]>
Commit | Line | Data |
---|---|---|
df8bc08c HM |
1 | /* |
2 | * Intel X38 Memory Controller kernel module | |
3 | * Copyright (C) 2008 Cluster Computing, Inc. | |
4 | * | |
5 | * This file may be distributed under the terms of the | |
6 | * GNU General Public License. | |
7 | * | |
8 | * This file is based on i3200_edac.c | |
9 | * | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/init.h> | |
14 | #include <linux/pci.h> | |
15 | #include <linux/pci_ids.h> | |
df8bc08c | 16 | #include <linux/edac.h> |
a21e98ce JB |
17 | |
18 | #include <asm-generic/io-64-nonatomic-lo-hi.h> | |
df8bc08c HM |
19 | #include "edac_core.h" |
20 | ||
21 | #define X38_REVISION "1.1" | |
22 | ||
23 | #define EDAC_MOD_STR "x38_edac" | |
24 | ||
25 | #define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0 | |
26 | ||
27 | #define X38_RANKS 8 | |
28 | #define X38_RANKS_PER_CHANNEL 4 | |
29 | #define X38_CHANNELS 2 | |
30 | ||
31 | /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */ | |
32 | ||
33 | #define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */ | |
3d768213 | 34 | #define X38_MCHBAR_HIGH 0x4c |
df8bc08c HM |
35 | #define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */ |
36 | #define X38_MMR_WINDOW_SIZE 16384 | |
37 | ||
38 | #define X38_TOM 0xa0 /* Top of Memory (16b) | |
39 | * | |
40 | * 15:10 reserved | |
41 | * 9:0 total populated physical memory | |
42 | */ | |
43 | #define X38_TOM_MASK 0x3ff /* bits 9:0 */ | |
44 | #define X38_TOM_SHIFT 26 /* 64MiB grain */ | |
45 | ||
46 | #define X38_ERRSTS 0xc8 /* Error Status Register (16b) | |
47 | * | |
48 | * 15 reserved | |
49 | * 14 Isochronous TBWRR Run Behind FIFO Full | |
50 | * (ITCV) | |
51 | * 13 Isochronous TBWRR Run Behind FIFO Put | |
52 | * (ITSTV) | |
53 | * 12 reserved | |
54 | * 11 MCH Thermal Sensor Event | |
55 | * for SMI/SCI/SERR (GTSE) | |
56 | * 10 reserved | |
57 | * 9 LOCK to non-DRAM Memory Flag (LCKF) | |
58 | * 8 reserved | |
59 | * 7 DRAM Throttle Flag (DTF) | |
60 | * 6:2 reserved | |
61 | * 1 Multi-bit DRAM ECC Error Flag (DMERR) | |
62 | * 0 Single-bit DRAM ECC Error Flag (DSERR) | |
63 | */ | |
64 | #define X38_ERRSTS_UE 0x0002 | |
65 | #define X38_ERRSTS_CE 0x0001 | |
66 | #define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE) | |
67 | ||
68 | ||
69 | /* Intel MMIO register space - device 0 function 0 - MMR space */ | |
70 | ||
71 | #define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4) | |
72 | * | |
73 | * 15:10 reserved | |
74 | * 9:0 Channel 0 DRAM Rank Boundary Address | |
75 | */ | |
76 | #define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */ | |
77 | #define X38_DRB_MASK 0x3ff /* bits 9:0 */ | |
78 | #define X38_DRB_SHIFT 26 /* 64MiB grain */ | |
79 | ||
80 | #define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b) | |
81 | * | |
82 | * 63:48 Error Column Address (ERRCOL) | |
83 | * 47:32 Error Row Address (ERRROW) | |
84 | * 31:29 Error Bank Address (ERRBANK) | |
85 | * 28:27 Error Rank Address (ERRRANK) | |
86 | * 26:24 reserved | |
87 | * 23:16 Error Syndrome (ERRSYND) | |
88 | * 15: 2 reserved | |
89 | * 1 Multiple Bit Error Status (MERRSTS) | |
90 | * 0 Correctable Error Status (CERRSTS) | |
91 | */ | |
92 | #define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */ | |
93 | #define X38_ECCERRLOG_CE 0x1 | |
94 | #define X38_ECCERRLOG_UE 0x2 | |
95 | #define X38_ECCERRLOG_RANK_BITS 0x18000000 | |
96 | #define X38_ECCERRLOG_SYNDROME_BITS 0xff0000 | |
97 | ||
98 | #define X38_CAPID0 0xe0 /* see P.94 of spec for details */ | |
99 | ||
100 | static int x38_channel_num; | |
101 | ||
102 | static int how_many_channel(struct pci_dev *pdev) | |
103 | { | |
104 | unsigned char capid0_8b; /* 8th byte of CAPID0 */ | |
105 | ||
106 | pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b); | |
107 | if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */ | |
956b9ba1 | 108 | edac_dbg(0, "In single channel mode\n"); |
df8bc08c HM |
109 | x38_channel_num = 1; |
110 | } else { | |
956b9ba1 | 111 | edac_dbg(0, "In dual channel mode\n"); |
df8bc08c HM |
112 | x38_channel_num = 2; |
113 | } | |
114 | ||
115 | return x38_channel_num; | |
116 | } | |
117 | ||
118 | static unsigned long eccerrlog_syndrome(u64 log) | |
119 | { | |
120 | return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16; | |
121 | } | |
122 | ||
123 | static int eccerrlog_row(int channel, u64 log) | |
124 | { | |
125 | return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) | | |
126 | (channel * X38_RANKS_PER_CHANNEL); | |
127 | } | |
128 | ||
129 | enum x38_chips { | |
130 | X38 = 0, | |
131 | }; | |
132 | ||
133 | struct x38_dev_info { | |
134 | const char *ctl_name; | |
135 | }; | |
136 | ||
137 | struct x38_error_info { | |
138 | u16 errsts; | |
139 | u16 errsts2; | |
140 | u64 eccerrlog[X38_CHANNELS]; | |
141 | }; | |
142 | ||
143 | static const struct x38_dev_info x38_devs[] = { | |
144 | [X38] = { | |
145 | .ctl_name = "x38"}, | |
146 | }; | |
147 | ||
148 | static struct pci_dev *mci_pdev; | |
149 | static int x38_registered = 1; | |
150 | ||
151 | ||
152 | static void x38_clear_error_info(struct mem_ctl_info *mci) | |
153 | { | |
154 | struct pci_dev *pdev; | |
155 | ||
fd687502 | 156 | pdev = to_pci_dev(mci->pdev); |
df8bc08c HM |
157 | |
158 | /* | |
159 | * Clear any error bits. | |
160 | * (Yes, we really clear bits by writing 1 to them.) | |
161 | */ | |
162 | pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS, | |
163 | X38_ERRSTS_BITS); | |
164 | } | |
165 | ||
df8bc08c HM |
166 | static void x38_get_and_clear_error_info(struct mem_ctl_info *mci, |
167 | struct x38_error_info *info) | |
168 | { | |
169 | struct pci_dev *pdev; | |
170 | void __iomem *window = mci->pvt_info; | |
171 | ||
fd687502 | 172 | pdev = to_pci_dev(mci->pdev); |
df8bc08c HM |
173 | |
174 | /* | |
175 | * This is a mess because there is no atomic way to read all the | |
176 | * registers at once and the registers can transition from CE being | |
177 | * overwritten by UE. | |
178 | */ | |
179 | pci_read_config_word(pdev, X38_ERRSTS, &info->errsts); | |
180 | if (!(info->errsts & X38_ERRSTS_BITS)) | |
181 | return; | |
182 | ||
a21e98ce | 183 | info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG); |
df8bc08c | 184 | if (x38_channel_num == 2) |
a21e98ce | 185 | info->eccerrlog[1] = lo_hi_readq(window + X38_C1ECCERRLOG); |
df8bc08c HM |
186 | |
187 | pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2); | |
188 | ||
189 | /* | |
190 | * If the error is the same for both reads then the first set | |
191 | * of reads is valid. If there is a change then there is a CE | |
192 | * with no info and the second set of reads is valid and | |
193 | * should be UE info. | |
194 | */ | |
195 | if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { | |
a21e98ce | 196 | info->eccerrlog[0] = lo_hi_readq(window + X38_C0ECCERRLOG); |
df8bc08c HM |
197 | if (x38_channel_num == 2) |
198 | info->eccerrlog[1] = | |
a21e98ce | 199 | lo_hi_readq(window + X38_C1ECCERRLOG); |
df8bc08c HM |
200 | } |
201 | ||
202 | x38_clear_error_info(mci); | |
203 | } | |
204 | ||
205 | static void x38_process_error_info(struct mem_ctl_info *mci, | |
206 | struct x38_error_info *info) | |
207 | { | |
208 | int channel; | |
209 | u64 log; | |
210 | ||
211 | if (!(info->errsts & X38_ERRSTS_BITS)) | |
212 | return; | |
213 | ||
214 | if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) { | |
9eb07a7f | 215 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, |
e2acc357 | 216 | -1, -1, -1, |
03f7eae8 | 217 | "UE overwrote CE", ""); |
df8bc08c HM |
218 | info->errsts = info->errsts2; |
219 | } | |
220 | ||
221 | for (channel = 0; channel < x38_channel_num; channel++) { | |
222 | log = info->eccerrlog[channel]; | |
223 | if (log & X38_ECCERRLOG_UE) { | |
9eb07a7f | 224 | edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, |
e2acc357 MCC |
225 | 0, 0, 0, |
226 | eccerrlog_row(channel, log), | |
227 | -1, -1, | |
03f7eae8 | 228 | "x38 UE", ""); |
df8bc08c | 229 | } else if (log & X38_ECCERRLOG_CE) { |
9eb07a7f | 230 | edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, |
e2acc357 MCC |
231 | 0, 0, eccerrlog_syndrome(log), |
232 | eccerrlog_row(channel, log), | |
233 | -1, -1, | |
03f7eae8 | 234 | "x38 CE", ""); |
df8bc08c HM |
235 | } |
236 | } | |
237 | } | |
238 | ||
239 | static void x38_check(struct mem_ctl_info *mci) | |
240 | { | |
241 | struct x38_error_info info; | |
242 | ||
956b9ba1 | 243 | edac_dbg(1, "MC%d\n", mci->mc_idx); |
df8bc08c HM |
244 | x38_get_and_clear_error_info(mci, &info); |
245 | x38_process_error_info(mci, &info); | |
246 | } | |
247 | ||
e0d391ab | 248 | static void __iomem *x38_map_mchbar(struct pci_dev *pdev) |
df8bc08c HM |
249 | { |
250 | union { | |
251 | u64 mchbar; | |
252 | struct { | |
253 | u32 mchbar_low; | |
254 | u32 mchbar_high; | |
255 | }; | |
256 | } u; | |
257 | void __iomem *window; | |
258 | ||
259 | pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low); | |
260 | pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1); | |
261 | pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high); | |
262 | u.mchbar &= X38_MCHBAR_MASK; | |
263 | ||
264 | if (u.mchbar != (resource_size_t)u.mchbar) { | |
265 | printk(KERN_ERR | |
266 | "x38: mmio space beyond accessible range (0x%llx)\n", | |
267 | (unsigned long long)u.mchbar); | |
268 | return NULL; | |
269 | } | |
270 | ||
271 | window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE); | |
272 | if (!window) | |
273 | printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n", | |
274 | (unsigned long long)u.mchbar); | |
275 | ||
276 | return window; | |
277 | } | |
278 | ||
279 | ||
280 | static void x38_get_drbs(void __iomem *window, | |
281 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) | |
282 | { | |
283 | int i; | |
284 | ||
285 | for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) { | |
286 | drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK; | |
287 | drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK; | |
288 | } | |
289 | } | |
290 | ||
291 | static bool x38_is_stacked(struct pci_dev *pdev, | |
292 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]) | |
293 | { | |
294 | u16 tom; | |
295 | ||
296 | pci_read_config_word(pdev, X38_TOM, &tom); | |
297 | tom &= X38_TOM_MASK; | |
298 | ||
299 | return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom; | |
300 | } | |
301 | ||
302 | static unsigned long drb_to_nr_pages( | |
303 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL], | |
304 | bool stacked, int channel, int rank) | |
305 | { | |
306 | int n; | |
307 | ||
308 | n = drbs[channel][rank]; | |
309 | if (rank > 0) | |
310 | n -= drbs[channel][rank - 1]; | |
311 | if (stacked && (channel == 1) && drbs[channel][rank] == | |
312 | drbs[channel][X38_RANKS_PER_CHANNEL - 1]) { | |
313 | n -= drbs[0][X38_RANKS_PER_CHANNEL - 1]; | |
314 | } | |
315 | ||
316 | n <<= (X38_DRB_SHIFT - PAGE_SHIFT); | |
317 | return n; | |
318 | } | |
319 | ||
320 | static int x38_probe1(struct pci_dev *pdev, int dev_idx) | |
321 | { | |
322 | int rc; | |
084a4fcc | 323 | int i, j; |
df8bc08c | 324 | struct mem_ctl_info *mci = NULL; |
e2acc357 | 325 | struct edac_mc_layer layers[2]; |
df8bc08c HM |
326 | u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL]; |
327 | bool stacked; | |
328 | void __iomem *window; | |
329 | ||
956b9ba1 | 330 | edac_dbg(0, "MC:\n"); |
df8bc08c HM |
331 | |
332 | window = x38_map_mchbar(pdev); | |
333 | if (!window) | |
334 | return -ENODEV; | |
335 | ||
336 | x38_get_drbs(window, drbs); | |
337 | ||
338 | how_many_channel(pdev); | |
339 | ||
340 | /* FIXME: unconventional pvt_info usage */ | |
e2acc357 MCC |
341 | layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
342 | layers[0].size = X38_RANKS; | |
343 | layers[0].is_virt_csrow = true; | |
344 | layers[1].type = EDAC_MC_LAYER_CHANNEL; | |
345 | layers[1].size = x38_channel_num; | |
346 | layers[1].is_virt_csrow = false; | |
ca0907b9 | 347 | mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); |
df8bc08c HM |
348 | if (!mci) |
349 | return -ENOMEM; | |
350 | ||
956b9ba1 | 351 | edac_dbg(3, "MC: init mci\n"); |
df8bc08c | 352 | |
fd687502 | 353 | mci->pdev = &pdev->dev; |
df8bc08c HM |
354 | mci->mtype_cap = MEM_FLAG_DDR2; |
355 | ||
356 | mci->edac_ctl_cap = EDAC_FLAG_SECDED; | |
357 | mci->edac_cap = EDAC_FLAG_SECDED; | |
358 | ||
359 | mci->mod_name = EDAC_MOD_STR; | |
360 | mci->mod_ver = X38_REVISION; | |
361 | mci->ctl_name = x38_devs[dev_idx].ctl_name; | |
362 | mci->dev_name = pci_name(pdev); | |
363 | mci->edac_check = x38_check; | |
364 | mci->ctl_page_to_phys = NULL; | |
365 | mci->pvt_info = window; | |
366 | ||
367 | stacked = x38_is_stacked(pdev, drbs); | |
368 | ||
369 | /* | |
370 | * The dram rank boundary (DRB) reg values are boundary addresses | |
371 | * for each DRAM rank with a granularity of 64MB. DRB regs are | |
372 | * cumulative; the last one will contain the total memory | |
373 | * contained in all ranks. | |
374 | */ | |
df8bc08c HM |
375 | for (i = 0; i < mci->nr_csrows; i++) { |
376 | unsigned long nr_pages; | |
de3910eb | 377 | struct csrow_info *csrow = mci->csrows[i]; |
df8bc08c HM |
378 | |
379 | nr_pages = drb_to_nr_pages(drbs, stacked, | |
380 | i / X38_RANKS_PER_CHANNEL, | |
381 | i % X38_RANKS_PER_CHANNEL); | |
382 | ||
084a4fcc | 383 | if (nr_pages == 0) |
df8bc08c | 384 | continue; |
df8bc08c | 385 | |
084a4fcc | 386 | for (j = 0; j < x38_channel_num; j++) { |
de3910eb | 387 | struct dimm_info *dimm = csrow->channels[j]->dimm; |
a895bf8b MCC |
388 | |
389 | dimm->nr_pages = nr_pages / x38_channel_num; | |
084a4fcc MCC |
390 | dimm->grain = nr_pages << PAGE_SHIFT; |
391 | dimm->mtype = MEM_DDR2; | |
392 | dimm->dtype = DEV_UNKNOWN; | |
393 | dimm->edac_mode = EDAC_UNKNOWN; | |
394 | } | |
df8bc08c HM |
395 | } |
396 | ||
397 | x38_clear_error_info(mci); | |
398 | ||
399 | rc = -ENODEV; | |
400 | if (edac_mc_add_mc(mci)) { | |
956b9ba1 | 401 | edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); |
df8bc08c HM |
402 | goto fail; |
403 | } | |
404 | ||
405 | /* get this far and it's successful */ | |
956b9ba1 | 406 | edac_dbg(3, "MC: success\n"); |
df8bc08c HM |
407 | return 0; |
408 | ||
409 | fail: | |
410 | iounmap(window); | |
411 | if (mci) | |
412 | edac_mc_free(mci); | |
413 | ||
414 | return rc; | |
415 | } | |
416 | ||
9b3c6e85 | 417 | static int x38_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
df8bc08c HM |
418 | { |
419 | int rc; | |
420 | ||
956b9ba1 | 421 | edac_dbg(0, "MC:\n"); |
df8bc08c HM |
422 | |
423 | if (pci_enable_device(pdev) < 0) | |
424 | return -EIO; | |
425 | ||
426 | rc = x38_probe1(pdev, ent->driver_data); | |
427 | if (!mci_pdev) | |
428 | mci_pdev = pci_dev_get(pdev); | |
429 | ||
430 | return rc; | |
431 | } | |
432 | ||
9b3c6e85 | 433 | static void x38_remove_one(struct pci_dev *pdev) |
df8bc08c HM |
434 | { |
435 | struct mem_ctl_info *mci; | |
436 | ||
956b9ba1 | 437 | edac_dbg(0, "\n"); |
df8bc08c HM |
438 | |
439 | mci = edac_mc_del_mc(&pdev->dev); | |
440 | if (!mci) | |
441 | return; | |
442 | ||
443 | iounmap(mci->pvt_info); | |
444 | ||
445 | edac_mc_free(mci); | |
446 | } | |
447 | ||
ba935f40 | 448 | static const struct pci_device_id x38_pci_tbl[] = { |
df8bc08c HM |
449 | { |
450 | PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, | |
451 | X38}, | |
452 | { | |
453 | 0, | |
454 | } /* 0 terminated list. */ | |
455 | }; | |
456 | ||
457 | MODULE_DEVICE_TABLE(pci, x38_pci_tbl); | |
458 | ||
459 | static struct pci_driver x38_driver = { | |
460 | .name = EDAC_MOD_STR, | |
461 | .probe = x38_init_one, | |
9b3c6e85 | 462 | .remove = x38_remove_one, |
df8bc08c HM |
463 | .id_table = x38_pci_tbl, |
464 | }; | |
465 | ||
466 | static int __init x38_init(void) | |
467 | { | |
468 | int pci_rc; | |
469 | ||
956b9ba1 | 470 | edac_dbg(3, "MC:\n"); |
df8bc08c HM |
471 | |
472 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
473 | opstate_init(); | |
474 | ||
475 | pci_rc = pci_register_driver(&x38_driver); | |
476 | if (pci_rc < 0) | |
477 | goto fail0; | |
478 | ||
479 | if (!mci_pdev) { | |
480 | x38_registered = 0; | |
481 | mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
482 | PCI_DEVICE_ID_INTEL_X38_HB, NULL); | |
483 | if (!mci_pdev) { | |
956b9ba1 | 484 | edac_dbg(0, "x38 pci_get_device fail\n"); |
df8bc08c HM |
485 | pci_rc = -ENODEV; |
486 | goto fail1; | |
487 | } | |
488 | ||
489 | pci_rc = x38_init_one(mci_pdev, x38_pci_tbl); | |
490 | if (pci_rc < 0) { | |
956b9ba1 | 491 | edac_dbg(0, "x38 init fail\n"); |
df8bc08c HM |
492 | pci_rc = -ENODEV; |
493 | goto fail1; | |
494 | } | |
495 | } | |
496 | ||
497 | return 0; | |
498 | ||
499 | fail1: | |
500 | pci_unregister_driver(&x38_driver); | |
501 | ||
502 | fail0: | |
0a98babd | 503 | pci_dev_put(mci_pdev); |
df8bc08c HM |
504 | |
505 | return pci_rc; | |
506 | } | |
507 | ||
508 | static void __exit x38_exit(void) | |
509 | { | |
956b9ba1 | 510 | edac_dbg(3, "MC:\n"); |
df8bc08c HM |
511 | |
512 | pci_unregister_driver(&x38_driver); | |
513 | if (!x38_registered) { | |
514 | x38_remove_one(mci_pdev); | |
515 | pci_dev_put(mci_pdev); | |
516 | } | |
517 | } | |
518 | ||
519 | module_init(x38_init); | |
520 | module_exit(x38_exit); | |
521 | ||
522 | MODULE_LICENSE("GPL"); | |
523 | MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake"); | |
524 | MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers"); | |
525 | ||
526 | module_param(edac_op_state, int, 0444); | |
527 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |