]>
Commit | Line | Data |
---|---|---|
1f26dac3 DM |
1 | /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. |
2 | * | |
3 | * Copyright (C) 2004 Sun Microsystems Inc. | |
4 | * Copyright (C) 2003 Adrian Sun ([email protected]) | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU General Public License as | |
8 | * published by the Free Software Foundation; either version 2 of the | |
9 | * License, or (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
19 | * 02111-1307, USA. | |
20 | * | |
21 | * This driver uses the sungem driver (c) David Miller | |
22 | * ([email protected]) as its basis. | |
23 | * | |
24 | * The cassini chip has a number of features that distinguish it from | |
25 | * the gem chip: | |
26 | * 4 transmit descriptor rings that are used for either QoS (VLAN) or | |
27 | * load balancing (non-VLAN mode) | |
28 | * batching of multiple packets | |
29 | * multiple CPU dispatching | |
30 | * page-based RX descriptor engine with separate completion rings | |
31 | * Gigabit support (GMII and PCS interface) | |
32 | * MIF link up/down detection works | |
33 | * | |
34 | * RX is handled by page sized buffers that are attached as fragments to | |
35 | * the skb. here's what's done: | |
36 | * -- driver allocates pages at a time and keeps reference counts | |
37 | * on them. | |
38 | * -- the upper protocol layers assume that the header is in the skb | |
39 | * itself. as a result, cassini will copy a small amount (64 bytes) | |
40 | * to make them happy. | |
41 | * -- driver appends the rest of the data pages as frags to skbuffs | |
42 | * and increments the reference count | |
43 | * -- on page reclamation, the driver swaps the page with a spare page. | |
44 | * if that page is still in use, it frees its reference to that page, | |
45 | * and allocates a new page for use. otherwise, it just recycles the | |
6aa20a22 | 46 | * the page. |
1f26dac3 DM |
47 | * |
48 | * NOTE: cassini can parse the header. however, it's not worth it | |
49 | * as long as the network stack requires a header copy. | |
50 | * | |
51 | * TX has 4 queues. currently these queues are used in a round-robin | |
52 | * fashion for load balancing. They can also be used for QoS. for that | |
53 | * to work, however, QoS information needs to be exposed down to the driver | |
54 | * level so that subqueues get targetted to particular transmit rings. | |
55 | * alternatively, the queues can be configured via use of the all-purpose | |
56 | * ioctl. | |
57 | * | |
58 | * RX DATA: the rx completion ring has all the info, but the rx desc | |
59 | * ring has all of the data. RX can conceivably come in under multiple | |
60 | * interrupts, but the INT# assignment needs to be set up properly by | |
61 | * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do | |
62 | * that. also, the two descriptor rings are designed to distinguish between | |
6aa20a22 | 63 | * encrypted and non-encrypted packets, but we use them for buffering |
1f26dac3 DM |
64 | * instead. |
65 | * | |
6aa20a22 | 66 | * by default, the selective clear mask is set up to process rx packets. |
1f26dac3 DM |
67 | */ |
68 | ||
1f26dac3 DM |
69 | |
70 | #include <linux/module.h> | |
71 | #include <linux/kernel.h> | |
72 | #include <linux/types.h> | |
73 | #include <linux/compiler.h> | |
74 | #include <linux/slab.h> | |
75 | #include <linux/delay.h> | |
76 | #include <linux/init.h> | |
77 | #include <linux/ioport.h> | |
78 | #include <linux/pci.h> | |
79 | #include <linux/mm.h> | |
80 | #include <linux/highmem.h> | |
81 | #include <linux/list.h> | |
82 | #include <linux/dma-mapping.h> | |
83 | ||
84 | #include <linux/netdevice.h> | |
85 | #include <linux/etherdevice.h> | |
86 | #include <linux/skbuff.h> | |
87 | #include <linux/ethtool.h> | |
88 | #include <linux/crc32.h> | |
89 | #include <linux/random.h> | |
90 | #include <linux/mii.h> | |
91 | #include <linux/ip.h> | |
92 | #include <linux/tcp.h> | |
758df69e | 93 | #include <linux/mutex.h> |
1f26dac3 DM |
94 | |
95 | #include <net/checksum.h> | |
96 | ||
97 | #include <asm/atomic.h> | |
98 | #include <asm/system.h> | |
99 | #include <asm/io.h> | |
100 | #include <asm/byteorder.h> | |
101 | #include <asm/uaccess.h> | |
102 | ||
103 | #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | |
104 | #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) | |
105 | #define CAS_NCPUS num_online_cpus() | |
106 | ||
107 | #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL) | |
108 | #define USE_NAPI | |
109 | #define cas_skb_release(x) netif_receive_skb(x) | |
110 | #else | |
111 | #define cas_skb_release(x) netif_rx(x) | |
112 | #endif | |
113 | ||
114 | /* select which firmware to use */ | |
6aa20a22 | 115 | #define USE_HP_WORKAROUND |
1f26dac3 DM |
116 | #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ |
117 | #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ | |
118 | ||
119 | #include "cassini.h" | |
120 | ||
121 | #define USE_TX_COMPWB /* use completion writeback registers */ | |
122 | #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ | |
123 | #define USE_RX_BLANK /* hw interrupt mitigation */ | |
124 | #undef USE_ENTROPY_DEV /* don't test for entropy device */ | |
125 | ||
126 | /* NOTE: these aren't useable unless PCI interrupts can be assigned. | |
127 | * also, we need to make cp->lock finer-grained. | |
128 | */ | |
129 | #undef USE_PCI_INTB | |
130 | #undef USE_PCI_INTC | |
131 | #undef USE_PCI_INTD | |
132 | #undef USE_QOS | |
133 | ||
134 | #undef USE_VPD_DEBUG /* debug vpd information if defined */ | |
135 | ||
136 | /* rx processing options */ | |
137 | #define USE_PAGE_ORDER /* specify to allocate large rx pages */ | |
138 | #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ | |
139 | #define RX_COPY_ALWAYS 0 /* if 0, use frags */ | |
140 | #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ | |
141 | #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ | |
142 | ||
143 | #define DRV_MODULE_NAME "cassini" | |
144 | #define PFX DRV_MODULE_NAME ": " | |
145 | #define DRV_MODULE_VERSION "1.4" | |
146 | #define DRV_MODULE_RELDATE "1 July 2004" | |
147 | ||
148 | #define CAS_DEF_MSG_ENABLE \ | |
149 | (NETIF_MSG_DRV | \ | |
150 | NETIF_MSG_PROBE | \ | |
151 | NETIF_MSG_LINK | \ | |
152 | NETIF_MSG_TIMER | \ | |
153 | NETIF_MSG_IFDOWN | \ | |
154 | NETIF_MSG_IFUP | \ | |
155 | NETIF_MSG_RX_ERR | \ | |
156 | NETIF_MSG_TX_ERR) | |
157 | ||
158 | /* length of time before we decide the hardware is borked, | |
159 | * and dev->tx_timeout() should be called to fix the problem | |
160 | */ | |
161 | #define CAS_TX_TIMEOUT (HZ) | |
162 | #define CAS_LINK_TIMEOUT (22*HZ/10) | |
163 | #define CAS_LINK_FAST_TIMEOUT (1) | |
164 | ||
165 | /* timeout values for state changing. these specify the number | |
166 | * of 10us delays to be used before giving up. | |
167 | */ | |
168 | #define STOP_TRIES_PHY 1000 | |
169 | #define STOP_TRIES 5000 | |
170 | ||
6aa20a22 | 171 | /* specify a minimum frame size to deal with some fifo issues |
1f26dac3 DM |
172 | * max mtu == 2 * page size - ethernet header - 64 - swivel = |
173 | * 2 * page_size - 0x50 | |
174 | */ | |
175 | #define CAS_MIN_FRAME 97 | |
176 | #define CAS_1000MB_MIN_FRAME 255 | |
177 | #define CAS_MIN_MTU 60 | |
178 | #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) | |
179 | ||
180 | #if 1 | |
181 | /* | |
182 | * Eliminate these and use separate atomic counters for each, to | |
183 | * avoid a race condition. | |
184 | */ | |
185 | #else | |
186 | #define CAS_RESET_MTU 1 | |
187 | #define CAS_RESET_ALL 2 | |
188 | #define CAS_RESET_SPARE 3 | |
189 | #endif | |
190 | ||
191 | static char version[] __devinitdata = | |
192 | DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | |
193 | ||
8d3b33f6 RR |
194 | static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ |
195 | static int link_mode; | |
196 | ||
1f26dac3 DM |
197 | MODULE_AUTHOR("Adrian Sun ([email protected])"); |
198 | MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); | |
199 | MODULE_LICENSE("GPL"); | |
8d3b33f6 | 200 | module_param(cassini_debug, int, 0); |
1f26dac3 | 201 | MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); |
8d3b33f6 | 202 | module_param(link_mode, int, 0); |
1f26dac3 DM |
203 | MODULE_PARM_DESC(link_mode, "default link mode"); |
204 | ||
205 | /* | |
206 | * Work around for a PCS bug in which the link goes down due to the chip | |
207 | * being confused and never showing a link status of "up." | |
208 | */ | |
209 | #define DEFAULT_LINKDOWN_TIMEOUT 5 | |
6aa20a22 | 210 | /* |
1f26dac3 DM |
211 | * Value in seconds, for user input. |
212 | */ | |
213 | static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; | |
8d3b33f6 | 214 | module_param(linkdown_timeout, int, 0); |
1f26dac3 DM |
215 | MODULE_PARM_DESC(linkdown_timeout, |
216 | "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); | |
217 | ||
218 | /* | |
219 | * value in 'ticks' (units used by jiffies). Set when we init the | |
220 | * module because 'HZ' in actually a function call on some flavors of | |
221 | * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. | |
222 | */ | |
223 | static int link_transition_timeout; | |
224 | ||
225 | ||
1f26dac3 DM |
226 | |
227 | static u16 link_modes[] __devinitdata = { | |
228 | BMCR_ANENABLE, /* 0 : autoneg */ | |
229 | 0, /* 1 : 10bt half duplex */ | |
230 | BMCR_SPEED100, /* 2 : 100bt half duplex */ | |
231 | BMCR_FULLDPLX, /* 3 : 10bt full duplex */ | |
232 | BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ | |
233 | CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ | |
234 | }; | |
235 | ||
236 | static struct pci_device_id cas_pci_tbl[] __devinitdata = { | |
237 | { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, | |
238 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | |
239 | { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, | |
240 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | |
241 | { 0, } | |
242 | }; | |
243 | ||
244 | MODULE_DEVICE_TABLE(pci, cas_pci_tbl); | |
245 | ||
246 | static void cas_set_link_modes(struct cas *cp); | |
247 | ||
248 | static inline void cas_lock_tx(struct cas *cp) | |
249 | { | |
250 | int i; | |
251 | ||
6aa20a22 | 252 | for (i = 0; i < N_TX_RINGS; i++) |
1f26dac3 DM |
253 | spin_lock(&cp->tx_lock[i]); |
254 | } | |
255 | ||
256 | static inline void cas_lock_all(struct cas *cp) | |
257 | { | |
258 | spin_lock_irq(&cp->lock); | |
259 | cas_lock_tx(cp); | |
260 | } | |
261 | ||
262 | /* WTZ: QA was finding deadlock problems with the previous | |
263 | * versions after long test runs with multiple cards per machine. | |
264 | * See if replacing cas_lock_all with safer versions helps. The | |
265 | * symptoms QA is reporting match those we'd expect if interrupts | |
266 | * aren't being properly restored, and we fixed a previous deadlock | |
267 | * with similar symptoms by using save/restore versions in other | |
268 | * places. | |
269 | */ | |
270 | #define cas_lock_all_save(cp, flags) \ | |
271 | do { \ | |
272 | struct cas *xxxcp = (cp); \ | |
273 | spin_lock_irqsave(&xxxcp->lock, flags); \ | |
274 | cas_lock_tx(xxxcp); \ | |
275 | } while (0) | |
276 | ||
277 | static inline void cas_unlock_tx(struct cas *cp) | |
278 | { | |
279 | int i; | |
280 | ||
6aa20a22 JG |
281 | for (i = N_TX_RINGS; i > 0; i--) |
282 | spin_unlock(&cp->tx_lock[i - 1]); | |
1f26dac3 DM |
283 | } |
284 | ||
285 | static inline void cas_unlock_all(struct cas *cp) | |
286 | { | |
287 | cas_unlock_tx(cp); | |
288 | spin_unlock_irq(&cp->lock); | |
289 | } | |
290 | ||
291 | #define cas_unlock_all_restore(cp, flags) \ | |
292 | do { \ | |
293 | struct cas *xxxcp = (cp); \ | |
294 | cas_unlock_tx(xxxcp); \ | |
295 | spin_unlock_irqrestore(&xxxcp->lock, flags); \ | |
296 | } while (0) | |
297 | ||
298 | static void cas_disable_irq(struct cas *cp, const int ring) | |
299 | { | |
300 | /* Make sure we won't get any more interrupts */ | |
301 | if (ring == 0) { | |
302 | writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); | |
303 | return; | |
304 | } | |
305 | ||
306 | /* disable completion interrupts and selectively mask */ | |
307 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
308 | switch (ring) { | |
309 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | |
310 | #ifdef USE_PCI_INTB | |
311 | case 1: | |
312 | #endif | |
313 | #ifdef USE_PCI_INTC | |
314 | case 2: | |
315 | #endif | |
316 | #ifdef USE_PCI_INTD | |
317 | case 3: | |
318 | #endif | |
6aa20a22 | 319 | writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, |
1f26dac3 DM |
320 | cp->regs + REG_PLUS_INTRN_MASK(ring)); |
321 | break; | |
322 | #endif | |
323 | default: | |
324 | writel(INTRN_MASK_CLEAR_ALL, cp->regs + | |
325 | REG_PLUS_INTRN_MASK(ring)); | |
326 | break; | |
327 | } | |
328 | } | |
329 | } | |
330 | ||
331 | static inline void cas_mask_intr(struct cas *cp) | |
332 | { | |
333 | int i; | |
334 | ||
335 | for (i = 0; i < N_RX_COMP_RINGS; i++) | |
336 | cas_disable_irq(cp, i); | |
337 | } | |
338 | ||
fa4f0774 NP |
339 | static inline void cas_buffer_init(cas_page_t *cp) |
340 | { | |
341 | struct page *page = cp->buffer; | |
342 | atomic_set((atomic_t *)&page->lru.next, 1); | |
343 | } | |
344 | ||
345 | static inline int cas_buffer_count(cas_page_t *cp) | |
346 | { | |
347 | struct page *page = cp->buffer; | |
348 | return atomic_read((atomic_t *)&page->lru.next); | |
349 | } | |
350 | ||
351 | static inline void cas_buffer_inc(cas_page_t *cp) | |
352 | { | |
353 | struct page *page = cp->buffer; | |
354 | atomic_inc((atomic_t *)&page->lru.next); | |
355 | } | |
356 | ||
357 | static inline void cas_buffer_dec(cas_page_t *cp) | |
358 | { | |
359 | struct page *page = cp->buffer; | |
360 | atomic_dec((atomic_t *)&page->lru.next); | |
361 | } | |
362 | ||
1f26dac3 DM |
363 | static void cas_enable_irq(struct cas *cp, const int ring) |
364 | { | |
365 | if (ring == 0) { /* all but TX_DONE */ | |
366 | writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); | |
367 | return; | |
368 | } | |
369 | ||
370 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
371 | switch (ring) { | |
372 | #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | |
373 | #ifdef USE_PCI_INTB | |
374 | case 1: | |
375 | #endif | |
376 | #ifdef USE_PCI_INTC | |
377 | case 2: | |
378 | #endif | |
379 | #ifdef USE_PCI_INTD | |
380 | case 3: | |
381 | #endif | |
382 | writel(INTRN_MASK_RX_EN, cp->regs + | |
383 | REG_PLUS_INTRN_MASK(ring)); | |
384 | break; | |
385 | #endif | |
386 | default: | |
387 | break; | |
388 | } | |
389 | } | |
390 | } | |
391 | ||
392 | static inline void cas_unmask_intr(struct cas *cp) | |
393 | { | |
394 | int i; | |
395 | ||
396 | for (i = 0; i < N_RX_COMP_RINGS; i++) | |
397 | cas_enable_irq(cp, i); | |
398 | } | |
399 | ||
400 | static inline void cas_entropy_gather(struct cas *cp) | |
401 | { | |
402 | #ifdef USE_ENTROPY_DEV | |
403 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | |
404 | return; | |
405 | ||
406 | batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), | |
407 | readl(cp->regs + REG_ENTROPY_IV), | |
408 | sizeof(uint64_t)*8); | |
409 | #endif | |
410 | } | |
411 | ||
412 | static inline void cas_entropy_reset(struct cas *cp) | |
413 | { | |
414 | #ifdef USE_ENTROPY_DEV | |
415 | if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) | |
416 | return; | |
417 | ||
6aa20a22 | 418 | writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, |
1f26dac3 DM |
419 | cp->regs + REG_BIM_LOCAL_DEV_EN); |
420 | writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); | |
421 | writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); | |
422 | ||
423 | /* if we read back 0x0, we don't have an entropy device */ | |
424 | if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) | |
425 | cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; | |
426 | #endif | |
427 | } | |
428 | ||
6aa20a22 | 429 | /* access to the phy. the following assumes that we've initialized the MIF to |
1f26dac3 DM |
430 | * be in frame rather than bit-bang mode |
431 | */ | |
432 | static u16 cas_phy_read(struct cas *cp, int reg) | |
433 | { | |
434 | u32 cmd; | |
435 | int limit = STOP_TRIES_PHY; | |
436 | ||
437 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; | |
438 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | |
439 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | |
440 | cmd |= MIF_FRAME_TURN_AROUND_MSB; | |
441 | writel(cmd, cp->regs + REG_MIF_FRAME); | |
6aa20a22 | 442 | |
1f26dac3 DM |
443 | /* poll for completion */ |
444 | while (limit-- > 0) { | |
445 | udelay(10); | |
446 | cmd = readl(cp->regs + REG_MIF_FRAME); | |
447 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) | |
448 | return (cmd & MIF_FRAME_DATA_MASK); | |
449 | } | |
450 | return 0xFFFF; /* -1 */ | |
451 | } | |
452 | ||
453 | static int cas_phy_write(struct cas *cp, int reg, u16 val) | |
454 | { | |
455 | int limit = STOP_TRIES_PHY; | |
456 | u32 cmd; | |
457 | ||
458 | cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; | |
459 | cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); | |
460 | cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); | |
461 | cmd |= MIF_FRAME_TURN_AROUND_MSB; | |
462 | cmd |= val & MIF_FRAME_DATA_MASK; | |
463 | writel(cmd, cp->regs + REG_MIF_FRAME); | |
6aa20a22 | 464 | |
1f26dac3 DM |
465 | /* poll for completion */ |
466 | while (limit-- > 0) { | |
467 | udelay(10); | |
468 | cmd = readl(cp->regs + REG_MIF_FRAME); | |
469 | if (cmd & MIF_FRAME_TURN_AROUND_LSB) | |
470 | return 0; | |
471 | } | |
472 | return -1; | |
473 | } | |
474 | ||
475 | static void cas_phy_powerup(struct cas *cp) | |
476 | { | |
6aa20a22 | 477 | u16 ctl = cas_phy_read(cp, MII_BMCR); |
1f26dac3 DM |
478 | |
479 | if ((ctl & BMCR_PDOWN) == 0) | |
480 | return; | |
481 | ctl &= ~BMCR_PDOWN; | |
482 | cas_phy_write(cp, MII_BMCR, ctl); | |
483 | } | |
484 | ||
485 | static void cas_phy_powerdown(struct cas *cp) | |
486 | { | |
6aa20a22 | 487 | u16 ctl = cas_phy_read(cp, MII_BMCR); |
1f26dac3 DM |
488 | |
489 | if (ctl & BMCR_PDOWN) | |
490 | return; | |
491 | ctl |= BMCR_PDOWN; | |
492 | cas_phy_write(cp, MII_BMCR, ctl); | |
493 | } | |
494 | ||
495 | /* cp->lock held. note: the last put_page will free the buffer */ | |
496 | static int cas_page_free(struct cas *cp, cas_page_t *page) | |
497 | { | |
6aa20a22 | 498 | pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, |
1f26dac3 | 499 | PCI_DMA_FROMDEVICE); |
fa4f0774 | 500 | cas_buffer_dec(page); |
1f26dac3 DM |
501 | __free_pages(page->buffer, cp->page_order); |
502 | kfree(page); | |
503 | return 0; | |
504 | } | |
505 | ||
506 | #ifdef RX_COUNT_BUFFERS | |
507 | #define RX_USED_ADD(x, y) ((x)->used += (y)) | |
508 | #define RX_USED_SET(x, y) ((x)->used = (y)) | |
509 | #else | |
6aa20a22 | 510 | #define RX_USED_ADD(x, y) |
1f26dac3 DM |
511 | #define RX_USED_SET(x, y) |
512 | #endif | |
513 | ||
514 | /* local page allocation routines for the receive buffers. jumbo pages | |
515 | * require at least 8K contiguous and 8K aligned buffers. | |
516 | */ | |
9e24974d | 517 | static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) |
1f26dac3 DM |
518 | { |
519 | cas_page_t *page; | |
520 | ||
521 | page = kmalloc(sizeof(cas_page_t), flags); | |
522 | if (!page) | |
523 | return NULL; | |
524 | ||
525 | INIT_LIST_HEAD(&page->list); | |
526 | RX_USED_SET(page, 0); | |
527 | page->buffer = alloc_pages(flags, cp->page_order); | |
528 | if (!page->buffer) | |
529 | goto page_err; | |
fa4f0774 | 530 | cas_buffer_init(page); |
1f26dac3 DM |
531 | page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, |
532 | cp->page_size, PCI_DMA_FROMDEVICE); | |
533 | return page; | |
534 | ||
535 | page_err: | |
536 | kfree(page); | |
537 | return NULL; | |
538 | } | |
539 | ||
540 | /* initialize spare pool of rx buffers, but allocate during the open */ | |
541 | static void cas_spare_init(struct cas *cp) | |
542 | { | |
543 | spin_lock(&cp->rx_inuse_lock); | |
544 | INIT_LIST_HEAD(&cp->rx_inuse_list); | |
545 | spin_unlock(&cp->rx_inuse_lock); | |
546 | ||
547 | spin_lock(&cp->rx_spare_lock); | |
548 | INIT_LIST_HEAD(&cp->rx_spare_list); | |
549 | cp->rx_spares_needed = RX_SPARE_COUNT; | |
550 | spin_unlock(&cp->rx_spare_lock); | |
551 | } | |
552 | ||
553 | /* used on close. free all the spare buffers. */ | |
554 | static void cas_spare_free(struct cas *cp) | |
555 | { | |
556 | struct list_head list, *elem, *tmp; | |
557 | ||
558 | /* free spare buffers */ | |
559 | INIT_LIST_HEAD(&list); | |
560 | spin_lock(&cp->rx_spare_lock); | |
561 | list_splice(&cp->rx_spare_list, &list); | |
562 | INIT_LIST_HEAD(&cp->rx_spare_list); | |
563 | spin_unlock(&cp->rx_spare_lock); | |
564 | list_for_each_safe(elem, tmp, &list) { | |
565 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); | |
566 | } | |
567 | ||
568 | INIT_LIST_HEAD(&list); | |
569 | #if 1 | |
570 | /* | |
571 | * Looks like Adrian had protected this with a different | |
572 | * lock than used everywhere else to manipulate this list. | |
573 | */ | |
574 | spin_lock(&cp->rx_inuse_lock); | |
575 | list_splice(&cp->rx_inuse_list, &list); | |
576 | INIT_LIST_HEAD(&cp->rx_inuse_list); | |
577 | spin_unlock(&cp->rx_inuse_lock); | |
578 | #else | |
579 | spin_lock(&cp->rx_spare_lock); | |
580 | list_splice(&cp->rx_inuse_list, &list); | |
581 | INIT_LIST_HEAD(&cp->rx_inuse_list); | |
582 | spin_unlock(&cp->rx_spare_lock); | |
583 | #endif | |
584 | list_for_each_safe(elem, tmp, &list) { | |
585 | cas_page_free(cp, list_entry(elem, cas_page_t, list)); | |
586 | } | |
587 | } | |
588 | ||
589 | /* replenish spares if needed */ | |
9e24974d | 590 | static void cas_spare_recover(struct cas *cp, const gfp_t flags) |
1f26dac3 DM |
591 | { |
592 | struct list_head list, *elem, *tmp; | |
593 | int needed, i; | |
594 | ||
595 | /* check inuse list. if we don't need any more free buffers, | |
596 | * just free it | |
597 | */ | |
598 | ||
599 | /* make a local copy of the list */ | |
600 | INIT_LIST_HEAD(&list); | |
601 | spin_lock(&cp->rx_inuse_lock); | |
602 | list_splice(&cp->rx_inuse_list, &list); | |
603 | INIT_LIST_HEAD(&cp->rx_inuse_list); | |
604 | spin_unlock(&cp->rx_inuse_lock); | |
6aa20a22 | 605 | |
1f26dac3 DM |
606 | list_for_each_safe(elem, tmp, &list) { |
607 | cas_page_t *page = list_entry(elem, cas_page_t, list); | |
608 | ||
fa4f0774 | 609 | if (cas_buffer_count(page) > 1) |
1f26dac3 DM |
610 | continue; |
611 | ||
612 | list_del(elem); | |
613 | spin_lock(&cp->rx_spare_lock); | |
614 | if (cp->rx_spares_needed > 0) { | |
615 | list_add(elem, &cp->rx_spare_list); | |
616 | cp->rx_spares_needed--; | |
617 | spin_unlock(&cp->rx_spare_lock); | |
618 | } else { | |
619 | spin_unlock(&cp->rx_spare_lock); | |
620 | cas_page_free(cp, page); | |
621 | } | |
622 | } | |
623 | ||
624 | /* put any inuse buffers back on the list */ | |
625 | if (!list_empty(&list)) { | |
626 | spin_lock(&cp->rx_inuse_lock); | |
627 | list_splice(&list, &cp->rx_inuse_list); | |
628 | spin_unlock(&cp->rx_inuse_lock); | |
629 | } | |
6aa20a22 | 630 | |
1f26dac3 DM |
631 | spin_lock(&cp->rx_spare_lock); |
632 | needed = cp->rx_spares_needed; | |
633 | spin_unlock(&cp->rx_spare_lock); | |
634 | if (!needed) | |
635 | return; | |
636 | ||
637 | /* we still need spares, so try to allocate some */ | |
638 | INIT_LIST_HEAD(&list); | |
639 | i = 0; | |
640 | while (i < needed) { | |
641 | cas_page_t *spare = cas_page_alloc(cp, flags); | |
6aa20a22 | 642 | if (!spare) |
1f26dac3 DM |
643 | break; |
644 | list_add(&spare->list, &list); | |
645 | i++; | |
646 | } | |
647 | ||
648 | spin_lock(&cp->rx_spare_lock); | |
649 | list_splice(&list, &cp->rx_spare_list); | |
650 | cp->rx_spares_needed -= i; | |
651 | spin_unlock(&cp->rx_spare_lock); | |
652 | } | |
653 | ||
654 | /* pull a page from the list. */ | |
655 | static cas_page_t *cas_page_dequeue(struct cas *cp) | |
656 | { | |
657 | struct list_head *entry; | |
658 | int recover; | |
659 | ||
660 | spin_lock(&cp->rx_spare_lock); | |
661 | if (list_empty(&cp->rx_spare_list)) { | |
662 | /* try to do a quick recovery */ | |
663 | spin_unlock(&cp->rx_spare_lock); | |
664 | cas_spare_recover(cp, GFP_ATOMIC); | |
665 | spin_lock(&cp->rx_spare_lock); | |
666 | if (list_empty(&cp->rx_spare_list)) { | |
667 | if (netif_msg_rx_err(cp)) | |
668 | printk(KERN_ERR "%s: no spare buffers " | |
669 | "available.\n", cp->dev->name); | |
670 | spin_unlock(&cp->rx_spare_lock); | |
671 | return NULL; | |
672 | } | |
673 | } | |
674 | ||
675 | entry = cp->rx_spare_list.next; | |
676 | list_del(entry); | |
677 | recover = ++cp->rx_spares_needed; | |
678 | spin_unlock(&cp->rx_spare_lock); | |
679 | ||
680 | /* trigger the timer to do the recovery */ | |
681 | if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { | |
682 | #if 1 | |
683 | atomic_inc(&cp->reset_task_pending); | |
684 | atomic_inc(&cp->reset_task_pending_spare); | |
685 | schedule_work(&cp->reset_task); | |
686 | #else | |
687 | atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); | |
688 | schedule_work(&cp->reset_task); | |
689 | #endif | |
690 | } | |
691 | return list_entry(entry, cas_page_t, list); | |
692 | } | |
693 | ||
694 | ||
695 | static void cas_mif_poll(struct cas *cp, const int enable) | |
696 | { | |
697 | u32 cfg; | |
6aa20a22 JG |
698 | |
699 | cfg = readl(cp->regs + REG_MIF_CFG); | |
1f26dac3 DM |
700 | cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); |
701 | ||
702 | if (cp->phy_type & CAS_PHY_MII_MDIO1) | |
6aa20a22 | 703 | cfg |= MIF_CFG_PHY_SELECT; |
1f26dac3 DM |
704 | |
705 | /* poll and interrupt on link status change. */ | |
706 | if (enable) { | |
707 | cfg |= MIF_CFG_POLL_EN; | |
708 | cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); | |
709 | cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); | |
710 | } | |
6aa20a22 JG |
711 | writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, |
712 | cp->regs + REG_MIF_MASK); | |
1f26dac3 DM |
713 | writel(cfg, cp->regs + REG_MIF_CFG); |
714 | } | |
715 | ||
716 | /* Must be invoked under cp->lock */ | |
717 | static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) | |
718 | { | |
719 | u16 ctl; | |
720 | #if 1 | |
721 | int lcntl; | |
722 | int changed = 0; | |
723 | int oldstate = cp->lstate; | |
724 | int link_was_not_down = !(oldstate == link_down); | |
725 | #endif | |
726 | /* Setup link parameters */ | |
727 | if (!ep) | |
728 | goto start_aneg; | |
729 | lcntl = cp->link_cntl; | |
730 | if (ep->autoneg == AUTONEG_ENABLE) | |
731 | cp->link_cntl = BMCR_ANENABLE; | |
732 | else { | |
733 | cp->link_cntl = 0; | |
734 | if (ep->speed == SPEED_100) | |
735 | cp->link_cntl |= BMCR_SPEED100; | |
736 | else if (ep->speed == SPEED_1000) | |
737 | cp->link_cntl |= CAS_BMCR_SPEED1000; | |
738 | if (ep->duplex == DUPLEX_FULL) | |
739 | cp->link_cntl |= BMCR_FULLDPLX; | |
740 | } | |
741 | #if 1 | |
742 | changed = (lcntl != cp->link_cntl); | |
743 | #endif | |
744 | start_aneg: | |
745 | if (cp->lstate == link_up) { | |
746 | printk(KERN_INFO "%s: PCS link down.\n", | |
747 | cp->dev->name); | |
748 | } else { | |
749 | if (changed) { | |
750 | printk(KERN_INFO "%s: link configuration changed\n", | |
751 | cp->dev->name); | |
752 | } | |
753 | } | |
754 | cp->lstate = link_down; | |
755 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | |
756 | if (!cp->hw_running) | |
757 | return; | |
758 | #if 1 | |
759 | /* | |
760 | * WTZ: If the old state was link_up, we turn off the carrier | |
761 | * to replicate everything we do elsewhere on a link-down | |
6aa20a22 | 762 | * event when we were already in a link-up state.. |
1f26dac3 DM |
763 | */ |
764 | if (oldstate == link_up) | |
765 | netif_carrier_off(cp->dev); | |
766 | if (changed && link_was_not_down) { | |
767 | /* | |
768 | * WTZ: This branch will simply schedule a full reset after | |
769 | * we explicitly changed link modes in an ioctl. See if this | |
6aa20a22 | 770 | * fixes the link-problems we were having for forced mode. |
1f26dac3 DM |
771 | */ |
772 | atomic_inc(&cp->reset_task_pending); | |
773 | atomic_inc(&cp->reset_task_pending_all); | |
774 | schedule_work(&cp->reset_task); | |
775 | cp->timer_ticks = 0; | |
776 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | |
777 | return; | |
778 | } | |
779 | #endif | |
780 | if (cp->phy_type & CAS_PHY_SERDES) { | |
781 | u32 val = readl(cp->regs + REG_PCS_MII_CTRL); | |
782 | ||
783 | if (cp->link_cntl & BMCR_ANENABLE) { | |
784 | val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); | |
785 | cp->lstate = link_aneg; | |
786 | } else { | |
787 | if (cp->link_cntl & BMCR_FULLDPLX) | |
788 | val |= PCS_MII_CTRL_DUPLEX; | |
789 | val &= ~PCS_MII_AUTONEG_EN; | |
790 | cp->lstate = link_force_ok; | |
791 | } | |
792 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | |
793 | writel(val, cp->regs + REG_PCS_MII_CTRL); | |
794 | ||
795 | } else { | |
796 | cas_mif_poll(cp, 0); | |
797 | ctl = cas_phy_read(cp, MII_BMCR); | |
6aa20a22 | 798 | ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | |
1f26dac3 DM |
799 | CAS_BMCR_SPEED1000 | BMCR_ANENABLE); |
800 | ctl |= cp->link_cntl; | |
801 | if (ctl & BMCR_ANENABLE) { | |
802 | ctl |= BMCR_ANRESTART; | |
803 | cp->lstate = link_aneg; | |
804 | } else { | |
805 | cp->lstate = link_force_ok; | |
806 | } | |
807 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | |
808 | cas_phy_write(cp, MII_BMCR, ctl); | |
809 | cas_mif_poll(cp, 1); | |
810 | } | |
811 | ||
812 | cp->timer_ticks = 0; | |
813 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | |
814 | } | |
815 | ||
816 | /* Must be invoked under cp->lock. */ | |
817 | static int cas_reset_mii_phy(struct cas *cp) | |
818 | { | |
819 | int limit = STOP_TRIES_PHY; | |
820 | u16 val; | |
6aa20a22 | 821 | |
1f26dac3 DM |
822 | cas_phy_write(cp, MII_BMCR, BMCR_RESET); |
823 | udelay(100); | |
824 | while (limit--) { | |
825 | val = cas_phy_read(cp, MII_BMCR); | |
826 | if ((val & BMCR_RESET) == 0) | |
827 | break; | |
828 | udelay(10); | |
829 | } | |
830 | return (limit <= 0); | |
831 | } | |
832 | ||
833 | static void cas_saturn_firmware_load(struct cas *cp) | |
834 | { | |
835 | cas_saturn_patch_t *patch = cas_saturn_patch; | |
836 | ||
837 | cas_phy_powerdown(cp); | |
838 | ||
839 | /* expanded memory access mode */ | |
840 | cas_phy_write(cp, DP83065_MII_MEM, 0x0); | |
841 | ||
842 | /* pointer configuration for new firmware */ | |
843 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); | |
844 | cas_phy_write(cp, DP83065_MII_REGD, 0xbd); | |
845 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); | |
846 | cas_phy_write(cp, DP83065_MII_REGD, 0x82); | |
847 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); | |
848 | cas_phy_write(cp, DP83065_MII_REGD, 0x0); | |
849 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); | |
850 | cas_phy_write(cp, DP83065_MII_REGD, 0x39); | |
851 | ||
852 | /* download new firmware */ | |
853 | cas_phy_write(cp, DP83065_MII_MEM, 0x1); | |
854 | cas_phy_write(cp, DP83065_MII_REGE, patch->addr); | |
855 | while (patch->addr) { | |
856 | cas_phy_write(cp, DP83065_MII_REGD, patch->val); | |
857 | patch++; | |
858 | } | |
859 | ||
860 | /* enable firmware */ | |
861 | cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); | |
862 | cas_phy_write(cp, DP83065_MII_REGD, 0x1); | |
863 | } | |
864 | ||
865 | ||
866 | /* phy initialization */ | |
867 | static void cas_phy_init(struct cas *cp) | |
868 | { | |
869 | u16 val; | |
870 | ||
871 | /* if we're in MII/GMII mode, set up phy */ | |
872 | if (CAS_PHY_MII(cp->phy_type)) { | |
873 | writel(PCS_DATAPATH_MODE_MII, | |
874 | cp->regs + REG_PCS_DATAPATH_MODE); | |
875 | ||
876 | cas_mif_poll(cp, 0); | |
877 | cas_reset_mii_phy(cp); /* take out of isolate mode */ | |
878 | ||
879 | if (PHY_LUCENT_B0 == cp->phy_id) { | |
880 | /* workaround link up/down issue with lucent */ | |
881 | cas_phy_write(cp, LUCENT_MII_REG, 0x8000); | |
882 | cas_phy_write(cp, MII_BMCR, 0x00f1); | |
883 | cas_phy_write(cp, LUCENT_MII_REG, 0x0); | |
884 | ||
885 | } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { | |
886 | /* workarounds for broadcom phy */ | |
887 | cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); | |
888 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); | |
889 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); | |
890 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); | |
891 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); | |
892 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | |
893 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); | |
894 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); | |
895 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); | |
896 | cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); | |
897 | cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); | |
898 | ||
899 | } else if (PHY_BROADCOM_5411 == cp->phy_id) { | |
900 | val = cas_phy_read(cp, BROADCOM_MII_REG4); | |
901 | val = cas_phy_read(cp, BROADCOM_MII_REG4); | |
902 | if (val & 0x0080) { | |
903 | /* link workaround */ | |
6aa20a22 | 904 | cas_phy_write(cp, BROADCOM_MII_REG4, |
1f26dac3 DM |
905 | val & ~0x0080); |
906 | } | |
6aa20a22 | 907 | |
1f26dac3 | 908 | } else if (cp->cas_flags & CAS_FLAG_SATURN) { |
6aa20a22 JG |
909 | writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? |
910 | SATURN_PCFG_FSI : 0x0, | |
1f26dac3 DM |
911 | cp->regs + REG_SATURN_PCFG); |
912 | ||
913 | /* load firmware to address 10Mbps auto-negotiation | |
6aa20a22 | 914 | * issue. NOTE: this will need to be changed if the |
1f26dac3 DM |
915 | * default firmware gets fixed. |
916 | */ | |
917 | if (PHY_NS_DP83065 == cp->phy_id) { | |
918 | cas_saturn_firmware_load(cp); | |
919 | } | |
920 | cas_phy_powerup(cp); | |
921 | } | |
922 | ||
923 | /* advertise capabilities */ | |
924 | val = cas_phy_read(cp, MII_BMCR); | |
925 | val &= ~BMCR_ANENABLE; | |
926 | cas_phy_write(cp, MII_BMCR, val); | |
927 | udelay(10); | |
928 | ||
929 | cas_phy_write(cp, MII_ADVERTISE, | |
930 | cas_phy_read(cp, MII_ADVERTISE) | | |
931 | (ADVERTISE_10HALF | ADVERTISE_10FULL | | |
932 | ADVERTISE_100HALF | ADVERTISE_100FULL | | |
6aa20a22 | 933 | CAS_ADVERTISE_PAUSE | |
1f26dac3 | 934 | CAS_ADVERTISE_ASYM_PAUSE)); |
6aa20a22 | 935 | |
1f26dac3 DM |
936 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
937 | /* make sure that we don't advertise half | |
938 | * duplex to avoid a chip issue | |
939 | */ | |
940 | val = cas_phy_read(cp, CAS_MII_1000_CTRL); | |
941 | val &= ~CAS_ADVERTISE_1000HALF; | |
942 | val |= CAS_ADVERTISE_1000FULL; | |
943 | cas_phy_write(cp, CAS_MII_1000_CTRL, val); | |
944 | } | |
945 | ||
946 | } else { | |
947 | /* reset pcs for serdes */ | |
948 | u32 val; | |
949 | int limit; | |
950 | ||
951 | writel(PCS_DATAPATH_MODE_SERDES, | |
952 | cp->regs + REG_PCS_DATAPATH_MODE); | |
953 | ||
954 | /* enable serdes pins on saturn */ | |
955 | if (cp->cas_flags & CAS_FLAG_SATURN) | |
956 | writel(0, cp->regs + REG_SATURN_PCFG); | |
957 | ||
958 | /* Reset PCS unit. */ | |
959 | val = readl(cp->regs + REG_PCS_MII_CTRL); | |
960 | val |= PCS_MII_RESET; | |
961 | writel(val, cp->regs + REG_PCS_MII_CTRL); | |
962 | ||
963 | limit = STOP_TRIES; | |
964 | while (limit-- > 0) { | |
965 | udelay(10); | |
6aa20a22 | 966 | if ((readl(cp->regs + REG_PCS_MII_CTRL) & |
1f26dac3 DM |
967 | PCS_MII_RESET) == 0) |
968 | break; | |
969 | } | |
970 | if (limit <= 0) | |
971 | printk(KERN_WARNING "%s: PCS reset bit would not " | |
972 | "clear [%08x].\n", cp->dev->name, | |
973 | readl(cp->regs + REG_PCS_STATE_MACHINE)); | |
974 | ||
975 | /* Make sure PCS is disabled while changing advertisement | |
976 | * configuration. | |
977 | */ | |
978 | writel(0x0, cp->regs + REG_PCS_CFG); | |
979 | ||
980 | /* Advertise all capabilities except half-duplex. */ | |
981 | val = readl(cp->regs + REG_PCS_MII_ADVERT); | |
982 | val &= ~PCS_MII_ADVERT_HD; | |
6aa20a22 | 983 | val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | |
1f26dac3 DM |
984 | PCS_MII_ADVERT_ASYM_PAUSE); |
985 | writel(val, cp->regs + REG_PCS_MII_ADVERT); | |
986 | ||
987 | /* enable PCS */ | |
988 | writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); | |
989 | ||
990 | /* pcs workaround: enable sync detect */ | |
991 | writel(PCS_SERDES_CTRL_SYNCD_EN, | |
992 | cp->regs + REG_PCS_SERDES_CTRL); | |
993 | } | |
994 | } | |
995 | ||
996 | ||
997 | static int cas_pcs_link_check(struct cas *cp) | |
998 | { | |
999 | u32 stat, state_machine; | |
1000 | int retval = 0; | |
1001 | ||
1002 | /* The link status bit latches on zero, so you must | |
1003 | * read it twice in such a case to see a transition | |
1004 | * to the link being up. | |
1005 | */ | |
1006 | stat = readl(cp->regs + REG_PCS_MII_STATUS); | |
1007 | if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) | |
1008 | stat = readl(cp->regs + REG_PCS_MII_STATUS); | |
1009 | ||
1010 | /* The remote-fault indication is only valid | |
1011 | * when autoneg has completed. | |
1012 | */ | |
1013 | if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | | |
1014 | PCS_MII_STATUS_REMOTE_FAULT)) == | |
1015 | (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) { | |
1016 | if (netif_msg_link(cp)) | |
6aa20a22 | 1017 | printk(KERN_INFO "%s: PCS RemoteFault\n", |
1f26dac3 DM |
1018 | cp->dev->name); |
1019 | } | |
1020 | ||
1021 | /* work around link detection issue by querying the PCS state | |
1022 | * machine directly. | |
1023 | */ | |
1024 | state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); | |
1025 | if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { | |
1026 | stat &= ~PCS_MII_STATUS_LINK_STATUS; | |
1027 | } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { | |
1028 | stat |= PCS_MII_STATUS_LINK_STATUS; | |
1029 | } | |
1030 | ||
1031 | if (stat & PCS_MII_STATUS_LINK_STATUS) { | |
1032 | if (cp->lstate != link_up) { | |
1033 | if (cp->opened) { | |
1034 | cp->lstate = link_up; | |
1035 | cp->link_transition = LINK_TRANSITION_LINK_UP; | |
6aa20a22 | 1036 | |
1f26dac3 DM |
1037 | cas_set_link_modes(cp); |
1038 | netif_carrier_on(cp->dev); | |
1039 | } | |
1040 | } | |
1041 | } else if (cp->lstate == link_up) { | |
1042 | cp->lstate = link_down; | |
1043 | if (link_transition_timeout != 0 && | |
1044 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | |
1045 | !cp->link_transition_jiffies_valid) { | |
1046 | /* | |
6aa20a22 JG |
1047 | * force a reset, as a workaround for the |
1048 | * link-failure problem. May want to move this to a | |
1f26dac3 DM |
1049 | * point a bit earlier in the sequence. If we had |
1050 | * generated a reset a short time ago, we'll wait for | |
1051 | * the link timer to check the status until a | |
1052 | * timer expires (link_transistion_jiffies_valid is | |
1053 | * true when the timer is running.) Instead of using | |
1054 | * a system timer, we just do a check whenever the | |
1055 | * link timer is running - this clears the flag after | |
1056 | * a suitable delay. | |
1057 | */ | |
1058 | retval = 1; | |
1059 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | |
1060 | cp->link_transition_jiffies = jiffies; | |
1061 | cp->link_transition_jiffies_valid = 1; | |
1062 | } else { | |
1063 | cp->link_transition = LINK_TRANSITION_ON_FAILURE; | |
1064 | } | |
1065 | netif_carrier_off(cp->dev); | |
1066 | if (cp->opened && netif_msg_link(cp)) { | |
1067 | printk(KERN_INFO "%s: PCS link down.\n", | |
1068 | cp->dev->name); | |
1069 | } | |
1070 | ||
1071 | /* Cassini only: if you force a mode, there can be | |
1072 | * sync problems on link down. to fix that, the following | |
1073 | * things need to be checked: | |
1074 | * 1) read serialink state register | |
1075 | * 2) read pcs status register to verify link down. | |
1076 | * 3) if link down and serial link == 0x03, then you need | |
1077 | * to global reset the chip. | |
1078 | */ | |
1079 | if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { | |
1080 | /* should check to see if we're in a forced mode */ | |
1081 | stat = readl(cp->regs + REG_PCS_SERDES_STATE); | |
1082 | if (stat == 0x03) | |
1083 | return 1; | |
1084 | } | |
1085 | } else if (cp->lstate == link_down) { | |
1086 | if (link_transition_timeout != 0 && | |
1087 | cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && | |
1088 | !cp->link_transition_jiffies_valid) { | |
1089 | /* force a reset, as a workaround for the | |
1090 | * link-failure problem. May want to move | |
1091 | * this to a point a bit earlier in the | |
1092 | * sequence. | |
1093 | */ | |
1094 | retval = 1; | |
1095 | cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; | |
1096 | cp->link_transition_jiffies = jiffies; | |
1097 | cp->link_transition_jiffies_valid = 1; | |
1098 | } else { | |
1099 | cp->link_transition = LINK_TRANSITION_STILL_FAILED; | |
1100 | } | |
1101 | } | |
1102 | ||
1103 | return retval; | |
1104 | } | |
1105 | ||
6aa20a22 | 1106 | static int cas_pcs_interrupt(struct net_device *dev, |
1f26dac3 DM |
1107 | struct cas *cp, u32 status) |
1108 | { | |
1109 | u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); | |
1110 | ||
6aa20a22 | 1111 | if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) |
1f26dac3 DM |
1112 | return 0; |
1113 | return cas_pcs_link_check(cp); | |
1114 | } | |
1115 | ||
6aa20a22 | 1116 | static int cas_txmac_interrupt(struct net_device *dev, |
1f26dac3 DM |
1117 | struct cas *cp, u32 status) |
1118 | { | |
1119 | u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); | |
1120 | ||
1121 | if (!txmac_stat) | |
1122 | return 0; | |
1123 | ||
1124 | if (netif_msg_intr(cp)) | |
1125 | printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", | |
1126 | cp->dev->name, txmac_stat); | |
1127 | ||
1128 | /* Defer timer expiration is quite normal, | |
1129 | * don't even log the event. | |
1130 | */ | |
1131 | if ((txmac_stat & MAC_TX_DEFER_TIMER) && | |
1132 | !(txmac_stat & ~MAC_TX_DEFER_TIMER)) | |
1133 | return 0; | |
1134 | ||
1135 | spin_lock(&cp->stat_lock[0]); | |
1136 | if (txmac_stat & MAC_TX_UNDERRUN) { | |
1137 | printk(KERN_ERR "%s: TX MAC xmit underrun.\n", | |
1138 | dev->name); | |
1139 | cp->net_stats[0].tx_fifo_errors++; | |
1140 | } | |
1141 | ||
1142 | if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { | |
1143 | printk(KERN_ERR "%s: TX MAC max packet size error.\n", | |
1144 | dev->name); | |
1145 | cp->net_stats[0].tx_errors++; | |
1146 | } | |
1147 | ||
1148 | /* The rest are all cases of one of the 16-bit TX | |
1149 | * counters expiring. | |
1150 | */ | |
1151 | if (txmac_stat & MAC_TX_COLL_NORMAL) | |
1152 | cp->net_stats[0].collisions += 0x10000; | |
1153 | ||
1154 | if (txmac_stat & MAC_TX_COLL_EXCESS) { | |
1155 | cp->net_stats[0].tx_aborted_errors += 0x10000; | |
1156 | cp->net_stats[0].collisions += 0x10000; | |
1157 | } | |
1158 | ||
1159 | if (txmac_stat & MAC_TX_COLL_LATE) { | |
1160 | cp->net_stats[0].tx_aborted_errors += 0x10000; | |
1161 | cp->net_stats[0].collisions += 0x10000; | |
1162 | } | |
1163 | spin_unlock(&cp->stat_lock[0]); | |
1164 | ||
1165 | /* We do not keep track of MAC_TX_COLL_FIRST and | |
1166 | * MAC_TX_PEAK_ATTEMPTS events. | |
1167 | */ | |
1168 | return 0; | |
1169 | } | |
1170 | ||
6aa20a22 | 1171 | static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) |
1f26dac3 DM |
1172 | { |
1173 | cas_hp_inst_t *inst; | |
1174 | u32 val; | |
1175 | int i; | |
1176 | ||
1177 | i = 0; | |
1178 | while ((inst = firmware) && inst->note) { | |
1179 | writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); | |
1180 | ||
1181 | val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); | |
1182 | val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); | |
1183 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); | |
1184 | ||
1185 | val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); | |
1186 | val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); | |
1187 | val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); | |
1188 | val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); | |
1189 | val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); | |
1190 | val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); | |
1191 | val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); | |
1192 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); | |
1193 | ||
1194 | val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); | |
1195 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); | |
1196 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); | |
1197 | val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); | |
1198 | writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); | |
1199 | ++firmware; | |
1200 | ++i; | |
1201 | } | |
1202 | } | |
1203 | ||
1204 | static void cas_init_rx_dma(struct cas *cp) | |
1205 | { | |
6aa20a22 | 1206 | u64 desc_dma = cp->block_dvma; |
1f26dac3 DM |
1207 | u32 val; |
1208 | int i, size; | |
1209 | ||
1210 | /* rx free descriptors */ | |
6aa20a22 | 1211 | val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); |
1f26dac3 DM |
1212 | val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); |
1213 | val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); | |
1214 | if ((N_RX_DESC_RINGS > 1) && | |
1215 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ | |
1216 | val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); | |
1217 | writel(val, cp->regs + REG_RX_CFG); | |
1218 | ||
6aa20a22 | 1219 | val = (unsigned long) cp->init_rxds[0] - |
1f26dac3 DM |
1220 | (unsigned long) cp->init_block; |
1221 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); | |
1222 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); | |
1223 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | |
1224 | ||
1225 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
6aa20a22 | 1226 | /* rx desc 2 is for IPSEC packets. however, |
1f26dac3 DM |
1227 | * we don't it that for that purpose. |
1228 | */ | |
6aa20a22 | 1229 | val = (unsigned long) cp->init_rxds[1] - |
1f26dac3 DM |
1230 | (unsigned long) cp->init_block; |
1231 | writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); | |
6aa20a22 | 1232 | writel((desc_dma + val) & 0xffffffff, cp->regs + |
1f26dac3 | 1233 | REG_PLUS_RX_DB1_LOW); |
6aa20a22 | 1234 | writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + |
1f26dac3 DM |
1235 | REG_PLUS_RX_KICK1); |
1236 | } | |
6aa20a22 | 1237 | |
1f26dac3 | 1238 | /* rx completion registers */ |
6aa20a22 | 1239 | val = (unsigned long) cp->init_rxcs[0] - |
1f26dac3 DM |
1240 | (unsigned long) cp->init_block; |
1241 | writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); | |
1242 | writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); | |
1243 | ||
1244 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
1245 | /* rx comp 2-4 */ | |
1246 | for (i = 1; i < MAX_RX_COMP_RINGS; i++) { | |
6aa20a22 | 1247 | val = (unsigned long) cp->init_rxcs[i] - |
1f26dac3 | 1248 | (unsigned long) cp->init_block; |
6aa20a22 | 1249 | writel((desc_dma + val) >> 32, cp->regs + |
1f26dac3 | 1250 | REG_PLUS_RX_CBN_HI(i)); |
6aa20a22 | 1251 | writel((desc_dma + val) & 0xffffffff, cp->regs + |
1f26dac3 DM |
1252 | REG_PLUS_RX_CBN_LOW(i)); |
1253 | } | |
1254 | } | |
1255 | ||
1256 | /* read selective clear regs to prevent spurious interrupts | |
1257 | * on reset because complete == kick. | |
1258 | * selective clear set up to prevent interrupts on resets | |
1259 | */ | |
1260 | readl(cp->regs + REG_INTR_STATUS_ALIAS); | |
1261 | writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); | |
1262 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
1263 | for (i = 1; i < N_RX_COMP_RINGS; i++) | |
1264 | readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); | |
1265 | ||
1266 | /* 2 is different from 3 and 4 */ | |
1267 | if (N_RX_COMP_RINGS > 1) | |
6aa20a22 | 1268 | writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, |
1f26dac3 DM |
1269 | cp->regs + REG_PLUS_ALIASN_CLEAR(1)); |
1270 | ||
6aa20a22 JG |
1271 | for (i = 2; i < N_RX_COMP_RINGS; i++) |
1272 | writel(INTR_RX_DONE_ALT, | |
1f26dac3 DM |
1273 | cp->regs + REG_PLUS_ALIASN_CLEAR(i)); |
1274 | } | |
1275 | ||
1276 | /* set up pause thresholds */ | |
1277 | val = CAS_BASE(RX_PAUSE_THRESH_OFF, | |
1278 | cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); | |
6aa20a22 | 1279 | val |= CAS_BASE(RX_PAUSE_THRESH_ON, |
1f26dac3 DM |
1280 | cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); |
1281 | writel(val, cp->regs + REG_RX_PAUSE_THRESH); | |
6aa20a22 | 1282 | |
1f26dac3 DM |
1283 | /* zero out dma reassembly buffers */ |
1284 | for (i = 0; i < 64; i++) { | |
1285 | writel(i, cp->regs + REG_RX_TABLE_ADDR); | |
1286 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); | |
1287 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); | |
1288 | writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); | |
1289 | } | |
1290 | ||
1291 | /* make sure address register is 0 for normal operation */ | |
1292 | writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); | |
1293 | writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); | |
1294 | ||
1295 | /* interrupt mitigation */ | |
1296 | #ifdef USE_RX_BLANK | |
1297 | val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); | |
1298 | val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); | |
1299 | writel(val, cp->regs + REG_RX_BLANK); | |
1300 | #else | |
1301 | writel(0x0, cp->regs + REG_RX_BLANK); | |
1302 | #endif | |
1303 | ||
1304 | /* interrupt generation as a function of low water marks for | |
1305 | * free desc and completion entries. these are used to trigger | |
1306 | * housekeeping for rx descs. we don't use the free interrupt | |
1307 | * as it's not very useful | |
1308 | */ | |
1309 | /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ | |
1310 | val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); | |
1311 | writel(val, cp->regs + REG_RX_AE_THRESH); | |
1312 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
1313 | val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); | |
1314 | writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); | |
1315 | } | |
1316 | ||
1317 | /* Random early detect registers. useful for congestion avoidance. | |
1318 | * this should be tunable. | |
1319 | */ | |
1320 | writel(0x0, cp->regs + REG_RX_RED); | |
6aa20a22 | 1321 | |
1f26dac3 DM |
1322 | /* receive page sizes. default == 2K (0x800) */ |
1323 | val = 0; | |
1324 | if (cp->page_size == 0x1000) | |
1325 | val = 0x1; | |
1326 | else if (cp->page_size == 0x2000) | |
1327 | val = 0x2; | |
1328 | else if (cp->page_size == 0x4000) | |
1329 | val = 0x3; | |
6aa20a22 | 1330 | |
1f26dac3 DM |
1331 | /* round mtu + offset. constrain to page size. */ |
1332 | size = cp->dev->mtu + 64; | |
1333 | if (size > cp->page_size) | |
1334 | size = cp->page_size; | |
1335 | ||
1336 | if (size <= 0x400) | |
1337 | i = 0x0; | |
1338 | else if (size <= 0x800) | |
1339 | i = 0x1; | |
1340 | else if (size <= 0x1000) | |
1341 | i = 0x2; | |
1342 | else | |
1343 | i = 0x3; | |
1344 | ||
1345 | cp->mtu_stride = 1 << (i + 10); | |
1346 | val = CAS_BASE(RX_PAGE_SIZE, val); | |
6aa20a22 | 1347 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); |
1f26dac3 DM |
1348 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); |
1349 | val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); | |
1350 | writel(val, cp->regs + REG_RX_PAGE_SIZE); | |
6aa20a22 | 1351 | |
1f26dac3 DM |
1352 | /* enable the header parser if desired */ |
1353 | if (CAS_HP_FIRMWARE == cas_prog_null) | |
1354 | return; | |
1355 | ||
1356 | val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); | |
1357 | val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; | |
1358 | val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); | |
1359 | writel(val, cp->regs + REG_HP_CFG); | |
1360 | } | |
1361 | ||
1362 | static inline void cas_rxc_init(struct cas_rx_comp *rxc) | |
1363 | { | |
1364 | memset(rxc, 0, sizeof(*rxc)); | |
6aa20a22 | 1365 | rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); |
1f26dac3 DM |
1366 | } |
1367 | ||
1368 | /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] | |
1369 | * flipping is protected by the fact that the chip will not | |
1370 | * hand back the same page index while it's being processed. | |
1371 | */ | |
1372 | static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) | |
1373 | { | |
1374 | cas_page_t *page = cp->rx_pages[1][index]; | |
1375 | cas_page_t *new; | |
1376 | ||
fa4f0774 | 1377 | if (cas_buffer_count(page) == 1) |
1f26dac3 DM |
1378 | return page; |
1379 | ||
1380 | new = cas_page_dequeue(cp); | |
1381 | if (new) { | |
1382 | spin_lock(&cp->rx_inuse_lock); | |
1383 | list_add(&page->list, &cp->rx_inuse_list); | |
1384 | spin_unlock(&cp->rx_inuse_lock); | |
1385 | } | |
1386 | return new; | |
1387 | } | |
6aa20a22 | 1388 | |
1f26dac3 | 1389 | /* this needs to be changed if we actually use the ENC RX DESC ring */ |
6aa20a22 | 1390 | static cas_page_t *cas_page_swap(struct cas *cp, const int ring, |
1f26dac3 DM |
1391 | const int index) |
1392 | { | |
1393 | cas_page_t **page0 = cp->rx_pages[0]; | |
1394 | cas_page_t **page1 = cp->rx_pages[1]; | |
1395 | ||
1396 | /* swap if buffer is in use */ | |
fa4f0774 | 1397 | if (cas_buffer_count(page0[index]) > 1) { |
1f26dac3 DM |
1398 | cas_page_t *new = cas_page_spare(cp, index); |
1399 | if (new) { | |
1400 | page1[index] = page0[index]; | |
1401 | page0[index] = new; | |
1402 | } | |
6aa20a22 | 1403 | } |
1f26dac3 DM |
1404 | RX_USED_SET(page0[index], 0); |
1405 | return page0[index]; | |
1406 | } | |
1407 | ||
1408 | static void cas_clean_rxds(struct cas *cp) | |
1409 | { | |
1410 | /* only clean ring 0 as ring 1 is used for spare buffers */ | |
1411 | struct cas_rx_desc *rxd = cp->init_rxds[0]; | |
1412 | int i, size; | |
1413 | ||
1414 | /* release all rx flows */ | |
1415 | for (i = 0; i < N_RX_FLOWS; i++) { | |
1416 | struct sk_buff *skb; | |
1417 | while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { | |
1418 | cas_skb_release(skb); | |
1419 | } | |
1420 | } | |
1421 | ||
1422 | /* initialize descriptors */ | |
1423 | size = RX_DESC_RINGN_SIZE(0); | |
1424 | for (i = 0; i < size; i++) { | |
1425 | cas_page_t *page = cas_page_swap(cp, 0, i); | |
1426 | rxd[i].buffer = cpu_to_le64(page->dma_addr); | |
6aa20a22 | 1427 | rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | |
1f26dac3 DM |
1428 | CAS_BASE(RX_INDEX_RING, 0)); |
1429 | } | |
1430 | ||
6aa20a22 | 1431 | cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; |
1f26dac3 DM |
1432 | cp->rx_last[0] = 0; |
1433 | cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); | |
1434 | } | |
1435 | ||
1436 | static void cas_clean_rxcs(struct cas *cp) | |
1437 | { | |
1438 | int i, j; | |
1439 | ||
1440 | /* take ownership of rx comp descriptors */ | |
1441 | memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); | |
1442 | memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); | |
1443 | for (i = 0; i < N_RX_COMP_RINGS; i++) { | |
1444 | struct cas_rx_comp *rxc = cp->init_rxcs[i]; | |
1445 | for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { | |
1446 | cas_rxc_init(rxc + j); | |
1447 | } | |
1448 | } | |
1449 | } | |
1450 | ||
1451 | #if 0 | |
1452 | /* When we get a RX fifo overflow, the RX unit is probably hung | |
1453 | * so we do the following. | |
1454 | * | |
1455 | * If any part of the reset goes wrong, we return 1 and that causes the | |
1456 | * whole chip to be reset. | |
1457 | */ | |
1458 | static int cas_rxmac_reset(struct cas *cp) | |
1459 | { | |
1460 | struct net_device *dev = cp->dev; | |
1461 | int limit; | |
1462 | u32 val; | |
1463 | ||
1464 | /* First, reset MAC RX. */ | |
1465 | writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | |
1466 | for (limit = 0; limit < STOP_TRIES; limit++) { | |
1467 | if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) | |
1468 | break; | |
1469 | udelay(10); | |
1470 | } | |
1471 | if (limit == STOP_TRIES) { | |
1472 | printk(KERN_ERR "%s: RX MAC will not disable, resetting whole " | |
1473 | "chip.\n", dev->name); | |
1474 | return 1; | |
1475 | } | |
1476 | ||
1477 | /* Second, disable RX DMA. */ | |
1478 | writel(0, cp->regs + REG_RX_CFG); | |
1479 | for (limit = 0; limit < STOP_TRIES; limit++) { | |
1480 | if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) | |
1481 | break; | |
1482 | udelay(10); | |
1483 | } | |
1484 | if (limit == STOP_TRIES) { | |
1485 | printk(KERN_ERR "%s: RX DMA will not disable, resetting whole " | |
1486 | "chip.\n", dev->name); | |
1487 | return 1; | |
1488 | } | |
1489 | ||
1490 | mdelay(5); | |
1491 | ||
1492 | /* Execute RX reset command. */ | |
1493 | writel(SW_RESET_RX, cp->regs + REG_SW_RESET); | |
1494 | for (limit = 0; limit < STOP_TRIES; limit++) { | |
1495 | if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) | |
1496 | break; | |
1497 | udelay(10); | |
1498 | } | |
1499 | if (limit == STOP_TRIES) { | |
1500 | printk(KERN_ERR "%s: RX reset command will not execute, " | |
1501 | "resetting whole chip.\n", dev->name); | |
1502 | return 1; | |
1503 | } | |
1504 | ||
1505 | /* reset driver rx state */ | |
1506 | cas_clean_rxds(cp); | |
1507 | cas_clean_rxcs(cp); | |
1508 | ||
1509 | /* Now, reprogram the rest of RX unit. */ | |
1510 | cas_init_rx_dma(cp); | |
1511 | ||
1512 | /* re-enable */ | |
1513 | val = readl(cp->regs + REG_RX_CFG); | |
1514 | writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); | |
1515 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | |
1516 | val = readl(cp->regs + REG_MAC_RX_CFG); | |
1517 | writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | |
1518 | return 0; | |
1519 | } | |
1520 | #endif | |
1521 | ||
1522 | static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, | |
1523 | u32 status) | |
1524 | { | |
1525 | u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); | |
1526 | ||
1527 | if (!stat) | |
1528 | return 0; | |
1529 | ||
1530 | if (netif_msg_intr(cp)) | |
1531 | printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n", | |
1532 | cp->dev->name, stat); | |
1533 | ||
1534 | /* these are all rollovers */ | |
1535 | spin_lock(&cp->stat_lock[0]); | |
6aa20a22 | 1536 | if (stat & MAC_RX_ALIGN_ERR) |
1f26dac3 DM |
1537 | cp->net_stats[0].rx_frame_errors += 0x10000; |
1538 | ||
1539 | if (stat & MAC_RX_CRC_ERR) | |
1540 | cp->net_stats[0].rx_crc_errors += 0x10000; | |
1541 | ||
1542 | if (stat & MAC_RX_LEN_ERR) | |
1543 | cp->net_stats[0].rx_length_errors += 0x10000; | |
1544 | ||
1545 | if (stat & MAC_RX_OVERFLOW) { | |
1546 | cp->net_stats[0].rx_over_errors++; | |
1547 | cp->net_stats[0].rx_fifo_errors++; | |
1548 | } | |
1549 | ||
1550 | /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR | |
1551 | * events. | |
1552 | */ | |
1553 | spin_unlock(&cp->stat_lock[0]); | |
1554 | return 0; | |
1555 | } | |
1556 | ||
1557 | static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, | |
1558 | u32 status) | |
1559 | { | |
1560 | u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); | |
1561 | ||
1562 | if (!stat) | |
1563 | return 0; | |
1564 | ||
1565 | if (netif_msg_intr(cp)) | |
1566 | printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n", | |
1567 | cp->dev->name, stat); | |
1568 | ||
1569 | /* This interrupt is just for pause frame and pause | |
1570 | * tracking. It is useful for diagnostics and debug | |
1571 | * but probably by default we will mask these events. | |
1572 | */ | |
1573 | if (stat & MAC_CTRL_PAUSE_STATE) | |
1574 | cp->pause_entered++; | |
1575 | ||
1576 | if (stat & MAC_CTRL_PAUSE_RECEIVED) | |
1577 | cp->pause_last_time_recvd = (stat >> 16); | |
1578 | ||
1579 | return 0; | |
1580 | } | |
1581 | ||
6aa20a22 | 1582 | |
1f26dac3 DM |
1583 | /* Must be invoked under cp->lock. */ |
1584 | static inline int cas_mdio_link_not_up(struct cas *cp) | |
1585 | { | |
1586 | u16 val; | |
6aa20a22 | 1587 | |
1f26dac3 DM |
1588 | switch (cp->lstate) { |
1589 | case link_force_ret: | |
1590 | if (netif_msg_link(cp)) | |
1591 | printk(KERN_INFO "%s: Autoneg failed again, keeping" | |
1592 | " forced mode\n", cp->dev->name); | |
1593 | cas_phy_write(cp, MII_BMCR, cp->link_fcntl); | |
1594 | cp->timer_ticks = 5; | |
1595 | cp->lstate = link_force_ok; | |
1596 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | |
1597 | break; | |
6aa20a22 | 1598 | |
1f26dac3 DM |
1599 | case link_aneg: |
1600 | val = cas_phy_read(cp, MII_BMCR); | |
1601 | ||
1602 | /* Try forced modes. we try things in the following order: | |
1603 | * 1000 full -> 100 full/half -> 10 half | |
1604 | */ | |
1605 | val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); | |
1606 | val |= BMCR_FULLDPLX; | |
6aa20a22 | 1607 | val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
1f26dac3 DM |
1608 | CAS_BMCR_SPEED1000 : BMCR_SPEED100; |
1609 | cas_phy_write(cp, MII_BMCR, val); | |
1610 | cp->timer_ticks = 5; | |
1611 | cp->lstate = link_force_try; | |
1612 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | |
1613 | break; | |
1614 | ||
1615 | case link_force_try: | |
1616 | /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ | |
1617 | val = cas_phy_read(cp, MII_BMCR); | |
1618 | cp->timer_ticks = 5; | |
1619 | if (val & CAS_BMCR_SPEED1000) { /* gigabit */ | |
1620 | val &= ~CAS_BMCR_SPEED1000; | |
1621 | val |= (BMCR_SPEED100 | BMCR_FULLDPLX); | |
1622 | cas_phy_write(cp, MII_BMCR, val); | |
1623 | break; | |
1624 | } | |
1625 | ||
1626 | if (val & BMCR_SPEED100) { | |
1627 | if (val & BMCR_FULLDPLX) /* fd failed */ | |
1628 | val &= ~BMCR_FULLDPLX; | |
1629 | else { /* 100Mbps failed */ | |
1630 | val &= ~BMCR_SPEED100; | |
1631 | } | |
1632 | cas_phy_write(cp, MII_BMCR, val); | |
1633 | break; | |
1634 | } | |
1635 | default: | |
1636 | break; | |
1637 | } | |
1638 | return 0; | |
1639 | } | |
1640 | ||
1641 | ||
1642 | /* must be invoked with cp->lock held */ | |
1643 | static int cas_mii_link_check(struct cas *cp, const u16 bmsr) | |
1644 | { | |
1645 | int restart; | |
1646 | ||
1647 | if (bmsr & BMSR_LSTATUS) { | |
1648 | /* Ok, here we got a link. If we had it due to a forced | |
6aa20a22 | 1649 | * fallback, and we were configured for autoneg, we |
1f26dac3 DM |
1650 | * retry a short autoneg pass. If you know your hub is |
1651 | * broken, use ethtool ;) | |
1652 | */ | |
6aa20a22 | 1653 | if ((cp->lstate == link_force_try) && |
1f26dac3 DM |
1654 | (cp->link_cntl & BMCR_ANENABLE)) { |
1655 | cp->lstate = link_force_ret; | |
1656 | cp->link_transition = LINK_TRANSITION_LINK_CONFIG; | |
1657 | cas_mif_poll(cp, 0); | |
1658 | cp->link_fcntl = cas_phy_read(cp, MII_BMCR); | |
1659 | cp->timer_ticks = 5; | |
1660 | if (cp->opened && netif_msg_link(cp)) | |
1661 | printk(KERN_INFO "%s: Got link after fallback, retrying" | |
1662 | " autoneg once...\n", cp->dev->name); | |
1663 | cas_phy_write(cp, MII_BMCR, | |
1664 | cp->link_fcntl | BMCR_ANENABLE | | |
1665 | BMCR_ANRESTART); | |
1666 | cas_mif_poll(cp, 1); | |
1667 | ||
1668 | } else if (cp->lstate != link_up) { | |
1669 | cp->lstate = link_up; | |
1670 | cp->link_transition = LINK_TRANSITION_LINK_UP; | |
1671 | ||
1672 | if (cp->opened) { | |
1673 | cas_set_link_modes(cp); | |
1674 | netif_carrier_on(cp->dev); | |
1675 | } | |
1676 | } | |
1677 | return 0; | |
1678 | } | |
1679 | ||
1680 | /* link not up. if the link was previously up, we restart the | |
1681 | * whole process | |
1682 | */ | |
1683 | restart = 0; | |
1684 | if (cp->lstate == link_up) { | |
1685 | cp->lstate = link_down; | |
1686 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | |
1687 | ||
1688 | netif_carrier_off(cp->dev); | |
1689 | if (cp->opened && netif_msg_link(cp)) | |
1690 | printk(KERN_INFO "%s: Link down\n", | |
1691 | cp->dev->name); | |
1692 | restart = 1; | |
6aa20a22 | 1693 | |
1f26dac3 DM |
1694 | } else if (++cp->timer_ticks > 10) |
1695 | cas_mdio_link_not_up(cp); | |
6aa20a22 | 1696 | |
1f26dac3 DM |
1697 | return restart; |
1698 | } | |
1699 | ||
1700 | static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, | |
1701 | u32 status) | |
1702 | { | |
1703 | u32 stat = readl(cp->regs + REG_MIF_STATUS); | |
1704 | u16 bmsr; | |
1705 | ||
1706 | /* check for a link change */ | |
1707 | if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) | |
1708 | return 0; | |
1709 | ||
1710 | bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); | |
1711 | return cas_mii_link_check(cp, bmsr); | |
1712 | } | |
1713 | ||
1714 | static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, | |
1715 | u32 status) | |
1716 | { | |
1717 | u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); | |
1718 | ||
1719 | if (!stat) | |
1720 | return 0; | |
1721 | ||
1722 | printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat, | |
1723 | readl(cp->regs + REG_BIM_DIAG)); | |
1724 | ||
1725 | /* cassini+ has this reserved */ | |
1726 | if ((stat & PCI_ERR_BADACK) && | |
1727 | ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) | |
1728 | printk("<No ACK64# during ABS64 cycle> "); | |
1729 | ||
1730 | if (stat & PCI_ERR_DTRTO) | |
1731 | printk("<Delayed transaction timeout> "); | |
1732 | if (stat & PCI_ERR_OTHER) | |
1733 | printk("<other> "); | |
1734 | if (stat & PCI_ERR_BIM_DMA_WRITE) | |
1735 | printk("<BIM DMA 0 write req> "); | |
1736 | if (stat & PCI_ERR_BIM_DMA_READ) | |
1737 | printk("<BIM DMA 0 read req> "); | |
1738 | printk("\n"); | |
1739 | ||
1740 | if (stat & PCI_ERR_OTHER) { | |
1741 | u16 cfg; | |
1742 | ||
1743 | /* Interrogate PCI config space for the | |
1744 | * true cause. | |
1745 | */ | |
1746 | pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); | |
1747 | printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n", | |
1748 | dev->name, cfg); | |
1749 | if (cfg & PCI_STATUS_PARITY) | |
1750 | printk(KERN_ERR "%s: PCI parity error detected.\n", | |
1751 | dev->name); | |
1752 | if (cfg & PCI_STATUS_SIG_TARGET_ABORT) | |
1753 | printk(KERN_ERR "%s: PCI target abort.\n", | |
1754 | dev->name); | |
1755 | if (cfg & PCI_STATUS_REC_TARGET_ABORT) | |
1756 | printk(KERN_ERR "%s: PCI master acks target abort.\n", | |
1757 | dev->name); | |
1758 | if (cfg & PCI_STATUS_REC_MASTER_ABORT) | |
1759 | printk(KERN_ERR "%s: PCI master abort.\n", dev->name); | |
1760 | if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) | |
1761 | printk(KERN_ERR "%s: PCI system error SERR#.\n", | |
1762 | dev->name); | |
1763 | if (cfg & PCI_STATUS_DETECTED_PARITY) | |
1764 | printk(KERN_ERR "%s: PCI parity error.\n", | |
1765 | dev->name); | |
1766 | ||
1767 | /* Write the error bits back to clear them. */ | |
1768 | cfg &= (PCI_STATUS_PARITY | | |
1769 | PCI_STATUS_SIG_TARGET_ABORT | | |
1770 | PCI_STATUS_REC_TARGET_ABORT | | |
1771 | PCI_STATUS_REC_MASTER_ABORT | | |
1772 | PCI_STATUS_SIG_SYSTEM_ERROR | | |
1773 | PCI_STATUS_DETECTED_PARITY); | |
1774 | pci_write_config_word(cp->pdev, PCI_STATUS, cfg); | |
1775 | } | |
1776 | ||
1777 | /* For all PCI errors, we should reset the chip. */ | |
1778 | return 1; | |
1779 | } | |
1780 | ||
1781 | /* All non-normal interrupt conditions get serviced here. | |
1782 | * Returns non-zero if we should just exit the interrupt | |
1783 | * handler right now (ie. if we reset the card which invalidates | |
1784 | * all of the other original irq status bits). | |
1785 | */ | |
1786 | static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, | |
1787 | u32 status) | |
1788 | { | |
1789 | if (status & INTR_RX_TAG_ERROR) { | |
1790 | /* corrupt RX tag framing */ | |
1791 | if (netif_msg_rx_err(cp)) | |
1792 | printk(KERN_DEBUG "%s: corrupt rx tag framing\n", | |
1793 | cp->dev->name); | |
1794 | spin_lock(&cp->stat_lock[0]); | |
1795 | cp->net_stats[0].rx_errors++; | |
1796 | spin_unlock(&cp->stat_lock[0]); | |
1797 | goto do_reset; | |
1798 | } | |
1799 | ||
1800 | if (status & INTR_RX_LEN_MISMATCH) { | |
1801 | /* length mismatch. */ | |
1802 | if (netif_msg_rx_err(cp)) | |
1803 | printk(KERN_DEBUG "%s: length mismatch for rx frame\n", | |
1804 | cp->dev->name); | |
1805 | spin_lock(&cp->stat_lock[0]); | |
1806 | cp->net_stats[0].rx_errors++; | |
1807 | spin_unlock(&cp->stat_lock[0]); | |
1808 | goto do_reset; | |
1809 | } | |
1810 | ||
1811 | if (status & INTR_PCS_STATUS) { | |
1812 | if (cas_pcs_interrupt(dev, cp, status)) | |
1813 | goto do_reset; | |
1814 | } | |
1815 | ||
1816 | if (status & INTR_TX_MAC_STATUS) { | |
1817 | if (cas_txmac_interrupt(dev, cp, status)) | |
1818 | goto do_reset; | |
1819 | } | |
1820 | ||
1821 | if (status & INTR_RX_MAC_STATUS) { | |
1822 | if (cas_rxmac_interrupt(dev, cp, status)) | |
1823 | goto do_reset; | |
1824 | } | |
1825 | ||
1826 | if (status & INTR_MAC_CTRL_STATUS) { | |
1827 | if (cas_mac_interrupt(dev, cp, status)) | |
1828 | goto do_reset; | |
1829 | } | |
1830 | ||
1831 | if (status & INTR_MIF_STATUS) { | |
1832 | if (cas_mif_interrupt(dev, cp, status)) | |
1833 | goto do_reset; | |
1834 | } | |
1835 | ||
1836 | if (status & INTR_PCI_ERROR_STATUS) { | |
1837 | if (cas_pci_interrupt(dev, cp, status)) | |
1838 | goto do_reset; | |
1839 | } | |
1840 | return 0; | |
1841 | ||
1842 | do_reset: | |
1843 | #if 1 | |
1844 | atomic_inc(&cp->reset_task_pending); | |
1845 | atomic_inc(&cp->reset_task_pending_all); | |
1846 | printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n", | |
1847 | dev->name, status); | |
1848 | schedule_work(&cp->reset_task); | |
1849 | #else | |
1850 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | |
1851 | printk(KERN_ERR "reset called in cas_abnormal_irq\n"); | |
1852 | schedule_work(&cp->reset_task); | |
1853 | #endif | |
1854 | return 1; | |
1855 | } | |
1856 | ||
1857 | /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when | |
1858 | * determining whether to do a netif_stop/wakeup | |
1859 | */ | |
1860 | #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) | |
1861 | #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) | |
1862 | static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, | |
1863 | const int len) | |
1864 | { | |
1865 | unsigned long off = addr + len; | |
1866 | ||
1867 | if (CAS_TABORT(cp) == 1) | |
1868 | return 0; | |
1869 | if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) | |
1870 | return 0; | |
1871 | return TX_TARGET_ABORT_LEN; | |
1872 | } | |
1873 | ||
1874 | static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) | |
1875 | { | |
1876 | struct cas_tx_desc *txds; | |
1877 | struct sk_buff **skbs; | |
1878 | struct net_device *dev = cp->dev; | |
1879 | int entry, count; | |
1880 | ||
1881 | spin_lock(&cp->tx_lock[ring]); | |
1882 | txds = cp->init_txds[ring]; | |
1883 | skbs = cp->tx_skbs[ring]; | |
1884 | entry = cp->tx_old[ring]; | |
1885 | ||
1886 | count = TX_BUFF_COUNT(ring, entry, limit); | |
1887 | while (entry != limit) { | |
1888 | struct sk_buff *skb = skbs[entry]; | |
1889 | dma_addr_t daddr; | |
1890 | u32 dlen; | |
1891 | int frag; | |
1892 | ||
1893 | if (!skb) { | |
1894 | /* this should never occur */ | |
1895 | entry = TX_DESC_NEXT(ring, entry); | |
1896 | continue; | |
1897 | } | |
1898 | ||
1899 | /* however, we might get only a partial skb release. */ | |
1900 | count -= skb_shinfo(skb)->nr_frags + | |
1901 | + cp->tx_tiny_use[ring][entry].nbufs + 1; | |
1902 | if (count < 0) | |
1903 | break; | |
1904 | ||
1905 | if (netif_msg_tx_done(cp)) | |
1906 | printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n", | |
1907 | cp->dev->name, ring, entry); | |
1908 | ||
1909 | skbs[entry] = NULL; | |
1910 | cp->tx_tiny_use[ring][entry].nbufs = 0; | |
6aa20a22 | 1911 | |
1f26dac3 DM |
1912 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
1913 | struct cas_tx_desc *txd = txds + entry; | |
1914 | ||
1915 | daddr = le64_to_cpu(txd->buffer); | |
1916 | dlen = CAS_VAL(TX_DESC_BUFLEN, | |
1917 | le64_to_cpu(txd->control)); | |
1918 | pci_unmap_page(cp->pdev, daddr, dlen, | |
1919 | PCI_DMA_TODEVICE); | |
1920 | entry = TX_DESC_NEXT(ring, entry); | |
1921 | ||
1922 | /* tiny buffer may follow */ | |
1923 | if (cp->tx_tiny_use[ring][entry].used) { | |
1924 | cp->tx_tiny_use[ring][entry].used = 0; | |
1925 | entry = TX_DESC_NEXT(ring, entry); | |
6aa20a22 | 1926 | } |
1f26dac3 DM |
1927 | } |
1928 | ||
1929 | spin_lock(&cp->stat_lock[ring]); | |
1930 | cp->net_stats[ring].tx_packets++; | |
1931 | cp->net_stats[ring].tx_bytes += skb->len; | |
1932 | spin_unlock(&cp->stat_lock[ring]); | |
1933 | dev_kfree_skb_irq(skb); | |
1934 | } | |
1935 | cp->tx_old[ring] = entry; | |
1936 | ||
1937 | /* this is wrong for multiple tx rings. the net device needs | |
1938 | * multiple queues for this to do the right thing. we wait | |
1939 | * for 2*packets to be available when using tiny buffers | |
1940 | */ | |
1941 | if (netif_queue_stopped(dev) && | |
1942 | (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) | |
1943 | netif_wake_queue(dev); | |
1944 | spin_unlock(&cp->tx_lock[ring]); | |
1945 | } | |
1946 | ||
1947 | static void cas_tx(struct net_device *dev, struct cas *cp, | |
1948 | u32 status) | |
1949 | { | |
1950 | int limit, ring; | |
1951 | #ifdef USE_TX_COMPWB | |
1952 | u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); | |
1953 | #endif | |
1954 | if (netif_msg_intr(cp)) | |
64af4c13 AM |
1955 | printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n", |
1956 | cp->dev->name, status, (unsigned long long)compwb); | |
1f26dac3 DM |
1957 | /* process all the rings */ |
1958 | for (ring = 0; ring < N_TX_RINGS; ring++) { | |
1959 | #ifdef USE_TX_COMPWB | |
1960 | /* use the completion writeback registers */ | |
1961 | limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | | |
1962 | CAS_VAL(TX_COMPWB_LSB, compwb); | |
1963 | compwb = TX_COMPWB_NEXT(compwb); | |
1964 | #else | |
1965 | limit = readl(cp->regs + REG_TX_COMPN(ring)); | |
1966 | #endif | |
6aa20a22 | 1967 | if (cp->tx_old[ring] != limit) |
1f26dac3 DM |
1968 | cas_tx_ringN(cp, ring, limit); |
1969 | } | |
1970 | } | |
1971 | ||
1972 | ||
6aa20a22 JG |
1973 | static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, |
1974 | int entry, const u64 *words, | |
1f26dac3 DM |
1975 | struct sk_buff **skbref) |
1976 | { | |
1977 | int dlen, hlen, len, i, alloclen; | |
1978 | int off, swivel = RX_SWIVEL_OFF_VAL; | |
1979 | struct cas_page *page; | |
1980 | struct sk_buff *skb; | |
1981 | void *addr, *crcaddr; | |
6aa20a22 | 1982 | char *p; |
1f26dac3 DM |
1983 | |
1984 | hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); | |
1985 | dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); | |
1986 | len = hlen + dlen; | |
1987 | ||
6aa20a22 | 1988 | if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) |
1f26dac3 | 1989 | alloclen = len; |
6aa20a22 | 1990 | else |
1f26dac3 DM |
1991 | alloclen = max(hlen, RX_COPY_MIN); |
1992 | ||
1993 | skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); | |
6aa20a22 | 1994 | if (skb == NULL) |
1f26dac3 DM |
1995 | return -1; |
1996 | ||
1997 | *skbref = skb; | |
1998 | skb->dev = cp->dev; | |
1999 | skb_reserve(skb, swivel); | |
2000 | ||
2001 | p = skb->data; | |
2002 | addr = crcaddr = NULL; | |
2003 | if (hlen) { /* always copy header pages */ | |
2004 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | |
2005 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | |
6aa20a22 | 2006 | off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + |
1f26dac3 DM |
2007 | swivel; |
2008 | ||
2009 | i = hlen; | |
2010 | if (!dlen) /* attach FCS */ | |
2011 | i += cp->crc_size; | |
2012 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | |
2013 | PCI_DMA_FROMDEVICE); | |
2014 | addr = cas_page_map(page->buffer); | |
2015 | memcpy(p, addr + off, i); | |
2016 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | |
2017 | PCI_DMA_FROMDEVICE); | |
2018 | cas_page_unmap(addr); | |
2019 | RX_USED_ADD(page, 0x100); | |
2020 | p += hlen; | |
2021 | swivel = 0; | |
6aa20a22 | 2022 | } |
1f26dac3 DM |
2023 | |
2024 | ||
2025 | if (alloclen < (hlen + dlen)) { | |
2026 | skb_frag_t *frag = skb_shinfo(skb)->frags; | |
2027 | ||
2028 | /* normal or jumbo packets. we use frags */ | |
2029 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | |
2030 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | |
2031 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | |
2032 | ||
2033 | hlen = min(cp->page_size - off, dlen); | |
2034 | if (hlen < 0) { | |
2035 | if (netif_msg_rx_err(cp)) { | |
2036 | printk(KERN_DEBUG "%s: rx page overflow: " | |
2037 | "%d\n", cp->dev->name, hlen); | |
2038 | } | |
2039 | dev_kfree_skb_irq(skb); | |
2040 | return -1; | |
2041 | } | |
2042 | i = hlen; | |
2043 | if (i == dlen) /* attach FCS */ | |
2044 | i += cp->crc_size; | |
2045 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | |
2046 | PCI_DMA_FROMDEVICE); | |
2047 | ||
2048 | /* make sure we always copy a header */ | |
2049 | swivel = 0; | |
2050 | if (p == (char *) skb->data) { /* not split */ | |
2051 | addr = cas_page_map(page->buffer); | |
2052 | memcpy(p, addr + off, RX_COPY_MIN); | |
2053 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | |
2054 | PCI_DMA_FROMDEVICE); | |
2055 | cas_page_unmap(addr); | |
2056 | off += RX_COPY_MIN; | |
2057 | swivel = RX_COPY_MIN; | |
2058 | RX_USED_ADD(page, cp->mtu_stride); | |
2059 | } else { | |
2060 | RX_USED_ADD(page, hlen); | |
2061 | } | |
2062 | skb_put(skb, alloclen); | |
2063 | ||
2064 | skb_shinfo(skb)->nr_frags++; | |
2065 | skb->data_len += hlen - swivel; | |
2066 | skb->len += hlen - swivel; | |
2067 | ||
2068 | get_page(page->buffer); | |
fa4f0774 | 2069 | cas_buffer_inc(page); |
1f26dac3 DM |
2070 | frag->page = page->buffer; |
2071 | frag->page_offset = off; | |
2072 | frag->size = hlen - swivel; | |
6aa20a22 | 2073 | |
1f26dac3 DM |
2074 | /* any more data? */ |
2075 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | |
2076 | hlen = dlen; | |
2077 | off = 0; | |
2078 | ||
2079 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | |
2080 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | |
6aa20a22 JG |
2081 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
2082 | hlen + cp->crc_size, | |
1f26dac3 DM |
2083 | PCI_DMA_FROMDEVICE); |
2084 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | |
2085 | hlen + cp->crc_size, | |
2086 | PCI_DMA_FROMDEVICE); | |
2087 | ||
2088 | skb_shinfo(skb)->nr_frags++; | |
2089 | skb->data_len += hlen; | |
6aa20a22 | 2090 | skb->len += hlen; |
1f26dac3 DM |
2091 | frag++; |
2092 | ||
2093 | get_page(page->buffer); | |
fa4f0774 | 2094 | cas_buffer_inc(page); |
1f26dac3 DM |
2095 | frag->page = page->buffer; |
2096 | frag->page_offset = 0; | |
2097 | frag->size = hlen; | |
2098 | RX_USED_ADD(page, hlen + cp->crc_size); | |
2099 | } | |
2100 | ||
2101 | if (cp->crc_size) { | |
2102 | addr = cas_page_map(page->buffer); | |
2103 | crcaddr = addr + off + hlen; | |
2104 | } | |
2105 | ||
2106 | } else { | |
2107 | /* copying packet */ | |
2108 | if (!dlen) | |
2109 | goto end_copy_pkt; | |
2110 | ||
2111 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | |
2112 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | |
2113 | off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; | |
2114 | hlen = min(cp->page_size - off, dlen); | |
2115 | if (hlen < 0) { | |
2116 | if (netif_msg_rx_err(cp)) { | |
2117 | printk(KERN_DEBUG "%s: rx page overflow: " | |
2118 | "%d\n", cp->dev->name, hlen); | |
2119 | } | |
2120 | dev_kfree_skb_irq(skb); | |
2121 | return -1; | |
2122 | } | |
2123 | i = hlen; | |
2124 | if (i == dlen) /* attach FCS */ | |
2125 | i += cp->crc_size; | |
2126 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, | |
2127 | PCI_DMA_FROMDEVICE); | |
2128 | addr = cas_page_map(page->buffer); | |
2129 | memcpy(p, addr + off, i); | |
2130 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, | |
2131 | PCI_DMA_FROMDEVICE); | |
2132 | cas_page_unmap(addr); | |
2133 | if (p == (char *) skb->data) /* not split */ | |
2134 | RX_USED_ADD(page, cp->mtu_stride); | |
2135 | else | |
2136 | RX_USED_ADD(page, i); | |
6aa20a22 | 2137 | |
1f26dac3 DM |
2138 | /* any more data? */ |
2139 | if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { | |
2140 | p += hlen; | |
2141 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | |
2142 | page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; | |
6aa20a22 JG |
2143 | pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
2144 | dlen + cp->crc_size, | |
1f26dac3 DM |
2145 | PCI_DMA_FROMDEVICE); |
2146 | addr = cas_page_map(page->buffer); | |
2147 | memcpy(p, addr, dlen + cp->crc_size); | |
2148 | pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, | |
2149 | dlen + cp->crc_size, | |
2150 | PCI_DMA_FROMDEVICE); | |
2151 | cas_page_unmap(addr); | |
6aa20a22 | 2152 | RX_USED_ADD(page, dlen + cp->crc_size); |
1f26dac3 DM |
2153 | } |
2154 | end_copy_pkt: | |
2155 | if (cp->crc_size) { | |
2156 | addr = NULL; | |
2157 | crcaddr = skb->data + alloclen; | |
2158 | } | |
2159 | skb_put(skb, alloclen); | |
2160 | } | |
2161 | ||
2162 | i = CAS_VAL(RX_COMP4_TCP_CSUM, words[3]); | |
2163 | if (cp->crc_size) { | |
2164 | /* checksum includes FCS. strip it out. */ | |
2165 | i = csum_fold(csum_partial(crcaddr, cp->crc_size, i)); | |
2166 | if (addr) | |
2167 | cas_page_unmap(addr); | |
2168 | } | |
2169 | skb->csum = ntohs(i ^ 0xffff); | |
84fa7933 | 2170 | skb->ip_summed = CHECKSUM_COMPLETE; |
1f26dac3 DM |
2171 | skb->protocol = eth_type_trans(skb, cp->dev); |
2172 | return len; | |
2173 | } | |
2174 | ||
2175 | ||
2176 | /* we can handle up to 64 rx flows at a time. we do the same thing | |
6aa20a22 | 2177 | * as nonreassm except that we batch up the buffers. |
1f26dac3 DM |
2178 | * NOTE: we currently just treat each flow as a bunch of packets that |
2179 | * we pass up. a better way would be to coalesce the packets | |
2180 | * into a jumbo packet. to do that, we need to do the following: | |
2181 | * 1) the first packet will have a clean split between header and | |
2182 | * data. save both. | |
2183 | * 2) each time the next flow packet comes in, extend the | |
2184 | * data length and merge the checksums. | |
2185 | * 3) on flow release, fix up the header. | |
2186 | * 4) make sure the higher layer doesn't care. | |
6aa20a22 | 2187 | * because packets get coalesced, we shouldn't run into fragment count |
1f26dac3 DM |
2188 | * issues. |
2189 | */ | |
2190 | static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, | |
2191 | struct sk_buff *skb) | |
2192 | { | |
2193 | int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); | |
2194 | struct sk_buff_head *flow = &cp->rx_flows[flowid]; | |
6aa20a22 JG |
2195 | |
2196 | /* this is protected at a higher layer, so no need to | |
1f26dac3 DM |
2197 | * do any additional locking here. stick the buffer |
2198 | * at the end. | |
2199 | */ | |
2200 | __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow); | |
2201 | if (words[0] & RX_COMP1_RELEASE_FLOW) { | |
2202 | while ((skb = __skb_dequeue(flow))) { | |
2203 | cas_skb_release(skb); | |
2204 | } | |
2205 | } | |
2206 | } | |
2207 | ||
2208 | /* put rx descriptor back on ring. if a buffer is in use by a higher | |
2209 | * layer, this will need to put in a replacement. | |
2210 | */ | |
2211 | static void cas_post_page(struct cas *cp, const int ring, const int index) | |
2212 | { | |
2213 | cas_page_t *new; | |
2214 | int entry; | |
2215 | ||
2216 | entry = cp->rx_old[ring]; | |
2217 | ||
2218 | new = cas_page_swap(cp, ring, index); | |
2219 | cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); | |
2220 | cp->init_rxds[ring][entry].index = | |
6aa20a22 | 2221 | cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | |
1f26dac3 DM |
2222 | CAS_BASE(RX_INDEX_RING, ring)); |
2223 | ||
2224 | entry = RX_DESC_ENTRY(ring, entry + 1); | |
2225 | cp->rx_old[ring] = entry; | |
6aa20a22 | 2226 | |
1f26dac3 DM |
2227 | if (entry % 4) |
2228 | return; | |
2229 | ||
2230 | if (ring == 0) | |
2231 | writel(entry, cp->regs + REG_RX_KICK); | |
2232 | else if ((N_RX_DESC_RINGS > 1) && | |
6aa20a22 | 2233 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
1f26dac3 DM |
2234 | writel(entry, cp->regs + REG_PLUS_RX_KICK1); |
2235 | } | |
2236 | ||
2237 | ||
2238 | /* only when things are bad */ | |
2239 | static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) | |
2240 | { | |
2241 | unsigned int entry, last, count, released; | |
2242 | int cluster; | |
2243 | cas_page_t **page = cp->rx_pages[ring]; | |
2244 | ||
2245 | entry = cp->rx_old[ring]; | |
2246 | ||
2247 | if (netif_msg_intr(cp)) | |
2248 | printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n", | |
2249 | cp->dev->name, ring, entry); | |
2250 | ||
2251 | cluster = -1; | |
6aa20a22 | 2252 | count = entry & 0x3; |
1f26dac3 DM |
2253 | last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); |
2254 | released = 0; | |
2255 | while (entry != last) { | |
2256 | /* make a new buffer if it's still in use */ | |
fa4f0774 | 2257 | if (cas_buffer_count(page[entry]) > 1) { |
1f26dac3 DM |
2258 | cas_page_t *new = cas_page_dequeue(cp); |
2259 | if (!new) { | |
6aa20a22 | 2260 | /* let the timer know that we need to |
1f26dac3 DM |
2261 | * do this again |
2262 | */ | |
2263 | cp->cas_flags |= CAS_FLAG_RXD_POST(ring); | |
2264 | if (!timer_pending(&cp->link_timer)) | |
6aa20a22 | 2265 | mod_timer(&cp->link_timer, jiffies + |
1f26dac3 DM |
2266 | CAS_LINK_FAST_TIMEOUT); |
2267 | cp->rx_old[ring] = entry; | |
2268 | cp->rx_last[ring] = num ? num - released : 0; | |
2269 | return -ENOMEM; | |
2270 | } | |
2271 | spin_lock(&cp->rx_inuse_lock); | |
2272 | list_add(&page[entry]->list, &cp->rx_inuse_list); | |
2273 | spin_unlock(&cp->rx_inuse_lock); | |
6aa20a22 | 2274 | cp->init_rxds[ring][entry].buffer = |
1f26dac3 DM |
2275 | cpu_to_le64(new->dma_addr); |
2276 | page[entry] = new; | |
6aa20a22 | 2277 | |
1f26dac3 DM |
2278 | } |
2279 | ||
2280 | if (++count == 4) { | |
2281 | cluster = entry; | |
2282 | count = 0; | |
2283 | } | |
2284 | released++; | |
2285 | entry = RX_DESC_ENTRY(ring, entry + 1); | |
2286 | } | |
2287 | cp->rx_old[ring] = entry; | |
2288 | ||
6aa20a22 | 2289 | if (cluster < 0) |
1f26dac3 DM |
2290 | return 0; |
2291 | ||
2292 | if (ring == 0) | |
2293 | writel(cluster, cp->regs + REG_RX_KICK); | |
2294 | else if ((N_RX_DESC_RINGS > 1) && | |
6aa20a22 | 2295 | (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
1f26dac3 DM |
2296 | writel(cluster, cp->regs + REG_PLUS_RX_KICK1); |
2297 | return 0; | |
2298 | } | |
2299 | ||
2300 | ||
2301 | /* process a completion ring. packets are set up in three basic ways: | |
2302 | * small packets: should be copied header + data in single buffer. | |
2303 | * large packets: header and data in a single buffer. | |
6aa20a22 | 2304 | * split packets: header in a separate buffer from data. |
1f26dac3 | 2305 | * data may be in multiple pages. data may be > 256 |
6aa20a22 | 2306 | * bytes but in a single page. |
1f26dac3 DM |
2307 | * |
2308 | * NOTE: RX page posting is done in this routine as well. while there's | |
2309 | * the capability of using multiple RX completion rings, it isn't | |
2310 | * really worthwhile due to the fact that the page posting will | |
6aa20a22 | 2311 | * force serialization on the single descriptor ring. |
1f26dac3 DM |
2312 | */ |
2313 | static int cas_rx_ringN(struct cas *cp, int ring, int budget) | |
2314 | { | |
2315 | struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; | |
2316 | int entry, drops; | |
2317 | int npackets = 0; | |
2318 | ||
2319 | if (netif_msg_intr(cp)) | |
2320 | printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n", | |
2321 | cp->dev->name, ring, | |
6aa20a22 | 2322 | readl(cp->regs + REG_RX_COMP_HEAD), |
1f26dac3 DM |
2323 | cp->rx_new[ring]); |
2324 | ||
2325 | entry = cp->rx_new[ring]; | |
2326 | drops = 0; | |
2327 | while (1) { | |
2328 | struct cas_rx_comp *rxc = rxcs + entry; | |
2329 | struct sk_buff *skb; | |
2330 | int type, len; | |
2331 | u64 words[4]; | |
2332 | int i, dring; | |
2333 | ||
2334 | words[0] = le64_to_cpu(rxc->word1); | |
2335 | words[1] = le64_to_cpu(rxc->word2); | |
2336 | words[2] = le64_to_cpu(rxc->word3); | |
2337 | words[3] = le64_to_cpu(rxc->word4); | |
2338 | ||
2339 | /* don't touch if still owned by hw */ | |
2340 | type = CAS_VAL(RX_COMP1_TYPE, words[0]); | |
2341 | if (type == 0) | |
2342 | break; | |
2343 | ||
2344 | /* hw hasn't cleared the zero bit yet */ | |
2345 | if (words[3] & RX_COMP4_ZERO) { | |
2346 | break; | |
2347 | } | |
2348 | ||
2349 | /* get info on the packet */ | |
2350 | if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { | |
2351 | spin_lock(&cp->stat_lock[ring]); | |
2352 | cp->net_stats[ring].rx_errors++; | |
2353 | if (words[3] & RX_COMP4_LEN_MISMATCH) | |
2354 | cp->net_stats[ring].rx_length_errors++; | |
2355 | if (words[3] & RX_COMP4_BAD) | |
2356 | cp->net_stats[ring].rx_crc_errors++; | |
2357 | spin_unlock(&cp->stat_lock[ring]); | |
2358 | ||
2359 | /* We'll just return it to Cassini. */ | |
2360 | drop_it: | |
2361 | spin_lock(&cp->stat_lock[ring]); | |
2362 | ++cp->net_stats[ring].rx_dropped; | |
2363 | spin_unlock(&cp->stat_lock[ring]); | |
2364 | goto next; | |
2365 | } | |
2366 | ||
2367 | len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); | |
2368 | if (len < 0) { | |
2369 | ++drops; | |
2370 | goto drop_it; | |
2371 | } | |
2372 | ||
2373 | /* see if it's a flow re-assembly or not. the driver | |
2374 | * itself handles release back up. | |
2375 | */ | |
2376 | if (RX_DONT_BATCH || (type == 0x2)) { | |
2377 | /* non-reassm: these always get released */ | |
6aa20a22 | 2378 | cas_skb_release(skb); |
1f26dac3 DM |
2379 | } else { |
2380 | cas_rx_flow_pkt(cp, words, skb); | |
2381 | } | |
2382 | ||
2383 | spin_lock(&cp->stat_lock[ring]); | |
2384 | cp->net_stats[ring].rx_packets++; | |
2385 | cp->net_stats[ring].rx_bytes += len; | |
2386 | spin_unlock(&cp->stat_lock[ring]); | |
2387 | cp->dev->last_rx = jiffies; | |
2388 | ||
2389 | next: | |
2390 | npackets++; | |
2391 | ||
2392 | /* should it be released? */ | |
2393 | if (words[0] & RX_COMP1_RELEASE_HDR) { | |
2394 | i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); | |
2395 | dring = CAS_VAL(RX_INDEX_RING, i); | |
2396 | i = CAS_VAL(RX_INDEX_NUM, i); | |
2397 | cas_post_page(cp, dring, i); | |
2398 | } | |
6aa20a22 | 2399 | |
1f26dac3 DM |
2400 | if (words[0] & RX_COMP1_RELEASE_DATA) { |
2401 | i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); | |
2402 | dring = CAS_VAL(RX_INDEX_RING, i); | |
2403 | i = CAS_VAL(RX_INDEX_NUM, i); | |
2404 | cas_post_page(cp, dring, i); | |
2405 | } | |
2406 | ||
2407 | if (words[0] & RX_COMP1_RELEASE_NEXT) { | |
2408 | i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); | |
2409 | dring = CAS_VAL(RX_INDEX_RING, i); | |
2410 | i = CAS_VAL(RX_INDEX_NUM, i); | |
2411 | cas_post_page(cp, dring, i); | |
2412 | } | |
2413 | ||
2414 | /* skip to the next entry */ | |
6aa20a22 | 2415 | entry = RX_COMP_ENTRY(ring, entry + 1 + |
1f26dac3 DM |
2416 | CAS_VAL(RX_COMP1_SKIP, words[0])); |
2417 | #ifdef USE_NAPI | |
2418 | if (budget && (npackets >= budget)) | |
2419 | break; | |
2420 | #endif | |
2421 | } | |
2422 | cp->rx_new[ring] = entry; | |
2423 | ||
2424 | if (drops) | |
2425 | printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", | |
2426 | cp->dev->name); | |
2427 | return npackets; | |
2428 | } | |
2429 | ||
2430 | ||
2431 | /* put completion entries back on the ring */ | |
2432 | static void cas_post_rxcs_ringN(struct net_device *dev, | |
2433 | struct cas *cp, int ring) | |
2434 | { | |
2435 | struct cas_rx_comp *rxc = cp->init_rxcs[ring]; | |
2436 | int last, entry; | |
2437 | ||
2438 | last = cp->rx_cur[ring]; | |
6aa20a22 | 2439 | entry = cp->rx_new[ring]; |
1f26dac3 DM |
2440 | if (netif_msg_intr(cp)) |
2441 | printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n", | |
2442 | dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD), | |
2443 | entry); | |
6aa20a22 | 2444 | |
1f26dac3 DM |
2445 | /* zero and re-mark descriptors */ |
2446 | while (last != entry) { | |
2447 | cas_rxc_init(rxc + last); | |
2448 | last = RX_COMP_ENTRY(ring, last + 1); | |
2449 | } | |
2450 | cp->rx_cur[ring] = last; | |
2451 | ||
2452 | if (ring == 0) | |
2453 | writel(last, cp->regs + REG_RX_COMP_TAIL); | |
6aa20a22 | 2454 | else if (cp->cas_flags & CAS_FLAG_REG_PLUS) |
1f26dac3 DM |
2455 | writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); |
2456 | } | |
2457 | ||
2458 | ||
2459 | ||
6aa20a22 | 2460 | /* cassini can use all four PCI interrupts for the completion ring. |
1f26dac3 DM |
2461 | * rings 3 and 4 are identical |
2462 | */ | |
2463 | #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) | |
6aa20a22 | 2464 | static inline void cas_handle_irqN(struct net_device *dev, |
1f26dac3 DM |
2465 | struct cas *cp, const u32 status, |
2466 | const int ring) | |
2467 | { | |
6aa20a22 | 2468 | if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) |
1f26dac3 DM |
2469 | cas_post_rxcs_ringN(dev, cp, ring); |
2470 | } | |
2471 | ||
7d12e780 | 2472 | static irqreturn_t cas_interruptN(int irq, void *dev_id) |
1f26dac3 DM |
2473 | { |
2474 | struct net_device *dev = dev_id; | |
2475 | struct cas *cp = netdev_priv(dev); | |
2476 | unsigned long flags; | |
2477 | int ring; | |
2478 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); | |
2479 | ||
2480 | /* check for shared irq */ | |
2481 | if (status == 0) | |
2482 | return IRQ_NONE; | |
2483 | ||
2484 | ring = (irq == cp->pci_irq_INTC) ? 2 : 3; | |
2485 | spin_lock_irqsave(&cp->lock, flags); | |
2486 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | |
2487 | #ifdef USE_NAPI | |
2488 | cas_mask_intr(cp); | |
2489 | netif_rx_schedule(dev); | |
2490 | #else | |
2491 | cas_rx_ringN(cp, ring, 0); | |
2492 | #endif | |
2493 | status &= ~INTR_RX_DONE_ALT; | |
2494 | } | |
2495 | ||
2496 | if (status) | |
2497 | cas_handle_irqN(dev, cp, status, ring); | |
2498 | spin_unlock_irqrestore(&cp->lock, flags); | |
2499 | return IRQ_HANDLED; | |
2500 | } | |
2501 | #endif | |
2502 | ||
2503 | #ifdef USE_PCI_INTB | |
2504 | /* everything but rx packets */ | |
2505 | static inline void cas_handle_irq1(struct cas *cp, const u32 status) | |
2506 | { | |
2507 | if (status & INTR_RX_BUF_UNAVAIL_1) { | |
6aa20a22 | 2508 | /* Frame arrived, no free RX buffers available. |
1f26dac3 DM |
2509 | * NOTE: we can get this on a link transition. */ |
2510 | cas_post_rxds_ringN(cp, 1, 0); | |
2511 | spin_lock(&cp->stat_lock[1]); | |
2512 | cp->net_stats[1].rx_dropped++; | |
2513 | spin_unlock(&cp->stat_lock[1]); | |
2514 | } | |
2515 | ||
6aa20a22 JG |
2516 | if (status & INTR_RX_BUF_AE_1) |
2517 | cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - | |
1f26dac3 DM |
2518 | RX_AE_FREEN_VAL(1)); |
2519 | ||
2520 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | |
2521 | cas_post_rxcs_ringN(cp, 1); | |
2522 | } | |
2523 | ||
2524 | /* ring 2 handles a few more events than 3 and 4 */ | |
7d12e780 | 2525 | static irqreturn_t cas_interrupt1(int irq, void *dev_id) |
1f26dac3 DM |
2526 | { |
2527 | struct net_device *dev = dev_id; | |
2528 | struct cas *cp = netdev_priv(dev); | |
2529 | unsigned long flags; | |
2530 | u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | |
2531 | ||
2532 | /* check for shared interrupt */ | |
2533 | if (status == 0) | |
2534 | return IRQ_NONE; | |
2535 | ||
2536 | spin_lock_irqsave(&cp->lock, flags); | |
2537 | if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ | |
2538 | #ifdef USE_NAPI | |
2539 | cas_mask_intr(cp); | |
2540 | netif_rx_schedule(dev); | |
2541 | #else | |
2542 | cas_rx_ringN(cp, 1, 0); | |
2543 | #endif | |
2544 | status &= ~INTR_RX_DONE_ALT; | |
2545 | } | |
2546 | if (status) | |
2547 | cas_handle_irq1(cp, status); | |
2548 | spin_unlock_irqrestore(&cp->lock, flags); | |
2549 | return IRQ_HANDLED; | |
2550 | } | |
2551 | #endif | |
2552 | ||
2553 | static inline void cas_handle_irq(struct net_device *dev, | |
2554 | struct cas *cp, const u32 status) | |
2555 | { | |
2556 | /* housekeeping interrupts */ | |
2557 | if (status & INTR_ERROR_MASK) | |
2558 | cas_abnormal_irq(dev, cp, status); | |
2559 | ||
2560 | if (status & INTR_RX_BUF_UNAVAIL) { | |
6aa20a22 | 2561 | /* Frame arrived, no free RX buffers available. |
1f26dac3 DM |
2562 | * NOTE: we can get this on a link transition. |
2563 | */ | |
2564 | cas_post_rxds_ringN(cp, 0, 0); | |
2565 | spin_lock(&cp->stat_lock[0]); | |
2566 | cp->net_stats[0].rx_dropped++; | |
2567 | spin_unlock(&cp->stat_lock[0]); | |
2568 | } else if (status & INTR_RX_BUF_AE) { | |
2569 | cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - | |
2570 | RX_AE_FREEN_VAL(0)); | |
2571 | } | |
2572 | ||
2573 | if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) | |
2574 | cas_post_rxcs_ringN(dev, cp, 0); | |
2575 | } | |
2576 | ||
7d12e780 | 2577 | static irqreturn_t cas_interrupt(int irq, void *dev_id) |
1f26dac3 DM |
2578 | { |
2579 | struct net_device *dev = dev_id; | |
2580 | struct cas *cp = netdev_priv(dev); | |
2581 | unsigned long flags; | |
2582 | u32 status = readl(cp->regs + REG_INTR_STATUS); | |
2583 | ||
2584 | if (status == 0) | |
2585 | return IRQ_NONE; | |
2586 | ||
2587 | spin_lock_irqsave(&cp->lock, flags); | |
2588 | if (status & (INTR_TX_ALL | INTR_TX_INTME)) { | |
2589 | cas_tx(dev, cp, status); | |
2590 | status &= ~(INTR_TX_ALL | INTR_TX_INTME); | |
2591 | } | |
2592 | ||
2593 | if (status & INTR_RX_DONE) { | |
2594 | #ifdef USE_NAPI | |
2595 | cas_mask_intr(cp); | |
2596 | netif_rx_schedule(dev); | |
2597 | #else | |
2598 | cas_rx_ringN(cp, 0, 0); | |
2599 | #endif | |
2600 | status &= ~INTR_RX_DONE; | |
2601 | } | |
2602 | ||
2603 | if (status) | |
2604 | cas_handle_irq(dev, cp, status); | |
2605 | spin_unlock_irqrestore(&cp->lock, flags); | |
2606 | return IRQ_HANDLED; | |
2607 | } | |
2608 | ||
2609 | ||
2610 | #ifdef USE_NAPI | |
2611 | static int cas_poll(struct net_device *dev, int *budget) | |
2612 | { | |
2613 | struct cas *cp = netdev_priv(dev); | |
2614 | int i, enable_intr, todo, credits; | |
2615 | u32 status = readl(cp->regs + REG_INTR_STATUS); | |
2616 | unsigned long flags; | |
2617 | ||
2618 | spin_lock_irqsave(&cp->lock, flags); | |
2619 | cas_tx(dev, cp, status); | |
2620 | spin_unlock_irqrestore(&cp->lock, flags); | |
2621 | ||
2622 | /* NAPI rx packets. we spread the credits across all of the | |
2623 | * rxc rings | |
2624 | */ | |
2625 | todo = min(*budget, dev->quota); | |
2626 | ||
2627 | /* to make sure we're fair with the work we loop through each | |
6aa20a22 | 2628 | * ring N_RX_COMP_RING times with a request of |
1f26dac3 DM |
2629 | * todo / N_RX_COMP_RINGS |
2630 | */ | |
2631 | enable_intr = 1; | |
2632 | credits = 0; | |
2633 | for (i = 0; i < N_RX_COMP_RINGS; i++) { | |
2634 | int j; | |
2635 | for (j = 0; j < N_RX_COMP_RINGS; j++) { | |
2636 | credits += cas_rx_ringN(cp, j, todo / N_RX_COMP_RINGS); | |
2637 | if (credits >= todo) { | |
2638 | enable_intr = 0; | |
2639 | goto rx_comp; | |
2640 | } | |
2641 | } | |
2642 | } | |
2643 | ||
2644 | rx_comp: | |
2645 | *budget -= credits; | |
2646 | dev->quota -= credits; | |
2647 | ||
2648 | /* final rx completion */ | |
2649 | spin_lock_irqsave(&cp->lock, flags); | |
2650 | if (status) | |
2651 | cas_handle_irq(dev, cp, status); | |
2652 | ||
2653 | #ifdef USE_PCI_INTB | |
2654 | if (N_RX_COMP_RINGS > 1) { | |
2655 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); | |
2656 | if (status) | |
2657 | cas_handle_irq1(dev, cp, status); | |
2658 | } | |
2659 | #endif | |
2660 | ||
2661 | #ifdef USE_PCI_INTC | |
2662 | if (N_RX_COMP_RINGS > 2) { | |
2663 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); | |
2664 | if (status) | |
2665 | cas_handle_irqN(dev, cp, status, 2); | |
2666 | } | |
2667 | #endif | |
2668 | ||
2669 | #ifdef USE_PCI_INTD | |
2670 | if (N_RX_COMP_RINGS > 3) { | |
2671 | status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); | |
2672 | if (status) | |
2673 | cas_handle_irqN(dev, cp, status, 3); | |
2674 | } | |
2675 | #endif | |
2676 | spin_unlock_irqrestore(&cp->lock, flags); | |
2677 | if (enable_intr) { | |
2678 | netif_rx_complete(dev); | |
2679 | cas_unmask_intr(cp); | |
2680 | return 0; | |
2681 | } | |
2682 | return 1; | |
2683 | } | |
2684 | #endif | |
2685 | ||
2686 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
2687 | static void cas_netpoll(struct net_device *dev) | |
2688 | { | |
2689 | struct cas *cp = netdev_priv(dev); | |
2690 | ||
2691 | cas_disable_irq(cp, 0); | |
7d12e780 | 2692 | cas_interrupt(cp->pdev->irq, dev); |
1f26dac3 DM |
2693 | cas_enable_irq(cp, 0); |
2694 | ||
2695 | #ifdef USE_PCI_INTB | |
2696 | if (N_RX_COMP_RINGS > 1) { | |
2697 | /* cas_interrupt1(); */ | |
2698 | } | |
2699 | #endif | |
2700 | #ifdef USE_PCI_INTC | |
2701 | if (N_RX_COMP_RINGS > 2) { | |
2702 | /* cas_interruptN(); */ | |
2703 | } | |
2704 | #endif | |
2705 | #ifdef USE_PCI_INTD | |
2706 | if (N_RX_COMP_RINGS > 3) { | |
2707 | /* cas_interruptN(); */ | |
2708 | } | |
2709 | #endif | |
2710 | } | |
2711 | #endif | |
2712 | ||
2713 | static void cas_tx_timeout(struct net_device *dev) | |
2714 | { | |
2715 | struct cas *cp = netdev_priv(dev); | |
2716 | ||
2717 | printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); | |
2718 | if (!cp->hw_running) { | |
2719 | printk("%s: hrm.. hw not running!\n", dev->name); | |
2720 | return; | |
2721 | } | |
2722 | ||
2723 | printk(KERN_ERR "%s: MIF_STATE[%08x]\n", | |
2724 | dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE)); | |
2725 | ||
2726 | printk(KERN_ERR "%s: MAC_STATE[%08x]\n", | |
2727 | dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE)); | |
2728 | ||
2729 | printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] " | |
2730 | "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", | |
2731 | dev->name, | |
2732 | readl(cp->regs + REG_TX_CFG), | |
2733 | readl(cp->regs + REG_MAC_TX_STATUS), | |
2734 | readl(cp->regs + REG_MAC_TX_CFG), | |
2735 | readl(cp->regs + REG_TX_FIFO_PKT_CNT), | |
2736 | readl(cp->regs + REG_TX_FIFO_WRITE_PTR), | |
2737 | readl(cp->regs + REG_TX_FIFO_READ_PTR), | |
2738 | readl(cp->regs + REG_TX_SM_1), | |
2739 | readl(cp->regs + REG_TX_SM_2)); | |
2740 | ||
2741 | printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n", | |
2742 | dev->name, | |
2743 | readl(cp->regs + REG_RX_CFG), | |
2744 | readl(cp->regs + REG_MAC_RX_STATUS), | |
2745 | readl(cp->regs + REG_MAC_RX_CFG)); | |
2746 | ||
2747 | printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n", | |
2748 | dev->name, | |
2749 | readl(cp->regs + REG_HP_STATE_MACHINE), | |
2750 | readl(cp->regs + REG_HP_STATUS0), | |
2751 | readl(cp->regs + REG_HP_STATUS1), | |
2752 | readl(cp->regs + REG_HP_STATUS2)); | |
2753 | ||
2754 | #if 1 | |
2755 | atomic_inc(&cp->reset_task_pending); | |
2756 | atomic_inc(&cp->reset_task_pending_all); | |
2757 | schedule_work(&cp->reset_task); | |
2758 | #else | |
2759 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | |
2760 | schedule_work(&cp->reset_task); | |
2761 | #endif | |
2762 | } | |
2763 | ||
2764 | static inline int cas_intme(int ring, int entry) | |
2765 | { | |
2766 | /* Algorithm: IRQ every 1/2 of descriptors. */ | |
2767 | if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) | |
2768 | return 1; | |
2769 | return 0; | |
2770 | } | |
2771 | ||
2772 | ||
2773 | static void cas_write_txd(struct cas *cp, int ring, int entry, | |
2774 | dma_addr_t mapping, int len, u64 ctrl, int last) | |
2775 | { | |
2776 | struct cas_tx_desc *txd = cp->init_txds[ring] + entry; | |
2777 | ||
2778 | ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); | |
2779 | if (cas_intme(ring, entry)) | |
2780 | ctrl |= TX_DESC_INTME; | |
2781 | if (last) | |
2782 | ctrl |= TX_DESC_EOF; | |
2783 | txd->control = cpu_to_le64(ctrl); | |
2784 | txd->buffer = cpu_to_le64(mapping); | |
2785 | } | |
2786 | ||
6aa20a22 | 2787 | static inline void *tx_tiny_buf(struct cas *cp, const int ring, |
1f26dac3 DM |
2788 | const int entry) |
2789 | { | |
2790 | return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; | |
2791 | } | |
2792 | ||
6aa20a22 | 2793 | static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, |
1f26dac3 DM |
2794 | const int entry, const int tentry) |
2795 | { | |
2796 | cp->tx_tiny_use[ring][tentry].nbufs++; | |
2797 | cp->tx_tiny_use[ring][entry].used = 1; | |
2798 | return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; | |
2799 | } | |
2800 | ||
6aa20a22 | 2801 | static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, |
1f26dac3 DM |
2802 | struct sk_buff *skb) |
2803 | { | |
2804 | struct net_device *dev = cp->dev; | |
2805 | int entry, nr_frags, frag, tabort, tentry; | |
2806 | dma_addr_t mapping; | |
2807 | unsigned long flags; | |
2808 | u64 ctrl; | |
2809 | u32 len; | |
2810 | ||
2811 | spin_lock_irqsave(&cp->tx_lock[ring], flags); | |
2812 | ||
2813 | /* This is a hard error, log it. */ | |
6aa20a22 | 2814 | if (TX_BUFFS_AVAIL(cp, ring) <= |
1f26dac3 DM |
2815 | CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { |
2816 | netif_stop_queue(dev); | |
2817 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | |
2818 | printk(KERN_ERR PFX "%s: BUG! Tx Ring full when " | |
2819 | "queue awake!\n", dev->name); | |
2820 | return 1; | |
2821 | } | |
2822 | ||
2823 | ctrl = 0; | |
84fa7933 | 2824 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
1f26dac3 DM |
2825 | u64 csum_start_off, csum_stuff_off; |
2826 | ||
2827 | csum_start_off = (u64) (skb->h.raw - skb->data); | |
2828 | csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data); | |
2829 | ||
6aa20a22 | 2830 | ctrl = TX_DESC_CSUM_EN | |
1f26dac3 DM |
2831 | CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | |
2832 | CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); | |
2833 | } | |
2834 | ||
2835 | entry = cp->tx_new[ring]; | |
2836 | cp->tx_skbs[ring][entry] = skb; | |
2837 | ||
2838 | nr_frags = skb_shinfo(skb)->nr_frags; | |
2839 | len = skb_headlen(skb); | |
2840 | mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), | |
2841 | offset_in_page(skb->data), len, | |
2842 | PCI_DMA_TODEVICE); | |
2843 | ||
2844 | tentry = entry; | |
2845 | tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); | |
2846 | if (unlikely(tabort)) { | |
2847 | /* NOTE: len is always > tabort */ | |
6aa20a22 | 2848 | cas_write_txd(cp, ring, entry, mapping, len - tabort, |
1f26dac3 DM |
2849 | ctrl | TX_DESC_SOF, 0); |
2850 | entry = TX_DESC_NEXT(ring, entry); | |
2851 | ||
6aa20a22 | 2852 | memcpy(tx_tiny_buf(cp, ring, entry), skb->data + |
1f26dac3 DM |
2853 | len - tabort, tabort); |
2854 | mapping = tx_tiny_map(cp, ring, entry, tentry); | |
2855 | cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, | |
2856 | (nr_frags == 0)); | |
2857 | } else { | |
6aa20a22 | 2858 | cas_write_txd(cp, ring, entry, mapping, len, ctrl | |
1f26dac3 DM |
2859 | TX_DESC_SOF, (nr_frags == 0)); |
2860 | } | |
2861 | entry = TX_DESC_NEXT(ring, entry); | |
2862 | ||
2863 | for (frag = 0; frag < nr_frags; frag++) { | |
2864 | skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; | |
2865 | ||
2866 | len = fragp->size; | |
2867 | mapping = pci_map_page(cp->pdev, fragp->page, | |
2868 | fragp->page_offset, len, | |
2869 | PCI_DMA_TODEVICE); | |
2870 | ||
2871 | tabort = cas_calc_tabort(cp, fragp->page_offset, len); | |
2872 | if (unlikely(tabort)) { | |
2873 | void *addr; | |
2874 | ||
2875 | /* NOTE: len is always > tabort */ | |
2876 | cas_write_txd(cp, ring, entry, mapping, len - tabort, | |
2877 | ctrl, 0); | |
2878 | entry = TX_DESC_NEXT(ring, entry); | |
6aa20a22 | 2879 | |
1f26dac3 DM |
2880 | addr = cas_page_map(fragp->page); |
2881 | memcpy(tx_tiny_buf(cp, ring, entry), | |
6aa20a22 | 2882 | addr + fragp->page_offset + len - tabort, |
1f26dac3 DM |
2883 | tabort); |
2884 | cas_page_unmap(addr); | |
2885 | mapping = tx_tiny_map(cp, ring, entry, tentry); | |
2886 | len = tabort; | |
2887 | } | |
2888 | ||
2889 | cas_write_txd(cp, ring, entry, mapping, len, ctrl, | |
2890 | (frag + 1 == nr_frags)); | |
2891 | entry = TX_DESC_NEXT(ring, entry); | |
2892 | } | |
2893 | ||
2894 | cp->tx_new[ring] = entry; | |
2895 | if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) | |
2896 | netif_stop_queue(dev); | |
2897 | ||
2898 | if (netif_msg_tx_queued(cp)) | |
2899 | printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, " | |
2900 | "avail %d\n", | |
6aa20a22 | 2901 | dev->name, ring, entry, skb->len, |
1f26dac3 DM |
2902 | TX_BUFFS_AVAIL(cp, ring)); |
2903 | writel(entry, cp->regs + REG_TX_KICKN(ring)); | |
2904 | spin_unlock_irqrestore(&cp->tx_lock[ring], flags); | |
2905 | return 0; | |
6aa20a22 | 2906 | } |
1f26dac3 DM |
2907 | |
2908 | static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
2909 | { | |
2910 | struct cas *cp = netdev_priv(dev); | |
2911 | ||
2912 | /* this is only used as a load-balancing hint, so it doesn't | |
2913 | * need to be SMP safe | |
2914 | */ | |
6aa20a22 | 2915 | static int ring; |
1f26dac3 | 2916 | |
5b057c6b | 2917 | if (skb_padto(skb, cp->min_frame_size)) |
1f26dac3 DM |
2918 | return 0; |
2919 | ||
2920 | /* XXX: we need some higher-level QoS hooks to steer packets to | |
2921 | * individual queues. | |
2922 | */ | |
2923 | if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) | |
2924 | return 1; | |
2925 | dev->trans_start = jiffies; | |
2926 | return 0; | |
2927 | } | |
2928 | ||
2929 | static void cas_init_tx_dma(struct cas *cp) | |
2930 | { | |
2931 | u64 desc_dma = cp->block_dvma; | |
2932 | unsigned long off; | |
2933 | u32 val; | |
2934 | int i; | |
2935 | ||
2936 | /* set up tx completion writeback registers. must be 8-byte aligned */ | |
2937 | #ifdef USE_TX_COMPWB | |
2938 | off = offsetof(struct cas_init_block, tx_compwb); | |
2939 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); | |
2940 | writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); | |
2941 | #endif | |
2942 | ||
2943 | /* enable completion writebacks, enable paced mode, | |
2944 | * disable read pipe, and disable pre-interrupt compwbs | |
2945 | */ | |
6aa20a22 | 2946 | val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | |
1f26dac3 | 2947 | TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | |
6aa20a22 | 2948 | TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | |
1f26dac3 DM |
2949 | TX_CFG_INTR_COMPWB_DIS; |
2950 | ||
2951 | /* write out tx ring info and tx desc bases */ | |
2952 | for (i = 0; i < MAX_TX_RINGS; i++) { | |
6aa20a22 | 2953 | off = (unsigned long) cp->init_txds[i] - |
1f26dac3 DM |
2954 | (unsigned long) cp->init_block; |
2955 | ||
2956 | val |= CAS_TX_RINGN_BASE(i); | |
2957 | writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); | |
2958 | writel((desc_dma + off) & 0xffffffff, cp->regs + | |
2959 | REG_TX_DBN_LOW(i)); | |
2960 | /* don't zero out the kick register here as the system | |
2961 | * will wedge | |
2962 | */ | |
2963 | } | |
2964 | writel(val, cp->regs + REG_TX_CFG); | |
2965 | ||
2966 | /* program max burst sizes. these numbers should be different | |
2967 | * if doing QoS. | |
2968 | */ | |
2969 | #ifdef USE_QOS | |
2970 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); | |
2971 | writel(0x1600, cp->regs + REG_TX_MAXBURST_1); | |
2972 | writel(0x2400, cp->regs + REG_TX_MAXBURST_2); | |
2973 | writel(0x4800, cp->regs + REG_TX_MAXBURST_3); | |
2974 | #else | |
2975 | writel(0x800, cp->regs + REG_TX_MAXBURST_0); | |
2976 | writel(0x800, cp->regs + REG_TX_MAXBURST_1); | |
2977 | writel(0x800, cp->regs + REG_TX_MAXBURST_2); | |
2978 | writel(0x800, cp->regs + REG_TX_MAXBURST_3); | |
2979 | #endif | |
2980 | } | |
2981 | ||
2982 | /* Must be invoked under cp->lock. */ | |
2983 | static inline void cas_init_dma(struct cas *cp) | |
2984 | { | |
2985 | cas_init_tx_dma(cp); | |
2986 | cas_init_rx_dma(cp); | |
2987 | } | |
2988 | ||
2989 | /* Must be invoked under cp->lock. */ | |
2990 | static u32 cas_setup_multicast(struct cas *cp) | |
2991 | { | |
2992 | u32 rxcfg = 0; | |
2993 | int i; | |
6aa20a22 | 2994 | |
1f26dac3 DM |
2995 | if (cp->dev->flags & IFF_PROMISC) { |
2996 | rxcfg |= MAC_RX_CFG_PROMISC_EN; | |
2997 | ||
2998 | } else if (cp->dev->flags & IFF_ALLMULTI) { | |
2999 | for (i=0; i < 16; i++) | |
3000 | writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); | |
3001 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | |
3002 | ||
3003 | } else { | |
3004 | u16 hash_table[16]; | |
3005 | u32 crc; | |
3006 | struct dev_mc_list *dmi = cp->dev->mc_list; | |
3007 | int i; | |
3008 | ||
3009 | /* use the alternate mac address registers for the | |
3010 | * first 15 multicast addresses | |
3011 | */ | |
3012 | for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) { | |
3013 | if (!dmi) { | |
3014 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0)); | |
3015 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1)); | |
3016 | writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2)); | |
3017 | continue; | |
3018 | } | |
6aa20a22 | 3019 | writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5], |
1f26dac3 | 3020 | cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
6aa20a22 | 3021 | writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3], |
1f26dac3 | 3022 | cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
6aa20a22 | 3023 | writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1], |
1f26dac3 DM |
3024 | cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
3025 | dmi = dmi->next; | |
3026 | } | |
3027 | ||
6aa20a22 | 3028 | /* use hw hash table for the next series of |
1f26dac3 DM |
3029 | * multicast addresses |
3030 | */ | |
3031 | memset(hash_table, 0, sizeof(hash_table)); | |
3032 | while (dmi) { | |
3033 | crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr); | |
3034 | crc >>= 24; | |
3035 | hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); | |
3036 | dmi = dmi->next; | |
3037 | } | |
3038 | for (i=0; i < 16; i++) | |
6aa20a22 | 3039 | writel(hash_table[i], cp->regs + |
1f26dac3 DM |
3040 | REG_MAC_HASH_TABLEN(i)); |
3041 | rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; | |
3042 | } | |
3043 | ||
3044 | return rxcfg; | |
3045 | } | |
3046 | ||
3047 | /* must be invoked under cp->stat_lock[N_TX_RINGS] */ | |
3048 | static void cas_clear_mac_err(struct cas *cp) | |
3049 | { | |
3050 | writel(0, cp->regs + REG_MAC_COLL_NORMAL); | |
3051 | writel(0, cp->regs + REG_MAC_COLL_FIRST); | |
3052 | writel(0, cp->regs + REG_MAC_COLL_EXCESS); | |
3053 | writel(0, cp->regs + REG_MAC_COLL_LATE); | |
3054 | writel(0, cp->regs + REG_MAC_TIMER_DEFER); | |
3055 | writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK); | |
3056 | writel(0, cp->regs + REG_MAC_RECV_FRAME); | |
3057 | writel(0, cp->regs + REG_MAC_LEN_ERR); | |
3058 | writel(0, cp->regs + REG_MAC_ALIGN_ERR); | |
3059 | writel(0, cp->regs + REG_MAC_FCS_ERR); | |
3060 | writel(0, cp->regs + REG_MAC_RX_CODE_ERR); | |
3061 | } | |
3062 | ||
3063 | ||
3064 | static void cas_mac_reset(struct cas *cp) | |
3065 | { | |
3066 | int i; | |
3067 | ||
3068 | /* do both TX and RX reset */ | |
3069 | writel(0x1, cp->regs + REG_MAC_TX_RESET); | |
3070 | writel(0x1, cp->regs + REG_MAC_RX_RESET); | |
3071 | ||
3072 | /* wait for TX */ | |
3073 | i = STOP_TRIES; | |
3074 | while (i-- > 0) { | |
3075 | if (readl(cp->regs + REG_MAC_TX_RESET) == 0) | |
3076 | break; | |
3077 | udelay(10); | |
3078 | } | |
3079 | ||
3080 | /* wait for RX */ | |
3081 | i = STOP_TRIES; | |
3082 | while (i-- > 0) { | |
3083 | if (readl(cp->regs + REG_MAC_RX_RESET) == 0) | |
3084 | break; | |
3085 | udelay(10); | |
3086 | } | |
3087 | ||
3088 | if (readl(cp->regs + REG_MAC_TX_RESET) | | |
3089 | readl(cp->regs + REG_MAC_RX_RESET)) | |
3090 | printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n", | |
3091 | cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET), | |
3092 | readl(cp->regs + REG_MAC_RX_RESET), | |
3093 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | |
3094 | } | |
3095 | ||
3096 | ||
3097 | /* Must be invoked under cp->lock. */ | |
3098 | static void cas_init_mac(struct cas *cp) | |
3099 | { | |
3100 | unsigned char *e = &cp->dev->dev_addr[0]; | |
3101 | int i; | |
3102 | #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE | |
3103 | u32 rxcfg; | |
3104 | #endif | |
3105 | cas_mac_reset(cp); | |
3106 | ||
3107 | /* setup core arbitration weight register */ | |
3108 | writel(CAWR_RR_DIS, cp->regs + REG_CAWR); | |
3109 | ||
3110 | /* XXX Use pci_dma_burst_advice() */ | |
3111 | #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) | |
3112 | /* set the infinite burst register for chips that don't have | |
3113 | * pci issues. | |
3114 | */ | |
3115 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0) | |
3116 | writel(INF_BURST_EN, cp->regs + REG_INF_BURST); | |
3117 | #endif | |
3118 | ||
3119 | writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE); | |
3120 | ||
3121 | writel(0x00, cp->regs + REG_MAC_IPG0); | |
3122 | writel(0x08, cp->regs + REG_MAC_IPG1); | |
3123 | writel(0x04, cp->regs + REG_MAC_IPG2); | |
6aa20a22 | 3124 | |
1f26dac3 | 3125 | /* change later for 802.3z */ |
6aa20a22 | 3126 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); |
1f26dac3 DM |
3127 | |
3128 | /* min frame + FCS */ | |
3129 | writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN); | |
3130 | ||
3131 | /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we | |
6aa20a22 | 3132 | * specify the maximum frame size to prevent RX tag errors on |
1f26dac3 DM |
3133 | * oversized frames. |
3134 | */ | |
3135 | writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) | | |
6aa20a22 JG |
3136 | CAS_BASE(MAC_FRAMESIZE_MAX_FRAME, |
3137 | (CAS_MAX_MTU + ETH_HLEN + 4 + 4)), | |
1f26dac3 DM |
3138 | cp->regs + REG_MAC_FRAMESIZE_MAX); |
3139 | ||
6aa20a22 | 3140 | /* NOTE: crc_size is used as a surrogate for half-duplex. |
1f26dac3 DM |
3141 | * workaround saturn half-duplex issue by increasing preamble |
3142 | * size to 65 bytes. | |
3143 | */ | |
3144 | if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size) | |
3145 | writel(0x41, cp->regs + REG_MAC_PA_SIZE); | |
3146 | else | |
3147 | writel(0x07, cp->regs + REG_MAC_PA_SIZE); | |
3148 | writel(0x04, cp->regs + REG_MAC_JAM_SIZE); | |
3149 | writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT); | |
3150 | writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE); | |
3151 | ||
3152 | writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED); | |
3153 | ||
3154 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0); | |
3155 | writel(0, cp->regs + REG_MAC_ADDR_FILTER1); | |
3156 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2); | |
3157 | writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK); | |
3158 | writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK); | |
3159 | ||
3160 | /* setup mac address in perfect filter array */ | |
3161 | for (i = 0; i < 45; i++) | |
3162 | writel(0x0, cp->regs + REG_MAC_ADDRN(i)); | |
3163 | ||
3164 | writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0)); | |
3165 | writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1)); | |
3166 | writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2)); | |
3167 | ||
3168 | writel(0x0001, cp->regs + REG_MAC_ADDRN(42)); | |
3169 | writel(0xc200, cp->regs + REG_MAC_ADDRN(43)); | |
3170 | writel(0x0180, cp->regs + REG_MAC_ADDRN(44)); | |
3171 | ||
3172 | #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE | |
3173 | cp->mac_rx_cfg = cas_setup_multicast(cp); | |
3174 | #else | |
3175 | /* WTZ: Do what Adrian did in cas_set_multicast. Doing | |
3176 | * a writel does not seem to be necessary because Cassini | |
3177 | * seems to preserve the configuration when we do the reset. | |
3178 | * If the chip is in trouble, though, it is not clear if we | |
3179 | * can really count on this behavior. cas_set_multicast uses | |
3180 | * spin_lock_irqsave, but we are called only in cas_init_hw and | |
3181 | * cas_init_hw is protected by cas_lock_all, which calls | |
3182 | * spin_lock_irq (so it doesn't need to save the flags, and | |
6aa20a22 | 3183 | * we should be OK for the writel, as that is the only |
1f26dac3 DM |
3184 | * difference). |
3185 | */ | |
3186 | cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp); | |
3187 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | |
3188 | #endif | |
3189 | spin_lock(&cp->stat_lock[N_TX_RINGS]); | |
3190 | cas_clear_mac_err(cp); | |
3191 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); | |
3192 | ||
3193 | /* Setup MAC interrupts. We want to get all of the interesting | |
3194 | * counter expiration events, but we do not want to hear about | |
3195 | * normal rx/tx as the DMA engine tells us that. | |
3196 | */ | |
3197 | writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK); | |
3198 | writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); | |
3199 | ||
3200 | /* Don't enable even the PAUSE interrupts for now, we | |
3201 | * make no use of those events other than to record them. | |
3202 | */ | |
3203 | writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK); | |
3204 | } | |
3205 | ||
3206 | /* Must be invoked under cp->lock. */ | |
3207 | static void cas_init_pause_thresholds(struct cas *cp) | |
3208 | { | |
3209 | /* Calculate pause thresholds. Setting the OFF threshold to the | |
3210 | * full RX fifo size effectively disables PAUSE generation | |
3211 | */ | |
3212 | if (cp->rx_fifo_size <= (2 * 1024)) { | |
3213 | cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size; | |
3214 | } else { | |
3215 | int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63; | |
3216 | if (max_frame * 3 > cp->rx_fifo_size) { | |
3217 | cp->rx_pause_off = 7104; | |
3218 | cp->rx_pause_on = 960; | |
3219 | } else { | |
3220 | int off = (cp->rx_fifo_size - (max_frame * 2)); | |
3221 | int on = off - max_frame; | |
3222 | cp->rx_pause_off = off; | |
3223 | cp->rx_pause_on = on; | |
3224 | } | |
3225 | } | |
3226 | } | |
3227 | ||
3228 | static int cas_vpd_match(const void __iomem *p, const char *str) | |
3229 | { | |
3230 | int len = strlen(str) + 1; | |
3231 | int i; | |
6aa20a22 | 3232 | |
1f26dac3 DM |
3233 | for (i = 0; i < len; i++) { |
3234 | if (readb(p + i) != str[i]) | |
3235 | return 0; | |
3236 | } | |
3237 | return 1; | |
3238 | } | |
3239 | ||
3240 | ||
3241 | /* get the mac address by reading the vpd information in the rom. | |
3242 | * also get the phy type and determine if there's an entropy generator. | |
3243 | * NOTE: this is a bit convoluted for the following reasons: | |
3244 | * 1) vpd info has order-dependent mac addresses for multinic cards | |
3245 | * 2) the only way to determine the nic order is to use the slot | |
3246 | * number. | |
3247 | * 3) fiber cards don't have bridges, so their slot numbers don't | |
3248 | * mean anything. | |
6aa20a22 | 3249 | * 4) we don't actually know we have a fiber card until after |
1f26dac3 DM |
3250 | * the mac addresses are parsed. |
3251 | */ | |
3252 | static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr, | |
3253 | const int offset) | |
3254 | { | |
3255 | void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START; | |
3256 | void __iomem *base, *kstart; | |
3257 | int i, len; | |
3258 | int found = 0; | |
3259 | #define VPD_FOUND_MAC 0x01 | |
3260 | #define VPD_FOUND_PHY 0x02 | |
3261 | ||
3262 | int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */ | |
3263 | int mac_off = 0; | |
3264 | ||
3265 | /* give us access to the PROM */ | |
3266 | writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD, | |
3267 | cp->regs + REG_BIM_LOCAL_DEV_EN); | |
3268 | ||
3269 | /* check for an expansion rom */ | |
3270 | if (readb(p) != 0x55 || readb(p + 1) != 0xaa) | |
3271 | goto use_random_mac_addr; | |
3272 | ||
3273 | /* search for beginning of vpd */ | |
46d7031e | 3274 | base = NULL; |
1f26dac3 DM |
3275 | for (i = 2; i < EXPANSION_ROM_SIZE; i++) { |
3276 | /* check for PCIR */ | |
3277 | if ((readb(p + i + 0) == 0x50) && | |
3278 | (readb(p + i + 1) == 0x43) && | |
3279 | (readb(p + i + 2) == 0x49) && | |
3280 | (readb(p + i + 3) == 0x52)) { | |
6aa20a22 | 3281 | base = p + (readb(p + i + 8) | |
1f26dac3 DM |
3282 | (readb(p + i + 9) << 8)); |
3283 | break; | |
6aa20a22 | 3284 | } |
1f26dac3 DM |
3285 | } |
3286 | ||
3287 | if (!base || (readb(base) != 0x82)) | |
3288 | goto use_random_mac_addr; | |
6aa20a22 | 3289 | |
1f26dac3 DM |
3290 | i = (readb(base + 1) | (readb(base + 2) << 8)) + 3; |
3291 | while (i < EXPANSION_ROM_SIZE) { | |
3292 | if (readb(base + i) != 0x90) /* no vpd found */ | |
3293 | goto use_random_mac_addr; | |
3294 | ||
3295 | /* found a vpd field */ | |
3296 | len = readb(base + i + 1) | (readb(base + i + 2) << 8); | |
3297 | ||
3298 | /* extract keywords */ | |
3299 | kstart = base + i + 3; | |
3300 | p = kstart; | |
3301 | while ((p - kstart) < len) { | |
3302 | int klen = readb(p + 2); | |
3303 | int j; | |
3304 | char type; | |
3305 | ||
3306 | p += 3; | |
6aa20a22 | 3307 | |
1f26dac3 DM |
3308 | /* look for the following things: |
3309 | * -- correct length == 29 | |
6aa20a22 JG |
3310 | * 3 (type) + 2 (size) + |
3311 | * 18 (strlen("local-mac-address") + 1) + | |
3312 | * 6 (mac addr) | |
1f26dac3 DM |
3313 | * -- VPD Instance 'I' |
3314 | * -- VPD Type Bytes 'B' | |
3315 | * -- VPD data length == 6 | |
3316 | * -- property string == local-mac-address | |
6aa20a22 | 3317 | * |
1f26dac3 | 3318 | * -- correct length == 24 |
6aa20a22 JG |
3319 | * 3 (type) + 2 (size) + |
3320 | * 12 (strlen("entropy-dev") + 1) + | |
1f26dac3 DM |
3321 | * 7 (strlen("vms110") + 1) |
3322 | * -- VPD Instance 'I' | |
3323 | * -- VPD Type String 'B' | |
3324 | * -- VPD data length == 7 | |
3325 | * -- property string == entropy-dev | |
3326 | * | |
3327 | * -- correct length == 18 | |
6aa20a22 JG |
3328 | * 3 (type) + 2 (size) + |
3329 | * 9 (strlen("phy-type") + 1) + | |
1f26dac3 DM |
3330 | * 4 (strlen("pcs") + 1) |
3331 | * -- VPD Instance 'I' | |
3332 | * -- VPD Type String 'S' | |
3333 | * -- VPD data length == 4 | |
3334 | * -- property string == phy-type | |
6aa20a22 | 3335 | * |
1f26dac3 | 3336 | * -- correct length == 23 |
6aa20a22 JG |
3337 | * 3 (type) + 2 (size) + |
3338 | * 14 (strlen("phy-interface") + 1) + | |
1f26dac3 DM |
3339 | * 4 (strlen("pcs") + 1) |
3340 | * -- VPD Instance 'I' | |
3341 | * -- VPD Type String 'S' | |
3342 | * -- VPD data length == 4 | |
3343 | * -- property string == phy-interface | |
3344 | */ | |
3345 | if (readb(p) != 'I') | |
3346 | goto next; | |
3347 | ||
3348 | /* finally, check string and length */ | |
3349 | type = readb(p + 3); | |
3350 | if (type == 'B') { | |
3351 | if ((klen == 29) && readb(p + 4) == 6 && | |
6aa20a22 | 3352 | cas_vpd_match(p + 5, |
1f26dac3 | 3353 | "local-mac-address")) { |
6aa20a22 | 3354 | if (mac_off++ > offset) |
1f26dac3 DM |
3355 | goto next; |
3356 | ||
3357 | /* set mac address */ | |
6aa20a22 JG |
3358 | for (j = 0; j < 6; j++) |
3359 | dev_addr[j] = | |
1f26dac3 DM |
3360 | readb(p + 23 + j); |
3361 | goto found_mac; | |
3362 | } | |
3363 | } | |
3364 | ||
3365 | if (type != 'S') | |
3366 | goto next; | |
3367 | ||
3368 | #ifdef USE_ENTROPY_DEV | |
6aa20a22 | 3369 | if ((klen == 24) && |
1f26dac3 DM |
3370 | cas_vpd_match(p + 5, "entropy-dev") && |
3371 | cas_vpd_match(p + 17, "vms110")) { | |
3372 | cp->cas_flags |= CAS_FLAG_ENTROPY_DEV; | |
3373 | goto next; | |
3374 | } | |
3375 | #endif | |
3376 | ||
3377 | if (found & VPD_FOUND_PHY) | |
3378 | goto next; | |
3379 | ||
3380 | if ((klen == 18) && readb(p + 4) == 4 && | |
3381 | cas_vpd_match(p + 5, "phy-type")) { | |
3382 | if (cas_vpd_match(p + 14, "pcs")) { | |
3383 | phy_type = CAS_PHY_SERDES; | |
3384 | goto found_phy; | |
3385 | } | |
3386 | } | |
6aa20a22 | 3387 | |
1f26dac3 DM |
3388 | if ((klen == 23) && readb(p + 4) == 4 && |
3389 | cas_vpd_match(p + 5, "phy-interface")) { | |
3390 | if (cas_vpd_match(p + 19, "pcs")) { | |
3391 | phy_type = CAS_PHY_SERDES; | |
3392 | goto found_phy; | |
3393 | } | |
3394 | } | |
3395 | found_mac: | |
3396 | found |= VPD_FOUND_MAC; | |
3397 | goto next; | |
3398 | ||
3399 | found_phy: | |
3400 | found |= VPD_FOUND_PHY; | |
3401 | ||
3402 | next: | |
3403 | p += klen; | |
3404 | } | |
3405 | i += len + 3; | |
3406 | } | |
3407 | ||
3408 | use_random_mac_addr: | |
3409 | if (found & VPD_FOUND_MAC) | |
3410 | goto done; | |
3411 | ||
3412 | /* Sun MAC prefix then 3 random bytes. */ | |
3413 | printk(PFX "MAC address not found in ROM VPD\n"); | |
3414 | dev_addr[0] = 0x08; | |
3415 | dev_addr[1] = 0x00; | |
3416 | dev_addr[2] = 0x20; | |
3417 | get_random_bytes(dev_addr + 3, 3); | |
3418 | ||
3419 | done: | |
3420 | writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN); | |
3421 | return phy_type; | |
3422 | } | |
3423 | ||
3424 | /* check pci invariants */ | |
3425 | static void cas_check_pci_invariants(struct cas *cp) | |
3426 | { | |
3427 | struct pci_dev *pdev = cp->pdev; | |
3428 | u8 rev; | |
3429 | ||
3430 | cp->cas_flags = 0; | |
3431 | pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); | |
3432 | if ((pdev->vendor == PCI_VENDOR_ID_SUN) && | |
3433 | (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) { | |
3434 | if (rev >= CAS_ID_REVPLUS) | |
3435 | cp->cas_flags |= CAS_FLAG_REG_PLUS; | |
3436 | if (rev < CAS_ID_REVPLUS02u) | |
3437 | cp->cas_flags |= CAS_FLAG_TARGET_ABORT; | |
3438 | ||
3439 | /* Original Cassini supports HW CSUM, but it's not | |
3440 | * enabled by default as it can trigger TX hangs. | |
3441 | */ | |
3442 | if (rev < CAS_ID_REV2) | |
3443 | cp->cas_flags |= CAS_FLAG_NO_HW_CSUM; | |
3444 | } else { | |
3445 | /* Only sun has original cassini chips. */ | |
3446 | cp->cas_flags |= CAS_FLAG_REG_PLUS; | |
3447 | ||
3448 | /* We use a flag because the same phy might be externally | |
3449 | * connected. | |
3450 | */ | |
3451 | if ((pdev->vendor == PCI_VENDOR_ID_NS) && | |
3452 | (pdev->device == PCI_DEVICE_ID_NS_SATURN)) | |
3453 | cp->cas_flags |= CAS_FLAG_SATURN; | |
3454 | } | |
3455 | } | |
3456 | ||
3457 | ||
3458 | static int cas_check_invariants(struct cas *cp) | |
3459 | { | |
3460 | struct pci_dev *pdev = cp->pdev; | |
3461 | u32 cfg; | |
3462 | int i; | |
3463 | ||
3464 | /* get page size for rx buffers. */ | |
6aa20a22 | 3465 | cp->page_order = 0; |
1f26dac3 DM |
3466 | #ifdef USE_PAGE_ORDER |
3467 | if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) { | |
3468 | /* see if we can allocate larger pages */ | |
6aa20a22 JG |
3469 | struct page *page = alloc_pages(GFP_ATOMIC, |
3470 | CAS_JUMBO_PAGE_SHIFT - | |
1f26dac3 DM |
3471 | PAGE_SHIFT); |
3472 | if (page) { | |
3473 | __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT); | |
3474 | cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT; | |
3475 | } else { | |
3476 | printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU); | |
3477 | } | |
3478 | } | |
3479 | #endif | |
3480 | cp->page_size = (PAGE_SIZE << cp->page_order); | |
3481 | ||
3482 | /* Fetch the FIFO configurations. */ | |
3483 | cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64; | |
3484 | cp->rx_fifo_size = RX_FIFO_SIZE; | |
3485 | ||
6aa20a22 | 3486 | /* finish phy determination. MDIO1 takes precedence over MDIO0 if |
1f26dac3 DM |
3487 | * they're both connected. |
3488 | */ | |
6aa20a22 | 3489 | cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr, |
1f26dac3 DM |
3490 | PCI_SLOT(pdev->devfn)); |
3491 | if (cp->phy_type & CAS_PHY_SERDES) { | |
3492 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; | |
3493 | return 0; /* no more checking needed */ | |
6aa20a22 | 3494 | } |
1f26dac3 DM |
3495 | |
3496 | /* MII */ | |
3497 | cfg = readl(cp->regs + REG_MIF_CFG); | |
3498 | if (cfg & MIF_CFG_MDIO_1) { | |
3499 | cp->phy_type = CAS_PHY_MII_MDIO1; | |
3500 | } else if (cfg & MIF_CFG_MDIO_0) { | |
3501 | cp->phy_type = CAS_PHY_MII_MDIO0; | |
3502 | } | |
3503 | ||
3504 | cas_mif_poll(cp, 0); | |
3505 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | |
3506 | ||
3507 | for (i = 0; i < 32; i++) { | |
3508 | u32 phy_id; | |
3509 | int j; | |
3510 | ||
3511 | for (j = 0; j < 3; j++) { | |
3512 | cp->phy_addr = i; | |
3513 | phy_id = cas_phy_read(cp, MII_PHYSID1) << 16; | |
3514 | phy_id |= cas_phy_read(cp, MII_PHYSID2); | |
3515 | if (phy_id && (phy_id != 0xFFFFFFFF)) { | |
3516 | cp->phy_id = phy_id; | |
3517 | goto done; | |
3518 | } | |
3519 | } | |
3520 | } | |
3521 | printk(KERN_ERR PFX "MII phy did not respond [%08x]\n", | |
3522 | readl(cp->regs + REG_MIF_STATE_MACHINE)); | |
3523 | return -1; | |
3524 | ||
3525 | done: | |
3526 | /* see if we can do gigabit */ | |
3527 | cfg = cas_phy_read(cp, MII_BMSR); | |
6aa20a22 | 3528 | if ((cfg & CAS_BMSR_1000_EXTEND) && |
1f26dac3 DM |
3529 | cas_phy_read(cp, CAS_MII_1000_EXTEND)) |
3530 | cp->cas_flags |= CAS_FLAG_1000MB_CAP; | |
3531 | return 0; | |
3532 | } | |
3533 | ||
3534 | /* Must be invoked under cp->lock. */ | |
3535 | static inline void cas_start_dma(struct cas *cp) | |
3536 | { | |
3537 | int i; | |
3538 | u32 val; | |
3539 | int txfailed = 0; | |
6aa20a22 | 3540 | |
1f26dac3 DM |
3541 | /* enable dma */ |
3542 | val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN; | |
3543 | writel(val, cp->regs + REG_TX_CFG); | |
3544 | val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN; | |
3545 | writel(val, cp->regs + REG_RX_CFG); | |
3546 | ||
3547 | /* enable the mac */ | |
3548 | val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN; | |
3549 | writel(val, cp->regs + REG_MAC_TX_CFG); | |
3550 | val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN; | |
3551 | writel(val, cp->regs + REG_MAC_RX_CFG); | |
3552 | ||
3553 | i = STOP_TRIES; | |
3554 | while (i-- > 0) { | |
3555 | val = readl(cp->regs + REG_MAC_TX_CFG); | |
3556 | if ((val & MAC_TX_CFG_EN)) | |
3557 | break; | |
3558 | udelay(10); | |
3559 | } | |
3560 | if (i < 0) txfailed = 1; | |
3561 | i = STOP_TRIES; | |
3562 | while (i-- > 0) { | |
3563 | val = readl(cp->regs + REG_MAC_RX_CFG); | |
3564 | if ((val & MAC_RX_CFG_EN)) { | |
3565 | if (txfailed) { | |
6aa20a22 JG |
3566 | printk(KERN_ERR |
3567 | "%s: enabling mac failed [tx:%08x:%08x].\n", | |
1f26dac3 DM |
3568 | cp->dev->name, |
3569 | readl(cp->regs + REG_MIF_STATE_MACHINE), | |
3570 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | |
3571 | } | |
3572 | goto enable_rx_done; | |
3573 | } | |
3574 | udelay(10); | |
3575 | } | |
6aa20a22 | 3576 | printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n", |
1f26dac3 DM |
3577 | cp->dev->name, |
3578 | (txfailed? "tx,rx":"rx"), | |
3579 | readl(cp->regs + REG_MIF_STATE_MACHINE), | |
3580 | readl(cp->regs + REG_MAC_STATE_MACHINE)); | |
3581 | ||
3582 | enable_rx_done: | |
3583 | cas_unmask_intr(cp); /* enable interrupts */ | |
3584 | writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); | |
3585 | writel(0, cp->regs + REG_RX_COMP_TAIL); | |
3586 | ||
3587 | if (cp->cas_flags & CAS_FLAG_REG_PLUS) { | |
6aa20a22 JG |
3588 | if (N_RX_DESC_RINGS > 1) |
3589 | writel(RX_DESC_RINGN_SIZE(1) - 4, | |
1f26dac3 DM |
3590 | cp->regs + REG_PLUS_RX_KICK1); |
3591 | ||
6aa20a22 | 3592 | for (i = 1; i < N_RX_COMP_RINGS; i++) |
1f26dac3 DM |
3593 | writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i)); |
3594 | } | |
3595 | } | |
3596 | ||
3597 | /* Must be invoked under cp->lock. */ | |
3598 | static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd, | |
3599 | int *pause) | |
3600 | { | |
3601 | u32 val = readl(cp->regs + REG_PCS_MII_LPA); | |
3602 | *fd = (val & PCS_MII_LPA_FD) ? 1 : 0; | |
3603 | *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00; | |
3604 | if (val & PCS_MII_LPA_ASYM_PAUSE) | |
3605 | *pause |= 0x10; | |
3606 | *spd = 1000; | |
3607 | } | |
3608 | ||
3609 | /* Must be invoked under cp->lock. */ | |
3610 | static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd, | |
3611 | int *pause) | |
3612 | { | |
3613 | u32 val; | |
3614 | ||
3615 | *fd = 0; | |
3616 | *spd = 10; | |
3617 | *pause = 0; | |
6aa20a22 | 3618 | |
1f26dac3 DM |
3619 | /* use GMII registers */ |
3620 | val = cas_phy_read(cp, MII_LPA); | |
3621 | if (val & CAS_LPA_PAUSE) | |
3622 | *pause = 0x01; | |
3623 | ||
3624 | if (val & CAS_LPA_ASYM_PAUSE) | |
3625 | *pause |= 0x10; | |
3626 | ||
3627 | if (val & LPA_DUPLEX) | |
3628 | *fd = 1; | |
3629 | if (val & LPA_100) | |
3630 | *spd = 100; | |
3631 | ||
3632 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | |
3633 | val = cas_phy_read(cp, CAS_MII_1000_STATUS); | |
3634 | if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF)) | |
3635 | *spd = 1000; | |
3636 | if (val & CAS_LPA_1000FULL) | |
3637 | *fd = 1; | |
3638 | } | |
3639 | } | |
3640 | ||
3641 | /* A link-up condition has occurred, initialize and enable the | |
3642 | * rest of the chip. | |
3643 | * | |
3644 | * Must be invoked under cp->lock. | |
3645 | */ | |
3646 | static void cas_set_link_modes(struct cas *cp) | |
3647 | { | |
3648 | u32 val; | |
3649 | int full_duplex, speed, pause; | |
3650 | ||
3651 | full_duplex = 0; | |
3652 | speed = 10; | |
3653 | pause = 0; | |
3654 | ||
3655 | if (CAS_PHY_MII(cp->phy_type)) { | |
3656 | cas_mif_poll(cp, 0); | |
3657 | val = cas_phy_read(cp, MII_BMCR); | |
3658 | if (val & BMCR_ANENABLE) { | |
6aa20a22 | 3659 | cas_read_mii_link_mode(cp, &full_duplex, &speed, |
1f26dac3 DM |
3660 | &pause); |
3661 | } else { | |
3662 | if (val & BMCR_FULLDPLX) | |
3663 | full_duplex = 1; | |
3664 | ||
3665 | if (val & BMCR_SPEED100) | |
3666 | speed = 100; | |
3667 | else if (val & CAS_BMCR_SPEED1000) | |
3668 | speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? | |
3669 | 1000 : 100; | |
3670 | } | |
3671 | cas_mif_poll(cp, 1); | |
3672 | ||
3673 | } else { | |
3674 | val = readl(cp->regs + REG_PCS_MII_CTRL); | |
3675 | cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause); | |
3676 | if ((val & PCS_MII_AUTONEG_EN) == 0) { | |
3677 | if (val & PCS_MII_CTRL_DUPLEX) | |
3678 | full_duplex = 1; | |
3679 | } | |
3680 | } | |
3681 | ||
3682 | if (netif_msg_link(cp)) | |
3683 | printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n", | |
3684 | cp->dev->name, speed, (full_duplex ? "full" : "half")); | |
3685 | ||
3686 | val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED; | |
3687 | if (CAS_PHY_MII(cp->phy_type)) { | |
3688 | val |= MAC_XIF_MII_BUFFER_OUTPUT_EN; | |
3689 | if (!full_duplex) | |
3690 | val |= MAC_XIF_DISABLE_ECHO; | |
3691 | } | |
6aa20a22 | 3692 | if (full_duplex) |
1f26dac3 DM |
3693 | val |= MAC_XIF_FDPLX_LED; |
3694 | if (speed == 1000) | |
3695 | val |= MAC_XIF_GMII_MODE; | |
3696 | writel(val, cp->regs + REG_MAC_XIF_CFG); | |
3697 | ||
3698 | /* deal with carrier and collision detect. */ | |
3699 | val = MAC_TX_CFG_IPG_EN; | |
3700 | if (full_duplex) { | |
3701 | val |= MAC_TX_CFG_IGNORE_CARRIER; | |
3702 | val |= MAC_TX_CFG_IGNORE_COLL; | |
3703 | } else { | |
3704 | #ifndef USE_CSMA_CD_PROTO | |
3705 | val |= MAC_TX_CFG_NEVER_GIVE_UP_EN; | |
3706 | val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM; | |
3707 | #endif | |
3708 | } | |
3709 | /* val now set up for REG_MAC_TX_CFG */ | |
3710 | ||
3711 | /* If gigabit and half-duplex, enable carrier extension | |
6aa20a22 | 3712 | * mode. increase slot time to 512 bytes as well. |
1f26dac3 DM |
3713 | * else, disable it and make sure slot time is 64 bytes. |
3714 | * also activate checksum bug workaround | |
3715 | */ | |
3716 | if ((speed == 1000) && !full_duplex) { | |
6aa20a22 | 3717 | writel(val | MAC_TX_CFG_CARRIER_EXTEND, |
1f26dac3 DM |
3718 | cp->regs + REG_MAC_TX_CFG); |
3719 | ||
3720 | val = readl(cp->regs + REG_MAC_RX_CFG); | |
3721 | val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */ | |
6aa20a22 | 3722 | writel(val | MAC_RX_CFG_CARRIER_EXTEND, |
1f26dac3 DM |
3723 | cp->regs + REG_MAC_RX_CFG); |
3724 | ||
3725 | writel(0x200, cp->regs + REG_MAC_SLOT_TIME); | |
3726 | ||
3727 | cp->crc_size = 4; | |
3728 | /* minimum size gigabit frame at half duplex */ | |
3729 | cp->min_frame_size = CAS_1000MB_MIN_FRAME; | |
3730 | ||
3731 | } else { | |
3732 | writel(val, cp->regs + REG_MAC_TX_CFG); | |
3733 | ||
6aa20a22 | 3734 | /* checksum bug workaround. don't strip FCS when in |
1f26dac3 DM |
3735 | * half-duplex mode |
3736 | */ | |
3737 | val = readl(cp->regs + REG_MAC_RX_CFG); | |
3738 | if (full_duplex) { | |
3739 | val |= MAC_RX_CFG_STRIP_FCS; | |
3740 | cp->crc_size = 0; | |
3741 | cp->min_frame_size = CAS_MIN_MTU; | |
3742 | } else { | |
3743 | val &= ~MAC_RX_CFG_STRIP_FCS; | |
3744 | cp->crc_size = 4; | |
3745 | cp->min_frame_size = CAS_MIN_FRAME; | |
3746 | } | |
6aa20a22 | 3747 | writel(val & ~MAC_RX_CFG_CARRIER_EXTEND, |
1f26dac3 DM |
3748 | cp->regs + REG_MAC_RX_CFG); |
3749 | writel(0x40, cp->regs + REG_MAC_SLOT_TIME); | |
3750 | } | |
3751 | ||
3752 | if (netif_msg_link(cp)) { | |
3753 | if (pause & 0x01) { | |
3754 | printk(KERN_INFO "%s: Pause is enabled " | |
3755 | "(rxfifo: %d off: %d on: %d)\n", | |
3756 | cp->dev->name, | |
3757 | cp->rx_fifo_size, | |
3758 | cp->rx_pause_off, | |
3759 | cp->rx_pause_on); | |
3760 | } else if (pause & 0x10) { | |
3761 | printk(KERN_INFO "%s: TX pause enabled\n", | |
3762 | cp->dev->name); | |
3763 | } else { | |
3764 | printk(KERN_INFO "%s: Pause is disabled\n", | |
3765 | cp->dev->name); | |
3766 | } | |
3767 | } | |
3768 | ||
3769 | val = readl(cp->regs + REG_MAC_CTRL_CFG); | |
3770 | val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN); | |
3771 | if (pause) { /* symmetric or asymmetric pause */ | |
3772 | val |= MAC_CTRL_CFG_SEND_PAUSE_EN; | |
3773 | if (pause & 0x01) { /* symmetric pause */ | |
3774 | val |= MAC_CTRL_CFG_RECV_PAUSE_EN; | |
6aa20a22 | 3775 | } |
1f26dac3 DM |
3776 | } |
3777 | writel(val, cp->regs + REG_MAC_CTRL_CFG); | |
3778 | cas_start_dma(cp); | |
3779 | } | |
3780 | ||
3781 | /* Must be invoked under cp->lock. */ | |
3782 | static void cas_init_hw(struct cas *cp, int restart_link) | |
3783 | { | |
3784 | if (restart_link) | |
3785 | cas_phy_init(cp); | |
3786 | ||
3787 | cas_init_pause_thresholds(cp); | |
3788 | cas_init_mac(cp); | |
3789 | cas_init_dma(cp); | |
3790 | ||
3791 | if (restart_link) { | |
3792 | /* Default aneg parameters */ | |
3793 | cp->timer_ticks = 0; | |
3794 | cas_begin_auto_negotiation(cp, NULL); | |
3795 | } else if (cp->lstate == link_up) { | |
3796 | cas_set_link_modes(cp); | |
3797 | netif_carrier_on(cp->dev); | |
3798 | } | |
3799 | } | |
3800 | ||
3801 | /* Must be invoked under cp->lock. on earlier cassini boards, | |
3802 | * SOFT_0 is tied to PCI reset. we use this to force a pci reset, | |
3803 | * let it settle out, and then restore pci state. | |
3804 | */ | |
3805 | static void cas_hard_reset(struct cas *cp) | |
3806 | { | |
6aa20a22 | 3807 | writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN); |
1f26dac3 DM |
3808 | udelay(20); |
3809 | pci_restore_state(cp->pdev); | |
3810 | } | |
3811 | ||
3812 | ||
3813 | static void cas_global_reset(struct cas *cp, int blkflag) | |
3814 | { | |
3815 | int limit; | |
3816 | ||
3817 | /* issue a global reset. don't use RSTOUT. */ | |
3818 | if (blkflag && !CAS_PHY_MII(cp->phy_type)) { | |
3819 | /* For PCS, when the blkflag is set, we should set the | |
3820 | * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of | |
3821 | * the last autonegotiation from being cleared. We'll | |
3822 | * need some special handling if the chip is set into a | |
3823 | * loopback mode. | |
3824 | */ | |
6aa20a22 | 3825 | writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK), |
1f26dac3 DM |
3826 | cp->regs + REG_SW_RESET); |
3827 | } else { | |
3828 | writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET); | |
3829 | } | |
3830 | ||
3831 | /* need to wait at least 3ms before polling register */ | |
3832 | mdelay(3); | |
3833 | ||
3834 | limit = STOP_TRIES; | |
3835 | while (limit-- > 0) { | |
3836 | u32 val = readl(cp->regs + REG_SW_RESET); | |
3837 | if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0) | |
3838 | goto done; | |
3839 | udelay(10); | |
3840 | } | |
3841 | printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name); | |
3842 | ||
3843 | done: | |
3844 | /* enable various BIM interrupts */ | |
6aa20a22 | 3845 | writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE | |
1f26dac3 DM |
3846 | BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG); |
3847 | ||
3848 | /* clear out pci error status mask for handled errors. | |
3849 | * we don't deal with DMA counter overflows as they happen | |
3850 | * all the time. | |
3851 | */ | |
6aa20a22 JG |
3852 | writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO | |
3853 | PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE | | |
3854 | PCI_ERR_BIM_DMA_READ), cp->regs + | |
1f26dac3 DM |
3855 | REG_PCI_ERR_STATUS_MASK); |
3856 | ||
3857 | /* set up for MII by default to address mac rx reset timeout | |
3858 | * issue | |
3859 | */ | |
3860 | writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE); | |
3861 | } | |
3862 | ||
3863 | static void cas_reset(struct cas *cp, int blkflag) | |
3864 | { | |
3865 | u32 val; | |
3866 | ||
3867 | cas_mask_intr(cp); | |
3868 | cas_global_reset(cp, blkflag); | |
3869 | cas_mac_reset(cp); | |
3870 | cas_entropy_reset(cp); | |
3871 | ||
3872 | /* disable dma engines. */ | |
3873 | val = readl(cp->regs + REG_TX_CFG); | |
3874 | val &= ~TX_CFG_DMA_EN; | |
3875 | writel(val, cp->regs + REG_TX_CFG); | |
3876 | ||
3877 | val = readl(cp->regs + REG_RX_CFG); | |
3878 | val &= ~RX_CFG_DMA_EN; | |
3879 | writel(val, cp->regs + REG_RX_CFG); | |
3880 | ||
3881 | /* program header parser */ | |
3882 | if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) || | |
3883 | (CAS_HP_ALT_FIRMWARE == cas_prog_null)) { | |
3884 | cas_load_firmware(cp, CAS_HP_FIRMWARE); | |
3885 | } else { | |
3886 | cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE); | |
3887 | } | |
3888 | ||
3889 | /* clear out error registers */ | |
3890 | spin_lock(&cp->stat_lock[N_TX_RINGS]); | |
3891 | cas_clear_mac_err(cp); | |
3892 | spin_unlock(&cp->stat_lock[N_TX_RINGS]); | |
3893 | } | |
3894 | ||
758df69e | 3895 | /* Shut down the chip, must be called with pm_mutex held. */ |
1f26dac3 DM |
3896 | static void cas_shutdown(struct cas *cp) |
3897 | { | |
3898 | unsigned long flags; | |
3899 | ||
3900 | /* Make us not-running to avoid timers respawning */ | |
3901 | cp->hw_running = 0; | |
3902 | ||
3903 | del_timer_sync(&cp->link_timer); | |
3904 | ||
3905 | /* Stop the reset task */ | |
3906 | #if 0 | |
3907 | while (atomic_read(&cp->reset_task_pending_mtu) || | |
3908 | atomic_read(&cp->reset_task_pending_spare) || | |
3909 | atomic_read(&cp->reset_task_pending_all)) | |
3910 | schedule(); | |
3911 | ||
3912 | #else | |
3913 | while (atomic_read(&cp->reset_task_pending)) | |
3914 | schedule(); | |
6aa20a22 | 3915 | #endif |
1f26dac3 DM |
3916 | /* Actually stop the chip */ |
3917 | cas_lock_all_save(cp, flags); | |
3918 | cas_reset(cp, 0); | |
3919 | if (cp->cas_flags & CAS_FLAG_SATURN) | |
3920 | cas_phy_powerdown(cp); | |
3921 | cas_unlock_all_restore(cp, flags); | |
3922 | } | |
3923 | ||
3924 | static int cas_change_mtu(struct net_device *dev, int new_mtu) | |
3925 | { | |
3926 | struct cas *cp = netdev_priv(dev); | |
3927 | ||
3928 | if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU) | |
3929 | return -EINVAL; | |
3930 | ||
3931 | dev->mtu = new_mtu; | |
3932 | if (!netif_running(dev) || !netif_device_present(dev)) | |
3933 | return 0; | |
3934 | ||
3935 | /* let the reset task handle it */ | |
3936 | #if 1 | |
3937 | atomic_inc(&cp->reset_task_pending); | |
3938 | if ((cp->phy_type & CAS_PHY_SERDES)) { | |
3939 | atomic_inc(&cp->reset_task_pending_all); | |
3940 | } else { | |
3941 | atomic_inc(&cp->reset_task_pending_mtu); | |
3942 | } | |
3943 | schedule_work(&cp->reset_task); | |
3944 | #else | |
6aa20a22 | 3945 | atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ? |
1f26dac3 DM |
3946 | CAS_RESET_ALL : CAS_RESET_MTU); |
3947 | printk(KERN_ERR "reset called in cas_change_mtu\n"); | |
3948 | schedule_work(&cp->reset_task); | |
3949 | #endif | |
3950 | ||
3951 | flush_scheduled_work(); | |
3952 | return 0; | |
3953 | } | |
3954 | ||
3955 | static void cas_clean_txd(struct cas *cp, int ring) | |
3956 | { | |
3957 | struct cas_tx_desc *txd = cp->init_txds[ring]; | |
3958 | struct sk_buff *skb, **skbs = cp->tx_skbs[ring]; | |
3959 | u64 daddr, dlen; | |
3960 | int i, size; | |
3961 | ||
3962 | size = TX_DESC_RINGN_SIZE(ring); | |
3963 | for (i = 0; i < size; i++) { | |
3964 | int frag; | |
3965 | ||
3966 | if (skbs[i] == NULL) | |
3967 | continue; | |
3968 | ||
3969 | skb = skbs[i]; | |
3970 | skbs[i] = NULL; | |
3971 | ||
3972 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | |
3973 | int ent = i & (size - 1); | |
3974 | ||
3975 | /* first buffer is never a tiny buffer and so | |
3976 | * needs to be unmapped. | |
3977 | */ | |
3978 | daddr = le64_to_cpu(txd[ent].buffer); | |
6aa20a22 | 3979 | dlen = CAS_VAL(TX_DESC_BUFLEN, |
1f26dac3 DM |
3980 | le64_to_cpu(txd[ent].control)); |
3981 | pci_unmap_page(cp->pdev, daddr, dlen, | |
3982 | PCI_DMA_TODEVICE); | |
3983 | ||
3984 | if (frag != skb_shinfo(skb)->nr_frags) { | |
3985 | i++; | |
3986 | ||
3987 | /* next buffer might by a tiny buffer. | |
3988 | * skip past it. | |
3989 | */ | |
3990 | ent = i & (size - 1); | |
3991 | if (cp->tx_tiny_use[ring][ent].used) | |
3992 | i++; | |
3993 | } | |
3994 | } | |
3995 | dev_kfree_skb_any(skb); | |
3996 | } | |
3997 | ||
3998 | /* zero out tiny buf usage */ | |
3999 | memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring])); | |
4000 | } | |
4001 | ||
4002 | /* freed on close */ | |
4003 | static inline void cas_free_rx_desc(struct cas *cp, int ring) | |
4004 | { | |
4005 | cas_page_t **page = cp->rx_pages[ring]; | |
4006 | int i, size; | |
4007 | ||
4008 | size = RX_DESC_RINGN_SIZE(ring); | |
4009 | for (i = 0; i < size; i++) { | |
4010 | if (page[i]) { | |
4011 | cas_page_free(cp, page[i]); | |
4012 | page[i] = NULL; | |
4013 | } | |
4014 | } | |
4015 | } | |
4016 | ||
4017 | static void cas_free_rxds(struct cas *cp) | |
4018 | { | |
4019 | int i; | |
4020 | ||
4021 | for (i = 0; i < N_RX_DESC_RINGS; i++) | |
4022 | cas_free_rx_desc(cp, i); | |
4023 | } | |
4024 | ||
4025 | /* Must be invoked under cp->lock. */ | |
4026 | static void cas_clean_rings(struct cas *cp) | |
4027 | { | |
4028 | int i; | |
4029 | ||
4030 | /* need to clean all tx rings */ | |
4031 | memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS); | |
4032 | memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS); | |
4033 | for (i = 0; i < N_TX_RINGS; i++) | |
4034 | cas_clean_txd(cp, i); | |
4035 | ||
4036 | /* zero out init block */ | |
4037 | memset(cp->init_block, 0, sizeof(struct cas_init_block)); | |
4038 | cas_clean_rxds(cp); | |
4039 | cas_clean_rxcs(cp); | |
4040 | } | |
4041 | ||
4042 | /* allocated on open */ | |
4043 | static inline int cas_alloc_rx_desc(struct cas *cp, int ring) | |
4044 | { | |
4045 | cas_page_t **page = cp->rx_pages[ring]; | |
4046 | int size, i = 0; | |
4047 | ||
4048 | size = RX_DESC_RINGN_SIZE(ring); | |
4049 | for (i = 0; i < size; i++) { | |
6aa20a22 | 4050 | if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL) |
1f26dac3 DM |
4051 | return -1; |
4052 | } | |
4053 | return 0; | |
4054 | } | |
4055 | ||
4056 | static int cas_alloc_rxds(struct cas *cp) | |
4057 | { | |
4058 | int i; | |
4059 | ||
4060 | for (i = 0; i < N_RX_DESC_RINGS; i++) { | |
4061 | if (cas_alloc_rx_desc(cp, i) < 0) { | |
4062 | cas_free_rxds(cp); | |
4063 | return -1; | |
4064 | } | |
4065 | } | |
4066 | return 0; | |
4067 | } | |
4068 | ||
4069 | static void cas_reset_task(void *data) | |
4070 | { | |
4071 | struct cas *cp = (struct cas *) data; | |
4072 | #if 0 | |
4073 | int pending = atomic_read(&cp->reset_task_pending); | |
4074 | #else | |
4075 | int pending_all = atomic_read(&cp->reset_task_pending_all); | |
4076 | int pending_spare = atomic_read(&cp->reset_task_pending_spare); | |
4077 | int pending_mtu = atomic_read(&cp->reset_task_pending_mtu); | |
4078 | ||
4079 | if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) { | |
4080 | /* We can have more tasks scheduled than actually | |
4081 | * needed. | |
4082 | */ | |
4083 | atomic_dec(&cp->reset_task_pending); | |
4084 | return; | |
4085 | } | |
4086 | #endif | |
4087 | /* The link went down, we reset the ring, but keep | |
4088 | * DMA stopped. Use this function for reset | |
4089 | * on error as well. | |
4090 | */ | |
4091 | if (cp->hw_running) { | |
4092 | unsigned long flags; | |
4093 | ||
4094 | /* Make sure we don't get interrupts or tx packets */ | |
4095 | netif_device_detach(cp->dev); | |
4096 | cas_lock_all_save(cp, flags); | |
4097 | ||
4098 | if (cp->opened) { | |
4099 | /* We call cas_spare_recover when we call cas_open. | |
4100 | * but we do not initialize the lists cas_spare_recover | |
4101 | * uses until cas_open is called. | |
4102 | */ | |
4103 | cas_spare_recover(cp, GFP_ATOMIC); | |
4104 | } | |
4105 | #if 1 | |
4106 | /* test => only pending_spare set */ | |
4107 | if (!pending_all && !pending_mtu) | |
4108 | goto done; | |
4109 | #else | |
4110 | if (pending == CAS_RESET_SPARE) | |
4111 | goto done; | |
4112 | #endif | |
4113 | /* when pending == CAS_RESET_ALL, the following | |
4114 | * call to cas_init_hw will restart auto negotiation. | |
4115 | * Setting the second argument of cas_reset to | |
4116 | * !(pending == CAS_RESET_ALL) will set this argument | |
6aa20a22 | 4117 | * to 1 (avoiding reinitializing the PHY for the normal |
1f26dac3 DM |
4118 | * PCS case) when auto negotiation is not restarted. |
4119 | */ | |
4120 | #if 1 | |
4121 | cas_reset(cp, !(pending_all > 0)); | |
4122 | if (cp->opened) | |
4123 | cas_clean_rings(cp); | |
4124 | cas_init_hw(cp, (pending_all > 0)); | |
4125 | #else | |
4126 | cas_reset(cp, !(pending == CAS_RESET_ALL)); | |
4127 | if (cp->opened) | |
4128 | cas_clean_rings(cp); | |
4129 | cas_init_hw(cp, pending == CAS_RESET_ALL); | |
4130 | #endif | |
4131 | ||
4132 | done: | |
4133 | cas_unlock_all_restore(cp, flags); | |
4134 | netif_device_attach(cp->dev); | |
4135 | } | |
4136 | #if 1 | |
4137 | atomic_sub(pending_all, &cp->reset_task_pending_all); | |
4138 | atomic_sub(pending_spare, &cp->reset_task_pending_spare); | |
4139 | atomic_sub(pending_mtu, &cp->reset_task_pending_mtu); | |
4140 | atomic_dec(&cp->reset_task_pending); | |
4141 | #else | |
4142 | atomic_set(&cp->reset_task_pending, 0); | |
4143 | #endif | |
4144 | } | |
4145 | ||
4146 | static void cas_link_timer(unsigned long data) | |
4147 | { | |
4148 | struct cas *cp = (struct cas *) data; | |
4149 | int mask, pending = 0, reset = 0; | |
4150 | unsigned long flags; | |
4151 | ||
4152 | if (link_transition_timeout != 0 && | |
4153 | cp->link_transition_jiffies_valid && | |
6aa20a22 | 4154 | ((jiffies - cp->link_transition_jiffies) > |
1f26dac3 | 4155 | (link_transition_timeout))) { |
6aa20a22 | 4156 | /* One-second counter so link-down workaround doesn't |
1f26dac3 DM |
4157 | * cause resets to occur so fast as to fool the switch |
4158 | * into thinking the link is down. | |
4159 | */ | |
4160 | cp->link_transition_jiffies_valid = 0; | |
4161 | } | |
4162 | ||
4163 | if (!cp->hw_running) | |
4164 | return; | |
4165 | ||
4166 | spin_lock_irqsave(&cp->lock, flags); | |
4167 | cas_lock_tx(cp); | |
4168 | cas_entropy_gather(cp); | |
4169 | ||
4170 | /* If the link task is still pending, we just | |
4171 | * reschedule the link timer | |
4172 | */ | |
4173 | #if 1 | |
4174 | if (atomic_read(&cp->reset_task_pending_all) || | |
4175 | atomic_read(&cp->reset_task_pending_spare) || | |
6aa20a22 | 4176 | atomic_read(&cp->reset_task_pending_mtu)) |
1f26dac3 DM |
4177 | goto done; |
4178 | #else | |
6aa20a22 | 4179 | if (atomic_read(&cp->reset_task_pending)) |
1f26dac3 DM |
4180 | goto done; |
4181 | #endif | |
4182 | ||
4183 | /* check for rx cleaning */ | |
4184 | if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) { | |
4185 | int i, rmask; | |
4186 | ||
4187 | for (i = 0; i < MAX_RX_DESC_RINGS; i++) { | |
4188 | rmask = CAS_FLAG_RXD_POST(i); | |
4189 | if ((mask & rmask) == 0) | |
4190 | continue; | |
4191 | ||
4192 | /* post_rxds will do a mod_timer */ | |
4193 | if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) { | |
4194 | pending = 1; | |
4195 | continue; | |
4196 | } | |
4197 | cp->cas_flags &= ~rmask; | |
4198 | } | |
4199 | } | |
4200 | ||
4201 | if (CAS_PHY_MII(cp->phy_type)) { | |
4202 | u16 bmsr; | |
4203 | cas_mif_poll(cp, 0); | |
4204 | bmsr = cas_phy_read(cp, MII_BMSR); | |
4205 | /* WTZ: Solaris driver reads this twice, but that | |
4206 | * may be due to the PCS case and the use of a | |
4207 | * common implementation. Read it twice here to be | |
4208 | * safe. | |
4209 | */ | |
4210 | bmsr = cas_phy_read(cp, MII_BMSR); | |
4211 | cas_mif_poll(cp, 1); | |
4212 | readl(cp->regs + REG_MIF_STATUS); /* avoid dups */ | |
4213 | reset = cas_mii_link_check(cp, bmsr); | |
4214 | } else { | |
4215 | reset = cas_pcs_link_check(cp); | |
4216 | } | |
4217 | ||
4218 | if (reset) | |
4219 | goto done; | |
4220 | ||
4221 | /* check for tx state machine confusion */ | |
4222 | if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) { | |
4223 | u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE); | |
4224 | u32 wptr, rptr; | |
4225 | int tlm = CAS_VAL(MAC_SM_TLM, val); | |
4226 | ||
4227 | if (((tlm == 0x5) || (tlm == 0x3)) && | |
4228 | (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) { | |
4229 | if (netif_msg_tx_err(cp)) | |
4230 | printk(KERN_DEBUG "%s: tx err: " | |
4231 | "MAC_STATE[%08x]\n", | |
4232 | cp->dev->name, val); | |
4233 | reset = 1; | |
4234 | goto done; | |
4235 | } | |
4236 | ||
4237 | val = readl(cp->regs + REG_TX_FIFO_PKT_CNT); | |
4238 | wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR); | |
4239 | rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR); | |
4240 | if ((val == 0) && (wptr != rptr)) { | |
4241 | if (netif_msg_tx_err(cp)) | |
4242 | printk(KERN_DEBUG "%s: tx err: " | |
4243 | "TX_FIFO[%08x:%08x:%08x]\n", | |
4244 | cp->dev->name, val, wptr, rptr); | |
4245 | reset = 1; | |
4246 | } | |
4247 | ||
4248 | if (reset) | |
4249 | cas_hard_reset(cp); | |
4250 | } | |
4251 | ||
4252 | done: | |
4253 | if (reset) { | |
4254 | #if 1 | |
4255 | atomic_inc(&cp->reset_task_pending); | |
4256 | atomic_inc(&cp->reset_task_pending_all); | |
4257 | schedule_work(&cp->reset_task); | |
4258 | #else | |
4259 | atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); | |
4260 | printk(KERN_ERR "reset called in cas_link_timer\n"); | |
4261 | schedule_work(&cp->reset_task); | |
4262 | #endif | |
4263 | } | |
4264 | ||
4265 | if (!pending) | |
4266 | mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); | |
4267 | cas_unlock_tx(cp); | |
4268 | spin_unlock_irqrestore(&cp->lock, flags); | |
4269 | } | |
4270 | ||
6aa20a22 | 4271 | /* tiny buffers are used to avoid target abort issues with |
1f26dac3 DM |
4272 | * older cassini's |
4273 | */ | |
4274 | static void cas_tx_tiny_free(struct cas *cp) | |
4275 | { | |
4276 | struct pci_dev *pdev = cp->pdev; | |
4277 | int i; | |
4278 | ||
4279 | for (i = 0; i < N_TX_RINGS; i++) { | |
4280 | if (!cp->tx_tiny_bufs[i]) | |
4281 | continue; | |
4282 | ||
6aa20a22 | 4283 | pci_free_consistent(pdev, TX_TINY_BUF_BLOCK, |
1f26dac3 DM |
4284 | cp->tx_tiny_bufs[i], |
4285 | cp->tx_tiny_dvma[i]); | |
4286 | cp->tx_tiny_bufs[i] = NULL; | |
4287 | } | |
4288 | } | |
4289 | ||
4290 | static int cas_tx_tiny_alloc(struct cas *cp) | |
4291 | { | |
4292 | struct pci_dev *pdev = cp->pdev; | |
4293 | int i; | |
4294 | ||
4295 | for (i = 0; i < N_TX_RINGS; i++) { | |
6aa20a22 | 4296 | cp->tx_tiny_bufs[i] = |
1f26dac3 DM |
4297 | pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK, |
4298 | &cp->tx_tiny_dvma[i]); | |
4299 | if (!cp->tx_tiny_bufs[i]) { | |
4300 | cas_tx_tiny_free(cp); | |
4301 | return -1; | |
4302 | } | |
4303 | } | |
4304 | return 0; | |
4305 | } | |
4306 | ||
4307 | ||
4308 | static int cas_open(struct net_device *dev) | |
4309 | { | |
4310 | struct cas *cp = netdev_priv(dev); | |
4311 | int hw_was_up, err; | |
4312 | unsigned long flags; | |
4313 | ||
758df69e | 4314 | mutex_lock(&cp->pm_mutex); |
1f26dac3 DM |
4315 | |
4316 | hw_was_up = cp->hw_running; | |
4317 | ||
758df69e | 4318 | /* The power-management mutex protects the hw_running |
1f26dac3 DM |
4319 | * etc. state so it is safe to do this bit without cp->lock |
4320 | */ | |
4321 | if (!cp->hw_running) { | |
4322 | /* Reset the chip */ | |
4323 | cas_lock_all_save(cp, flags); | |
4324 | /* We set the second arg to cas_reset to zero | |
6aa20a22 | 4325 | * because cas_init_hw below will have its second |
1f26dac3 DM |
4326 | * argument set to non-zero, which will force |
4327 | * autonegotiation to start. | |
4328 | */ | |
4329 | cas_reset(cp, 0); | |
4330 | cp->hw_running = 1; | |
4331 | cas_unlock_all_restore(cp, flags); | |
4332 | } | |
4333 | ||
4334 | if (cas_tx_tiny_alloc(cp) < 0) | |
4335 | return -ENOMEM; | |
4336 | ||
4337 | /* alloc rx descriptors */ | |
4338 | err = -ENOMEM; | |
4339 | if (cas_alloc_rxds(cp) < 0) | |
4340 | goto err_tx_tiny; | |
6aa20a22 | 4341 | |
1f26dac3 DM |
4342 | /* allocate spares */ |
4343 | cas_spare_init(cp); | |
4344 | cas_spare_recover(cp, GFP_KERNEL); | |
4345 | ||
4346 | /* We can now request the interrupt as we know it's masked | |
4347 | * on the controller. cassini+ has up to 4 interrupts | |
6aa20a22 | 4348 | * that can be used, but you need to do explicit pci interrupt |
1f26dac3 DM |
4349 | * mapping to expose them |
4350 | */ | |
4351 | if (request_irq(cp->pdev->irq, cas_interrupt, | |
1fb9df5d | 4352 | IRQF_SHARED, dev->name, (void *) dev)) { |
6aa20a22 | 4353 | printk(KERN_ERR "%s: failed to request irq !\n", |
1f26dac3 DM |
4354 | cp->dev->name); |
4355 | err = -EAGAIN; | |
4356 | goto err_spare; | |
4357 | } | |
4358 | ||
4359 | /* init hw */ | |
4360 | cas_lock_all_save(cp, flags); | |
4361 | cas_clean_rings(cp); | |
4362 | cas_init_hw(cp, !hw_was_up); | |
4363 | cp->opened = 1; | |
4364 | cas_unlock_all_restore(cp, flags); | |
4365 | ||
4366 | netif_start_queue(dev); | |
758df69e | 4367 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
4368 | return 0; |
4369 | ||
4370 | err_spare: | |
4371 | cas_spare_free(cp); | |
4372 | cas_free_rxds(cp); | |
4373 | err_tx_tiny: | |
4374 | cas_tx_tiny_free(cp); | |
758df69e | 4375 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
4376 | return err; |
4377 | } | |
4378 | ||
4379 | static int cas_close(struct net_device *dev) | |
4380 | { | |
4381 | unsigned long flags; | |
4382 | struct cas *cp = netdev_priv(dev); | |
4383 | ||
4384 | /* Make sure we don't get distracted by suspend/resume */ | |
758df69e | 4385 | mutex_lock(&cp->pm_mutex); |
1f26dac3 DM |
4386 | |
4387 | netif_stop_queue(dev); | |
4388 | ||
4389 | /* Stop traffic, mark us closed */ | |
4390 | cas_lock_all_save(cp, flags); | |
6aa20a22 | 4391 | cp->opened = 0; |
1f26dac3 | 4392 | cas_reset(cp, 0); |
6aa20a22 | 4393 | cas_phy_init(cp); |
1f26dac3 DM |
4394 | cas_begin_auto_negotiation(cp, NULL); |
4395 | cas_clean_rings(cp); | |
4396 | cas_unlock_all_restore(cp, flags); | |
4397 | ||
4398 | free_irq(cp->pdev->irq, (void *) dev); | |
4399 | cas_spare_free(cp); | |
4400 | cas_free_rxds(cp); | |
4401 | cas_tx_tiny_free(cp); | |
758df69e | 4402 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
4403 | return 0; |
4404 | } | |
4405 | ||
4406 | static struct { | |
4407 | const char name[ETH_GSTRING_LEN]; | |
4408 | } ethtool_cassini_statnames[] = { | |
4409 | {"collisions"}, | |
4410 | {"rx_bytes"}, | |
4411 | {"rx_crc_errors"}, | |
4412 | {"rx_dropped"}, | |
4413 | {"rx_errors"}, | |
4414 | {"rx_fifo_errors"}, | |
4415 | {"rx_frame_errors"}, | |
4416 | {"rx_length_errors"}, | |
4417 | {"rx_over_errors"}, | |
4418 | {"rx_packets"}, | |
4419 | {"tx_aborted_errors"}, | |
4420 | {"tx_bytes"}, | |
4421 | {"tx_dropped"}, | |
4422 | {"tx_errors"}, | |
4423 | {"tx_fifo_errors"}, | |
4424 | {"tx_packets"} | |
4425 | }; | |
4426 | #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN) | |
4427 | ||
4428 | static struct { | |
4429 | const int offsets; /* neg. values for 2nd arg to cas_read_phy */ | |
4430 | } ethtool_register_table[] = { | |
4431 | {-MII_BMSR}, | |
4432 | {-MII_BMCR}, | |
4433 | {REG_CAWR}, | |
4434 | {REG_INF_BURST}, | |
4435 | {REG_BIM_CFG}, | |
4436 | {REG_RX_CFG}, | |
4437 | {REG_HP_CFG}, | |
4438 | {REG_MAC_TX_CFG}, | |
4439 | {REG_MAC_RX_CFG}, | |
4440 | {REG_MAC_CTRL_CFG}, | |
4441 | {REG_MAC_XIF_CFG}, | |
4442 | {REG_MIF_CFG}, | |
4443 | {REG_PCS_CFG}, | |
4444 | {REG_SATURN_PCFG}, | |
4445 | {REG_PCS_MII_STATUS}, | |
4446 | {REG_PCS_STATE_MACHINE}, | |
4447 | {REG_MAC_COLL_EXCESS}, | |
4448 | {REG_MAC_COLL_LATE} | |
4449 | }; | |
4450 | #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int)) | |
4451 | #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN) | |
4452 | ||
a232f767 | 4453 | static void cas_read_regs(struct cas *cp, u8 *ptr, int len) |
1f26dac3 | 4454 | { |
1f26dac3 DM |
4455 | u8 *p; |
4456 | int i; | |
4457 | unsigned long flags; | |
4458 | ||
1f26dac3 | 4459 | spin_lock_irqsave(&cp->lock, flags); |
a232f767 | 4460 | for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) { |
1f26dac3 DM |
4461 | u16 hval; |
4462 | u32 val; | |
4463 | if (ethtool_register_table[i].offsets < 0) { | |
4464 | hval = cas_phy_read(cp, | |
4465 | -ethtool_register_table[i].offsets); | |
4466 | val = hval; | |
4467 | } else { | |
4468 | val= readl(cp->regs+ethtool_register_table[i].offsets); | |
4469 | } | |
4470 | memcpy(p, (u8 *)&val, sizeof(u32)); | |
4471 | } | |
4472 | spin_unlock_irqrestore(&cp->lock, flags); | |
1f26dac3 DM |
4473 | } |
4474 | ||
4475 | static struct net_device_stats *cas_get_stats(struct net_device *dev) | |
4476 | { | |
4477 | struct cas *cp = netdev_priv(dev); | |
4478 | struct net_device_stats *stats = cp->net_stats; | |
4479 | unsigned long flags; | |
4480 | int i; | |
4481 | unsigned long tmp; | |
4482 | ||
4483 | /* we collate all of the stats into net_stats[N_TX_RING] */ | |
4484 | if (!cp->hw_running) | |
4485 | return stats + N_TX_RINGS; | |
6aa20a22 | 4486 | |
1f26dac3 DM |
4487 | /* collect outstanding stats */ |
4488 | /* WTZ: the Cassini spec gives these as 16 bit counters but | |
4489 | * stored in 32-bit words. Added a mask of 0xffff to be safe, | |
4490 | * in case the chip somehow puts any garbage in the other bits. | |
4491 | * Also, counter usage didn't seem to mach what Adrian did | |
4492 | * in the parts of the code that set these quantities. Made | |
4493 | * that consistent. | |
4494 | */ | |
4495 | spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags); | |
6aa20a22 | 4496 | stats[N_TX_RINGS].rx_crc_errors += |
1f26dac3 | 4497 | readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff; |
6aa20a22 | 4498 | stats[N_TX_RINGS].rx_frame_errors += |
1f26dac3 | 4499 | readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff; |
6aa20a22 | 4500 | stats[N_TX_RINGS].rx_length_errors += |
1f26dac3 DM |
4501 | readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff; |
4502 | #if 1 | |
4503 | tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) + | |
4504 | (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff); | |
4505 | stats[N_TX_RINGS].tx_aborted_errors += tmp; | |
4506 | stats[N_TX_RINGS].collisions += | |
4507 | tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff); | |
4508 | #else | |
6aa20a22 | 4509 | stats[N_TX_RINGS].tx_aborted_errors += |
1f26dac3 DM |
4510 | readl(cp->regs + REG_MAC_COLL_EXCESS); |
4511 | stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) + | |
4512 | readl(cp->regs + REG_MAC_COLL_LATE); | |
4513 | #endif | |
4514 | cas_clear_mac_err(cp); | |
4515 | ||
4516 | /* saved bits that are unique to ring 0 */ | |
4517 | spin_lock(&cp->stat_lock[0]); | |
4518 | stats[N_TX_RINGS].collisions += stats[0].collisions; | |
4519 | stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors; | |
4520 | stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors; | |
4521 | stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors; | |
4522 | stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors; | |
4523 | stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors; | |
4524 | spin_unlock(&cp->stat_lock[0]); | |
4525 | ||
4526 | for (i = 0; i < N_TX_RINGS; i++) { | |
4527 | spin_lock(&cp->stat_lock[i]); | |
6aa20a22 | 4528 | stats[N_TX_RINGS].rx_length_errors += |
1f26dac3 DM |
4529 | stats[i].rx_length_errors; |
4530 | stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors; | |
4531 | stats[N_TX_RINGS].rx_packets += stats[i].rx_packets; | |
4532 | stats[N_TX_RINGS].tx_packets += stats[i].tx_packets; | |
4533 | stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes; | |
4534 | stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes; | |
4535 | stats[N_TX_RINGS].rx_errors += stats[i].rx_errors; | |
4536 | stats[N_TX_RINGS].tx_errors += stats[i].tx_errors; | |
4537 | stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped; | |
4538 | stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped; | |
4539 | memset(stats + i, 0, sizeof(struct net_device_stats)); | |
4540 | spin_unlock(&cp->stat_lock[i]); | |
4541 | } | |
4542 | spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags); | |
4543 | return stats + N_TX_RINGS; | |
4544 | } | |
4545 | ||
4546 | ||
4547 | static void cas_set_multicast(struct net_device *dev) | |
4548 | { | |
4549 | struct cas *cp = netdev_priv(dev); | |
4550 | u32 rxcfg, rxcfg_new; | |
4551 | unsigned long flags; | |
4552 | int limit = STOP_TRIES; | |
6aa20a22 | 4553 | |
1f26dac3 DM |
4554 | if (!cp->hw_running) |
4555 | return; | |
6aa20a22 | 4556 | |
1f26dac3 DM |
4557 | spin_lock_irqsave(&cp->lock, flags); |
4558 | rxcfg = readl(cp->regs + REG_MAC_RX_CFG); | |
4559 | ||
4560 | /* disable RX MAC and wait for completion */ | |
4561 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | |
4562 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) { | |
4563 | if (!limit--) | |
4564 | break; | |
4565 | udelay(10); | |
4566 | } | |
4567 | ||
4568 | /* disable hash filter and wait for completion */ | |
4569 | limit = STOP_TRIES; | |
4570 | rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN); | |
4571 | writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); | |
4572 | while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) { | |
4573 | if (!limit--) | |
4574 | break; | |
4575 | udelay(10); | |
4576 | } | |
4577 | ||
4578 | /* program hash filters */ | |
4579 | cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp); | |
4580 | rxcfg |= rxcfg_new; | |
4581 | writel(rxcfg, cp->regs + REG_MAC_RX_CFG); | |
4582 | spin_unlock_irqrestore(&cp->lock, flags); | |
4583 | } | |
4584 | ||
a232f767 AV |
4585 | static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
4586 | { | |
4587 | struct cas *cp = netdev_priv(dev); | |
4588 | strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN); | |
4589 | strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN); | |
4590 | info->fw_version[0] = '\0'; | |
4591 | strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN); | |
4592 | info->regdump_len = cp->casreg_len < CAS_MAX_REGS ? | |
4593 | cp->casreg_len : CAS_MAX_REGS; | |
4594 | info->n_stats = CAS_NUM_STAT_KEYS; | |
4595 | } | |
4596 | ||
4597 | static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | |
1f26dac3 DM |
4598 | { |
4599 | struct cas *cp = netdev_priv(dev); | |
4600 | u16 bmcr; | |
4601 | int full_duplex, speed, pause; | |
1f26dac3 DM |
4602 | unsigned long flags; |
4603 | enum link_state linkstate = link_up; | |
4604 | ||
a232f767 AV |
4605 | cmd->advertising = 0; |
4606 | cmd->supported = SUPPORTED_Autoneg; | |
4607 | if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { | |
4608 | cmd->supported |= SUPPORTED_1000baseT_Full; | |
4609 | cmd->advertising |= ADVERTISED_1000baseT_Full; | |
1f26dac3 DM |
4610 | } |
4611 | ||
a232f767 AV |
4612 | /* Record PHY settings if HW is on. */ |
4613 | spin_lock_irqsave(&cp->lock, flags); | |
4614 | bmcr = 0; | |
4615 | linkstate = cp->lstate; | |
4616 | if (CAS_PHY_MII(cp->phy_type)) { | |
4617 | cmd->port = PORT_MII; | |
4618 | cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ? | |
4619 | XCVR_INTERNAL : XCVR_EXTERNAL; | |
4620 | cmd->phy_address = cp->phy_addr; | |
4621 | cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII | | |
6aa20a22 JG |
4622 | ADVERTISED_10baseT_Half | |
4623 | ADVERTISED_10baseT_Full | | |
4624 | ADVERTISED_100baseT_Half | | |
a232f767 AV |
4625 | ADVERTISED_100baseT_Full; |
4626 | ||
4627 | cmd->supported |= | |
6aa20a22 | 4628 | (SUPPORTED_10baseT_Half | |
a232f767 | 4629 | SUPPORTED_10baseT_Full | |
6aa20a22 | 4630 | SUPPORTED_100baseT_Half | |
a232f767 AV |
4631 | SUPPORTED_100baseT_Full | |
4632 | SUPPORTED_TP | SUPPORTED_MII); | |
4633 | ||
4634 | if (cp->hw_running) { | |
4635 | cas_mif_poll(cp, 0); | |
4636 | bmcr = cas_phy_read(cp, MII_BMCR); | |
6aa20a22 | 4637 | cas_read_mii_link_mode(cp, &full_duplex, |
a232f767 AV |
4638 | &speed, &pause); |
4639 | cas_mif_poll(cp, 1); | |
1f26dac3 DM |
4640 | } |
4641 | ||
a232f767 AV |
4642 | } else { |
4643 | cmd->port = PORT_FIBRE; | |
4644 | cmd->transceiver = XCVR_INTERNAL; | |
4645 | cmd->phy_address = 0; | |
4646 | cmd->supported |= SUPPORTED_FIBRE; | |
4647 | cmd->advertising |= ADVERTISED_FIBRE; | |
4648 | ||
4649 | if (cp->hw_running) { | |
6aa20a22 | 4650 | /* pcs uses the same bits as mii */ |
a232f767 | 4651 | bmcr = readl(cp->regs + REG_PCS_MII_CTRL); |
6aa20a22 | 4652 | cas_read_pcs_link_mode(cp, &full_duplex, |
a232f767 | 4653 | &speed, &pause); |
1f26dac3 | 4654 | } |
a232f767 AV |
4655 | } |
4656 | spin_unlock_irqrestore(&cp->lock, flags); | |
1f26dac3 | 4657 | |
a232f767 AV |
4658 | if (bmcr & BMCR_ANENABLE) { |
4659 | cmd->advertising |= ADVERTISED_Autoneg; | |
4660 | cmd->autoneg = AUTONEG_ENABLE; | |
4661 | cmd->speed = ((speed == 10) ? | |
4662 | SPEED_10 : | |
4663 | ((speed == 1000) ? | |
4664 | SPEED_1000 : SPEED_100)); | |
4665 | cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF; | |
4666 | } else { | |
4667 | cmd->autoneg = AUTONEG_DISABLE; | |
4668 | cmd->speed = | |
4669 | (bmcr & CAS_BMCR_SPEED1000) ? | |
6aa20a22 JG |
4670 | SPEED_1000 : |
4671 | ((bmcr & BMCR_SPEED100) ? SPEED_100: | |
a232f767 AV |
4672 | SPEED_10); |
4673 | cmd->duplex = | |
4674 | (bmcr & BMCR_FULLDPLX) ? | |
4675 | DUPLEX_FULL : DUPLEX_HALF; | |
4676 | } | |
4677 | if (linkstate != link_up) { | |
4678 | /* Force these to "unknown" if the link is not up and | |
6aa20a22 | 4679 | * autonogotiation in enabled. We can set the link |
a232f767 AV |
4680 | * speed to 0, but not cmd->duplex, |
4681 | * because its legal values are 0 and 1. Ethtool will | |
4682 | * print the value reported in parentheses after the | |
4683 | * word "Unknown" for unrecognized values. | |
4684 | * | |
4685 | * If in forced mode, we report the speed and duplex | |
4686 | * settings that we configured. | |
4687 | */ | |
4688 | if (cp->link_cntl & BMCR_ANENABLE) { | |
4689 | cmd->speed = 0; | |
4690 | cmd->duplex = 0xff; | |
1f26dac3 | 4691 | } else { |
a232f767 AV |
4692 | cmd->speed = SPEED_10; |
4693 | if (cp->link_cntl & BMCR_SPEED100) { | |
4694 | cmd->speed = SPEED_100; | |
4695 | } else if (cp->link_cntl & CAS_BMCR_SPEED1000) { | |
4696 | cmd->speed = SPEED_1000; | |
1f26dac3 | 4697 | } |
a232f767 AV |
4698 | cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)? |
4699 | DUPLEX_FULL : DUPLEX_HALF; | |
1f26dac3 | 4700 | } |
a232f767 AV |
4701 | } |
4702 | return 0; | |
4703 | } | |
1f26dac3 | 4704 | |
a232f767 AV |
4705 | static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
4706 | { | |
4707 | struct cas *cp = netdev_priv(dev); | |
4708 | unsigned long flags; | |
1f26dac3 | 4709 | |
a232f767 AV |
4710 | /* Verify the settings we care about. */ |
4711 | if (cmd->autoneg != AUTONEG_ENABLE && | |
4712 | cmd->autoneg != AUTONEG_DISABLE) | |
4713 | return -EINVAL; | |
1f26dac3 | 4714 | |
a232f767 AV |
4715 | if (cmd->autoneg == AUTONEG_DISABLE && |
4716 | ((cmd->speed != SPEED_1000 && | |
4717 | cmd->speed != SPEED_100 && | |
4718 | cmd->speed != SPEED_10) || | |
4719 | (cmd->duplex != DUPLEX_HALF && | |
4720 | cmd->duplex != DUPLEX_FULL))) | |
4721 | return -EINVAL; | |
1f26dac3 | 4722 | |
a232f767 AV |
4723 | /* Apply settings and restart link process. */ |
4724 | spin_lock_irqsave(&cp->lock, flags); | |
4725 | cas_begin_auto_negotiation(cp, cmd); | |
4726 | spin_unlock_irqrestore(&cp->lock, flags); | |
4727 | return 0; | |
4728 | } | |
1f26dac3 | 4729 | |
a232f767 AV |
4730 | static int cas_nway_reset(struct net_device *dev) |
4731 | { | |
4732 | struct cas *cp = netdev_priv(dev); | |
4733 | unsigned long flags; | |
1f26dac3 | 4734 | |
a232f767 AV |
4735 | if ((cp->link_cntl & BMCR_ANENABLE) == 0) |
4736 | return -EINVAL; | |
1f26dac3 | 4737 | |
a232f767 AV |
4738 | /* Restart link process. */ |
4739 | spin_lock_irqsave(&cp->lock, flags); | |
4740 | cas_begin_auto_negotiation(cp, NULL); | |
4741 | spin_unlock_irqrestore(&cp->lock, flags); | |
1f26dac3 | 4742 | |
a232f767 AV |
4743 | return 0; |
4744 | } | |
1f26dac3 | 4745 | |
a232f767 AV |
4746 | static u32 cas_get_link(struct net_device *dev) |
4747 | { | |
4748 | struct cas *cp = netdev_priv(dev); | |
4749 | return cp->lstate == link_up; | |
4750 | } | |
1f26dac3 | 4751 | |
a232f767 AV |
4752 | static u32 cas_get_msglevel(struct net_device *dev) |
4753 | { | |
4754 | struct cas *cp = netdev_priv(dev); | |
4755 | return cp->msg_enable; | |
4756 | } | |
1f26dac3 | 4757 | |
a232f767 AV |
4758 | static void cas_set_msglevel(struct net_device *dev, u32 value) |
4759 | { | |
4760 | struct cas *cp = netdev_priv(dev); | |
4761 | cp->msg_enable = value; | |
4762 | } | |
1f26dac3 | 4763 | |
a232f767 AV |
4764 | static int cas_get_regs_len(struct net_device *dev) |
4765 | { | |
4766 | struct cas *cp = netdev_priv(dev); | |
4767 | return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS; | |
4768 | } | |
1f26dac3 | 4769 | |
a232f767 AV |
4770 | static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
4771 | void *p) | |
4772 | { | |
4773 | struct cas *cp = netdev_priv(dev); | |
4774 | regs->version = 0; | |
4775 | /* cas_read_regs handles locks (cp->lock). */ | |
4776 | cas_read_regs(cp, p, regs->len / sizeof(u32)); | |
4777 | } | |
1f26dac3 | 4778 | |
a232f767 AV |
4779 | static int cas_get_stats_count(struct net_device *dev) |
4780 | { | |
4781 | return CAS_NUM_STAT_KEYS; | |
4782 | } | |
1f26dac3 | 4783 | |
a232f767 AV |
4784 | static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data) |
4785 | { | |
6aa20a22 | 4786 | memcpy(data, ðtool_cassini_statnames, |
a232f767 AV |
4787 | CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN); |
4788 | } | |
1f26dac3 | 4789 | |
a232f767 AV |
4790 | static void cas_get_ethtool_stats(struct net_device *dev, |
4791 | struct ethtool_stats *estats, u64 *data) | |
4792 | { | |
4793 | struct cas *cp = netdev_priv(dev); | |
4794 | struct net_device_stats *stats = cas_get_stats(cp->dev); | |
4795 | int i = 0; | |
4796 | data[i++] = stats->collisions; | |
4797 | data[i++] = stats->rx_bytes; | |
4798 | data[i++] = stats->rx_crc_errors; | |
4799 | data[i++] = stats->rx_dropped; | |
4800 | data[i++] = stats->rx_errors; | |
4801 | data[i++] = stats->rx_fifo_errors; | |
4802 | data[i++] = stats->rx_frame_errors; | |
4803 | data[i++] = stats->rx_length_errors; | |
4804 | data[i++] = stats->rx_over_errors; | |
4805 | data[i++] = stats->rx_packets; | |
4806 | data[i++] = stats->tx_aborted_errors; | |
4807 | data[i++] = stats->tx_bytes; | |
4808 | data[i++] = stats->tx_dropped; | |
4809 | data[i++] = stats->tx_errors; | |
4810 | data[i++] = stats->tx_fifo_errors; | |
4811 | data[i++] = stats->tx_packets; | |
4812 | BUG_ON(i != CAS_NUM_STAT_KEYS); | |
1f26dac3 DM |
4813 | } |
4814 | ||
7282d491 | 4815 | static const struct ethtool_ops cas_ethtool_ops = { |
a232f767 AV |
4816 | .get_drvinfo = cas_get_drvinfo, |
4817 | .get_settings = cas_get_settings, | |
4818 | .set_settings = cas_set_settings, | |
4819 | .nway_reset = cas_nway_reset, | |
4820 | .get_link = cas_get_link, | |
4821 | .get_msglevel = cas_get_msglevel, | |
4822 | .set_msglevel = cas_set_msglevel, | |
4823 | .get_regs_len = cas_get_regs_len, | |
4824 | .get_regs = cas_get_regs, | |
4825 | .get_stats_count = cas_get_stats_count, | |
4826 | .get_strings = cas_get_strings, | |
4827 | .get_ethtool_stats = cas_get_ethtool_stats, | |
4828 | }; | |
4829 | ||
1f26dac3 DM |
4830 | static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
4831 | { | |
4832 | struct cas *cp = netdev_priv(dev); | |
46d7031e | 4833 | struct mii_ioctl_data *data = if_mii(ifr); |
1f26dac3 DM |
4834 | unsigned long flags; |
4835 | int rc = -EOPNOTSUPP; | |
6aa20a22 | 4836 | |
758df69e | 4837 | /* Hold the PM mutex while doing ioctl's or we may collide |
1f26dac3 DM |
4838 | * with open/close and power management and oops. |
4839 | */ | |
758df69e | 4840 | mutex_lock(&cp->pm_mutex); |
1f26dac3 | 4841 | switch (cmd) { |
1f26dac3 DM |
4842 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
4843 | data->phy_id = cp->phy_addr; | |
4844 | /* Fallthrough... */ | |
4845 | ||
4846 | case SIOCGMIIREG: /* Read MII PHY register. */ | |
4847 | spin_lock_irqsave(&cp->lock, flags); | |
4848 | cas_mif_poll(cp, 0); | |
4849 | data->val_out = cas_phy_read(cp, data->reg_num & 0x1f); | |
4850 | cas_mif_poll(cp, 1); | |
4851 | spin_unlock_irqrestore(&cp->lock, flags); | |
4852 | rc = 0; | |
4853 | break; | |
4854 | ||
4855 | case SIOCSMIIREG: /* Write MII PHY register. */ | |
4856 | if (!capable(CAP_NET_ADMIN)) { | |
4857 | rc = -EPERM; | |
4858 | break; | |
4859 | } | |
4860 | spin_lock_irqsave(&cp->lock, flags); | |
4861 | cas_mif_poll(cp, 0); | |
4862 | rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in); | |
4863 | cas_mif_poll(cp, 1); | |
4864 | spin_unlock_irqrestore(&cp->lock, flags); | |
4865 | break; | |
4866 | default: | |
4867 | break; | |
4868 | }; | |
4869 | ||
758df69e | 4870 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
4871 | return rc; |
4872 | } | |
4873 | ||
4874 | static int __devinit cas_init_one(struct pci_dev *pdev, | |
4875 | const struct pci_device_id *ent) | |
4876 | { | |
4877 | static int cas_version_printed = 0; | |
18e37f2a | 4878 | unsigned long casreg_len; |
1f26dac3 DM |
4879 | struct net_device *dev; |
4880 | struct cas *cp; | |
4881 | int i, err, pci_using_dac; | |
4882 | u16 pci_cmd; | |
4883 | u8 orig_cacheline_size = 0, cas_cacheline_size = 0; | |
4884 | ||
4885 | if (cas_version_printed++ == 0) | |
4886 | printk(KERN_INFO "%s", version); | |
4887 | ||
4888 | err = pci_enable_device(pdev); | |
4889 | if (err) { | |
9b91cf9d | 4890 | dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n"); |
1f26dac3 DM |
4891 | return err; |
4892 | } | |
4893 | ||
4894 | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | |
9b91cf9d | 4895 | dev_err(&pdev->dev, "Cannot find proper PCI device " |
1f26dac3 DM |
4896 | "base address, aborting.\n"); |
4897 | err = -ENODEV; | |
4898 | goto err_out_disable_pdev; | |
4899 | } | |
4900 | ||
4901 | dev = alloc_etherdev(sizeof(*cp)); | |
4902 | if (!dev) { | |
9b91cf9d | 4903 | dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n"); |
1f26dac3 DM |
4904 | err = -ENOMEM; |
4905 | goto err_out_disable_pdev; | |
4906 | } | |
4907 | SET_MODULE_OWNER(dev); | |
4908 | SET_NETDEV_DEV(dev, &pdev->dev); | |
4909 | ||
4910 | err = pci_request_regions(pdev, dev->name); | |
4911 | if (err) { | |
9b91cf9d | 4912 | dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n"); |
1f26dac3 DM |
4913 | goto err_out_free_netdev; |
4914 | } | |
4915 | pci_set_master(pdev); | |
4916 | ||
4917 | /* we must always turn on parity response or else parity | |
4918 | * doesn't get generated properly. disable SERR/PERR as well. | |
4919 | * in addition, we want to turn MWI on. | |
4920 | */ | |
4921 | pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); | |
4922 | pci_cmd &= ~PCI_COMMAND_SERR; | |
4923 | pci_cmd |= PCI_COMMAND_PARITY; | |
4924 | pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); | |
4925 | pci_set_mwi(pdev); | |
4926 | /* | |
4927 | * On some architectures, the default cache line size set | |
4928 | * by pci_set_mwi reduces perforamnce. We have to increase | |
4929 | * it for this case. To start, we'll print some configuration | |
4930 | * data. | |
4931 | */ | |
4932 | #if 1 | |
4933 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, | |
4934 | &orig_cacheline_size); | |
4935 | if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) { | |
6aa20a22 JG |
4936 | cas_cacheline_size = |
4937 | (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ? | |
1f26dac3 | 4938 | CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES; |
6aa20a22 JG |
4939 | if (pci_write_config_byte(pdev, |
4940 | PCI_CACHE_LINE_SIZE, | |
1f26dac3 | 4941 | cas_cacheline_size)) { |
9b91cf9d | 4942 | dev_err(&pdev->dev, "Could not set PCI cache " |
1f26dac3 DM |
4943 | "line size\n"); |
4944 | goto err_write_cacheline; | |
4945 | } | |
4946 | } | |
4947 | #endif | |
4948 | ||
4949 | ||
4950 | /* Configure DMA attributes. */ | |
4951 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { | |
4952 | pci_using_dac = 1; | |
4953 | err = pci_set_consistent_dma_mask(pdev, | |
4954 | DMA_64BIT_MASK); | |
4955 | if (err < 0) { | |
9b91cf9d | 4956 | dev_err(&pdev->dev, "Unable to obtain 64-bit DMA " |
1f26dac3 DM |
4957 | "for consistent allocations\n"); |
4958 | goto err_out_free_res; | |
4959 | } | |
4960 | ||
4961 | } else { | |
4962 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | |
4963 | if (err) { | |
9b91cf9d | 4964 | dev_err(&pdev->dev, "No usable DMA configuration, " |
1f26dac3 DM |
4965 | "aborting.\n"); |
4966 | goto err_out_free_res; | |
4967 | } | |
4968 | pci_using_dac = 0; | |
4969 | } | |
4970 | ||
1f26dac3 DM |
4971 | casreg_len = pci_resource_len(pdev, 0); |
4972 | ||
4973 | cp = netdev_priv(dev); | |
4974 | cp->pdev = pdev; | |
4975 | #if 1 | |
4976 | /* A value of 0 indicates we never explicitly set it */ | |
4977 | cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0; | |
4978 | #endif | |
4979 | cp->dev = dev; | |
6aa20a22 | 4980 | cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE : |
1f26dac3 DM |
4981 | cassini_debug; |
4982 | ||
4983 | cp->link_transition = LINK_TRANSITION_UNKNOWN; | |
4984 | cp->link_transition_jiffies_valid = 0; | |
4985 | ||
4986 | spin_lock_init(&cp->lock); | |
4987 | spin_lock_init(&cp->rx_inuse_lock); | |
4988 | spin_lock_init(&cp->rx_spare_lock); | |
4989 | for (i = 0; i < N_TX_RINGS; i++) { | |
4990 | spin_lock_init(&cp->stat_lock[i]); | |
4991 | spin_lock_init(&cp->tx_lock[i]); | |
4992 | } | |
4993 | spin_lock_init(&cp->stat_lock[N_TX_RINGS]); | |
758df69e | 4994 | mutex_init(&cp->pm_mutex); |
1f26dac3 DM |
4995 | |
4996 | init_timer(&cp->link_timer); | |
4997 | cp->link_timer.function = cas_link_timer; | |
4998 | cp->link_timer.data = (unsigned long) cp; | |
4999 | ||
5000 | #if 1 | |
5001 | /* Just in case the implementation of atomic operations | |
5002 | * change so that an explicit initialization is necessary. | |
5003 | */ | |
5004 | atomic_set(&cp->reset_task_pending, 0); | |
5005 | atomic_set(&cp->reset_task_pending_all, 0); | |
5006 | atomic_set(&cp->reset_task_pending_spare, 0); | |
5007 | atomic_set(&cp->reset_task_pending_mtu, 0); | |
5008 | #endif | |
5009 | INIT_WORK(&cp->reset_task, cas_reset_task, cp); | |
5010 | ||
5011 | /* Default link parameters */ | |
5012 | if (link_mode >= 0 && link_mode <= 6) | |
5013 | cp->link_cntl = link_modes[link_mode]; | |
5014 | else | |
5015 | cp->link_cntl = BMCR_ANENABLE; | |
5016 | cp->lstate = link_down; | |
5017 | cp->link_transition = LINK_TRANSITION_LINK_DOWN; | |
5018 | netif_carrier_off(cp->dev); | |
5019 | cp->timer_ticks = 0; | |
5020 | ||
5021 | /* give us access to cassini registers */ | |
18e37f2a | 5022 | cp->regs = pci_iomap(pdev, 0, casreg_len); |
1f26dac3 | 5023 | if (cp->regs == 0UL) { |
9b91cf9d | 5024 | dev_err(&pdev->dev, "Cannot map device registers, aborting.\n"); |
1f26dac3 DM |
5025 | goto err_out_free_res; |
5026 | } | |
5027 | cp->casreg_len = casreg_len; | |
5028 | ||
5029 | pci_save_state(pdev); | |
5030 | cas_check_pci_invariants(cp); | |
5031 | cas_hard_reset(cp); | |
5032 | cas_reset(cp, 0); | |
5033 | if (cas_check_invariants(cp)) | |
5034 | goto err_out_iounmap; | |
5035 | ||
5036 | cp->init_block = (struct cas_init_block *) | |
5037 | pci_alloc_consistent(pdev, sizeof(struct cas_init_block), | |
5038 | &cp->block_dvma); | |
5039 | if (!cp->init_block) { | |
9b91cf9d | 5040 | dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n"); |
1f26dac3 DM |
5041 | goto err_out_iounmap; |
5042 | } | |
5043 | ||
6aa20a22 | 5044 | for (i = 0; i < N_TX_RINGS; i++) |
1f26dac3 DM |
5045 | cp->init_txds[i] = cp->init_block->txds[i]; |
5046 | ||
6aa20a22 | 5047 | for (i = 0; i < N_RX_DESC_RINGS; i++) |
1f26dac3 DM |
5048 | cp->init_rxds[i] = cp->init_block->rxds[i]; |
5049 | ||
6aa20a22 | 5050 | for (i = 0; i < N_RX_COMP_RINGS; i++) |
1f26dac3 DM |
5051 | cp->init_rxcs[i] = cp->init_block->rxcs[i]; |
5052 | ||
5053 | for (i = 0; i < N_RX_FLOWS; i++) | |
5054 | skb_queue_head_init(&cp->rx_flows[i]); | |
5055 | ||
5056 | dev->open = cas_open; | |
5057 | dev->stop = cas_close; | |
5058 | dev->hard_start_xmit = cas_start_xmit; | |
5059 | dev->get_stats = cas_get_stats; | |
5060 | dev->set_multicast_list = cas_set_multicast; | |
5061 | dev->do_ioctl = cas_ioctl; | |
a232f767 | 5062 | dev->ethtool_ops = &cas_ethtool_ops; |
1f26dac3 DM |
5063 | dev->tx_timeout = cas_tx_timeout; |
5064 | dev->watchdog_timeo = CAS_TX_TIMEOUT; | |
5065 | dev->change_mtu = cas_change_mtu; | |
5066 | #ifdef USE_NAPI | |
5067 | dev->poll = cas_poll; | |
5068 | dev->weight = 64; | |
5069 | #endif | |
5070 | #ifdef CONFIG_NET_POLL_CONTROLLER | |
5071 | dev->poll_controller = cas_netpoll; | |
5072 | #endif | |
5073 | dev->irq = pdev->irq; | |
5074 | dev->dma = 0; | |
5075 | ||
5076 | /* Cassini features. */ | |
5077 | if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0) | |
5078 | dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; | |
5079 | ||
5080 | if (pci_using_dac) | |
5081 | dev->features |= NETIF_F_HIGHDMA; | |
5082 | ||
5083 | if (register_netdev(dev)) { | |
9b91cf9d | 5084 | dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); |
1f26dac3 DM |
5085 | goto err_out_free_consistent; |
5086 | } | |
5087 | ||
5088 | i = readl(cp->regs + REG_BIM_CFG); | |
5089 | printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) " | |
6aa20a22 JG |
5090 | "Ethernet[%d] ", dev->name, |
5091 | (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "", | |
1f26dac3 DM |
5092 | (i & BIM_CFG_32BIT) ? "32" : "64", |
5093 | (i & BIM_CFG_66MHZ) ? "66" : "33", | |
6aa20a22 | 5094 | (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq); |
1f26dac3 DM |
5095 | |
5096 | for (i = 0; i < 6; i++) | |
5097 | printk("%2.2x%c", dev->dev_addr[i], | |
5098 | i == 5 ? ' ' : ':'); | |
5099 | printk("\n"); | |
5100 | ||
5101 | pci_set_drvdata(pdev, dev); | |
5102 | cp->hw_running = 1; | |
5103 | cas_entropy_reset(cp); | |
5104 | cas_phy_init(cp); | |
5105 | cas_begin_auto_negotiation(cp, NULL); | |
5106 | return 0; | |
5107 | ||
5108 | err_out_free_consistent: | |
5109 | pci_free_consistent(pdev, sizeof(struct cas_init_block), | |
5110 | cp->init_block, cp->block_dvma); | |
5111 | ||
5112 | err_out_iounmap: | |
758df69e | 5113 | mutex_lock(&cp->pm_mutex); |
1f26dac3 DM |
5114 | if (cp->hw_running) |
5115 | cas_shutdown(cp); | |
758df69e | 5116 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 | 5117 | |
18e37f2a | 5118 | pci_iounmap(pdev, cp->regs); |
1f26dac3 DM |
5119 | |
5120 | ||
5121 | err_out_free_res: | |
5122 | pci_release_regions(pdev); | |
5123 | ||
5124 | err_write_cacheline: | |
5125 | /* Try to restore it in case the error occured after we | |
6aa20a22 | 5126 | * set it. |
1f26dac3 DM |
5127 | */ |
5128 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size); | |
5129 | ||
5130 | err_out_free_netdev: | |
5131 | free_netdev(dev); | |
5132 | ||
5133 | err_out_disable_pdev: | |
5134 | pci_disable_device(pdev); | |
5135 | pci_set_drvdata(pdev, NULL); | |
5136 | return -ENODEV; | |
5137 | } | |
5138 | ||
5139 | static void __devexit cas_remove_one(struct pci_dev *pdev) | |
5140 | { | |
5141 | struct net_device *dev = pci_get_drvdata(pdev); | |
5142 | struct cas *cp; | |
5143 | if (!dev) | |
5144 | return; | |
5145 | ||
5146 | cp = netdev_priv(dev); | |
5147 | unregister_netdev(dev); | |
5148 | ||
758df69e | 5149 | mutex_lock(&cp->pm_mutex); |
1f26dac3 DM |
5150 | flush_scheduled_work(); |
5151 | if (cp->hw_running) | |
5152 | cas_shutdown(cp); | |
758df69e | 5153 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
5154 | |
5155 | #if 1 | |
5156 | if (cp->orig_cacheline_size) { | |
5157 | /* Restore the cache line size if we had modified | |
5158 | * it. | |
5159 | */ | |
6aa20a22 | 5160 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, |
1f26dac3 DM |
5161 | cp->orig_cacheline_size); |
5162 | } | |
5163 | #endif | |
5164 | pci_free_consistent(pdev, sizeof(struct cas_init_block), | |
5165 | cp->init_block, cp->block_dvma); | |
18e37f2a | 5166 | pci_iounmap(pdev, cp->regs); |
1f26dac3 DM |
5167 | free_netdev(dev); |
5168 | pci_release_regions(pdev); | |
5169 | pci_disable_device(pdev); | |
5170 | pci_set_drvdata(pdev, NULL); | |
5171 | } | |
5172 | ||
5173 | #ifdef CONFIG_PM | |
46d7031e | 5174 | static int cas_suspend(struct pci_dev *pdev, pm_message_t state) |
1f26dac3 DM |
5175 | { |
5176 | struct net_device *dev = pci_get_drvdata(pdev); | |
5177 | struct cas *cp = netdev_priv(dev); | |
5178 | unsigned long flags; | |
5179 | ||
758df69e | 5180 | mutex_lock(&cp->pm_mutex); |
6aa20a22 | 5181 | |
1f26dac3 DM |
5182 | /* If the driver is opened, we stop the DMA */ |
5183 | if (cp->opened) { | |
5184 | netif_device_detach(dev); | |
5185 | ||
5186 | cas_lock_all_save(cp, flags); | |
5187 | ||
5188 | /* We can set the second arg of cas_reset to 0 | |
5189 | * because on resume, we'll call cas_init_hw with | |
5190 | * its second arg set so that autonegotiation is | |
5191 | * restarted. | |
5192 | */ | |
5193 | cas_reset(cp, 0); | |
5194 | cas_clean_rings(cp); | |
5195 | cas_unlock_all_restore(cp, flags); | |
5196 | } | |
5197 | ||
5198 | if (cp->hw_running) | |
5199 | cas_shutdown(cp); | |
758df69e | 5200 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
5201 | |
5202 | return 0; | |
5203 | } | |
5204 | ||
5205 | static int cas_resume(struct pci_dev *pdev) | |
5206 | { | |
5207 | struct net_device *dev = pci_get_drvdata(pdev); | |
5208 | struct cas *cp = netdev_priv(dev); | |
5209 | ||
5210 | printk(KERN_INFO "%s: resuming\n", dev->name); | |
5211 | ||
758df69e | 5212 | mutex_lock(&cp->pm_mutex); |
1f26dac3 DM |
5213 | cas_hard_reset(cp); |
5214 | if (cp->opened) { | |
5215 | unsigned long flags; | |
5216 | cas_lock_all_save(cp, flags); | |
5217 | cas_reset(cp, 0); | |
5218 | cp->hw_running = 1; | |
5219 | cas_clean_rings(cp); | |
5220 | cas_init_hw(cp, 1); | |
5221 | cas_unlock_all_restore(cp, flags); | |
5222 | ||
5223 | netif_device_attach(dev); | |
5224 | } | |
758df69e | 5225 | mutex_unlock(&cp->pm_mutex); |
1f26dac3 DM |
5226 | return 0; |
5227 | } | |
5228 | #endif /* CONFIG_PM */ | |
5229 | ||
5230 | static struct pci_driver cas_driver = { | |
5231 | .name = DRV_MODULE_NAME, | |
5232 | .id_table = cas_pci_tbl, | |
5233 | .probe = cas_init_one, | |
5234 | .remove = __devexit_p(cas_remove_one), | |
5235 | #ifdef CONFIG_PM | |
5236 | .suspend = cas_suspend, | |
5237 | .resume = cas_resume | |
5238 | #endif | |
5239 | }; | |
5240 | ||
5241 | static int __init cas_init(void) | |
5242 | { | |
5243 | if (linkdown_timeout > 0) | |
5244 | link_transition_timeout = linkdown_timeout * HZ; | |
5245 | else | |
5246 | link_transition_timeout = 0; | |
5247 | ||
29917620 | 5248 | return pci_register_driver(&cas_driver); |
1f26dac3 DM |
5249 | } |
5250 | ||
5251 | static void __exit cas_cleanup(void) | |
5252 | { | |
5253 | pci_unregister_driver(&cas_driver); | |
5254 | } | |
5255 | ||
5256 | module_init(cas_init); | |
5257 | module_exit(cas_cleanup); |