | IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix), | |
680 | { }, | |
681 | }; | |
682 | ||
683 | #define MPU3050_AXIS_CHANNEL(axis, index) \ | |
684 | { \ | |
685 | .type = IIO_ANGL_VEL, \ | |
686 | .modified = 1, \ | |
687 | .channel2 = IIO_MOD_##axis, \ | |
688 | .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ | |
689 | BIT(IIO_CHAN_INFO_CALIBBIAS), \ | |
690 | .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ | |
691 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ | |
692 | .ext_info = mpu3050_ext_info, \ | |
693 | .scan_index = index, \ | |
694 | .scan_type = { \ | |
695 | .sign = 's', \ | |
696 | .realbits = 16, \ | |
697 | .storagebits = 16, \ | |
698 | .endianness = IIO_BE, \ | |
699 | }, \ | |
700 | } | |
701 | ||
702 | static const struct iio_chan_spec mpu3050_channels[] = { | |
703 | { | |
704 | .type = IIO_TEMP, | |
705 | .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | | |
706 | BIT(IIO_CHAN_INFO_SCALE) | | |
707 | BIT(IIO_CHAN_INFO_OFFSET), | |
708 | .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), | |
709 | .scan_index = 0, | |
710 | .scan_type = { | |
711 | .sign = 's', | |
712 | .realbits = 16, | |
713 | .storagebits = 16, | |
714 | .endianness = IIO_BE, | |
715 | }, | |
716 | }, | |
717 | MPU3050_AXIS_CHANNEL(X, 1), | |
718 | MPU3050_AXIS_CHANNEL(Y, 2), | |
719 | MPU3050_AXIS_CHANNEL(Z, 3), | |
720 | IIO_CHAN_SOFT_TIMESTAMP(4), | |
721 | }; | |
722 | ||
723 | /* Four channels apart from timestamp, scan mask = 0x0f */ | |
724 | static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 }; | |
725 | ||
726 | /* | |
727 | * These are just the hardcoded factors resulting from the more elaborate | |
728 | * calculations done with fractions in the scale raw get/set functions. | |
729 | */ | |
730 | static IIO_CONST_ATTR(anglevel_scale_available, | |
731 | "0.000122070 " | |
732 | "0.000274658 " | |
733 | "0.000518798 " | |
734 | "0.001068115"); | |
735 | ||
736 | static struct attribute *mpu3050_attributes[] = { | |
737 | &iio_const_attr_anglevel_scale_available.dev_attr.attr, | |
738 | NULL, | |
739 | }; | |
740 | ||
741 | static const struct attribute_group mpu3050_attribute_group = { | |
742 | .attrs = mpu3050_attributes, | |
743 | }; | |
744 | ||
745 | static const struct iio_info mpu3050_info = { | |
3904b28e LW |
746 | .read_raw = mpu3050_read_raw, |
747 | .write_raw = mpu3050_write_raw, | |
748 | .attrs = &mpu3050_attribute_group, | |
3904b28e LW |
749 | }; |
750 | ||
751 | /** | |
752 | * mpu3050_read_mem() - read MPU-3050 internal memory | |
753 | * @mpu3050: device to read from | |
754 | * @bank: target bank | |
755 | * @addr: target address | |
756 | * @len: number of bytes | |
757 | * @buf: the buffer to store the read bytes in | |
758 | */ | |
759 | static int mpu3050_read_mem(struct mpu3050 *mpu3050, | |
760 | u8 bank, | |
761 | u8 addr, | |
762 | u8 len, | |
763 | u8 *buf) | |
764 | { | |
765 | int ret; | |
766 | ||
767 | ret = regmap_write(mpu3050->map, | |
768 | MPU3050_BANK_SEL, | |
769 | bank); | |
770 | if (ret) | |
771 | return ret; | |
772 | ||
773 | ret = regmap_write(mpu3050->map, | |
774 | MPU3050_MEM_START_ADDR, | |
775 | addr); | |
776 | if (ret) | |
777 | return ret; | |
778 | ||
779 | return regmap_bulk_read(mpu3050->map, | |
780 | MPU3050_MEM_R_W, | |
781 | buf, | |
782 | len); | |
783 | } | |
784 | ||
785 | static int mpu3050_hw_init(struct mpu3050 *mpu3050) | |
786 | { | |
787 | int ret; | |
788 | u8 otp[8]; | |
789 | ||
790 | /* Reset */ | |
791 | ret = regmap_update_bits(mpu3050->map, | |
792 | MPU3050_PWR_MGM, | |
793 | MPU3050_PWR_MGM_RESET, | |
794 | MPU3050_PWR_MGM_RESET); | |
795 | if (ret) | |
796 | return ret; | |
797 | ||
798 | /* Turn on the PLL */ | |
799 | ret = regmap_update_bits(mpu3050->map, | |
800 | MPU3050_PWR_MGM, | |
801 | MPU3050_PWR_MGM_CLKSEL_MASK, | |
802 | MPU3050_PWR_MGM_PLL_Z); | |
803 | if (ret) | |
804 | return ret; | |
805 | ||
806 | /* Disable IRQs */ | |
807 | ret = regmap_write(mpu3050->map, | |
808 | MPU3050_INT_CFG, | |
809 | 0); | |
810 | if (ret) | |
811 | return ret; | |
812 | ||
813 | /* Read out the 8 bytes of OTP (one-time-programmable) memory */ | |
814 | ret = mpu3050_read_mem(mpu3050, | |
815 | (MPU3050_MEM_PRFTCH | | |
816 | MPU3050_MEM_USER_BANK | | |
817 | MPU3050_MEM_OTP_BANK_0), | |
818 | 0, | |
819 | sizeof(otp), | |
820 | otp); | |
821 | if (ret) | |
822 | return ret; | |
823 | ||
824 | /* This is device-unique data so it goes into the entropy pool */ | |
825 | add_device_randomness(otp, sizeof(otp)); | |
826 | ||
827 | dev_info(mpu3050->dev, | |
828 | "die ID: %04X, wafer ID: %02X, A lot ID: %04X, " | |
829 | "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n", | |
830 | /* Die ID, bits 0-12 */ | |
831 | (otp[1] << 8 | otp[0]) & 0x1fff, | |
832 | /* Wafer ID, bits 13-17 */ | |
833 | ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5, | |
834 | /* A lot ID, bits 18-33 */ | |
835 | ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2, | |
836 | /* W lot ID, bits 34-45 */ | |
837 | ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2, | |
838 | /* WP ID, bits 47-49 */ | |
839 | ((otp[6] << 8 | otp[5]) & 0x0380) >> 7, | |
840 | /* rev ID, bits 50-55 */ | |
841 | otp[6] >> 2); | |
842 | ||
843 | return 0; | |
844 | } | |
845 | ||
846 | static int mpu3050_power_up(struct mpu3050 *mpu3050) | |
847 | { | |
848 | int ret; | |
849 | ||
850 | ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs); | |
851 | if (ret) { | |
852 | dev_err(mpu3050->dev, "cannot enable regulators\n"); | |
853 | return ret; | |
854 | } | |
855 | /* | |
856 | * 20-100 ms start-up time for register read/write according to | |
857 | * the datasheet, be on the safe side and wait 200 ms. | |
858 | */ | |
859 | msleep(200); | |
860 | ||
861 | /* Take device out of sleep mode */ | |
862 | ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, | |
863 | MPU3050_PWR_MGM_SLEEP, 0); | |
864 | if (ret) { | |
865 | dev_err(mpu3050->dev, "error setting power mode\n"); | |
866 | return ret; | |
867 | } | |
868 | msleep(10); | |
869 | ||
870 | return 0; | |
871 | } | |
872 | ||
873 | static int mpu3050_power_down(struct mpu3050 *mpu3050) | |
874 | { | |
875 | int ret; | |
876 | ||
877 | /* | |
878 | * Put MPU-3050 into sleep mode before cutting regulators. | |
879 | * This is important, because we may not be the sole user | |
880 | * of the regulator so the power may stay on after this, and | |
881 | * then we would be wasting power unless we go to sleep mode | |
882 | * first. | |
883 | */ | |
884 | ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM, | |
885 | MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP); | |
886 | if (ret) | |
887 | dev_err(mpu3050->dev, "error putting to sleep\n"); | |
888 | ||
889 | ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs); | |
890 | if (ret) | |
891 | dev_err(mpu3050->dev, "error disabling regulators\n"); | |
892 | ||
893 | return 0; | |
894 | } | |
895 | ||
896 | static irqreturn_t mpu3050_irq_handler(int irq, void *p) | |
897 | { | |
898 | struct iio_trigger *trig = p; | |
899 | struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); | |
900 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
901 | ||
902 | if (!mpu3050->hw_irq_trigger) | |
903 | return IRQ_NONE; | |
904 | ||
905 | /* Get the time stamp as close in time as possible */ | |
906 | mpu3050->hw_timestamp = iio_get_time_ns(indio_dev); | |
907 | ||
908 | return IRQ_WAKE_THREAD; | |
909 | } | |
910 | ||
911 | static irqreturn_t mpu3050_irq_thread(int irq, void *p) | |
912 | { | |
913 | struct iio_trigger *trig = p; | |
914 | struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); | |
915 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
916 | unsigned int val; | |
917 | int ret; | |
918 | ||
919 | /* ACK IRQ and check if it was from us */ | |
920 | ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); | |
921 | if (ret) { | |
922 | dev_err(mpu3050->dev, "error reading IRQ status\n"); | |
923 | return IRQ_HANDLED; | |
924 | } | |
925 | if (!(val & MPU3050_INT_STATUS_RAW_RDY)) | |
926 | return IRQ_NONE; | |
927 | ||
928 | iio_trigger_poll_chained(p); | |
929 | ||
930 | return IRQ_HANDLED; | |
931 | } | |
932 | ||
933 | /** | |
934 | * mpu3050_drdy_trigger_set_state() - set data ready interrupt state | |
935 | * @trig: trigger instance | |
936 | * @enable: true if trigger should be enabled, false to disable | |
937 | */ | |
938 | static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig, | |
939 | bool enable) | |
940 | { | |
941 | struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); | |
942 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
943 | unsigned int val; | |
944 | int ret; | |
945 | ||
946 | /* Disabling trigger: disable interrupt and return */ | |
947 | if (!enable) { | |
948 | /* Disable all interrupts */ | |
949 | ret = regmap_write(mpu3050->map, | |
950 | MPU3050_INT_CFG, | |
951 | 0); | |
952 | if (ret) | |
953 | dev_err(mpu3050->dev, "error disabling IRQ\n"); | |
954 | ||
955 | /* Clear IRQ flag */ | |
956 | ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); | |
957 | if (ret) | |
958 | dev_err(mpu3050->dev, "error clearing IRQ status\n"); | |
959 | ||
960 | /* Disable all things in the FIFO and reset it */ | |
961 | ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0); | |
962 | if (ret) | |
963 | dev_err(mpu3050->dev, "error disabling FIFO\n"); | |
964 | ||
965 | ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL, | |
966 | MPU3050_USR_CTRL_FIFO_RST); | |
967 | if (ret) | |
968 | dev_err(mpu3050->dev, "error resetting FIFO\n"); | |
969 | ||
970 | pm_runtime_mark_last_busy(mpu3050->dev); | |
971 | pm_runtime_put_autosuspend(mpu3050->dev); | |
972 | mpu3050->hw_irq_trigger = false; | |
973 | ||
974 | return 0; | |
975 | } else { | |
976 | /* Else we're enabling the trigger from this point */ | |
977 | pm_runtime_get_sync(mpu3050->dev); | |
978 | mpu3050->hw_irq_trigger = true; | |
979 | ||
980 | /* Disable all things in the FIFO */ | |
981 | ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0); | |
982 | if (ret) | |
983 | return ret; | |
984 | ||
985 | /* Reset and enable the FIFO */ | |
986 | ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL, | |
987 | MPU3050_USR_CTRL_FIFO_EN | | |
988 | MPU3050_USR_CTRL_FIFO_RST, | |
989 | MPU3050_USR_CTRL_FIFO_EN | | |
990 | MPU3050_USR_CTRL_FIFO_RST); | |
991 | if (ret) | |
992 | return ret; | |
993 | ||
994 | mpu3050->pending_fifo_footer = false; | |
995 | ||
996 | /* Turn on the FIFO for temp+X+Y+Z */ | |
997 | ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, | |
998 | MPU3050_FIFO_EN_TEMP_OUT | | |
999 | MPU3050_FIFO_EN_GYRO_XOUT | | |
1000 | MPU3050_FIFO_EN_GYRO_YOUT | | |
1001 | MPU3050_FIFO_EN_GYRO_ZOUT | | |
1002 | MPU3050_FIFO_EN_FOOTER); | |
1003 | if (ret) | |
1004 | return ret; | |
1005 | ||
1006 | /* Configure the sample engine */ | |
1007 | ret = mpu3050_start_sampling(mpu3050); | |
1008 | if (ret) | |
1009 | return ret; | |
1010 | ||
1011 | /* Clear IRQ flag */ | |
1012 | ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val); | |
1013 | if (ret) | |
1014 | dev_err(mpu3050->dev, "error clearing IRQ status\n"); | |
1015 | ||
1016 | /* Give us interrupts whenever there is new data ready */ | |
1017 | val = MPU3050_INT_RAW_RDY_EN; | |
1018 | ||
1019 | if (mpu3050->irq_actl) | |
1020 | val |= MPU3050_INT_ACTL; | |
1021 | if (mpu3050->irq_latch) | |
1022 | val |= MPU3050_INT_LATCH_EN; | |
1023 | if (mpu3050->irq_opendrain) | |
1024 | val |= MPU3050_INT_OPEN; | |
1025 | ||
1026 | ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val); | |
1027 | if (ret) | |
1028 | return ret; | |
1029 | } | |
1030 | ||
1031 | return 0; | |
1032 | } | |
1033 | ||
1034 | static const struct iio_trigger_ops mpu3050_trigger_ops = { | |
3904b28e LW |
1035 | .set_trigger_state = mpu3050_drdy_trigger_set_state, |
1036 | }; | |
1037 | ||
1038 | static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq) | |
1039 | { | |
1040 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
1041 | unsigned long irq_trig; | |
1042 | int ret; | |
1043 | ||
1044 | mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev, | |
1045 | "%s-dev%d", | |
1046 | indio_dev->name, | |
1047 | indio_dev->id); | |
1048 | if (!mpu3050->trig) | |
1049 | return -ENOMEM; | |
1050 | ||
1051 | /* Check if IRQ is open drain */ | |
1052 | if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain")) | |
1053 | mpu3050->irq_opendrain = true; | |
1054 | ||
1055 | irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); | |
1056 | /* | |
1057 | * Configure the interrupt generator hardware to supply whatever | |
1058 | * the interrupt is configured for, edges low/high level low/high, | |
1059 | * we can provide it all. | |
1060 | */ | |
1061 | switch (irq_trig) { | |
1062 | case IRQF_TRIGGER_RISING: | |
1063 | dev_info(&indio_dev->dev, | |
1064 | "pulse interrupts on the rising edge\n"); | |
3904b28e LW |
1065 | break; |
1066 | case IRQF_TRIGGER_FALLING: | |
1067 | mpu3050->irq_actl = true; | |
1068 | dev_info(&indio_dev->dev, | |
1069 | "pulse interrupts on the falling edge\n"); | |
1070 | break; | |
1071 | case IRQF_TRIGGER_HIGH: | |
1072 | mpu3050->irq_latch = true; | |
1073 | dev_info(&indio_dev->dev, | |
1074 | "interrupts active high level\n"); | |
3904b28e LW |
1075 | /* |
1076 | * With level IRQs, we mask the IRQ until it is processed, | |
1077 | * but with edge IRQs (pulses) we can queue several interrupts | |
1078 | * in the top half. | |
1079 | */ | |
1080 | irq_trig |= IRQF_ONESHOT; | |
1081 | break; | |
1082 | case IRQF_TRIGGER_LOW: | |
1083 | mpu3050->irq_latch = true; | |
1084 | mpu3050->irq_actl = true; | |
1085 | irq_trig |= IRQF_ONESHOT; | |
1086 | dev_info(&indio_dev->dev, | |
1087 | "interrupts active low level\n"); | |
1088 | break; | |
1089 | default: | |
1090 | /* This is the most preferred mode, if possible */ | |
1091 | dev_err(&indio_dev->dev, | |
1092 | "unsupported IRQ trigger specified (%lx), enforce " | |
1093 | "rising edge\n", irq_trig); | |
1094 | irq_trig = IRQF_TRIGGER_RISING; | |
1095 | break; | |
1096 | } | |
1097 | ||
1098 | /* An open drain line can be shared with several devices */ | |
1099 | if (mpu3050->irq_opendrain) | |
1100 | irq_trig |= IRQF_SHARED; | |
1101 | ||
1102 | ret = request_threaded_irq(irq, | |
1103 | mpu3050_irq_handler, | |
1104 | mpu3050_irq_thread, | |
1105 | irq_trig, | |
1106 | mpu3050->trig->name, | |
1107 | mpu3050->trig); | |
1108 | if (ret) { | |
1109 | dev_err(mpu3050->dev, | |
1110 | "can't get IRQ %d, error %d\n", irq, ret); | |
1111 | return ret; | |
1112 | } | |
1113 | ||
1114 | mpu3050->irq = irq; | |
1115 | mpu3050->trig->dev.parent = mpu3050->dev; | |
1116 | mpu3050->trig->ops = &mpu3050_trigger_ops; | |
1117 | iio_trigger_set_drvdata(mpu3050->trig, indio_dev); | |
1118 | ||
1119 | ret = iio_trigger_register(mpu3050->trig); | |
1120 | if (ret) | |
1121 | return ret; | |
1122 | ||
1123 | indio_dev->trig = iio_trigger_get(mpu3050->trig); | |
1124 | ||
1125 | return 0; | |
1126 | } | |
1127 | ||
1128 | int mpu3050_common_probe(struct device *dev, | |
1129 | struct regmap *map, | |
1130 | int irq, | |
1131 | const char *name) | |
1132 | { | |
1133 | struct iio_dev *indio_dev; | |
1134 | struct mpu3050 *mpu3050; | |
1135 | unsigned int val; | |
1136 | int ret; | |
1137 | ||
1138 | indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050)); | |
1139 | if (!indio_dev) | |
1140 | return -ENOMEM; | |
1141 | mpu3050 = iio_priv(indio_dev); | |
1142 | ||
1143 | mpu3050->dev = dev; | |
1144 | mpu3050->map = map; | |
1145 | mutex_init(&mpu3050->lock); | |
1146 | /* Default fullscale: 2000 degrees per second */ | |
1147 | mpu3050->fullscale = FS_2000_DPS; | |
1148 | /* 1 kHz, divide by 100, default frequency = 10 Hz */ | |
1149 | mpu3050->lpf = MPU3050_DLPF_CFG_188HZ; | |
1150 | mpu3050->divisor = 99; | |
1151 | ||
1152 | /* Read the mounting matrix, if present */ | |
1153 | ret = of_iio_read_mount_matrix(dev, "mount-matrix", | |
1154 | &mpu3050->orientation); | |
1155 | if (ret) | |
1156 | return ret; | |
1157 | ||
1158 | /* Fetch and turn on regulators */ | |
1159 | mpu3050->regs[0].supply = mpu3050_reg_vdd; | |
1160 | mpu3050->regs[1].supply = mpu3050_reg_vlogic; | |
1161 | ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs), | |
1162 | mpu3050->regs); | |
1163 | if (ret) { | |
1164 | dev_err(dev, "Cannot get regulators\n"); | |
1165 | return ret; | |
1166 | } | |
1167 | ||
1168 | ret = mpu3050_power_up(mpu3050); | |
1169 | if (ret) | |
1170 | return ret; | |
1171 | ||
1172 | ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val); | |
1173 | if (ret) { | |
1174 | dev_err(dev, "could not read device ID\n"); | |
1175 | ret = -ENODEV; | |
1176 | ||
1177 | goto err_power_down; | |
1178 | } | |
1179 | ||
409a51e0 SL |
1180 | if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) { |
1181 | dev_err(dev, "unsupported chip id %02x\n", | |
1182 | (u8)(val & MPU3050_CHIP_ID_MASK)); | |
3904b28e LW |
1183 | ret = -ENODEV; |
1184 | goto err_power_down; | |
1185 | } | |
1186 | ||
1187 | ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val); | |
1188 | if (ret) { | |
1189 | dev_err(dev, "could not read device ID\n"); | |
1190 | ret = -ENODEV; | |
1191 | ||
1192 | goto err_power_down; | |
1193 | } | |
1194 | dev_info(dev, "found MPU-3050 part no: %d, version: %d\n", | |
1195 | ((val >> 4) & 0xf), (val & 0xf)); | |
1196 | ||
1197 | ret = mpu3050_hw_init(mpu3050); | |
1198 | if (ret) | |
1199 | goto err_power_down; | |
1200 | ||
1201 | indio_dev->dev.parent = dev; | |
1202 | indio_dev->channels = mpu3050_channels; | |
1203 | indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels); | |
1204 | indio_dev->info = &mpu3050_info; | |
1205 | indio_dev->available_scan_masks = mpu3050_scan_masks; | |
1206 | indio_dev->modes = INDIO_DIRECT_MODE; | |
1207 | indio_dev->name = name; | |
1208 | ||
1209 | ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time, | |
1210 | mpu3050_trigger_handler, | |
1211 | &mpu3050_buffer_setup_ops); | |
1212 | if (ret) { | |
1213 | dev_err(dev, "triggered buffer setup failed\n"); | |
1214 | goto err_power_down; | |
1215 | } | |
1216 | ||
1217 | ret = iio_device_register(indio_dev); | |
1218 | if (ret) { | |
1219 | dev_err(dev, "device register failed\n"); | |
1220 | goto err_cleanup_buffer; | |
1221 | } | |
1222 | ||
1223 | dev_set_drvdata(dev, indio_dev); | |
1224 | ||
1225 | /* Check if we have an assigned IRQ to use as trigger */ | |
1226 | if (irq) { | |
1227 | ret = mpu3050_trigger_probe(indio_dev, irq); | |
1228 | if (ret) | |
1229 | dev_err(dev, "failed to register trigger\n"); | |
1230 | } | |
1231 | ||
1232 | /* Enable runtime PM */ | |
1233 | pm_runtime_get_noresume(dev); | |
1234 | pm_runtime_set_active(dev); | |
1235 | pm_runtime_enable(dev); | |
1236 | /* | |
1237 | * Set autosuspend to two orders of magnitude larger than the | |
1238 | * start-up time. 100ms start-up time means 10000ms autosuspend, | |
1239 | * i.e. 10 seconds. | |
1240 | */ | |
1241 | pm_runtime_set_autosuspend_delay(dev, 10000); | |
1242 | pm_runtime_use_autosuspend(dev); | |
1243 | pm_runtime_put(dev); | |
1244 | ||
1245 | return 0; | |
1246 | ||
1247 | err_cleanup_buffer: | |
1248 | iio_triggered_buffer_cleanup(indio_dev); | |
1249 | err_power_down: | |
1250 | mpu3050_power_down(mpu3050); | |
1251 | ||
1252 | return ret; | |
1253 | } | |
1254 | EXPORT_SYMBOL(mpu3050_common_probe); | |
1255 | ||
1256 | int mpu3050_common_remove(struct device *dev) | |
1257 | { | |
1258 | struct iio_dev *indio_dev = dev_get_drvdata(dev); | |
1259 | struct mpu3050 *mpu3050 = iio_priv(indio_dev); | |
1260 | ||
1261 | pm_runtime_get_sync(dev); | |
1262 | pm_runtime_put_noidle(dev); | |
1263 | pm_runtime_disable(dev); | |
1264 | iio_triggered_buffer_cleanup(indio_dev); | |
1265 | if (mpu3050->irq) | |
1266 | free_irq(mpu3050->irq, mpu3050); | |
1267 | iio_device_unregister(indio_dev); | |
1268 | mpu3050_power_down(mpu3050); | |
1269 | ||
1270 | return 0; | |
1271 | } | |
1272 | EXPORT_SYMBOL(mpu3050_common_remove); | |
1273 | ||
1274 | #ifdef CONFIG_PM | |
1275 | static int mpu3050_runtime_suspend(struct device *dev) | |
1276 | { | |
1277 | return mpu3050_power_down(iio_priv(dev_get_drvdata(dev))); | |
1278 | } | |
1279 | ||
1280 | static int mpu3050_runtime_resume(struct device *dev) | |
1281 | { | |
1282 | return mpu3050_power_up(iio_priv(dev_get_drvdata(dev))); | |
1283 | } | |
1284 | #endif /* CONFIG_PM */ | |
1285 | ||
1286 | const struct dev_pm_ops mpu3050_dev_pm_ops = { | |
1287 | SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, | |
1288 | pm_runtime_force_resume) | |
1289 | SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend, | |
1290 | mpu3050_runtime_resume, NULL) | |
1291 | }; | |
1292 | EXPORT_SYMBOL(mpu3050_dev_pm_ops); | |
1293 | ||
1294 | MODULE_AUTHOR("Linus Walleij"); | |
1295 | MODULE_DESCRIPTION("MPU3050 gyroscope driver"); | |
1296 | MODULE_LICENSE("GPL"); |