]>
Commit | Line | Data |
---|---|---|
0b61d2ac F |
1 | /* |
2 | * pti.c - PTI driver for cJTAG data extration | |
3 | * | |
4 | * Copyright (C) Intel 2010 | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License version 2 as | |
8 | * published by the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, | |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | * GNU General Public License for more details. | |
14 | * | |
15 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
16 | * | |
17 | * The PTI (Parallel Trace Interface) driver directs trace data routed from | |
18 | * various parts in the system out through the Intel Penwell PTI port and | |
19 | * out of the mobile device for analysis with a debugging tool | |
20 | * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7, | |
21 | * compact JTAG, standard. | |
22 | */ | |
23 | ||
24 | #include <linux/init.h> | |
25 | #include <linux/sched.h> | |
26 | #include <linux/interrupt.h> | |
27 | #include <linux/console.h> | |
28 | #include <linux/kernel.h> | |
29 | #include <linux/module.h> | |
30 | #include <linux/tty.h> | |
31 | #include <linux/tty_driver.h> | |
32 | #include <linux/pci.h> | |
33 | #include <linux/mutex.h> | |
34 | #include <linux/miscdevice.h> | |
1784f914 | 35 | #include <linux/intel-pti.h> |
06ed4625 ST |
36 | #include <linux/slab.h> |
37 | #include <linux/uaccess.h> | |
0b61d2ac F |
38 | |
39 | #define DRIVERNAME "pti" | |
40 | #define PCINAME "pciPTI" | |
41 | #define TTYNAME "ttyPTI" | |
42 | #define CHARNAME "pti" | |
43 | #define PTITTY_MINOR_START 0 | |
44 | #define PTITTY_MINOR_NUM 2 | |
45 | #define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */ | |
46 | #define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */ | |
47 | #define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */ | |
48 | #define MODEM_BASE_ID 71 /* modem master ID address */ | |
49 | #define CONTROL_ID 72 /* control master ID address */ | |
50 | #define CONSOLE_ID 73 /* console master ID address */ | |
51 | #define OS_BASE_ID 74 /* base OS master ID address */ | |
52 | #define APP_BASE_ID 80 /* base App master ID address */ | |
53 | #define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */ | |
54 | #define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */ | |
55 | #define APERTURE_14 0x3800000 /* offset to first OS write addr */ | |
56 | #define APERTURE_LEN 0x400000 /* address length */ | |
57 | ||
58 | struct pti_tty { | |
59 | struct pti_masterchannel *mc; | |
60 | }; | |
61 | ||
62 | struct pti_dev { | |
5bd42000 | 63 | struct tty_port port[PTITTY_MINOR_NUM]; |
0b61d2ac F |
64 | unsigned long pti_addr; |
65 | unsigned long aperture_base; | |
66 | void __iomem *pti_ioaddr; | |
67 | u8 ia_app[MAX_APP_IDS]; | |
68 | u8 ia_os[MAX_OS_IDS]; | |
69 | u8 ia_modem[MAX_MODEM_IDS]; | |
70 | }; | |
71 | ||
72 | /* | |
73 | * This protects access to ia_app, ia_os, and ia_modem, | |
74 | * which keeps track of channels allocated in | |
75 | * an aperture write id. | |
76 | */ | |
77 | static DEFINE_MUTEX(alloclock); | |
78 | ||
b328bfec | 79 | static const struct pci_device_id pci_ids[] = { |
0b61d2ac F |
80 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)}, |
81 | {0} | |
82 | }; | |
83 | ||
84 | static struct tty_driver *pti_tty_driver; | |
85 | static struct pti_dev *drv_data; | |
86 | ||
87 | static unsigned int pti_console_channel; | |
88 | static unsigned int pti_control_channel; | |
89 | ||
90 | /** | |
91 | * pti_write_to_aperture()- The private write function to PTI HW. | |
92 | * | |
93 | * @mc: The 'aperture'. It's part of a write address that holds | |
94 | * a master and channel ID. | |
95 | * @buf: Data being written to the HW that will ultimately be seen | |
96 | * in a debugging tool (Fido, Lauterbach). | |
97 | * @len: Size of buffer. | |
98 | * | |
99 | * Since each aperture is specified by a unique | |
100 | * master/channel ID, no two processes will be writing | |
101 | * to the same aperture at the same time so no lock is required. The | |
102 | * PTI-Output agent will send these out in the order that they arrived, and | |
103 | * thus, it will intermix these messages. The debug tool can then later | |
104 | * regroup the appropriate message segments together reconstituting each | |
105 | * message. | |
106 | */ | |
107 | static void pti_write_to_aperture(struct pti_masterchannel *mc, | |
108 | u8 *buf, | |
109 | int len) | |
110 | { | |
111 | int dwordcnt; | |
112 | int final; | |
113 | int i; | |
114 | u32 ptiword; | |
115 | u32 __iomem *aperture; | |
116 | u8 *p = buf; | |
117 | ||
118 | /* | |
119 | * calculate the aperture offset from the base using the master and | |
120 | * channel id's. | |
121 | */ | |
122 | aperture = drv_data->pti_ioaddr + (mc->master << 15) | |
123 | + (mc->channel << 8); | |
124 | ||
125 | dwordcnt = len >> 2; | |
126 | final = len - (dwordcnt << 2); /* final = trailing bytes */ | |
127 | if (final == 0 && dwordcnt != 0) { /* always need a final dword */ | |
128 | final += 4; | |
129 | dwordcnt--; | |
130 | } | |
131 | ||
132 | for (i = 0; i < dwordcnt; i++) { | |
133 | ptiword = be32_to_cpu(*(u32 *)p); | |
134 | p += 4; | |
135 | iowrite32(ptiword, aperture); | |
136 | } | |
137 | ||
138 | aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */ | |
139 | ||
140 | ptiword = 0; | |
141 | for (i = 0; i < final; i++) | |
142 | ptiword |= *p++ << (24-(8*i)); | |
143 | ||
144 | iowrite32(ptiword, aperture); | |
145 | return; | |
146 | } | |
147 | ||
148 | /** | |
149 | * pti_control_frame_built_and_sent()- control frame build and send function. | |
150 | * | |
8168e9c2 F |
151 | * @mc: The master / channel structure on which the function |
152 | * built a control frame. | |
153 | * @thread_name: The thread name associated with the master / channel or | |
154 | * 'NULL' if using the 'current' global variable. | |
0b61d2ac F |
155 | * |
156 | * To be able to post process the PTI contents on host side, a control frame | |
157 | * is added before sending any PTI content. So the host side knows on | |
158 | * each PTI frame the name of the thread using a dedicated master / channel. | |
8168e9c2 F |
159 | * The thread name is retrieved from 'current' global variable if 'thread_name' |
160 | * is 'NULL', else it is retrieved from 'thread_name' parameter. | |
0b61d2ac F |
161 | * This function builds this frame and sends it to a master ID CONTROL_ID. |
162 | * The overhead is only 32 bytes since the driver only writes to HW | |
163 | * in 32 byte chunks. | |
164 | */ | |
8168e9c2 F |
165 | static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc, |
166 | const char *thread_name) | |
0b61d2ac | 167 | { |
1ebe9dad JJ |
168 | /* |
169 | * Since we access the comm member in current's task_struct, we only | |
170 | * need to be as large as what 'comm' in that structure is. | |
171 | */ | |
172 | char comm[TASK_COMM_LEN]; | |
0b61d2ac F |
173 | struct pti_masterchannel mccontrol = {.master = CONTROL_ID, |
174 | .channel = 0}; | |
8168e9c2 | 175 | const char *thread_name_p; |
0b61d2ac F |
176 | const char *control_format = "%3d %3d %s"; |
177 | u8 control_frame[CONTROL_FRAME_LEN]; | |
178 | ||
8168e9c2 | 179 | if (!thread_name) { |
8168e9c2 F |
180 | if (!in_interrupt()) |
181 | get_task_comm(comm, current); | |
182 | else | |
183 | strncpy(comm, "Interrupt", TASK_COMM_LEN); | |
0b61d2ac | 184 | |
8168e9c2 F |
185 | /* Absolutely ensure our buffer is zero terminated. */ |
186 | comm[TASK_COMM_LEN-1] = 0; | |
187 | thread_name_p = comm; | |
188 | } else { | |
189 | thread_name_p = thread_name; | |
190 | } | |
0b61d2ac F |
191 | |
192 | mccontrol.channel = pti_control_channel; | |
193 | pti_control_channel = (pti_control_channel + 1) & 0x7f; | |
194 | ||
195 | snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master, | |
8168e9c2 | 196 | mc->channel, thread_name_p); |
0b61d2ac F |
197 | pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame)); |
198 | } | |
199 | ||
200 | /** | |
201 | * pti_write_full_frame_to_aperture()- high level function to | |
202 | * write to PTI. | |
203 | * | |
204 | * @mc: The 'aperture'. It's part of a write address that holds | |
205 | * a master and channel ID. | |
206 | * @buf: Data being written to the HW that will ultimately be seen | |
207 | * in a debugging tool (Fido, Lauterbach). | |
208 | * @len: Size of buffer. | |
209 | * | |
210 | * All threads sending data (either console, user space application, ...) | |
211 | * are calling the high level function to write to PTI meaning that it is | |
212 | * possible to add a control frame before sending the content. | |
213 | */ | |
214 | static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc, | |
215 | const unsigned char *buf, | |
216 | int len) | |
217 | { | |
8168e9c2 | 218 | pti_control_frame_built_and_sent(mc, NULL); |
0b61d2ac F |
219 | pti_write_to_aperture(mc, (u8 *)buf, len); |
220 | } | |
221 | ||
222 | /** | |
223 | * get_id()- Allocate a master and channel ID. | |
224 | * | |
8168e9c2 F |
225 | * @id_array: an array of bits representing what channel |
226 | * id's are allocated for writing. | |
227 | * @max_ids: The max amount of available write IDs to use. | |
228 | * @base_id: The starting SW channel ID, based on the Intel | |
229 | * PTI arch. | |
230 | * @thread_name: The thread name associated with the master / channel or | |
231 | * 'NULL' if using the 'current' global variable. | |
0b61d2ac F |
232 | * |
233 | * Returns: | |
234 | * pti_masterchannel struct with master, channel ID address | |
235 | * 0 for error | |
236 | * | |
237 | * Each bit in the arrays ia_app and ia_os correspond to a master and | |
238 | * channel id. The bit is one if the id is taken and 0 if free. For | |
239 | * every master there are 128 channel id's. | |
240 | */ | |
8168e9c2 F |
241 | static struct pti_masterchannel *get_id(u8 *id_array, |
242 | int max_ids, | |
243 | int base_id, | |
244 | const char *thread_name) | |
0b61d2ac F |
245 | { |
246 | struct pti_masterchannel *mc; | |
247 | int i, j, mask; | |
248 | ||
249 | mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL); | |
250 | if (mc == NULL) | |
251 | return NULL; | |
252 | ||
253 | /* look for a byte with a free bit */ | |
254 | for (i = 0; i < max_ids; i++) | |
255 | if (id_array[i] != 0xff) | |
256 | break; | |
257 | if (i == max_ids) { | |
258 | kfree(mc); | |
259 | return NULL; | |
260 | } | |
261 | /* find the bit in the 128 possible channel opportunities */ | |
262 | mask = 0x80; | |
263 | for (j = 0; j < 8; j++) { | |
264 | if ((id_array[i] & mask) == 0) | |
265 | break; | |
266 | mask >>= 1; | |
267 | } | |
268 | ||
269 | /* grab it */ | |
270 | id_array[i] |= mask; | |
271 | mc->master = base_id; | |
272 | mc->channel = ((i & 0xf)<<3) + j; | |
273 | /* write new master Id / channel Id allocation to channel control */ | |
8168e9c2 | 274 | pti_control_frame_built_and_sent(mc, thread_name); |
0b61d2ac F |
275 | return mc; |
276 | } | |
277 | ||
278 | /* | |
279 | * The following three functions: | |
280 | * pti_request_mastercahannel(), mipi_release_masterchannel() | |
281 | * and pti_writedata() are an API for other kernel drivers to | |
282 | * access PTI. | |
283 | */ | |
284 | ||
285 | /** | |
286 | * pti_request_masterchannel()- Kernel API function used to allocate | |
287 | * a master, channel ID address | |
288 | * to write to PTI HW. | |
289 | * | |
8168e9c2 F |
290 | * @type: 0- request Application master, channel aperture ID |
291 | * write address. | |
292 | * 1- request OS master, channel aperture ID write | |
293 | * address. | |
294 | * 2- request Modem master, channel aperture ID | |
295 | * write address. | |
296 | * Other values, error. | |
297 | * @thread_name: The thread name associated with the master / channel or | |
298 | * 'NULL' if using the 'current' global variable. | |
0b61d2ac F |
299 | * |
300 | * Returns: | |
301 | * pti_masterchannel struct | |
302 | * 0 for error | |
303 | */ | |
8168e9c2 F |
304 | struct pti_masterchannel *pti_request_masterchannel(u8 type, |
305 | const char *thread_name) | |
0b61d2ac F |
306 | { |
307 | struct pti_masterchannel *mc; | |
308 | ||
309 | mutex_lock(&alloclock); | |
310 | ||
311 | switch (type) { | |
312 | ||
313 | case 0: | |
8168e9c2 F |
314 | mc = get_id(drv_data->ia_app, MAX_APP_IDS, |
315 | APP_BASE_ID, thread_name); | |
0b61d2ac F |
316 | break; |
317 | ||
318 | case 1: | |
8168e9c2 F |
319 | mc = get_id(drv_data->ia_os, MAX_OS_IDS, |
320 | OS_BASE_ID, thread_name); | |
0b61d2ac F |
321 | break; |
322 | ||
323 | case 2: | |
8168e9c2 F |
324 | mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS, |
325 | MODEM_BASE_ID, thread_name); | |
0b61d2ac F |
326 | break; |
327 | default: | |
328 | mc = NULL; | |
329 | } | |
330 | ||
331 | mutex_unlock(&alloclock); | |
332 | return mc; | |
333 | } | |
334 | EXPORT_SYMBOL_GPL(pti_request_masterchannel); | |
335 | ||
336 | /** | |
337 | * pti_release_masterchannel()- Kernel API function used to release | |
338 | * a master, channel ID address | |
339 | * used to write to PTI HW. | |
340 | * | |
29021bcc F |
341 | * @mc: master, channel apeture ID address to be released. This |
342 | * will de-allocate the structure via kfree(). | |
0b61d2ac F |
343 | */ |
344 | void pti_release_masterchannel(struct pti_masterchannel *mc) | |
345 | { | |
346 | u8 master, channel, i; | |
347 | ||
348 | mutex_lock(&alloclock); | |
349 | ||
350 | if (mc) { | |
351 | master = mc->master; | |
352 | channel = mc->channel; | |
353 | ||
354 | if (master == APP_BASE_ID) { | |
355 | i = channel >> 3; | |
356 | drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7)); | |
357 | } else if (master == OS_BASE_ID) { | |
358 | i = channel >> 3; | |
359 | drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7)); | |
360 | } else { | |
361 | i = channel >> 3; | |
362 | drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7)); | |
363 | } | |
364 | ||
365 | kfree(mc); | |
366 | } | |
367 | ||
368 | mutex_unlock(&alloclock); | |
369 | } | |
370 | EXPORT_SYMBOL_GPL(pti_release_masterchannel); | |
371 | ||
372 | /** | |
373 | * pti_writedata()- Kernel API function used to write trace | |
374 | * debugging data to PTI HW. | |
375 | * | |
376 | * @mc: Master, channel aperture ID address to write to. | |
377 | * Null value will return with no write occurring. | |
378 | * @buf: Trace debuging data to write to the PTI HW. | |
379 | * Null value will return with no write occurring. | |
380 | * @count: Size of buf. Value of 0 or a negative number will | |
381 | * return with no write occuring. | |
382 | */ | |
383 | void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count) | |
384 | { | |
385 | /* | |
386 | * since this function is exported, this is treated like an | |
387 | * API function, thus, all parameters should | |
388 | * be checked for validity. | |
389 | */ | |
390 | if ((mc != NULL) && (buf != NULL) && (count > 0)) | |
391 | pti_write_to_aperture(mc, buf, count); | |
392 | return; | |
393 | } | |
394 | EXPORT_SYMBOL_GPL(pti_writedata); | |
395 | ||
0b61d2ac F |
396 | /* |
397 | * for the tty_driver_*() basic function descriptions, see tty_driver.h. | |
398 | * Specific header comments made for PTI-related specifics. | |
399 | */ | |
400 | ||
401 | /** | |
402 | * pti_tty_driver_open()- Open an Application master, channel aperture | |
403 | * ID to the PTI device via tty device. | |
404 | * | |
405 | * @tty: tty interface. | |
406 | * @filp: filp interface pased to tty_port_open() call. | |
407 | * | |
408 | * Returns: | |
409 | * int, 0 for success | |
410 | * otherwise, fail value | |
411 | * | |
412 | * The main purpose of using the tty device interface is for | |
413 | * each tty port to have a unique PTI write aperture. In an | |
414 | * example use case, ttyPTI0 gets syslogd and an APP aperture | |
415 | * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route | |
416 | * modem messages into PTI. Modem trace data does not have to | |
417 | * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct | |
418 | * master IDs. These messages go through the PTI HW and out of | |
419 | * the handheld platform and to the Fido/Lauterbach device. | |
420 | */ | |
421 | static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp) | |
422 | { | |
423 | /* | |
424 | * we actually want to allocate a new channel per open, per | |
425 | * system arch. HW gives more than plenty channels for a single | |
426 | * system task to have its own channel to write trace data. This | |
427 | * also removes a locking requirement for the actual write | |
428 | * procedure. | |
429 | */ | |
c565ee07 | 430 | return tty_port_open(tty->port, tty, filp); |
0b61d2ac F |
431 | } |
432 | ||
433 | /** | |
434 | * pti_tty_driver_close()- close tty device and release Application | |
435 | * master, channel aperture ID to the PTI device via tty device. | |
436 | * | |
437 | * @tty: tty interface. | |
438 | * @filp: filp interface pased to tty_port_close() call. | |
439 | * | |
440 | * The main purpose of using the tty device interface is to route | |
441 | * syslog daemon messages to the PTI HW and out of the handheld platform | |
442 | * and to the Fido/Lauterbach device. | |
443 | */ | |
444 | static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp) | |
445 | { | |
c565ee07 | 446 | tty_port_close(tty->port, tty, filp); |
0b61d2ac F |
447 | } |
448 | ||
449 | /** | |
e556b813 F |
450 | * pti_tty_install()- Used to set up specific master-channels |
451 | * to tty ports for organizational purposes when | |
452 | * tracing viewed from debuging tools. | |
0b61d2ac F |
453 | * |
454 | * @driver: tty driver information. | |
455 | * @tty: tty struct containing pti information. | |
456 | * | |
457 | * Returns: | |
458 | * 0 for success | |
459 | * otherwise, error | |
460 | */ | |
461 | static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty) | |
462 | { | |
463 | int idx = tty->index; | |
464 | struct pti_tty *pti_tty_data; | |
81f5835e | 465 | int ret = tty_standard_install(driver, tty); |
0b61d2ac F |
466 | |
467 | if (ret == 0) { | |
0b61d2ac F |
468 | pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL); |
469 | if (pti_tty_data == NULL) | |
470 | return -ENOMEM; | |
471 | ||
472 | if (idx == PTITTY_MINOR_START) | |
8168e9c2 | 473 | pti_tty_data->mc = pti_request_masterchannel(0, NULL); |
0b61d2ac | 474 | else |
8168e9c2 | 475 | pti_tty_data->mc = pti_request_masterchannel(2, NULL); |
0b61d2ac | 476 | |
1dae42bf F |
477 | if (pti_tty_data->mc == NULL) { |
478 | kfree(pti_tty_data); | |
0b61d2ac | 479 | return -ENXIO; |
1dae42bf | 480 | } |
0b61d2ac F |
481 | tty->driver_data = pti_tty_data; |
482 | } | |
483 | ||
484 | return ret; | |
485 | } | |
486 | ||
487 | /** | |
488 | * pti_tty_cleanup()- Used to de-allocate master-channel resources | |
489 | * tied to tty's of this driver. | |
490 | * | |
491 | * @tty: tty struct containing pti information. | |
492 | */ | |
493 | static void pti_tty_cleanup(struct tty_struct *tty) | |
494 | { | |
495 | struct pti_tty *pti_tty_data = tty->driver_data; | |
496 | if (pti_tty_data == NULL) | |
497 | return; | |
498 | pti_release_masterchannel(pti_tty_data->mc); | |
1312ba40 | 499 | kfree(pti_tty_data); |
0b61d2ac F |
500 | tty->driver_data = NULL; |
501 | } | |
502 | ||
503 | /** | |
504 | * pti_tty_driver_write()- Write trace debugging data through the char | |
505 | * interface to the PTI HW. Part of the misc device implementation. | |
506 | * | |
507 | * @filp: Contains private data which is used to obtain | |
508 | * master, channel write ID. | |
509 | * @data: trace data to be written. | |
510 | * @len: # of byte to write. | |
511 | * | |
512 | * Returns: | |
513 | * int, # of bytes written | |
514 | * otherwise, error | |
515 | */ | |
516 | static int pti_tty_driver_write(struct tty_struct *tty, | |
517 | const unsigned char *buf, int len) | |
518 | { | |
519 | struct pti_tty *pti_tty_data = tty->driver_data; | |
520 | if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) { | |
521 | pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len); | |
522 | return len; | |
523 | } | |
524 | /* | |
525 | * we can't write to the pti hardware if the private driver_data | |
526 | * and the mc address is not there. | |
527 | */ | |
528 | else | |
529 | return -EFAULT; | |
530 | } | |
531 | ||
532 | /** | |
533 | * pti_tty_write_room()- Always returns 2048. | |
534 | * | |
535 | * @tty: contains tty info of the pti driver. | |
536 | */ | |
537 | static int pti_tty_write_room(struct tty_struct *tty) | |
538 | { | |
539 | return 2048; | |
540 | } | |
541 | ||
542 | /** | |
543 | * pti_char_open()- Open an Application master, channel aperture | |
544 | * ID to the PTI device. Part of the misc device implementation. | |
545 | * | |
546 | * @inode: not used. | |
547 | * @filp: Output- will have a masterchannel struct set containing | |
548 | * the allocated application PTI aperture write address. | |
549 | * | |
550 | * Returns: | |
551 | * int, 0 for success | |
552 | * otherwise, a fail value | |
553 | */ | |
554 | static int pti_char_open(struct inode *inode, struct file *filp) | |
555 | { | |
556 | struct pti_masterchannel *mc; | |
557 | ||
558 | /* | |
559 | * We really do want to fail immediately if | |
560 | * pti_request_masterchannel() fails, | |
561 | * before assigning the value to filp->private_data. | |
562 | * Slightly easier to debug if this driver needs debugging. | |
563 | */ | |
8168e9c2 | 564 | mc = pti_request_masterchannel(0, NULL); |
0b61d2ac F |
565 | if (mc == NULL) |
566 | return -ENOMEM; | |
567 | filp->private_data = mc; | |
568 | return 0; | |
569 | } | |
570 | ||
571 | /** | |
572 | * pti_char_release()- Close a char channel to the PTI device. Part | |
573 | * of the misc device implementation. | |
574 | * | |
575 | * @inode: Not used in this implementaiton. | |
576 | * @filp: Contains private_data that contains the master, channel | |
577 | * ID to be released by the PTI device. | |
578 | * | |
579 | * Returns: | |
580 | * always 0 | |
581 | */ | |
582 | static int pti_char_release(struct inode *inode, struct file *filp) | |
583 | { | |
584 | pti_release_masterchannel(filp->private_data); | |
29021bcc | 585 | filp->private_data = NULL; |
0b61d2ac F |
586 | return 0; |
587 | } | |
588 | ||
589 | /** | |
590 | * pti_char_write()- Write trace debugging data through the char | |
591 | * interface to the PTI HW. Part of the misc device implementation. | |
592 | * | |
593 | * @filp: Contains private data which is used to obtain | |
594 | * master, channel write ID. | |
595 | * @data: trace data to be written. | |
596 | * @len: # of byte to write. | |
597 | * @ppose: Not used in this function implementation. | |
598 | * | |
599 | * Returns: | |
600 | * int, # of bytes written | |
601 | * otherwise, error value | |
602 | * | |
603 | * Notes: From side discussions with Alan Cox and experimenting | |
604 | * with PTI debug HW like Nokia's Fido box and Lauterbach | |
605 | * devices, 8192 byte write buffer used by USER_COPY_SIZE was | |
606 | * deemed an appropriate size for this type of usage with | |
607 | * debugging HW. | |
608 | */ | |
609 | static ssize_t pti_char_write(struct file *filp, const char __user *data, | |
610 | size_t len, loff_t *ppose) | |
611 | { | |
612 | struct pti_masterchannel *mc; | |
613 | void *kbuf; | |
614 | const char __user *tmp; | |
615 | size_t size = USER_COPY_SIZE; | |
616 | size_t n = 0; | |
617 | ||
618 | tmp = data; | |
619 | mc = filp->private_data; | |
620 | ||
621 | kbuf = kmalloc(size, GFP_KERNEL); | |
622 | if (kbuf == NULL) { | |
623 | pr_err("%s(%d): buf allocation failed\n", | |
624 | __func__, __LINE__); | |
625 | return -ENOMEM; | |
626 | } | |
627 | ||
628 | do { | |
629 | if (len - n > USER_COPY_SIZE) | |
630 | size = USER_COPY_SIZE; | |
631 | else | |
632 | size = len - n; | |
633 | ||
634 | if (copy_from_user(kbuf, tmp, size)) { | |
635 | kfree(kbuf); | |
636 | return n ? n : -EFAULT; | |
637 | } | |
638 | ||
639 | pti_write_to_aperture(mc, kbuf, size); | |
640 | n += size; | |
641 | tmp += size; | |
642 | ||
643 | } while (len > n); | |
644 | ||
645 | kfree(kbuf); | |
646 | return len; | |
647 | } | |
648 | ||
649 | static const struct tty_operations pti_tty_driver_ops = { | |
650 | .open = pti_tty_driver_open, | |
651 | .close = pti_tty_driver_close, | |
652 | .write = pti_tty_driver_write, | |
653 | .write_room = pti_tty_write_room, | |
654 | .install = pti_tty_install, | |
655 | .cleanup = pti_tty_cleanup | |
656 | }; | |
657 | ||
658 | static const struct file_operations pti_char_driver_ops = { | |
659 | .owner = THIS_MODULE, | |
660 | .write = pti_char_write, | |
661 | .open = pti_char_open, | |
662 | .release = pti_char_release, | |
663 | }; | |
664 | ||
665 | static struct miscdevice pti_char_driver = { | |
666 | .minor = MISC_DYNAMIC_MINOR, | |
667 | .name = CHARNAME, | |
668 | .fops = &pti_char_driver_ops | |
669 | }; | |
670 | ||
671 | /** | |
672 | * pti_console_write()- Write to the console that has been acquired. | |
673 | * | |
674 | * @c: Not used in this implementaiton. | |
675 | * @buf: Data to be written. | |
676 | * @len: Length of buf. | |
677 | */ | |
678 | static void pti_console_write(struct console *c, const char *buf, unsigned len) | |
679 | { | |
680 | static struct pti_masterchannel mc = {.master = CONSOLE_ID, | |
681 | .channel = 0}; | |
682 | ||
683 | mc.channel = pti_console_channel; | |
684 | pti_console_channel = (pti_console_channel + 1) & 0x7f; | |
685 | ||
686 | pti_write_full_frame_to_aperture(&mc, buf, len); | |
687 | } | |
688 | ||
689 | /** | |
690 | * pti_console_device()- Return the driver tty structure and set the | |
691 | * associated index implementation. | |
692 | * | |
693 | * @c: Console device of the driver. | |
694 | * @index: index associated with c. | |
695 | * | |
696 | * Returns: | |
697 | * always value of pti_tty_driver structure when this function | |
698 | * is called. | |
699 | */ | |
700 | static struct tty_driver *pti_console_device(struct console *c, int *index) | |
701 | { | |
702 | *index = c->index; | |
703 | return pti_tty_driver; | |
704 | } | |
705 | ||
706 | /** | |
707 | * pti_console_setup()- Initialize console variables used by the driver. | |
708 | * | |
709 | * @c: Not used. | |
710 | * @opts: Not used. | |
711 | * | |
712 | * Returns: | |
713 | * always 0. | |
714 | */ | |
715 | static int pti_console_setup(struct console *c, char *opts) | |
716 | { | |
717 | pti_console_channel = 0; | |
718 | pti_control_channel = 0; | |
719 | return 0; | |
720 | } | |
721 | ||
722 | /* | |
723 | * pti_console struct, used to capture OS printk()'s and shift | |
724 | * out to the PTI device for debugging. This cannot be | |
725 | * enabled upon boot because of the possibility of eating | |
726 | * any serial console printk's (race condition discovered). | |
727 | * The console should be enabled upon when the tty port is | |
728 | * used for the first time. Since the primary purpose for | |
729 | * the tty port is to hook up syslog to it, the tty port | |
730 | * will be open for a really long time. | |
731 | */ | |
732 | static struct console pti_console = { | |
733 | .name = TTYNAME, | |
734 | .write = pti_console_write, | |
735 | .device = pti_console_device, | |
736 | .setup = pti_console_setup, | |
737 | .flags = CON_PRINTBUFFER, | |
738 | .index = 0, | |
739 | }; | |
740 | ||
741 | /** | |
742 | * pti_port_activate()- Used to start/initialize any items upon | |
743 | * first opening of tty_port(). | |
744 | * | |
745 | * @port- The tty port number of the PTI device. | |
746 | * @tty- The tty struct associated with this device. | |
747 | * | |
748 | * Returns: | |
749 | * always returns 0 | |
750 | * | |
751 | * Notes: The primary purpose of the PTI tty port 0 is to hook | |
752 | * the syslog daemon to it; thus this port will be open for a | |
753 | * very long time. | |
754 | */ | |
755 | static int pti_port_activate(struct tty_port *port, struct tty_struct *tty) | |
756 | { | |
757 | if (port->tty->index == PTITTY_MINOR_START) | |
758 | console_start(&pti_console); | |
759 | return 0; | |
760 | } | |
761 | ||
762 | /** | |
763 | * pti_port_shutdown()- Used to stop/shutdown any items upon the | |
764 | * last tty port close. | |
765 | * | |
766 | * @port- The tty port number of the PTI device. | |
767 | * | |
768 | * Notes: The primary purpose of the PTI tty port 0 is to hook | |
769 | * the syslog daemon to it; thus this port will be open for a | |
770 | * very long time. | |
771 | */ | |
772 | static void pti_port_shutdown(struct tty_port *port) | |
773 | { | |
774 | if (port->tty->index == PTITTY_MINOR_START) | |
775 | console_stop(&pti_console); | |
776 | } | |
777 | ||
778 | static const struct tty_port_operations tty_port_ops = { | |
779 | .activate = pti_port_activate, | |
780 | .shutdown = pti_port_shutdown, | |
781 | }; | |
782 | ||
783 | /* | |
784 | * Note the _probe() call sets everything up and ties the char and tty | |
785 | * to successfully detecting the PTI device on the pci bus. | |
786 | */ | |
787 | ||
788 | /** | |
789 | * pti_pci_probe()- Used to detect pti on the pci bus and set | |
790 | * things up in the driver. | |
791 | * | |
792 | * @pdev- pci_dev struct values for pti. | |
793 | * @ent- pci_device_id struct for pti driver. | |
794 | * | |
795 | * Returns: | |
796 | * 0 for success | |
797 | * otherwise, error | |
798 | */ | |
80c8ae28 | 799 | static int pti_pci_probe(struct pci_dev *pdev, |
0b61d2ac F |
800 | const struct pci_device_id *ent) |
801 | { | |
5bd42000 | 802 | unsigned int a; |
0b61d2ac F |
803 | int retval = -EINVAL; |
804 | int pci_bar = 1; | |
805 | ||
806 | dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__, | |
807 | __func__, __LINE__, pdev->vendor, pdev->device); | |
808 | ||
809 | retval = misc_register(&pti_char_driver); | |
810 | if (retval) { | |
811 | pr_err("%s(%d): CHAR registration failed of pti driver\n", | |
812 | __func__, __LINE__); | |
813 | pr_err("%s(%d): Error value returned: %d\n", | |
814 | __func__, __LINE__, retval); | |
fbf1c247 | 815 | goto err; |
0b61d2ac F |
816 | } |
817 | ||
818 | retval = pci_enable_device(pdev); | |
819 | if (retval != 0) { | |
820 | dev_err(&pdev->dev, | |
821 | "%s: pci_enable_device() returned error %d\n", | |
822 | __func__, retval); | |
fbf1c247 | 823 | goto err_unreg_misc; |
0b61d2ac F |
824 | } |
825 | ||
826 | drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL); | |
0b61d2ac F |
827 | if (drv_data == NULL) { |
828 | retval = -ENOMEM; | |
829 | dev_err(&pdev->dev, | |
830 | "%s(%d): kmalloc() returned NULL memory.\n", | |
831 | __func__, __LINE__); | |
fbf1c247 | 832 | goto err_disable_pci; |
0b61d2ac F |
833 | } |
834 | drv_data->pti_addr = pci_resource_start(pdev, pci_bar); | |
835 | ||
836 | retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev)); | |
837 | if (retval != 0) { | |
838 | dev_err(&pdev->dev, | |
839 | "%s(%d): pci_request_region() returned error %d\n", | |
840 | __func__, __LINE__, retval); | |
fbf1c247 | 841 | goto err_free_dd; |
0b61d2ac F |
842 | } |
843 | drv_data->aperture_base = drv_data->pti_addr+APERTURE_14; | |
844 | drv_data->pti_ioaddr = | |
845 | ioremap_nocache((u32)drv_data->aperture_base, | |
846 | APERTURE_LEN); | |
847 | if (!drv_data->pti_ioaddr) { | |
0b61d2ac | 848 | retval = -ENOMEM; |
fbf1c247 | 849 | goto err_rel_reg; |
0b61d2ac F |
850 | } |
851 | ||
852 | pci_set_drvdata(pdev, drv_data); | |
853 | ||
5bd42000 JS |
854 | for (a = 0; a < PTITTY_MINOR_NUM; a++) { |
855 | struct tty_port *port = &drv_data->port[a]; | |
856 | tty_port_init(port); | |
857 | port->ops = &tty_port_ops; | |
0b61d2ac | 858 | |
c565ee07 | 859 | tty_port_register_device(port, pti_tty_driver, a, &pdev->dev); |
5bd42000 | 860 | } |
0b61d2ac F |
861 | |
862 | register_console(&pti_console); | |
863 | ||
fbf1c247 JS |
864 | return 0; |
865 | err_rel_reg: | |
866 | pci_release_region(pdev, pci_bar); | |
867 | err_free_dd: | |
868 | kfree(drv_data); | |
869 | err_disable_pci: | |
870 | pci_disable_device(pdev); | |
871 | err_unreg_misc: | |
872 | misc_deregister(&pti_char_driver); | |
873 | err: | |
0b61d2ac F |
874 | return retval; |
875 | } | |
876 | ||
065185f6 JS |
877 | /** |
878 | * pti_pci_remove()- Driver exit method to remove PTI from | |
879 | * PCI bus. | |
880 | * @pdev: variable containing pci info of PTI. | |
881 | */ | |
486a5c28 | 882 | static void pti_pci_remove(struct pci_dev *pdev) |
065185f6 JS |
883 | { |
884 | struct pti_dev *drv_data = pci_get_drvdata(pdev); | |
191c5f10 | 885 | unsigned int a; |
065185f6 | 886 | |
3140bae2 JS |
887 | unregister_console(&pti_console); |
888 | ||
191c5f10 JS |
889 | for (a = 0; a < PTITTY_MINOR_NUM; a++) { |
890 | tty_unregister_device(pti_tty_driver, a); | |
891 | tty_port_destroy(&drv_data->port[a]); | |
892 | } | |
3140bae2 | 893 | |
065185f6 | 894 | iounmap(drv_data->pti_ioaddr); |
065185f6 JS |
895 | kfree(drv_data); |
896 | pci_release_region(pdev, 1); | |
897 | pci_disable_device(pdev); | |
3140bae2 JS |
898 | |
899 | misc_deregister(&pti_char_driver); | |
065185f6 JS |
900 | } |
901 | ||
0b61d2ac F |
902 | static struct pci_driver pti_pci_driver = { |
903 | .name = PCINAME, | |
904 | .id_table = pci_ids, | |
905 | .probe = pti_pci_probe, | |
2d6bed9c | 906 | .remove = pti_pci_remove, |
0b61d2ac F |
907 | }; |
908 | ||
909 | /** | |
910 | * | |
911 | * pti_init()- Overall entry/init call to the pti driver. | |
912 | * It starts the registration process with the kernel. | |
913 | * | |
914 | * Returns: | |
915 | * int __init, 0 for success | |
916 | * otherwise value is an error | |
917 | * | |
918 | */ | |
919 | static int __init pti_init(void) | |
920 | { | |
921 | int retval = -EINVAL; | |
922 | ||
923 | /* First register module as tty device */ | |
924 | ||
2f16669d | 925 | pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM); |
0b61d2ac F |
926 | if (pti_tty_driver == NULL) { |
927 | pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n", | |
928 | __func__, __LINE__); | |
929 | return -ENOMEM; | |
930 | } | |
931 | ||
0b61d2ac F |
932 | pti_tty_driver->driver_name = DRIVERNAME; |
933 | pti_tty_driver->name = TTYNAME; | |
934 | pti_tty_driver->major = 0; | |
935 | pti_tty_driver->minor_start = PTITTY_MINOR_START; | |
0b61d2ac F |
936 | pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM; |
937 | pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS; | |
938 | pti_tty_driver->flags = TTY_DRIVER_REAL_RAW | | |
939 | TTY_DRIVER_DYNAMIC_DEV; | |
940 | pti_tty_driver->init_termios = tty_std_termios; | |
941 | ||
942 | tty_set_operations(pti_tty_driver, &pti_tty_driver_ops); | |
943 | ||
944 | retval = tty_register_driver(pti_tty_driver); | |
945 | if (retval) { | |
946 | pr_err("%s(%d): TTY registration failed of pti driver\n", | |
947 | __func__, __LINE__); | |
948 | pr_err("%s(%d): Error value returned: %d\n", | |
949 | __func__, __LINE__, retval); | |
950 | ||
fbf1c247 | 951 | goto put_tty; |
0b61d2ac F |
952 | } |
953 | ||
954 | retval = pci_register_driver(&pti_pci_driver); | |
0b61d2ac F |
955 | if (retval) { |
956 | pr_err("%s(%d): PCI registration failed of pti driver\n", | |
957 | __func__, __LINE__); | |
958 | pr_err("%s(%d): Error value returned: %d\n", | |
959 | __func__, __LINE__, retval); | |
fbf1c247 | 960 | goto unreg_tty; |
0b61d2ac F |
961 | } |
962 | ||
fbf1c247 JS |
963 | return 0; |
964 | unreg_tty: | |
965 | tty_unregister_driver(pti_tty_driver); | |
966 | put_tty: | |
967 | put_tty_driver(pti_tty_driver); | |
968 | pti_tty_driver = NULL; | |
0b61d2ac F |
969 | return retval; |
970 | } | |
971 | ||
972 | /** | |
973 | * pti_exit()- Unregisters this module as a tty and pci driver. | |
974 | */ | |
975 | static void __exit pti_exit(void) | |
976 | { | |
fbf1c247 | 977 | tty_unregister_driver(pti_tty_driver); |
0b61d2ac | 978 | pci_unregister_driver(&pti_pci_driver); |
fbf1c247 | 979 | put_tty_driver(pti_tty_driver); |
0b61d2ac F |
980 | } |
981 | ||
982 | module_init(pti_init); | |
983 | module_exit(pti_exit); | |
984 | ||
985 | MODULE_LICENSE("GPL"); | |
986 | MODULE_AUTHOR("Ken Mills, Jay Freyensee"); | |
987 | MODULE_DESCRIPTION("PTI Driver"); | |
988 |