]>
Commit | Line | Data |
---|---|---|
16d69265 | 1 | #include <linux/mm.h> |
30992c97 MM |
2 | #include <linux/slab.h> |
3 | #include <linux/string.h> | |
3b32123d | 4 | #include <linux/compiler.h> |
b95f1b31 | 5 | #include <linux/export.h> |
96840aa0 | 6 | #include <linux/err.h> |
3b8f14b4 | 7 | #include <linux/sched.h> |
6e84f315 | 8 | #include <linux/sched/mm.h> |
68db0cf1 | 9 | #include <linux/sched/task_stack.h> |
eb36c587 | 10 | #include <linux/security.h> |
9800339b | 11 | #include <linux/swap.h> |
33806f06 | 12 | #include <linux/swapops.h> |
00619bcc JM |
13 | #include <linux/mman.h> |
14 | #include <linux/hugetlb.h> | |
39f1f78d | 15 | #include <linux/vmalloc.h> |
897ab3e0 | 16 | #include <linux/userfaultfd_k.h> |
00619bcc | 17 | |
a4bb1e43 | 18 | #include <asm/sections.h> |
7c0f6ba6 | 19 | #include <linux/uaccess.h> |
30992c97 | 20 | |
6038def0 NK |
21 | #include "internal.h" |
22 | ||
a4bb1e43 AH |
23 | static inline int is_kernel_rodata(unsigned long addr) |
24 | { | |
25 | return addr >= (unsigned long)__start_rodata && | |
26 | addr < (unsigned long)__end_rodata; | |
27 | } | |
28 | ||
29 | /** | |
30 | * kfree_const - conditionally free memory | |
31 | * @x: pointer to the memory | |
32 | * | |
33 | * Function calls kfree only if @x is not in .rodata section. | |
34 | */ | |
35 | void kfree_const(const void *x) | |
36 | { | |
37 | if (!is_kernel_rodata((unsigned long)x)) | |
38 | kfree(x); | |
39 | } | |
40 | EXPORT_SYMBOL(kfree_const); | |
41 | ||
30992c97 | 42 | /** |
30992c97 | 43 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
44 | * @s: the string to duplicate |
45 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
46 | */ | |
47 | char *kstrdup(const char *s, gfp_t gfp) | |
48 | { | |
49 | size_t len; | |
50 | char *buf; | |
51 | ||
52 | if (!s) | |
53 | return NULL; | |
54 | ||
55 | len = strlen(s) + 1; | |
1d2c8eea | 56 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
57 | if (buf) |
58 | memcpy(buf, s, len); | |
59 | return buf; | |
60 | } | |
61 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 62 | |
a4bb1e43 AH |
63 | /** |
64 | * kstrdup_const - conditionally duplicate an existing const string | |
65 | * @s: the string to duplicate | |
66 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
67 | * | |
68 | * Function returns source string if it is in .rodata section otherwise it | |
69 | * fallbacks to kstrdup. | |
70 | * Strings allocated by kstrdup_const should be freed by kfree_const. | |
71 | */ | |
72 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
73 | { | |
74 | if (is_kernel_rodata((unsigned long)s)) | |
75 | return s; | |
76 | ||
77 | return kstrdup(s, gfp); | |
78 | } | |
79 | EXPORT_SYMBOL(kstrdup_const); | |
80 | ||
1e66df3e JF |
81 | /** |
82 | * kstrndup - allocate space for and copy an existing string | |
83 | * @s: the string to duplicate | |
84 | * @max: read at most @max chars from @s | |
85 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
86 | */ | |
87 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
88 | { | |
89 | size_t len; | |
90 | char *buf; | |
91 | ||
92 | if (!s) | |
93 | return NULL; | |
94 | ||
95 | len = strnlen(s, max); | |
96 | buf = kmalloc_track_caller(len+1, gfp); | |
97 | if (buf) { | |
98 | memcpy(buf, s, len); | |
99 | buf[len] = '\0'; | |
100 | } | |
101 | return buf; | |
102 | } | |
103 | EXPORT_SYMBOL(kstrndup); | |
104 | ||
1a2f67b4 AD |
105 | /** |
106 | * kmemdup - duplicate region of memory | |
107 | * | |
108 | * @src: memory region to duplicate | |
109 | * @len: memory region length | |
110 | * @gfp: GFP mask to use | |
111 | */ | |
112 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
113 | { | |
114 | void *p; | |
115 | ||
1d2c8eea | 116 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
117 | if (p) |
118 | memcpy(p, src, len); | |
119 | return p; | |
120 | } | |
121 | EXPORT_SYMBOL(kmemdup); | |
122 | ||
610a77e0 LZ |
123 | /** |
124 | * memdup_user - duplicate memory region from user space | |
125 | * | |
126 | * @src: source address in user space | |
127 | * @len: number of bytes to copy | |
128 | * | |
129 | * Returns an ERR_PTR() on failure. | |
130 | */ | |
131 | void *memdup_user(const void __user *src, size_t len) | |
132 | { | |
133 | void *p; | |
134 | ||
135 | /* | |
136 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
137 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
138 | * or GFP_ATOMIC. | |
139 | */ | |
140 | p = kmalloc_track_caller(len, GFP_KERNEL); | |
141 | if (!p) | |
142 | return ERR_PTR(-ENOMEM); | |
143 | ||
144 | if (copy_from_user(p, src, len)) { | |
145 | kfree(p); | |
146 | return ERR_PTR(-EFAULT); | |
147 | } | |
148 | ||
149 | return p; | |
150 | } | |
151 | EXPORT_SYMBOL(memdup_user); | |
152 | ||
96840aa0 DA |
153 | /* |
154 | * strndup_user - duplicate an existing string from user space | |
96840aa0 DA |
155 | * @s: The string to duplicate |
156 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
157 | */ | |
158 | char *strndup_user(const char __user *s, long n) | |
159 | { | |
160 | char *p; | |
161 | long length; | |
162 | ||
163 | length = strnlen_user(s, n); | |
164 | ||
165 | if (!length) | |
166 | return ERR_PTR(-EFAULT); | |
167 | ||
168 | if (length > n) | |
169 | return ERR_PTR(-EINVAL); | |
170 | ||
90d74045 | 171 | p = memdup_user(s, length); |
96840aa0 | 172 | |
90d74045 JL |
173 | if (IS_ERR(p)) |
174 | return p; | |
96840aa0 DA |
175 | |
176 | p[length - 1] = '\0'; | |
177 | ||
178 | return p; | |
179 | } | |
180 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 181 | |
e9d408e1 AV |
182 | /** |
183 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
184 | * | |
185 | * @src: source address in user space | |
186 | * @len: number of bytes to copy | |
187 | * | |
188 | * Returns an ERR_PTR() on failure. | |
189 | */ | |
190 | void *memdup_user_nul(const void __user *src, size_t len) | |
191 | { | |
192 | char *p; | |
193 | ||
194 | /* | |
195 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
196 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
197 | * or GFP_ATOMIC. | |
198 | */ | |
199 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
200 | if (!p) | |
201 | return ERR_PTR(-ENOMEM); | |
202 | ||
203 | if (copy_from_user(p, src, len)) { | |
204 | kfree(p); | |
205 | return ERR_PTR(-EFAULT); | |
206 | } | |
207 | p[len] = '\0'; | |
208 | ||
209 | return p; | |
210 | } | |
211 | EXPORT_SYMBOL(memdup_user_nul); | |
212 | ||
6038def0 NK |
213 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
214 | struct vm_area_struct *prev, struct rb_node *rb_parent) | |
215 | { | |
216 | struct vm_area_struct *next; | |
217 | ||
218 | vma->vm_prev = prev; | |
219 | if (prev) { | |
220 | next = prev->vm_next; | |
221 | prev->vm_next = vma; | |
222 | } else { | |
223 | mm->mmap = vma; | |
224 | if (rb_parent) | |
225 | next = rb_entry(rb_parent, | |
226 | struct vm_area_struct, vm_rb); | |
227 | else | |
228 | next = NULL; | |
229 | } | |
230 | vma->vm_next = next; | |
231 | if (next) | |
232 | next->vm_prev = vma; | |
233 | } | |
234 | ||
b7643757 | 235 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 236 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 237 | { |
d17af505 AL |
238 | struct task_struct * __maybe_unused t = current; |
239 | ||
b7643757 SP |
240 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
241 | } | |
242 | ||
efc1a3b1 | 243 | #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) |
16d69265 AM |
244 | void arch_pick_mmap_layout(struct mm_struct *mm) |
245 | { | |
246 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
247 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
248 | } |
249 | #endif | |
912985dc | 250 | |
45888a0c XG |
251 | /* |
252 | * Like get_user_pages_fast() except its IRQ-safe in that it won't fall | |
253 | * back to the regular GUP. | |
25985edc | 254 | * If the architecture not support this function, simply return with no |
45888a0c XG |
255 | * page pinned |
256 | */ | |
3b32123d | 257 | int __weak __get_user_pages_fast(unsigned long start, |
45888a0c XG |
258 | int nr_pages, int write, struct page **pages) |
259 | { | |
260 | return 0; | |
261 | } | |
262 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | |
263 | ||
9de100d0 AG |
264 | /** |
265 | * get_user_pages_fast() - pin user pages in memory | |
266 | * @start: starting user address | |
267 | * @nr_pages: number of pages from start to pin | |
268 | * @write: whether pages will be written to | |
269 | * @pages: array that receives pointers to the pages pinned. | |
270 | * Should be at least nr_pages long. | |
271 | * | |
9de100d0 AG |
272 | * Returns number of pages pinned. This may be fewer than the number |
273 | * requested. If nr_pages is 0 or negative, returns 0. If no pages | |
274 | * were pinned, returns -errno. | |
d2bf6be8 NP |
275 | * |
276 | * get_user_pages_fast provides equivalent functionality to get_user_pages, | |
277 | * operating on current and current->mm, with force=0 and vma=NULL. However | |
278 | * unlike get_user_pages, it must be called without mmap_sem held. | |
279 | * | |
280 | * get_user_pages_fast may take mmap_sem and page table locks, so no | |
281 | * assumptions can be made about lack of locking. get_user_pages_fast is to be | |
282 | * implemented in a way that is advantageous (vs get_user_pages()) when the | |
283 | * user memory area is already faulted in and present in ptes. However if the | |
284 | * pages have to be faulted in, it may turn out to be slightly slower so | |
285 | * callers need to carefully consider what to use. On many architectures, | |
286 | * get_user_pages_fast simply falls back to get_user_pages. | |
9de100d0 | 287 | */ |
3b32123d | 288 | int __weak get_user_pages_fast(unsigned long start, |
912985dc RR |
289 | int nr_pages, int write, struct page **pages) |
290 | { | |
c164154f LS |
291 | return get_user_pages_unlocked(start, nr_pages, pages, |
292 | write ? FOLL_WRITE : 0); | |
912985dc RR |
293 | } |
294 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | |
ca2b84cb | 295 | |
eb36c587 AV |
296 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
297 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 298 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
299 | { |
300 | unsigned long ret; | |
301 | struct mm_struct *mm = current->mm; | |
41badc15 | 302 | unsigned long populate; |
897ab3e0 | 303 | LIST_HEAD(uf); |
eb36c587 AV |
304 | |
305 | ret = security_mmap_file(file, prot, flag); | |
306 | if (!ret) { | |
9fbeb5ab MH |
307 | if (down_write_killable(&mm->mmap_sem)) |
308 | return -EINTR; | |
bebeb3d6 | 309 | ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, |
897ab3e0 | 310 | &populate, &uf); |
eb36c587 | 311 | up_write(&mm->mmap_sem); |
897ab3e0 | 312 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
313 | if (populate) |
314 | mm_populate(ret, populate); | |
eb36c587 AV |
315 | } |
316 | return ret; | |
317 | } | |
318 | ||
319 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
320 | unsigned long len, unsigned long prot, | |
321 | unsigned long flag, unsigned long offset) | |
322 | { | |
323 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
324 | return -EINVAL; | |
ea53cde0 | 325 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
326 | return -EINVAL; |
327 | ||
9fbeb5ab | 328 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
329 | } |
330 | EXPORT_SYMBOL(vm_mmap); | |
331 | ||
a7c3e901 MH |
332 | /** |
333 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
334 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
335 | * @size: size of the request. | |
336 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
337 | * @node: numa node to allocate from | |
338 | * | |
339 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
340 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
341 | * | |
342 | * Reclaim modifiers - __GFP_NORETRY, __GFP_REPEAT and __GFP_NOFAIL are not supported | |
343 | * | |
344 | * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people. | |
345 | */ | |
346 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
347 | { | |
348 | gfp_t kmalloc_flags = flags; | |
349 | void *ret; | |
350 | ||
351 | /* | |
352 | * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) | |
353 | * so the given set of flags has to be compatible. | |
354 | */ | |
355 | WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL); | |
356 | ||
357 | /* | |
358 | * Make sure that larger requests are not too disruptive - no OOM | |
359 | * killer and no allocation failure warnings as we have a fallback | |
360 | */ | |
361 | if (size > PAGE_SIZE) | |
362 | kmalloc_flags |= __GFP_NORETRY | __GFP_NOWARN; | |
363 | ||
364 | ret = kmalloc_node(size, kmalloc_flags, node); | |
365 | ||
366 | /* | |
367 | * It doesn't really make sense to fallback to vmalloc for sub page | |
368 | * requests | |
369 | */ | |
370 | if (ret || size <= PAGE_SIZE) | |
371 | return ret; | |
372 | ||
373 | return __vmalloc_node_flags(size, node, flags | __GFP_HIGHMEM); | |
374 | } | |
375 | EXPORT_SYMBOL(kvmalloc_node); | |
376 | ||
39f1f78d AV |
377 | void kvfree(const void *addr) |
378 | { | |
379 | if (is_vmalloc_addr(addr)) | |
380 | vfree(addr); | |
381 | else | |
382 | kfree(addr); | |
383 | } | |
384 | EXPORT_SYMBOL(kvfree); | |
385 | ||
e39155ea KS |
386 | static inline void *__page_rmapping(struct page *page) |
387 | { | |
388 | unsigned long mapping; | |
389 | ||
390 | mapping = (unsigned long)page->mapping; | |
391 | mapping &= ~PAGE_MAPPING_FLAGS; | |
392 | ||
393 | return (void *)mapping; | |
394 | } | |
395 | ||
396 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | |
397 | void *page_rmapping(struct page *page) | |
398 | { | |
399 | page = compound_head(page); | |
400 | return __page_rmapping(page); | |
401 | } | |
402 | ||
1aa8aea5 AM |
403 | /* |
404 | * Return true if this page is mapped into pagetables. | |
405 | * For compound page it returns true if any subpage of compound page is mapped. | |
406 | */ | |
407 | bool page_mapped(struct page *page) | |
408 | { | |
409 | int i; | |
410 | ||
411 | if (likely(!PageCompound(page))) | |
412 | return atomic_read(&page->_mapcount) >= 0; | |
413 | page = compound_head(page); | |
414 | if (atomic_read(compound_mapcount_ptr(page)) >= 0) | |
415 | return true; | |
416 | if (PageHuge(page)) | |
417 | return false; | |
418 | for (i = 0; i < hpage_nr_pages(page); i++) { | |
419 | if (atomic_read(&page[i]._mapcount) >= 0) | |
420 | return true; | |
421 | } | |
422 | return false; | |
423 | } | |
424 | EXPORT_SYMBOL(page_mapped); | |
425 | ||
e39155ea KS |
426 | struct anon_vma *page_anon_vma(struct page *page) |
427 | { | |
428 | unsigned long mapping; | |
429 | ||
430 | page = compound_head(page); | |
431 | mapping = (unsigned long)page->mapping; | |
432 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
433 | return NULL; | |
434 | return __page_rmapping(page); | |
435 | } | |
436 | ||
9800339b SL |
437 | struct address_space *page_mapping(struct page *page) |
438 | { | |
1c290f64 KS |
439 | struct address_space *mapping; |
440 | ||
441 | page = compound_head(page); | |
9800339b | 442 | |
03e5ac2f MP |
443 | /* This happens if someone calls flush_dcache_page on slab page */ |
444 | if (unlikely(PageSlab(page))) | |
445 | return NULL; | |
446 | ||
33806f06 SL |
447 | if (unlikely(PageSwapCache(page))) { |
448 | swp_entry_t entry; | |
449 | ||
450 | entry.val = page_private(page); | |
e39155ea KS |
451 | return swap_address_space(entry); |
452 | } | |
453 | ||
1c290f64 | 454 | mapping = page->mapping; |
bda807d4 | 455 | if ((unsigned long)mapping & PAGE_MAPPING_ANON) |
e39155ea | 456 | return NULL; |
bda807d4 MK |
457 | |
458 | return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); | |
9800339b | 459 | } |
bda807d4 | 460 | EXPORT_SYMBOL(page_mapping); |
9800339b | 461 | |
b20ce5e0 KS |
462 | /* Slow path of page_mapcount() for compound pages */ |
463 | int __page_mapcount(struct page *page) | |
464 | { | |
465 | int ret; | |
466 | ||
467 | ret = atomic_read(&page->_mapcount) + 1; | |
dd78fedd KS |
468 | /* |
469 | * For file THP page->_mapcount contains total number of mapping | |
470 | * of the page: no need to look into compound_mapcount. | |
471 | */ | |
472 | if (!PageAnon(page) && !PageHuge(page)) | |
473 | return ret; | |
b20ce5e0 KS |
474 | page = compound_head(page); |
475 | ret += atomic_read(compound_mapcount_ptr(page)) + 1; | |
476 | if (PageDoubleMap(page)) | |
477 | ret--; | |
478 | return ret; | |
479 | } | |
480 | EXPORT_SYMBOL_GPL(__page_mapcount); | |
481 | ||
39a1aa8e AR |
482 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
483 | int sysctl_overcommit_ratio __read_mostly = 50; | |
484 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
485 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
486 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
487 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
488 | ||
49f0ce5f JM |
489 | int overcommit_ratio_handler(struct ctl_table *table, int write, |
490 | void __user *buffer, size_t *lenp, | |
491 | loff_t *ppos) | |
492 | { | |
493 | int ret; | |
494 | ||
495 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
496 | if (ret == 0 && write) | |
497 | sysctl_overcommit_kbytes = 0; | |
498 | return ret; | |
499 | } | |
500 | ||
501 | int overcommit_kbytes_handler(struct ctl_table *table, int write, | |
502 | void __user *buffer, size_t *lenp, | |
503 | loff_t *ppos) | |
504 | { | |
505 | int ret; | |
506 | ||
507 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
508 | if (ret == 0 && write) | |
509 | sysctl_overcommit_ratio = 0; | |
510 | return ret; | |
511 | } | |
512 | ||
00619bcc JM |
513 | /* |
514 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
515 | */ | |
516 | unsigned long vm_commit_limit(void) | |
517 | { | |
49f0ce5f JM |
518 | unsigned long allowed; |
519 | ||
520 | if (sysctl_overcommit_kbytes) | |
521 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
522 | else | |
523 | allowed = ((totalram_pages - hugetlb_total_pages()) | |
524 | * sysctl_overcommit_ratio / 100); | |
525 | allowed += total_swap_pages; | |
526 | ||
527 | return allowed; | |
00619bcc JM |
528 | } |
529 | ||
39a1aa8e AR |
530 | /* |
531 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
532 | * other variables. It can be updated by several CPUs frequently. | |
533 | */ | |
534 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
535 | ||
536 | /* | |
537 | * The global memory commitment made in the system can be a metric | |
538 | * that can be used to drive ballooning decisions when Linux is hosted | |
539 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
540 | * balancing memory across competing virtual machines that are hosted. | |
541 | * Several metrics drive this policy engine including the guest reported | |
542 | * memory commitment. | |
543 | */ | |
544 | unsigned long vm_memory_committed(void) | |
545 | { | |
546 | return percpu_counter_read_positive(&vm_committed_as); | |
547 | } | |
548 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
549 | ||
550 | /* | |
551 | * Check that a process has enough memory to allocate a new virtual | |
552 | * mapping. 0 means there is enough memory for the allocation to | |
553 | * succeed and -ENOMEM implies there is not. | |
554 | * | |
555 | * We currently support three overcommit policies, which are set via the | |
556 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting | |
557 | * | |
558 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
559 | * Additional code 2002 Jul 20 by Robert Love. | |
560 | * | |
561 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
562 | * | |
563 | * Note this is a helper function intended to be used by LSMs which | |
564 | * wish to use this logic. | |
565 | */ | |
566 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
567 | { | |
568 | long free, allowed, reserve; | |
569 | ||
570 | VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < | |
571 | -(s64)vm_committed_as_batch * num_online_cpus(), | |
572 | "memory commitment underflow"); | |
573 | ||
574 | vm_acct_memory(pages); | |
575 | ||
576 | /* | |
577 | * Sometimes we want to use more memory than we have | |
578 | */ | |
579 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
580 | return 0; | |
581 | ||
582 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
583 | free = global_page_state(NR_FREE_PAGES); | |
11fb9989 | 584 | free += global_node_page_state(NR_FILE_PAGES); |
39a1aa8e AR |
585 | |
586 | /* | |
587 | * shmem pages shouldn't be counted as free in this | |
588 | * case, they can't be purged, only swapped out, and | |
589 | * that won't affect the overall amount of available | |
590 | * memory in the system. | |
591 | */ | |
11fb9989 | 592 | free -= global_node_page_state(NR_SHMEM); |
39a1aa8e AR |
593 | |
594 | free += get_nr_swap_pages(); | |
595 | ||
596 | /* | |
597 | * Any slabs which are created with the | |
598 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents | |
599 | * which are reclaimable, under pressure. The dentry | |
600 | * cache and most inode caches should fall into this | |
601 | */ | |
602 | free += global_page_state(NR_SLAB_RECLAIMABLE); | |
603 | ||
604 | /* | |
605 | * Leave reserved pages. The pages are not for anonymous pages. | |
606 | */ | |
607 | if (free <= totalreserve_pages) | |
608 | goto error; | |
609 | else | |
610 | free -= totalreserve_pages; | |
611 | ||
612 | /* | |
613 | * Reserve some for root | |
614 | */ | |
615 | if (!cap_sys_admin) | |
616 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
617 | ||
618 | if (free > pages) | |
619 | return 0; | |
620 | ||
621 | goto error; | |
622 | } | |
623 | ||
624 | allowed = vm_commit_limit(); | |
625 | /* | |
626 | * Reserve some for root | |
627 | */ | |
628 | if (!cap_sys_admin) | |
629 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
630 | ||
631 | /* | |
632 | * Don't let a single process grow so big a user can't recover | |
633 | */ | |
634 | if (mm) { | |
635 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | |
636 | allowed -= min_t(long, mm->total_vm / 32, reserve); | |
637 | } | |
638 | ||
639 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
640 | return 0; | |
641 | error: | |
642 | vm_unacct_memory(pages); | |
643 | ||
644 | return -ENOMEM; | |
645 | } | |
646 | ||
a9090253 WR |
647 | /** |
648 | * get_cmdline() - copy the cmdline value to a buffer. | |
649 | * @task: the task whose cmdline value to copy. | |
650 | * @buffer: the buffer to copy to. | |
651 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
652 | * to this length. | |
653 | * Returns the size of the cmdline field copied. Note that the copy does | |
654 | * not guarantee an ending NULL byte. | |
655 | */ | |
656 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
657 | { | |
658 | int res = 0; | |
659 | unsigned int len; | |
660 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 661 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
662 | if (!mm) |
663 | goto out; | |
664 | if (!mm->arg_end) | |
665 | goto out_mm; /* Shh! No looking before we're done */ | |
666 | ||
a3b609ef MG |
667 | down_read(&mm->mmap_sem); |
668 | arg_start = mm->arg_start; | |
669 | arg_end = mm->arg_end; | |
670 | env_start = mm->env_start; | |
671 | env_end = mm->env_end; | |
672 | up_read(&mm->mmap_sem); | |
673 | ||
674 | len = arg_end - arg_start; | |
a9090253 WR |
675 | |
676 | if (len > buflen) | |
677 | len = buflen; | |
678 | ||
f307ab6d | 679 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
680 | |
681 | /* | |
682 | * If the nul at the end of args has been overwritten, then | |
683 | * assume application is using setproctitle(3). | |
684 | */ | |
685 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
686 | len = strnlen(buffer, res); | |
687 | if (len < res) { | |
688 | res = len; | |
689 | } else { | |
a3b609ef | 690 | len = env_end - env_start; |
a9090253 WR |
691 | if (len > buflen - res) |
692 | len = buflen - res; | |
a3b609ef | 693 | res += access_process_vm(task, env_start, |
f307ab6d LS |
694 | buffer+res, len, |
695 | FOLL_FORCE); | |
a9090253 WR |
696 | res = strnlen(buffer, res); |
697 | } | |
698 | } | |
699 | out_mm: | |
700 | mmput(mm); | |
701 | out: | |
702 | return res; | |
703 | } |