]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 | 2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
c7e8f268 | 3 | * Copyright (c) 2008 Dave Chinner |
7b718769 | 4 | * All Rights Reserved. |
1da177e4 | 5 | * |
7b718769 NS |
6 | * This program is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
8 | * published by the Free Software Foundation. |
9 | * | |
7b718769 NS |
10 | * This program is distributed in the hope that it would be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | * GNU General Public License for more details. | |
1da177e4 | 14 | * |
7b718769 NS |
15 | * You should have received a copy of the GNU General Public License |
16 | * along with this program; if not, write the Free Software Foundation, | |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 18 | */ |
1da177e4 | 19 | #include "xfs.h" |
a844f451 | 20 | #include "xfs_fs.h" |
1da177e4 | 21 | #include "xfs_types.h" |
1da177e4 LT |
22 | #include "xfs_log.h" |
23 | #include "xfs_trans.h" | |
24 | #include "xfs_sb.h" | |
da353b0d | 25 | #include "xfs_ag.h" |
1da177e4 LT |
26 | #include "xfs_mount.h" |
27 | #include "xfs_trans_priv.h" | |
9e4c109a | 28 | #include "xfs_trace.h" |
1da177e4 LT |
29 | #include "xfs_error.h" |
30 | ||
1da177e4 | 31 | #ifdef DEBUG |
cd4a3c50 DC |
32 | /* |
33 | * Check that the list is sorted as it should be. | |
34 | */ | |
35 | STATIC void | |
36 | xfs_ail_check( | |
37 | struct xfs_ail *ailp, | |
38 | xfs_log_item_t *lip) | |
39 | { | |
40 | xfs_log_item_t *prev_lip; | |
41 | ||
42 | if (list_empty(&ailp->xa_ail)) | |
43 | return; | |
44 | ||
45 | /* | |
46 | * Check the next and previous entries are valid. | |
47 | */ | |
48 | ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); | |
49 | prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail); | |
50 | if (&prev_lip->li_ail != &ailp->xa_ail) | |
51 | ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); | |
52 | ||
53 | prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail); | |
54 | if (&prev_lip->li_ail != &ailp->xa_ail) | |
55 | ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0); | |
56 | ||
57 | ||
58 | #ifdef XFS_TRANS_DEBUG | |
59 | /* | |
60 | * Walk the list checking lsn ordering, and that every entry has the | |
61 | * XFS_LI_IN_AIL flag set. This is really expensive, so only do it | |
62 | * when specifically debugging the transaction subsystem. | |
63 | */ | |
64 | prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail); | |
65 | list_for_each_entry(lip, &ailp->xa_ail, li_ail) { | |
66 | if (&prev_lip->li_ail != &ailp->xa_ail) | |
67 | ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0); | |
68 | ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0); | |
69 | prev_lip = lip; | |
70 | } | |
71 | #endif /* XFS_TRANS_DEBUG */ | |
72 | } | |
73 | #else /* !DEBUG */ | |
de08dbc1 | 74 | #define xfs_ail_check(a,l) |
1da177e4 LT |
75 | #endif /* DEBUG */ |
76 | ||
cd4a3c50 DC |
77 | /* |
78 | * Return a pointer to the first item in the AIL. If the AIL is empty, then | |
79 | * return NULL. | |
80 | */ | |
1c304625 | 81 | xfs_log_item_t * |
cd4a3c50 DC |
82 | xfs_ail_min( |
83 | struct xfs_ail *ailp) | |
84 | { | |
85 | if (list_empty(&ailp->xa_ail)) | |
86 | return NULL; | |
87 | ||
88 | return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail); | |
89 | } | |
90 | ||
fd074841 DC |
91 | /* |
92 | * Return a pointer to the last item in the AIL. If the AIL is empty, then | |
93 | * return NULL. | |
94 | */ | |
95 | static xfs_log_item_t * | |
96 | xfs_ail_max( | |
97 | struct xfs_ail *ailp) | |
98 | { | |
99 | if (list_empty(&ailp->xa_ail)) | |
100 | return NULL; | |
101 | ||
102 | return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail); | |
103 | } | |
104 | ||
cd4a3c50 DC |
105 | /* |
106 | * Return a pointer to the item which follows the given item in the AIL. If | |
107 | * the given item is the last item in the list, then return NULL. | |
108 | */ | |
109 | static xfs_log_item_t * | |
110 | xfs_ail_next( | |
111 | struct xfs_ail *ailp, | |
112 | xfs_log_item_t *lip) | |
113 | { | |
114 | if (lip->li_ail.next == &ailp->xa_ail) | |
115 | return NULL; | |
116 | ||
117 | return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail); | |
118 | } | |
1da177e4 LT |
119 | |
120 | /* | |
cd4a3c50 DC |
121 | * This is called by the log manager code to determine the LSN of the tail of |
122 | * the log. This is exactly the LSN of the first item in the AIL. If the AIL | |
123 | * is empty, then this function returns 0. | |
1da177e4 | 124 | * |
cd4a3c50 DC |
125 | * We need the AIL lock in order to get a coherent read of the lsn of the last |
126 | * item in the AIL. | |
1da177e4 LT |
127 | */ |
128 | xfs_lsn_t | |
fd074841 | 129 | xfs_ail_min_lsn( |
5b00f14f | 130 | struct xfs_ail *ailp) |
1da177e4 | 131 | { |
cd4a3c50 | 132 | xfs_lsn_t lsn = 0; |
1da177e4 | 133 | xfs_log_item_t *lip; |
1da177e4 | 134 | |
c7e8f268 | 135 | spin_lock(&ailp->xa_lock); |
5b00f14f | 136 | lip = xfs_ail_min(ailp); |
cd4a3c50 | 137 | if (lip) |
1da177e4 | 138 | lsn = lip->li_lsn; |
c7e8f268 | 139 | spin_unlock(&ailp->xa_lock); |
1da177e4 LT |
140 | |
141 | return lsn; | |
142 | } | |
143 | ||
fd074841 DC |
144 | /* |
145 | * Return the maximum lsn held in the AIL, or zero if the AIL is empty. | |
146 | */ | |
147 | static xfs_lsn_t | |
148 | xfs_ail_max_lsn( | |
149 | struct xfs_ail *ailp) | |
150 | { | |
151 | xfs_lsn_t lsn = 0; | |
152 | xfs_log_item_t *lip; | |
153 | ||
154 | spin_lock(&ailp->xa_lock); | |
155 | lip = xfs_ail_max(ailp); | |
156 | if (lip) | |
157 | lsn = lip->li_lsn; | |
158 | spin_unlock(&ailp->xa_lock); | |
159 | ||
160 | return lsn; | |
161 | } | |
162 | ||
27d8d5fe | 163 | /* |
af3e4022 DC |
164 | * The cursor keeps track of where our current traversal is up to by tracking |
165 | * the next item in the list for us. However, for this to be safe, removing an | |
166 | * object from the AIL needs to invalidate any cursor that points to it. hence | |
167 | * the traversal cursor needs to be linked to the struct xfs_ail so that | |
168 | * deletion can search all the active cursors for invalidation. | |
27d8d5fe | 169 | */ |
5b00f14f | 170 | STATIC void |
27d8d5fe DC |
171 | xfs_trans_ail_cursor_init( |
172 | struct xfs_ail *ailp, | |
173 | struct xfs_ail_cursor *cur) | |
174 | { | |
175 | cur->item = NULL; | |
af3e4022 | 176 | list_add_tail(&cur->list, &ailp->xa_cursors); |
27d8d5fe DC |
177 | } |
178 | ||
27d8d5fe | 179 | /* |
af3e4022 DC |
180 | * Get the next item in the traversal and advance the cursor. If the cursor |
181 | * was invalidated (indicated by a lip of 1), restart the traversal. | |
27d8d5fe | 182 | */ |
5b00f14f | 183 | struct xfs_log_item * |
27d8d5fe DC |
184 | xfs_trans_ail_cursor_next( |
185 | struct xfs_ail *ailp, | |
186 | struct xfs_ail_cursor *cur) | |
187 | { | |
188 | struct xfs_log_item *lip = cur->item; | |
189 | ||
190 | if ((__psint_t)lip & 1) | |
191 | lip = xfs_ail_min(ailp); | |
16b59029 DC |
192 | if (lip) |
193 | cur->item = xfs_ail_next(ailp, lip); | |
27d8d5fe DC |
194 | return lip; |
195 | } | |
196 | ||
27d8d5fe | 197 | /* |
af3e4022 DC |
198 | * When the traversal is complete, we need to remove the cursor from the list |
199 | * of traversing cursors. | |
27d8d5fe DC |
200 | */ |
201 | void | |
202 | xfs_trans_ail_cursor_done( | |
203 | struct xfs_ail *ailp, | |
af3e4022 | 204 | struct xfs_ail_cursor *cur) |
27d8d5fe | 205 | { |
af3e4022 DC |
206 | cur->item = NULL; |
207 | list_del_init(&cur->list); | |
27d8d5fe DC |
208 | } |
209 | ||
5b00f14f | 210 | /* |
af3e4022 DC |
211 | * Invalidate any cursor that is pointing to this item. This is called when an |
212 | * item is removed from the AIL. Any cursor pointing to this object is now | |
213 | * invalid and the traversal needs to be terminated so it doesn't reference a | |
214 | * freed object. We set the low bit of the cursor item pointer so we can | |
215 | * distinguish between an invalidation and the end of the list when getting the | |
216 | * next item from the cursor. | |
5b00f14f DC |
217 | */ |
218 | STATIC void | |
219 | xfs_trans_ail_cursor_clear( | |
220 | struct xfs_ail *ailp, | |
221 | struct xfs_log_item *lip) | |
222 | { | |
223 | struct xfs_ail_cursor *cur; | |
224 | ||
af3e4022 | 225 | list_for_each_entry(cur, &ailp->xa_cursors, list) { |
5b00f14f DC |
226 | if (cur->item == lip) |
227 | cur->item = (struct xfs_log_item *) | |
228 | ((__psint_t)cur->item | 1); | |
229 | } | |
230 | } | |
231 | ||
249a8c11 | 232 | /* |
16b59029 DC |
233 | * Find the first item in the AIL with the given @lsn by searching in ascending |
234 | * LSN order and initialise the cursor to point to the next item for a | |
235 | * ascending traversal. Pass a @lsn of zero to initialise the cursor to the | |
236 | * first item in the AIL. Returns NULL if the list is empty. | |
249a8c11 | 237 | */ |
5b00f14f DC |
238 | xfs_log_item_t * |
239 | xfs_trans_ail_cursor_first( | |
27d8d5fe DC |
240 | struct xfs_ail *ailp, |
241 | struct xfs_ail_cursor *cur, | |
242 | xfs_lsn_t lsn) | |
249a8c11 | 243 | { |
27d8d5fe | 244 | xfs_log_item_t *lip; |
249a8c11 | 245 | |
5b00f14f | 246 | xfs_trans_ail_cursor_init(ailp, cur); |
16b59029 DC |
247 | |
248 | if (lsn == 0) { | |
249 | lip = xfs_ail_min(ailp); | |
5b00f14f | 250 | goto out; |
16b59029 | 251 | } |
249a8c11 | 252 | |
27d8d5fe | 253 | list_for_each_entry(lip, &ailp->xa_ail, li_ail) { |
5b00f14f | 254 | if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0) |
7ee49acf | 255 | goto out; |
535f6b37 | 256 | } |
16b59029 DC |
257 | return NULL; |
258 | ||
5b00f14f | 259 | out: |
16b59029 DC |
260 | if (lip) |
261 | cur->item = xfs_ail_next(ailp, lip); | |
5b00f14f | 262 | return lip; |
249a8c11 DC |
263 | } |
264 | ||
1d8c95a3 DC |
265 | static struct xfs_log_item * |
266 | __xfs_trans_ail_cursor_last( | |
267 | struct xfs_ail *ailp, | |
268 | xfs_lsn_t lsn) | |
269 | { | |
270 | xfs_log_item_t *lip; | |
271 | ||
272 | list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) { | |
273 | if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0) | |
274 | return lip; | |
275 | } | |
276 | return NULL; | |
277 | } | |
278 | ||
279 | /* | |
16b59029 DC |
280 | * Find the last item in the AIL with the given @lsn by searching in descending |
281 | * LSN order and initialise the cursor to point to that item. If there is no | |
282 | * item with the value of @lsn, then it sets the cursor to the last item with an | |
283 | * LSN lower than @lsn. Returns NULL if the list is empty. | |
1d8c95a3 DC |
284 | */ |
285 | struct xfs_log_item * | |
286 | xfs_trans_ail_cursor_last( | |
287 | struct xfs_ail *ailp, | |
288 | struct xfs_ail_cursor *cur, | |
289 | xfs_lsn_t lsn) | |
290 | { | |
291 | xfs_trans_ail_cursor_init(ailp, cur); | |
292 | cur->item = __xfs_trans_ail_cursor_last(ailp, lsn); | |
293 | return cur->item; | |
294 | } | |
295 | ||
296 | /* | |
16b59029 | 297 | * Splice the log item list into the AIL at the given LSN. We splice to the |
1d8c95a3 DC |
298 | * tail of the given LSN to maintain insert order for push traversals. The |
299 | * cursor is optional, allowing repeated updates to the same LSN to avoid | |
e44f4112 | 300 | * repeated traversals. This should not be called with an empty list. |
cd4a3c50 DC |
301 | */ |
302 | static void | |
303 | xfs_ail_splice( | |
1d8c95a3 DC |
304 | struct xfs_ail *ailp, |
305 | struct xfs_ail_cursor *cur, | |
306 | struct list_head *list, | |
307 | xfs_lsn_t lsn) | |
cd4a3c50 | 308 | { |
e44f4112 AE |
309 | struct xfs_log_item *lip; |
310 | ||
311 | ASSERT(!list_empty(list)); | |
cd4a3c50 | 312 | |
1d8c95a3 | 313 | /* |
e44f4112 AE |
314 | * Use the cursor to determine the insertion point if one is |
315 | * provided. If not, or if the one we got is not valid, | |
316 | * find the place in the AIL where the items belong. | |
1d8c95a3 | 317 | */ |
e44f4112 AE |
318 | lip = cur ? cur->item : NULL; |
319 | if (!lip || (__psint_t) lip & 1) | |
1d8c95a3 DC |
320 | lip = __xfs_trans_ail_cursor_last(ailp, lsn); |
321 | ||
e44f4112 AE |
322 | /* |
323 | * If a cursor is provided, we know we're processing the AIL | |
324 | * in lsn order, and future items to be spliced in will | |
325 | * follow the last one being inserted now. Update the | |
326 | * cursor to point to that last item, now while we have a | |
327 | * reliable pointer to it. | |
328 | */ | |
329 | if (cur) | |
330 | cur->item = list_entry(list->prev, struct xfs_log_item, li_ail); | |
cd4a3c50 | 331 | |
1d8c95a3 | 332 | /* |
e44f4112 AE |
333 | * Finally perform the splice. Unless the AIL was empty, |
334 | * lip points to the item in the AIL _after_ which the new | |
335 | * items should go. If lip is null the AIL was empty, so | |
336 | * the new items go at the head of the AIL. | |
1d8c95a3 | 337 | */ |
e44f4112 AE |
338 | if (lip) |
339 | list_splice(list, &lip->li_ail); | |
340 | else | |
341 | list_splice(list, &ailp->xa_ail); | |
cd4a3c50 DC |
342 | } |
343 | ||
344 | /* | |
345 | * Delete the given item from the AIL. Return a pointer to the item. | |
346 | */ | |
347 | static void | |
348 | xfs_ail_delete( | |
349 | struct xfs_ail *ailp, | |
350 | xfs_log_item_t *lip) | |
351 | { | |
352 | xfs_ail_check(ailp, lip); | |
353 | list_del(&lip->li_ail); | |
354 | xfs_trans_ail_cursor_clear(ailp, lip); | |
355 | } | |
356 | ||
0030807c CH |
357 | static long |
358 | xfsaild_push( | |
359 | struct xfs_ail *ailp) | |
249a8c11 | 360 | { |
9e7004e7 | 361 | xfs_mount_t *mp = ailp->xa_mount; |
af3e4022 | 362 | struct xfs_ail_cursor cur; |
9e7004e7 DC |
363 | xfs_log_item_t *lip; |
364 | xfs_lsn_t lsn; | |
fe0da767 | 365 | xfs_lsn_t target; |
43ff2122 | 366 | long tout; |
9e7004e7 | 367 | int stuck = 0; |
43ff2122 | 368 | int flushing = 0; |
9e7004e7 | 369 | int count = 0; |
1da177e4 | 370 | |
670ce93f | 371 | /* |
43ff2122 CH |
372 | * If we encountered pinned items or did not finish writing out all |
373 | * buffers the last time we ran, force the log first and wait for it | |
374 | * before pushing again. | |
670ce93f | 375 | */ |
43ff2122 CH |
376 | if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 && |
377 | (!list_empty_careful(&ailp->xa_buf_list) || | |
378 | xfs_ail_min_lsn(ailp))) { | |
670ce93f | 379 | ailp->xa_log_flush = 0; |
43ff2122 | 380 | |
670ce93f DC |
381 | XFS_STATS_INC(xs_push_ail_flush); |
382 | xfs_log_force(mp, XFS_LOG_SYNC); | |
670ce93f DC |
383 | } |
384 | ||
43ff2122 | 385 | spin_lock(&ailp->xa_lock); |
8375f922 BF |
386 | |
387 | /* barrier matches the xa_target update in xfs_ail_push() */ | |
388 | smp_rmb(); | |
389 | target = ailp->xa_target; | |
390 | ailp->xa_target_prev = target; | |
391 | ||
af3e4022 | 392 | lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn); |
211e4d43 | 393 | if (!lip) { |
1da177e4 | 394 | /* |
43ff2122 CH |
395 | * If the AIL is empty or our push has reached the end we are |
396 | * done now. | |
1da177e4 | 397 | */ |
af3e4022 | 398 | xfs_trans_ail_cursor_done(ailp, &cur); |
c7e8f268 | 399 | spin_unlock(&ailp->xa_lock); |
9e7004e7 | 400 | goto out_done; |
1da177e4 LT |
401 | } |
402 | ||
403 | XFS_STATS_INC(xs_push_ail); | |
404 | ||
249a8c11 | 405 | lsn = lip->li_lsn; |
50e86686 | 406 | while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) { |
249a8c11 | 407 | int lock_result; |
43ff2122 | 408 | |
1da177e4 | 409 | /* |
43ff2122 CH |
410 | * Note that IOP_PUSH may unlock and reacquire the AIL lock. We |
411 | * rely on the AIL cursor implementation to be able to deal with | |
412 | * the dropped lock. | |
1da177e4 | 413 | */ |
43ff2122 | 414 | lock_result = IOP_PUSH(lip, &ailp->xa_buf_list); |
1da177e4 | 415 | switch (lock_result) { |
249a8c11 | 416 | case XFS_ITEM_SUCCESS: |
1da177e4 | 417 | XFS_STATS_INC(xs_push_ail_success); |
9e4c109a CH |
418 | trace_xfs_ail_push(lip); |
419 | ||
0bf6a5bd | 420 | ailp->xa_last_pushed_lsn = lsn; |
1da177e4 LT |
421 | break; |
422 | ||
43ff2122 CH |
423 | case XFS_ITEM_FLUSHING: |
424 | /* | |
425 | * The item or its backing buffer is already beeing | |
426 | * flushed. The typical reason for that is that an | |
427 | * inode buffer is locked because we already pushed the | |
428 | * updates to it as part of inode clustering. | |
429 | * | |
430 | * We do not want to to stop flushing just because lots | |
431 | * of items are already beeing flushed, but we need to | |
432 | * re-try the flushing relatively soon if most of the | |
433 | * AIL is beeing flushed. | |
434 | */ | |
435 | XFS_STATS_INC(xs_push_ail_flushing); | |
436 | trace_xfs_ail_flushing(lip); | |
437 | ||
438 | flushing++; | |
439 | ailp->xa_last_pushed_lsn = lsn; | |
1da177e4 LT |
440 | break; |
441 | ||
249a8c11 | 442 | case XFS_ITEM_PINNED: |
1da177e4 | 443 | XFS_STATS_INC(xs_push_ail_pinned); |
9e4c109a CH |
444 | trace_xfs_ail_pinned(lip); |
445 | ||
249a8c11 | 446 | stuck++; |
670ce93f | 447 | ailp->xa_log_flush++; |
1da177e4 | 448 | break; |
249a8c11 | 449 | case XFS_ITEM_LOCKED: |
1da177e4 | 450 | XFS_STATS_INC(xs_push_ail_locked); |
9e4c109a | 451 | trace_xfs_ail_locked(lip); |
43ff2122 | 452 | |
249a8c11 | 453 | stuck++; |
1da177e4 | 454 | break; |
249a8c11 | 455 | default: |
1da177e4 LT |
456 | ASSERT(0); |
457 | break; | |
458 | } | |
459 | ||
249a8c11 | 460 | count++; |
1da177e4 | 461 | |
249a8c11 DC |
462 | /* |
463 | * Are there too many items we can't do anything with? | |
43ff2122 | 464 | * |
249a8c11 DC |
465 | * If we we are skipping too many items because we can't flush |
466 | * them or they are already being flushed, we back off and | |
467 | * given them time to complete whatever operation is being | |
468 | * done. i.e. remove pressure from the AIL while we can't make | |
469 | * progress so traversals don't slow down further inserts and | |
470 | * removals to/from the AIL. | |
471 | * | |
472 | * The value of 100 is an arbitrary magic number based on | |
473 | * observation. | |
474 | */ | |
475 | if (stuck > 100) | |
476 | break; | |
477 | ||
af3e4022 | 478 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
249a8c11 DC |
479 | if (lip == NULL) |
480 | break; | |
249a8c11 | 481 | lsn = lip->li_lsn; |
1da177e4 | 482 | } |
af3e4022 | 483 | xfs_trans_ail_cursor_done(ailp, &cur); |
c7e8f268 | 484 | spin_unlock(&ailp->xa_lock); |
1da177e4 | 485 | |
43ff2122 CH |
486 | if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list)) |
487 | ailp->xa_log_flush++; | |
d808f617 | 488 | |
43ff2122 | 489 | if (!count || XFS_LSN_CMP(lsn, target) >= 0) { |
9e7004e7 | 490 | out_done: |
92d9cd10 | 491 | /* |
43ff2122 CH |
492 | * We reached the target or the AIL is empty, so wait a bit |
493 | * longer for I/O to complete and remove pushed items from the | |
494 | * AIL before we start the next scan from the start of the AIL. | |
92d9cd10 | 495 | */ |
453eac8a | 496 | tout = 50; |
0bf6a5bd | 497 | ailp->xa_last_pushed_lsn = 0; |
43ff2122 | 498 | } else if (((stuck + flushing) * 100) / count > 90) { |
249a8c11 | 499 | /* |
43ff2122 CH |
500 | * Either there is a lot of contention on the AIL or we are |
501 | * stuck due to operations in progress. "Stuck" in this case | |
502 | * is defined as >90% of the items we tried to push were stuck. | |
249a8c11 DC |
503 | * |
504 | * Backoff a bit more to allow some I/O to complete before | |
43ff2122 CH |
505 | * restarting from the start of the AIL. This prevents us from |
506 | * spinning on the same items, and if they are pinned will all | |
507 | * the restart to issue a log force to unpin the stuck items. | |
249a8c11 | 508 | */ |
453eac8a | 509 | tout = 20; |
670ce93f | 510 | ailp->xa_last_pushed_lsn = 0; |
43ff2122 CH |
511 | } else { |
512 | /* | |
513 | * Assume we have more work to do in a short while. | |
514 | */ | |
515 | tout = 10; | |
1da177e4 | 516 | } |
0bf6a5bd | 517 | |
0030807c CH |
518 | return tout; |
519 | } | |
520 | ||
521 | static int | |
522 | xfsaild( | |
523 | void *data) | |
524 | { | |
525 | struct xfs_ail *ailp = data; | |
526 | long tout = 0; /* milliseconds */ | |
527 | ||
43ff2122 CH |
528 | current->flags |= PF_MEMALLOC; |
529 | ||
0030807c CH |
530 | while (!kthread_should_stop()) { |
531 | if (tout && tout <= 20) | |
532 | __set_current_state(TASK_KILLABLE); | |
533 | else | |
534 | __set_current_state(TASK_INTERRUPTIBLE); | |
8375f922 BF |
535 | |
536 | spin_lock(&ailp->xa_lock); | |
537 | ||
538 | /* | |
539 | * Idle if the AIL is empty and we are not racing with a target | |
540 | * update. We check the AIL after we set the task to a sleep | |
541 | * state to guarantee that we either catch an xa_target update | |
542 | * or that a wake_up resets the state to TASK_RUNNING. | |
543 | * Otherwise, we run the risk of sleeping indefinitely. | |
544 | * | |
545 | * The barrier matches the xa_target update in xfs_ail_push(). | |
546 | */ | |
547 | smp_rmb(); | |
548 | if (!xfs_ail_min(ailp) && | |
549 | ailp->xa_target == ailp->xa_target_prev) { | |
550 | spin_unlock(&ailp->xa_lock); | |
551 | schedule(); | |
552 | tout = 0; | |
553 | continue; | |
554 | } | |
555 | spin_unlock(&ailp->xa_lock); | |
556 | ||
557 | if (tout) | |
558 | schedule_timeout(msecs_to_jiffies(tout)); | |
559 | ||
560 | __set_current_state(TASK_RUNNING); | |
0030807c CH |
561 | |
562 | try_to_freeze(); | |
563 | ||
564 | tout = xfsaild_push(ailp); | |
565 | } | |
566 | ||
567 | return 0; | |
453eac8a | 568 | } |
1da177e4 | 569 | |
0bf6a5bd DC |
570 | /* |
571 | * This routine is called to move the tail of the AIL forward. It does this by | |
572 | * trying to flush items in the AIL whose lsns are below the given | |
573 | * threshold_lsn. | |
574 | * | |
575 | * The push is run asynchronously in a workqueue, which means the caller needs | |
576 | * to handle waiting on the async flush for space to become available. | |
577 | * We don't want to interrupt any push that is in progress, hence we only queue | |
578 | * work if we set the pushing bit approriately. | |
579 | * | |
580 | * We do this unlocked - we only need to know whether there is anything in the | |
581 | * AIL at the time we are called. We don't need to access the contents of | |
582 | * any of the objects, so the lock is not needed. | |
583 | */ | |
584 | void | |
fd074841 | 585 | xfs_ail_push( |
0bf6a5bd DC |
586 | struct xfs_ail *ailp, |
587 | xfs_lsn_t threshold_lsn) | |
588 | { | |
589 | xfs_log_item_t *lip; | |
590 | ||
591 | lip = xfs_ail_min(ailp); | |
592 | if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) || | |
593 | XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0) | |
594 | return; | |
595 | ||
596 | /* | |
597 | * Ensure that the new target is noticed in push code before it clears | |
598 | * the XFS_AIL_PUSHING_BIT. | |
599 | */ | |
600 | smp_wmb(); | |
fe0da767 | 601 | xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn); |
0030807c CH |
602 | smp_wmb(); |
603 | ||
604 | wake_up_process(ailp->xa_task); | |
0bf6a5bd | 605 | } |
1da177e4 | 606 | |
fd074841 DC |
607 | /* |
608 | * Push out all items in the AIL immediately | |
609 | */ | |
610 | void | |
611 | xfs_ail_push_all( | |
612 | struct xfs_ail *ailp) | |
613 | { | |
614 | xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp); | |
615 | ||
616 | if (threshold_lsn) | |
617 | xfs_ail_push(ailp, threshold_lsn); | |
618 | } | |
619 | ||
211e4d43 CH |
620 | /* |
621 | * Push out all items in the AIL immediately and wait until the AIL is empty. | |
622 | */ | |
623 | void | |
624 | xfs_ail_push_all_sync( | |
625 | struct xfs_ail *ailp) | |
626 | { | |
627 | struct xfs_log_item *lip; | |
628 | DEFINE_WAIT(wait); | |
629 | ||
630 | spin_lock(&ailp->xa_lock); | |
631 | while ((lip = xfs_ail_max(ailp)) != NULL) { | |
632 | prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE); | |
633 | ailp->xa_target = lip->li_lsn; | |
634 | wake_up_process(ailp->xa_task); | |
635 | spin_unlock(&ailp->xa_lock); | |
636 | schedule(); | |
637 | spin_lock(&ailp->xa_lock); | |
638 | } | |
639 | spin_unlock(&ailp->xa_lock); | |
640 | ||
641 | finish_wait(&ailp->xa_empty, &wait); | |
642 | } | |
643 | ||
0e57f6a3 DC |
644 | /* |
645 | * xfs_trans_ail_update - bulk AIL insertion operation. | |
646 | * | |
647 | * @xfs_trans_ail_update takes an array of log items that all need to be | |
648 | * positioned at the same LSN in the AIL. If an item is not in the AIL, it will | |
649 | * be added. Otherwise, it will be repositioned by removing it and re-adding | |
650 | * it to the AIL. If we move the first item in the AIL, update the log tail to | |
651 | * match the new minimum LSN in the AIL. | |
652 | * | |
653 | * This function takes the AIL lock once to execute the update operations on | |
654 | * all the items in the array, and as such should not be called with the AIL | |
655 | * lock held. As a result, once we have the AIL lock, we need to check each log | |
656 | * item LSN to confirm it needs to be moved forward in the AIL. | |
657 | * | |
658 | * To optimise the insert operation, we delete all the items from the AIL in | |
659 | * the first pass, moving them into a temporary list, then splice the temporary | |
660 | * list into the correct position in the AIL. This avoids needing to do an | |
661 | * insert operation on every item. | |
662 | * | |
663 | * This function must be called with the AIL lock held. The lock is dropped | |
664 | * before returning. | |
665 | */ | |
666 | void | |
667 | xfs_trans_ail_update_bulk( | |
668 | struct xfs_ail *ailp, | |
1d8c95a3 | 669 | struct xfs_ail_cursor *cur, |
0e57f6a3 DC |
670 | struct xfs_log_item **log_items, |
671 | int nr_items, | |
672 | xfs_lsn_t lsn) __releases(ailp->xa_lock) | |
673 | { | |
674 | xfs_log_item_t *mlip; | |
0e57f6a3 DC |
675 | int mlip_changed = 0; |
676 | int i; | |
677 | LIST_HEAD(tmp); | |
678 | ||
e44f4112 | 679 | ASSERT(nr_items > 0); /* Not required, but true. */ |
0e57f6a3 DC |
680 | mlip = xfs_ail_min(ailp); |
681 | ||
682 | for (i = 0; i < nr_items; i++) { | |
683 | struct xfs_log_item *lip = log_items[i]; | |
684 | if (lip->li_flags & XFS_LI_IN_AIL) { | |
685 | /* check if we really need to move the item */ | |
686 | if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0) | |
687 | continue; | |
688 | ||
689 | xfs_ail_delete(ailp, lip); | |
690 | if (mlip == lip) | |
691 | mlip_changed = 1; | |
692 | } else { | |
693 | lip->li_flags |= XFS_LI_IN_AIL; | |
694 | } | |
695 | lip->li_lsn = lsn; | |
696 | list_add(&lip->li_ail, &tmp); | |
697 | } | |
698 | ||
e44f4112 AE |
699 | if (!list_empty(&tmp)) |
700 | xfs_ail_splice(ailp, cur, &tmp, lsn); | |
0e57f6a3 | 701 | |
1c304625 CH |
702 | if (mlip_changed) { |
703 | if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) | |
704 | xlog_assign_tail_lsn_locked(ailp->xa_mount); | |
705 | spin_unlock(&ailp->xa_lock); | |
706 | ||
cfb7cdca | 707 | xfs_log_space_wake(ailp->xa_mount); |
1c304625 CH |
708 | } else { |
709 | spin_unlock(&ailp->xa_lock); | |
0e57f6a3 | 710 | } |
0e57f6a3 DC |
711 | } |
712 | ||
30136832 DC |
713 | /* |
714 | * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL | |
715 | * | |
716 | * @xfs_trans_ail_delete_bulk takes an array of log items that all need to | |
717 | * removed from the AIL. The caller is already holding the AIL lock, and done | |
718 | * all the checks necessary to ensure the items passed in via @log_items are | |
719 | * ready for deletion. This includes checking that the items are in the AIL. | |
720 | * | |
721 | * For each log item to be removed, unlink it from the AIL, clear the IN_AIL | |
722 | * flag from the item and reset the item's lsn to 0. If we remove the first | |
723 | * item in the AIL, update the log tail to match the new minimum LSN in the | |
724 | * AIL. | |
725 | * | |
726 | * This function will not drop the AIL lock until all items are removed from | |
727 | * the AIL to minimise the amount of lock traffic on the AIL. This does not | |
728 | * greatly increase the AIL hold time, but does significantly reduce the amount | |
729 | * of traffic on the lock, especially during IO completion. | |
730 | * | |
731 | * This function must be called with the AIL lock held. The lock is dropped | |
732 | * before returning. | |
733 | */ | |
734 | void | |
735 | xfs_trans_ail_delete_bulk( | |
736 | struct xfs_ail *ailp, | |
737 | struct xfs_log_item **log_items, | |
04913fdd DC |
738 | int nr_items, |
739 | int shutdown_type) __releases(ailp->xa_lock) | |
30136832 DC |
740 | { |
741 | xfs_log_item_t *mlip; | |
30136832 DC |
742 | int mlip_changed = 0; |
743 | int i; | |
744 | ||
745 | mlip = xfs_ail_min(ailp); | |
746 | ||
747 | for (i = 0; i < nr_items; i++) { | |
748 | struct xfs_log_item *lip = log_items[i]; | |
749 | if (!(lip->li_flags & XFS_LI_IN_AIL)) { | |
750 | struct xfs_mount *mp = ailp->xa_mount; | |
751 | ||
752 | spin_unlock(&ailp->xa_lock); | |
753 | if (!XFS_FORCED_SHUTDOWN(mp)) { | |
6a19d939 | 754 | xfs_alert_tag(mp, XFS_PTAG_AILDELETE, |
30136832 DC |
755 | "%s: attempting to delete a log item that is not in the AIL", |
756 | __func__); | |
04913fdd | 757 | xfs_force_shutdown(mp, shutdown_type); |
30136832 DC |
758 | } |
759 | return; | |
760 | } | |
761 | ||
762 | xfs_ail_delete(ailp, lip); | |
763 | lip->li_flags &= ~XFS_LI_IN_AIL; | |
764 | lip->li_lsn = 0; | |
765 | if (mlip == lip) | |
766 | mlip_changed = 1; | |
767 | } | |
768 | ||
1c304625 CH |
769 | if (mlip_changed) { |
770 | if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount)) | |
771 | xlog_assign_tail_lsn_locked(ailp->xa_mount); | |
211e4d43 CH |
772 | if (list_empty(&ailp->xa_ail)) |
773 | wake_up_all(&ailp->xa_empty); | |
1c304625 CH |
774 | spin_unlock(&ailp->xa_lock); |
775 | ||
cfb7cdca | 776 | xfs_log_space_wake(ailp->xa_mount); |
1c304625 CH |
777 | } else { |
778 | spin_unlock(&ailp->xa_lock); | |
30136832 | 779 | } |
30136832 | 780 | } |
1da177e4 | 781 | |
249a8c11 | 782 | int |
1da177e4 LT |
783 | xfs_trans_ail_init( |
784 | xfs_mount_t *mp) | |
785 | { | |
82fa9012 DC |
786 | struct xfs_ail *ailp; |
787 | ||
788 | ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL); | |
789 | if (!ailp) | |
790 | return ENOMEM; | |
791 | ||
792 | ailp->xa_mount = mp; | |
793 | INIT_LIST_HEAD(&ailp->xa_ail); | |
af3e4022 | 794 | INIT_LIST_HEAD(&ailp->xa_cursors); |
c7e8f268 | 795 | spin_lock_init(&ailp->xa_lock); |
43ff2122 | 796 | INIT_LIST_HEAD(&ailp->xa_buf_list); |
211e4d43 | 797 | init_waitqueue_head(&ailp->xa_empty); |
0030807c CH |
798 | |
799 | ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s", | |
800 | ailp->xa_mount->m_fsname); | |
801 | if (IS_ERR(ailp->xa_task)) | |
802 | goto out_free_ailp; | |
803 | ||
27d8d5fe DC |
804 | mp->m_ail = ailp; |
805 | return 0; | |
0030807c CH |
806 | |
807 | out_free_ailp: | |
808 | kmem_free(ailp); | |
809 | return ENOMEM; | |
249a8c11 DC |
810 | } |
811 | ||
812 | void | |
813 | xfs_trans_ail_destroy( | |
814 | xfs_mount_t *mp) | |
815 | { | |
82fa9012 DC |
816 | struct xfs_ail *ailp = mp->m_ail; |
817 | ||
0030807c | 818 | kthread_stop(ailp->xa_task); |
82fa9012 | 819 | kmem_free(ailp); |
1da177e4 | 820 | } |