]> Git Repo - linux.git/blame - fs/btrfs/compression.c
Btrfs: heuristic: implement sampling logic
[linux.git] / fs / btrfs / compression.c
CommitLineData
c8b97818
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
c8b97818
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
5a0e3ad6 34#include <linux/slab.h>
fe308533 35#include <linux/sched/mm.h>
c8b97818
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "ordered-data.h"
c8b97818
CM
42#include "compression.h"
43#include "extent_io.h"
44#include "extent_map.h"
45
8140dc30 46static int btrfs_decompress_bio(struct compressed_bio *cb);
48a3b636 47
2ff7e61e 48static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
d20f7043
CM
49 unsigned long disk_size)
50{
0b246afa 51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
6c41761f 52
d20f7043 53 return sizeof(struct compressed_bio) +
0b246afa 54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
d20f7043
CM
55}
56
f898ac6a 57static int check_compressed_csum(struct btrfs_inode *inode,
d20f7043
CM
58 struct compressed_bio *cb,
59 u64 disk_start)
60{
61 int ret;
d20f7043
CM
62 struct page *page;
63 unsigned long i;
64 char *kaddr;
65 u32 csum;
66 u32 *cb_sum = &cb->sums;
67
f898ac6a 68 if (inode->flags & BTRFS_INODE_NODATASUM)
d20f7043
CM
69 return 0;
70
71 for (i = 0; i < cb->nr_pages; i++) {
72 page = cb->compressed_pages[i];
73 csum = ~(u32)0;
74
7ac687d9 75 kaddr = kmap_atomic(page);
09cbfeaf 76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
0b5e3daf 77 btrfs_csum_final(csum, (u8 *)&csum);
7ac687d9 78 kunmap_atomic(kaddr);
d20f7043
CM
79
80 if (csum != *cb_sum) {
f898ac6a 81 btrfs_print_data_csum_error(inode, disk_start, csum,
0970a22e 82 *cb_sum, cb->mirror_num);
d20f7043
CM
83 ret = -EIO;
84 goto fail;
85 }
86 cb_sum++;
87
88 }
89 ret = 0;
90fail:
91 return ret;
92}
93
c8b97818
CM
94/* when we finish reading compressed pages from the disk, we
95 * decompress them and then run the bio end_io routines on the
96 * decompressed pages (in the inode address space).
97 *
98 * This allows the checksumming and other IO error handling routines
99 * to work normally
100 *
101 * The compressed pages are freed here, and it must be run
102 * in process context
103 */
4246a0b6 104static void end_compressed_bio_read(struct bio *bio)
c8b97818 105{
c8b97818
CM
106 struct compressed_bio *cb = bio->bi_private;
107 struct inode *inode;
108 struct page *page;
109 unsigned long index;
cf1167d5 110 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
e6311f24 111 int ret = 0;
c8b97818 112
4e4cbee9 113 if (bio->bi_status)
c8b97818
CM
114 cb->errors = 1;
115
116 /* if there are more bios still pending for this compressed
117 * extent, just exit
118 */
a50299ae 119 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
120 goto out;
121
cf1167d5
LB
122 /*
123 * Record the correct mirror_num in cb->orig_bio so that
124 * read-repair can work properly.
125 */
126 ASSERT(btrfs_io_bio(cb->orig_bio));
127 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
128 cb->mirror_num = mirror;
129
e6311f24
LB
130 /*
131 * Some IO in this cb have failed, just skip checksum as there
132 * is no way it could be correct.
133 */
134 if (cb->errors == 1)
135 goto csum_failed;
136
d20f7043 137 inode = cb->inode;
f898ac6a 138 ret = check_compressed_csum(BTRFS_I(inode), cb,
4f024f37 139 (u64)bio->bi_iter.bi_sector << 9);
d20f7043
CM
140 if (ret)
141 goto csum_failed;
142
c8b97818
CM
143 /* ok, we're the last bio for this extent, lets start
144 * the decompression.
145 */
8140dc30
AJ
146 ret = btrfs_decompress_bio(cb);
147
d20f7043 148csum_failed:
c8b97818
CM
149 if (ret)
150 cb->errors = 1;
151
152 /* release the compressed pages */
153 index = 0;
154 for (index = 0; index < cb->nr_pages; index++) {
155 page = cb->compressed_pages[index];
156 page->mapping = NULL;
09cbfeaf 157 put_page(page);
c8b97818
CM
158 }
159
160 /* do io completion on the original bio */
771ed689 161 if (cb->errors) {
c8b97818 162 bio_io_error(cb->orig_bio);
d20f7043 163 } else {
2c30c71b
KO
164 int i;
165 struct bio_vec *bvec;
d20f7043
CM
166
167 /*
168 * we have verified the checksum already, set page
169 * checked so the end_io handlers know about it
170 */
c09abff8 171 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 172 bio_for_each_segment_all(bvec, cb->orig_bio, i)
d20f7043 173 SetPageChecked(bvec->bv_page);
2c30c71b 174
4246a0b6 175 bio_endio(cb->orig_bio);
d20f7043 176 }
c8b97818
CM
177
178 /* finally free the cb struct */
179 kfree(cb->compressed_pages);
180 kfree(cb);
181out:
182 bio_put(bio);
183}
184
185/*
186 * Clear the writeback bits on all of the file
187 * pages for a compressed write
188 */
7bdcefc1
FM
189static noinline void end_compressed_writeback(struct inode *inode,
190 const struct compressed_bio *cb)
c8b97818 191{
09cbfeaf
KS
192 unsigned long index = cb->start >> PAGE_SHIFT;
193 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
c8b97818
CM
194 struct page *pages[16];
195 unsigned long nr_pages = end_index - index + 1;
196 int i;
197 int ret;
198
7bdcefc1
FM
199 if (cb->errors)
200 mapping_set_error(inode->i_mapping, -EIO);
201
d397712b 202 while (nr_pages > 0) {
c8b97818 203 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
204 min_t(unsigned long,
205 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
206 if (ret == 0) {
207 nr_pages -= 1;
208 index += 1;
209 continue;
210 }
211 for (i = 0; i < ret; i++) {
7bdcefc1
FM
212 if (cb->errors)
213 SetPageError(pages[i]);
c8b97818 214 end_page_writeback(pages[i]);
09cbfeaf 215 put_page(pages[i]);
c8b97818
CM
216 }
217 nr_pages -= ret;
218 index += ret;
219 }
220 /* the inode may be gone now */
c8b97818
CM
221}
222
223/*
224 * do the cleanup once all the compressed pages hit the disk.
225 * This will clear writeback on the file pages and free the compressed
226 * pages.
227 *
228 * This also calls the writeback end hooks for the file pages so that
229 * metadata and checksums can be updated in the file.
230 */
4246a0b6 231static void end_compressed_bio_write(struct bio *bio)
c8b97818
CM
232{
233 struct extent_io_tree *tree;
234 struct compressed_bio *cb = bio->bi_private;
235 struct inode *inode;
236 struct page *page;
237 unsigned long index;
238
4e4cbee9 239 if (bio->bi_status)
c8b97818
CM
240 cb->errors = 1;
241
242 /* if there are more bios still pending for this compressed
243 * extent, just exit
244 */
a50299ae 245 if (!refcount_dec_and_test(&cb->pending_bios))
c8b97818
CM
246 goto out;
247
248 /* ok, we're the last bio for this extent, step one is to
249 * call back into the FS and do all the end_io operations
250 */
251 inode = cb->inode;
252 tree = &BTRFS_I(inode)->io_tree;
70b99e69 253 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
c8b97818
CM
254 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
255 cb->start,
256 cb->start + cb->len - 1,
7bdcefc1 257 NULL,
2dbe0c77
AJ
258 bio->bi_status ?
259 BLK_STS_OK : BLK_STS_NOTSUPP);
70b99e69 260 cb->compressed_pages[0]->mapping = NULL;
c8b97818 261
7bdcefc1 262 end_compressed_writeback(inode, cb);
c8b97818
CM
263 /* note, our inode could be gone now */
264
265 /*
266 * release the compressed pages, these came from alloc_page and
267 * are not attached to the inode at all
268 */
269 index = 0;
270 for (index = 0; index < cb->nr_pages; index++) {
271 page = cb->compressed_pages[index];
272 page->mapping = NULL;
09cbfeaf 273 put_page(page);
c8b97818
CM
274 }
275
276 /* finally free the cb struct */
277 kfree(cb->compressed_pages);
278 kfree(cb);
279out:
280 bio_put(bio);
281}
282
283/*
284 * worker function to build and submit bios for previously compressed pages.
285 * The corresponding pages in the inode should be marked for writeback
286 * and the compressed pages should have a reference on them for dropping
287 * when the IO is complete.
288 *
289 * This also checksums the file bytes and gets things ready for
290 * the end io hooks.
291 */
4e4cbee9 292blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
c8b97818
CM
293 unsigned long len, u64 disk_start,
294 unsigned long compressed_len,
295 struct page **compressed_pages,
296 unsigned long nr_pages)
297{
0b246afa 298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818 299 struct bio *bio = NULL;
c8b97818
CM
300 struct compressed_bio *cb;
301 unsigned long bytes_left;
302 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
306e16ce 303 int pg_index = 0;
c8b97818
CM
304 struct page *page;
305 u64 first_byte = disk_start;
306 struct block_device *bdev;
4e4cbee9 307 blk_status_t ret;
e55179b3 308 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
c8b97818 309
09cbfeaf 310 WARN_ON(start & ((u64)PAGE_SIZE - 1));
2ff7e61e 311 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
dac97e51 312 if (!cb)
4e4cbee9 313 return BLK_STS_RESOURCE;
a50299ae 314 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
315 cb->errors = 0;
316 cb->inode = inode;
317 cb->start = start;
318 cb->len = len;
d20f7043 319 cb->mirror_num = 0;
c8b97818
CM
320 cb->compressed_pages = compressed_pages;
321 cb->compressed_len = compressed_len;
322 cb->orig_bio = NULL;
323 cb->nr_pages = nr_pages;
324
0b246afa 325 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 326
c821e7f3 327 bio = btrfs_bio_alloc(bdev, first_byte);
37226b21 328 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
329 bio->bi_private = cb;
330 bio->bi_end_io = end_compressed_bio_write;
a50299ae 331 refcount_set(&cb->pending_bios, 1);
c8b97818
CM
332
333 /* create and submit bios for the compressed pages */
334 bytes_left = compressed_len;
306e16ce 335 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
4e4cbee9
CH
336 int submit = 0;
337
306e16ce 338 page = compressed_pages[pg_index];
c8b97818 339 page->mapping = inode->i_mapping;
4f024f37 340 if (bio->bi_iter.bi_size)
4e4cbee9 341 submit = io_tree->ops->merge_bio_hook(page, 0,
09cbfeaf 342 PAGE_SIZE,
c8b97818 343 bio, 0);
c8b97818 344
70b99e69 345 page->mapping = NULL;
4e4cbee9 346 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
09cbfeaf 347 PAGE_SIZE) {
c8b97818
CM
348 bio_get(bio);
349
af09abfe
CM
350 /*
351 * inc the count before we submit the bio so
352 * we know the end IO handler won't happen before
353 * we inc the count. Otherwise, the cb might get
354 * freed before we're done setting it up
355 */
a50299ae 356 refcount_inc(&cb->pending_bios);
0b246afa
JM
357 ret = btrfs_bio_wq_end_io(fs_info, bio,
358 BTRFS_WQ_ENDIO_DATA);
79787eaa 359 BUG_ON(ret); /* -ENOMEM */
c8b97818 360
e55179b3 361 if (!skip_sum) {
2ff7e61e 362 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 363 BUG_ON(ret); /* -ENOMEM */
e55179b3 364 }
d20f7043 365
2ff7e61e 366 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 367 if (ret) {
4e4cbee9 368 bio->bi_status = ret;
f5daf2c7
LB
369 bio_endio(bio);
370 }
c8b97818
CM
371
372 bio_put(bio);
373
c821e7f3 374 bio = btrfs_bio_alloc(bdev, first_byte);
37226b21 375 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
c8b97818
CM
376 bio->bi_private = cb;
377 bio->bi_end_io = end_compressed_bio_write;
09cbfeaf 378 bio_add_page(bio, page, PAGE_SIZE, 0);
c8b97818 379 }
09cbfeaf 380 if (bytes_left < PAGE_SIZE) {
0b246afa 381 btrfs_info(fs_info,
efe120a0 382 "bytes left %lu compress len %lu nr %lu",
cfbc246e
CM
383 bytes_left, cb->compressed_len, cb->nr_pages);
384 }
09cbfeaf
KS
385 bytes_left -= PAGE_SIZE;
386 first_byte += PAGE_SIZE;
771ed689 387 cond_resched();
c8b97818
CM
388 }
389 bio_get(bio);
390
0b246afa 391 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 392 BUG_ON(ret); /* -ENOMEM */
c8b97818 393
e55179b3 394 if (!skip_sum) {
2ff7e61e 395 ret = btrfs_csum_one_bio(inode, bio, start, 1);
79787eaa 396 BUG_ON(ret); /* -ENOMEM */
e55179b3 397 }
d20f7043 398
2ff7e61e 399 ret = btrfs_map_bio(fs_info, bio, 0, 1);
f5daf2c7 400 if (ret) {
4e4cbee9 401 bio->bi_status = ret;
f5daf2c7
LB
402 bio_endio(bio);
403 }
c8b97818
CM
404
405 bio_put(bio);
406 return 0;
407}
408
2a4d0c90
CH
409static u64 bio_end_offset(struct bio *bio)
410{
411 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
412
413 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
414}
415
771ed689
CM
416static noinline int add_ra_bio_pages(struct inode *inode,
417 u64 compressed_end,
418 struct compressed_bio *cb)
419{
420 unsigned long end_index;
306e16ce 421 unsigned long pg_index;
771ed689
CM
422 u64 last_offset;
423 u64 isize = i_size_read(inode);
424 int ret;
425 struct page *page;
426 unsigned long nr_pages = 0;
427 struct extent_map *em;
428 struct address_space *mapping = inode->i_mapping;
771ed689
CM
429 struct extent_map_tree *em_tree;
430 struct extent_io_tree *tree;
431 u64 end;
432 int misses = 0;
433
2a4d0c90 434 last_offset = bio_end_offset(cb->orig_bio);
771ed689
CM
435 em_tree = &BTRFS_I(inode)->extent_tree;
436 tree = &BTRFS_I(inode)->io_tree;
437
438 if (isize == 0)
439 return 0;
440
09cbfeaf 441 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
771ed689 442
d397712b 443 while (last_offset < compressed_end) {
09cbfeaf 444 pg_index = last_offset >> PAGE_SHIFT;
771ed689 445
306e16ce 446 if (pg_index > end_index)
771ed689
CM
447 break;
448
449 rcu_read_lock();
306e16ce 450 page = radix_tree_lookup(&mapping->page_tree, pg_index);
771ed689 451 rcu_read_unlock();
0cd6144a 452 if (page && !radix_tree_exceptional_entry(page)) {
771ed689
CM
453 misses++;
454 if (misses > 4)
455 break;
456 goto next;
457 }
458
c62d2555
MH
459 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
460 ~__GFP_FS));
771ed689
CM
461 if (!page)
462 break;
463
c62d2555 464 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
09cbfeaf 465 put_page(page);
771ed689
CM
466 goto next;
467 }
468
09cbfeaf 469 end = last_offset + PAGE_SIZE - 1;
771ed689
CM
470 /*
471 * at this point, we have a locked page in the page cache
472 * for these bytes in the file. But, we have to make
473 * sure they map to this compressed extent on disk.
474 */
475 set_page_extent_mapped(page);
d0082371 476 lock_extent(tree, last_offset, end);
890871be 477 read_lock(&em_tree->lock);
771ed689 478 em = lookup_extent_mapping(em_tree, last_offset,
09cbfeaf 479 PAGE_SIZE);
890871be 480 read_unlock(&em_tree->lock);
771ed689
CM
481
482 if (!em || last_offset < em->start ||
09cbfeaf 483 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
4f024f37 484 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
771ed689 485 free_extent_map(em);
d0082371 486 unlock_extent(tree, last_offset, end);
771ed689 487 unlock_page(page);
09cbfeaf 488 put_page(page);
771ed689
CM
489 break;
490 }
491 free_extent_map(em);
492
493 if (page->index == end_index) {
494 char *userpage;
09cbfeaf 495 size_t zero_offset = isize & (PAGE_SIZE - 1);
771ed689
CM
496
497 if (zero_offset) {
498 int zeros;
09cbfeaf 499 zeros = PAGE_SIZE - zero_offset;
7ac687d9 500 userpage = kmap_atomic(page);
771ed689
CM
501 memset(userpage + zero_offset, 0, zeros);
502 flush_dcache_page(page);
7ac687d9 503 kunmap_atomic(userpage);
771ed689
CM
504 }
505 }
506
507 ret = bio_add_page(cb->orig_bio, page,
09cbfeaf 508 PAGE_SIZE, 0);
771ed689 509
09cbfeaf 510 if (ret == PAGE_SIZE) {
771ed689 511 nr_pages++;
09cbfeaf 512 put_page(page);
771ed689 513 } else {
d0082371 514 unlock_extent(tree, last_offset, end);
771ed689 515 unlock_page(page);
09cbfeaf 516 put_page(page);
771ed689
CM
517 break;
518 }
519next:
09cbfeaf 520 last_offset += PAGE_SIZE;
771ed689 521 }
771ed689
CM
522 return 0;
523}
524
c8b97818
CM
525/*
526 * for a compressed read, the bio we get passed has all the inode pages
527 * in it. We don't actually do IO on those pages but allocate new ones
528 * to hold the compressed pages on disk.
529 *
4f024f37 530 * bio->bi_iter.bi_sector points to the compressed extent on disk
c8b97818 531 * bio->bi_io_vec points to all of the inode pages
c8b97818
CM
532 *
533 * After the compressed pages are read, we copy the bytes into the
534 * bio we were passed and then call the bio end_io calls
535 */
4e4cbee9 536blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
c8b97818
CM
537 int mirror_num, unsigned long bio_flags)
538{
0b246afa 539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c8b97818
CM
540 struct extent_io_tree *tree;
541 struct extent_map_tree *em_tree;
542 struct compressed_bio *cb;
c8b97818
CM
543 unsigned long compressed_len;
544 unsigned long nr_pages;
306e16ce 545 unsigned long pg_index;
c8b97818
CM
546 struct page *page;
547 struct block_device *bdev;
548 struct bio *comp_bio;
4f024f37 549 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
e04ca626
CM
550 u64 em_len;
551 u64 em_start;
c8b97818 552 struct extent_map *em;
4e4cbee9 553 blk_status_t ret = BLK_STS_RESOURCE;
15e3004a 554 int faili = 0;
d20f7043 555 u32 *sums;
c8b97818
CM
556
557 tree = &BTRFS_I(inode)->io_tree;
558 em_tree = &BTRFS_I(inode)->extent_tree;
559
560 /* we need the actual starting offset of this extent in the file */
890871be 561 read_lock(&em_tree->lock);
c8b97818
CM
562 em = lookup_extent_mapping(em_tree,
563 page_offset(bio->bi_io_vec->bv_page),
09cbfeaf 564 PAGE_SIZE);
890871be 565 read_unlock(&em_tree->lock);
285190d9 566 if (!em)
4e4cbee9 567 return BLK_STS_IOERR;
c8b97818 568
d20f7043 569 compressed_len = em->block_len;
2ff7e61e 570 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
6b82ce8d 571 if (!cb)
572 goto out;
573
a50299ae 574 refcount_set(&cb->pending_bios, 0);
c8b97818
CM
575 cb->errors = 0;
576 cb->inode = inode;
d20f7043
CM
577 cb->mirror_num = mirror_num;
578 sums = &cb->sums;
c8b97818 579
ff5b7ee3 580 cb->start = em->orig_start;
e04ca626
CM
581 em_len = em->len;
582 em_start = em->start;
d20f7043 583
c8b97818 584 free_extent_map(em);
e04ca626 585 em = NULL;
c8b97818 586
81381053 587 cb->len = bio->bi_iter.bi_size;
c8b97818 588 cb->compressed_len = compressed_len;
261507a0 589 cb->compress_type = extent_compress_type(bio_flags);
c8b97818
CM
590 cb->orig_bio = bio;
591
09cbfeaf 592 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
31e818fe 593 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
c8b97818 594 GFP_NOFS);
6b82ce8d 595 if (!cb->compressed_pages)
596 goto fail1;
597
0b246afa 598 bdev = fs_info->fs_devices->latest_bdev;
c8b97818 599
306e16ce
DS
600 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
601 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
c8b97818 602 __GFP_HIGHMEM);
15e3004a
JB
603 if (!cb->compressed_pages[pg_index]) {
604 faili = pg_index - 1;
0e9350de 605 ret = BLK_STS_RESOURCE;
6b82ce8d 606 goto fail2;
15e3004a 607 }
c8b97818 608 }
15e3004a 609 faili = nr_pages - 1;
c8b97818
CM
610 cb->nr_pages = nr_pages;
611
7f042a83 612 add_ra_bio_pages(inode, em_start + em_len, cb);
771ed689 613
771ed689 614 /* include any pages we added in add_ra-bio_pages */
81381053 615 cb->len = bio->bi_iter.bi_size;
771ed689 616
c821e7f3 617 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 618 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
c8b97818
CM
619 comp_bio->bi_private = cb;
620 comp_bio->bi_end_io = end_compressed_bio_read;
a50299ae 621 refcount_set(&cb->pending_bios, 1);
c8b97818 622
306e16ce 623 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
4e4cbee9
CH
624 int submit = 0;
625
306e16ce 626 page = cb->compressed_pages[pg_index];
c8b97818 627 page->mapping = inode->i_mapping;
09cbfeaf 628 page->index = em_start >> PAGE_SHIFT;
d20f7043 629
4f024f37 630 if (comp_bio->bi_iter.bi_size)
4e4cbee9 631 submit = tree->ops->merge_bio_hook(page, 0,
09cbfeaf 632 PAGE_SIZE,
c8b97818 633 comp_bio, 0);
c8b97818 634
70b99e69 635 page->mapping = NULL;
4e4cbee9 636 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
09cbfeaf 637 PAGE_SIZE) {
c8b97818
CM
638 bio_get(comp_bio);
639
0b246afa
JM
640 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
641 BTRFS_WQ_ENDIO_DATA);
79787eaa 642 BUG_ON(ret); /* -ENOMEM */
c8b97818 643
af09abfe
CM
644 /*
645 * inc the count before we submit the bio so
646 * we know the end IO handler won't happen before
647 * we inc the count. Otherwise, the cb might get
648 * freed before we're done setting it up
649 */
a50299ae 650 refcount_inc(&cb->pending_bios);
af09abfe 651
6cbff00f 652 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e
JM
653 ret = btrfs_lookup_bio_sums(inode, comp_bio,
654 sums);
79787eaa 655 BUG_ON(ret); /* -ENOMEM */
d20f7043 656 }
ed6078f7 657 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
0b246afa 658 fs_info->sectorsize);
d20f7043 659
2ff7e61e 660 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 661 if (ret) {
4e4cbee9 662 comp_bio->bi_status = ret;
4246a0b6
CH
663 bio_endio(comp_bio);
664 }
c8b97818
CM
665
666 bio_put(comp_bio);
667
c821e7f3 668 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
37226b21 669 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
771ed689
CM
670 comp_bio->bi_private = cb;
671 comp_bio->bi_end_io = end_compressed_bio_read;
672
09cbfeaf 673 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
c8b97818 674 }
09cbfeaf 675 cur_disk_byte += PAGE_SIZE;
c8b97818
CM
676 }
677 bio_get(comp_bio);
678
0b246afa 679 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
79787eaa 680 BUG_ON(ret); /* -ENOMEM */
c8b97818 681
c2db1073 682 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
2ff7e61e 683 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
79787eaa 684 BUG_ON(ret); /* -ENOMEM */
c2db1073 685 }
d20f7043 686
2ff7e61e 687 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
4246a0b6 688 if (ret) {
4e4cbee9 689 comp_bio->bi_status = ret;
4246a0b6
CH
690 bio_endio(comp_bio);
691 }
c8b97818
CM
692
693 bio_put(comp_bio);
694 return 0;
6b82ce8d 695
696fail2:
15e3004a
JB
697 while (faili >= 0) {
698 __free_page(cb->compressed_pages[faili]);
699 faili--;
700 }
6b82ce8d 701
702 kfree(cb->compressed_pages);
703fail1:
704 kfree(cb);
705out:
706 free_extent_map(em);
707 return ret;
c8b97818 708}
261507a0 709
17b5a6c1
TT
710/*
711 * Heuristic uses systematic sampling to collect data from the input data
712 * range, the logic can be tuned by the following constants:
713 *
714 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
715 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
716 */
717#define SAMPLING_READ_SIZE (16)
718#define SAMPLING_INTERVAL (256)
719
720/*
721 * For statistical analysis of the input data we consider bytes that form a
722 * Galois Field of 256 objects. Each object has an attribute count, ie. how
723 * many times the object appeared in the sample.
724 */
725#define BUCKET_SIZE (256)
726
727/*
728 * The size of the sample is based on a statistical sampling rule of thumb.
729 * The common way is to perform sampling tests as long as the number of
730 * elements in each cell is at least 5.
731 *
732 * Instead of 5, we choose 32 to obtain more accurate results.
733 * If the data contain the maximum number of symbols, which is 256, we obtain a
734 * sample size bound by 8192.
735 *
736 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
737 * from up to 512 locations.
738 */
739#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
740 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
741
742struct bucket_item {
743 u32 count;
744};
4e439a0b
TT
745
746struct heuristic_ws {
17b5a6c1
TT
747 /* Partial copy of input data */
748 u8 *sample;
a440d48c 749 u32 sample_size;
17b5a6c1
TT
750 /* Buckets store counters for each byte value */
751 struct bucket_item *bucket;
4e439a0b
TT
752 struct list_head list;
753};
754
755static void free_heuristic_ws(struct list_head *ws)
756{
757 struct heuristic_ws *workspace;
758
759 workspace = list_entry(ws, struct heuristic_ws, list);
760
17b5a6c1
TT
761 kvfree(workspace->sample);
762 kfree(workspace->bucket);
4e439a0b
TT
763 kfree(workspace);
764}
765
766static struct list_head *alloc_heuristic_ws(void)
767{
768 struct heuristic_ws *ws;
769
770 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
771 if (!ws)
772 return ERR_PTR(-ENOMEM);
773
17b5a6c1
TT
774 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
775 if (!ws->sample)
776 goto fail;
777
778 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
779 if (!ws->bucket)
780 goto fail;
4e439a0b 781
17b5a6c1 782 INIT_LIST_HEAD(&ws->list);
4e439a0b 783 return &ws->list;
17b5a6c1
TT
784fail:
785 free_heuristic_ws(&ws->list);
786 return ERR_PTR(-ENOMEM);
4e439a0b
TT
787}
788
789struct workspaces_list {
d9187649
BL
790 struct list_head idle_ws;
791 spinlock_t ws_lock;
6ac10a6a
DS
792 /* Number of free workspaces */
793 int free_ws;
794 /* Total number of allocated workspaces */
795 atomic_t total_ws;
796 /* Waiters for a free workspace */
d9187649 797 wait_queue_head_t ws_wait;
4e439a0b
TT
798};
799
800static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
801
802static struct workspaces_list btrfs_heuristic_ws;
261507a0 803
e8c9f186 804static const struct btrfs_compress_op * const btrfs_compress_op[] = {
261507a0 805 &btrfs_zlib_compress,
a6fa6fae 806 &btrfs_lzo_compress,
5c1aab1d 807 &btrfs_zstd_compress,
261507a0
LZ
808};
809
143bede5 810void __init btrfs_init_compress(void)
261507a0 811{
4e439a0b 812 struct list_head *workspace;
261507a0
LZ
813 int i;
814
4e439a0b
TT
815 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
816 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
817 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
818 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
f77dd0d6 819
4e439a0b
TT
820 workspace = alloc_heuristic_ws();
821 if (IS_ERR(workspace)) {
822 pr_warn(
823 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
824 } else {
825 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
826 btrfs_heuristic_ws.free_ws = 1;
827 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
828 }
829
830 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
831 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
832 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
6ac10a6a 833 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
d9187649 834 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
f77dd0d6
DS
835
836 /*
837 * Preallocate one workspace for each compression type so
838 * we can guarantee forward progress in the worst case
839 */
840 workspace = btrfs_compress_op[i]->alloc_workspace();
841 if (IS_ERR(workspace)) {
62e85577 842 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
f77dd0d6
DS
843 } else {
844 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
845 btrfs_comp_ws[i].free_ws = 1;
846 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
847 }
261507a0 848 }
261507a0
LZ
849}
850
851/*
e721e49d
DS
852 * This finds an available workspace or allocates a new one.
853 * If it's not possible to allocate a new one, waits until there's one.
854 * Preallocation makes a forward progress guarantees and we do not return
855 * errors.
261507a0 856 */
4e439a0b 857static struct list_head *__find_workspace(int type, bool heuristic)
261507a0
LZ
858{
859 struct list_head *workspace;
860 int cpus = num_online_cpus();
861 int idx = type - 1;
fe308533 862 unsigned nofs_flag;
4e439a0b
TT
863 struct list_head *idle_ws;
864 spinlock_t *ws_lock;
865 atomic_t *total_ws;
866 wait_queue_head_t *ws_wait;
867 int *free_ws;
868
869 if (heuristic) {
870 idle_ws = &btrfs_heuristic_ws.idle_ws;
871 ws_lock = &btrfs_heuristic_ws.ws_lock;
872 total_ws = &btrfs_heuristic_ws.total_ws;
873 ws_wait = &btrfs_heuristic_ws.ws_wait;
874 free_ws = &btrfs_heuristic_ws.free_ws;
875 } else {
876 idle_ws = &btrfs_comp_ws[idx].idle_ws;
877 ws_lock = &btrfs_comp_ws[idx].ws_lock;
878 total_ws = &btrfs_comp_ws[idx].total_ws;
879 ws_wait = &btrfs_comp_ws[idx].ws_wait;
880 free_ws = &btrfs_comp_ws[idx].free_ws;
881 }
261507a0 882
261507a0 883again:
d9187649
BL
884 spin_lock(ws_lock);
885 if (!list_empty(idle_ws)) {
886 workspace = idle_ws->next;
261507a0 887 list_del(workspace);
6ac10a6a 888 (*free_ws)--;
d9187649 889 spin_unlock(ws_lock);
261507a0
LZ
890 return workspace;
891
892 }
6ac10a6a 893 if (atomic_read(total_ws) > cpus) {
261507a0
LZ
894 DEFINE_WAIT(wait);
895
d9187649
BL
896 spin_unlock(ws_lock);
897 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
6ac10a6a 898 if (atomic_read(total_ws) > cpus && !*free_ws)
261507a0 899 schedule();
d9187649 900 finish_wait(ws_wait, &wait);
261507a0
LZ
901 goto again;
902 }
6ac10a6a 903 atomic_inc(total_ws);
d9187649 904 spin_unlock(ws_lock);
261507a0 905
fe308533
DS
906 /*
907 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
908 * to turn it off here because we might get called from the restricted
909 * context of btrfs_compress_bio/btrfs_compress_pages
910 */
911 nofs_flag = memalloc_nofs_save();
4e439a0b
TT
912 if (heuristic)
913 workspace = alloc_heuristic_ws();
914 else
915 workspace = btrfs_compress_op[idx]->alloc_workspace();
fe308533
DS
916 memalloc_nofs_restore(nofs_flag);
917
261507a0 918 if (IS_ERR(workspace)) {
6ac10a6a 919 atomic_dec(total_ws);
d9187649 920 wake_up(ws_wait);
e721e49d
DS
921
922 /*
923 * Do not return the error but go back to waiting. There's a
924 * workspace preallocated for each type and the compression
925 * time is bounded so we get to a workspace eventually. This
926 * makes our caller's life easier.
52356716
DS
927 *
928 * To prevent silent and low-probability deadlocks (when the
929 * initial preallocation fails), check if there are any
930 * workspaces at all.
e721e49d 931 */
52356716
DS
932 if (atomic_read(total_ws) == 0) {
933 static DEFINE_RATELIMIT_STATE(_rs,
934 /* once per minute */ 60 * HZ,
935 /* no burst */ 1);
936
937 if (__ratelimit(&_rs)) {
ab8d0fc4 938 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
52356716
DS
939 }
940 }
e721e49d 941 goto again;
261507a0
LZ
942 }
943 return workspace;
944}
945
4e439a0b
TT
946static struct list_head *find_workspace(int type)
947{
948 return __find_workspace(type, false);
949}
950
261507a0
LZ
951/*
952 * put a workspace struct back on the list or free it if we have enough
953 * idle ones sitting around
954 */
4e439a0b
TT
955static void __free_workspace(int type, struct list_head *workspace,
956 bool heuristic)
261507a0
LZ
957{
958 int idx = type - 1;
4e439a0b
TT
959 struct list_head *idle_ws;
960 spinlock_t *ws_lock;
961 atomic_t *total_ws;
962 wait_queue_head_t *ws_wait;
963 int *free_ws;
964
965 if (heuristic) {
966 idle_ws = &btrfs_heuristic_ws.idle_ws;
967 ws_lock = &btrfs_heuristic_ws.ws_lock;
968 total_ws = &btrfs_heuristic_ws.total_ws;
969 ws_wait = &btrfs_heuristic_ws.ws_wait;
970 free_ws = &btrfs_heuristic_ws.free_ws;
971 } else {
972 idle_ws = &btrfs_comp_ws[idx].idle_ws;
973 ws_lock = &btrfs_comp_ws[idx].ws_lock;
974 total_ws = &btrfs_comp_ws[idx].total_ws;
975 ws_wait = &btrfs_comp_ws[idx].ws_wait;
976 free_ws = &btrfs_comp_ws[idx].free_ws;
977 }
d9187649
BL
978
979 spin_lock(ws_lock);
26b28dce 980 if (*free_ws <= num_online_cpus()) {
d9187649 981 list_add(workspace, idle_ws);
6ac10a6a 982 (*free_ws)++;
d9187649 983 spin_unlock(ws_lock);
261507a0
LZ
984 goto wake;
985 }
d9187649 986 spin_unlock(ws_lock);
261507a0 987
4e439a0b
TT
988 if (heuristic)
989 free_heuristic_ws(workspace);
990 else
991 btrfs_compress_op[idx]->free_workspace(workspace);
6ac10a6a 992 atomic_dec(total_ws);
261507a0 993wake:
a83342aa
DS
994 /*
995 * Make sure counter is updated before we wake up waiters.
996 */
66657b31 997 smp_mb();
d9187649
BL
998 if (waitqueue_active(ws_wait))
999 wake_up(ws_wait);
261507a0
LZ
1000}
1001
4e439a0b
TT
1002static void free_workspace(int type, struct list_head *ws)
1003{
1004 return __free_workspace(type, ws, false);
1005}
1006
261507a0
LZ
1007/*
1008 * cleanup function for module exit
1009 */
1010static void free_workspaces(void)
1011{
1012 struct list_head *workspace;
1013 int i;
1014
4e439a0b
TT
1015 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1016 workspace = btrfs_heuristic_ws.idle_ws.next;
1017 list_del(workspace);
1018 free_heuristic_ws(workspace);
1019 atomic_dec(&btrfs_heuristic_ws.total_ws);
1020 }
1021
261507a0 1022 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
d9187649
BL
1023 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1024 workspace = btrfs_comp_ws[i].idle_ws.next;
261507a0
LZ
1025 list_del(workspace);
1026 btrfs_compress_op[i]->free_workspace(workspace);
6ac10a6a 1027 atomic_dec(&btrfs_comp_ws[i].total_ws);
261507a0
LZ
1028 }
1029 }
1030}
1031
1032/*
38c31464
DS
1033 * Given an address space and start and length, compress the bytes into @pages
1034 * that are allocated on demand.
261507a0 1035 *
f51d2b59
DS
1036 * @type_level is encoded algorithm and level, where level 0 means whatever
1037 * default the algorithm chooses and is opaque here;
1038 * - compression algo are 0-3
1039 * - the level are bits 4-7
1040 *
4d3a800e
DS
1041 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1042 * and returns number of actually allocated pages
261507a0 1043 *
38c31464
DS
1044 * @total_in is used to return the number of bytes actually read. It
1045 * may be smaller than the input length if we had to exit early because we
261507a0
LZ
1046 * ran out of room in the pages array or because we cross the
1047 * max_out threshold.
1048 *
38c31464
DS
1049 * @total_out is an in/out parameter, must be set to the input length and will
1050 * be also used to return the total number of compressed bytes
261507a0 1051 *
38c31464 1052 * @max_out tells us the max number of bytes that we're allowed to
261507a0
LZ
1053 * stuff into pages
1054 */
f51d2b59 1055int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
38c31464 1056 u64 start, struct page **pages,
261507a0
LZ
1057 unsigned long *out_pages,
1058 unsigned long *total_in,
e5d74902 1059 unsigned long *total_out)
261507a0
LZ
1060{
1061 struct list_head *workspace;
1062 int ret;
f51d2b59 1063 int type = type_level & 0xF;
261507a0
LZ
1064
1065 workspace = find_workspace(type);
261507a0 1066
f51d2b59 1067 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
261507a0 1068 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
38c31464 1069 start, pages,
4d3a800e 1070 out_pages,
e5d74902 1071 total_in, total_out);
261507a0
LZ
1072 free_workspace(type, workspace);
1073 return ret;
1074}
1075
1076/*
1077 * pages_in is an array of pages with compressed data.
1078 *
1079 * disk_start is the starting logical offset of this array in the file
1080 *
974b1adc 1081 * orig_bio contains the pages from the file that we want to decompress into
261507a0
LZ
1082 *
1083 * srclen is the number of bytes in pages_in
1084 *
1085 * The basic idea is that we have a bio that was created by readpages.
1086 * The pages in the bio are for the uncompressed data, and they may not
1087 * be contiguous. They all correspond to the range of bytes covered by
1088 * the compressed extent.
1089 */
8140dc30 1090static int btrfs_decompress_bio(struct compressed_bio *cb)
261507a0
LZ
1091{
1092 struct list_head *workspace;
1093 int ret;
8140dc30 1094 int type = cb->compress_type;
261507a0
LZ
1095
1096 workspace = find_workspace(type);
e1ddce71 1097 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
261507a0 1098 free_workspace(type, workspace);
e1ddce71 1099
261507a0
LZ
1100 return ret;
1101}
1102
1103/*
1104 * a less complex decompression routine. Our compressed data fits in a
1105 * single page, and we want to read a single page out of it.
1106 * start_byte tells us the offset into the compressed data we're interested in
1107 */
1108int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1109 unsigned long start_byte, size_t srclen, size_t destlen)
1110{
1111 struct list_head *workspace;
1112 int ret;
1113
1114 workspace = find_workspace(type);
261507a0
LZ
1115
1116 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1117 dest_page, start_byte,
1118 srclen, destlen);
1119
1120 free_workspace(type, workspace);
1121 return ret;
1122}
1123
8e4eef7a 1124void btrfs_exit_compress(void)
261507a0
LZ
1125{
1126 free_workspaces();
1127}
3a39c18d
LZ
1128
1129/*
1130 * Copy uncompressed data from working buffer to pages.
1131 *
1132 * buf_start is the byte offset we're of the start of our workspace buffer.
1133 *
1134 * total_out is the last byte of the buffer
1135 */
14a3357b 1136int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
3a39c18d 1137 unsigned long total_out, u64 disk_start,
974b1adc 1138 struct bio *bio)
3a39c18d
LZ
1139{
1140 unsigned long buf_offset;
1141 unsigned long current_buf_start;
1142 unsigned long start_byte;
6e78b3f7 1143 unsigned long prev_start_byte;
3a39c18d
LZ
1144 unsigned long working_bytes = total_out - buf_start;
1145 unsigned long bytes;
1146 char *kaddr;
974b1adc 1147 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
3a39c18d
LZ
1148
1149 /*
1150 * start byte is the first byte of the page we're currently
1151 * copying into relative to the start of the compressed data.
1152 */
974b1adc 1153 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d
LZ
1154
1155 /* we haven't yet hit data corresponding to this page */
1156 if (total_out <= start_byte)
1157 return 1;
1158
1159 /*
1160 * the start of the data we care about is offset into
1161 * the middle of our working buffer
1162 */
1163 if (total_out > start_byte && buf_start < start_byte) {
1164 buf_offset = start_byte - buf_start;
1165 working_bytes -= buf_offset;
1166 } else {
1167 buf_offset = 0;
1168 }
1169 current_buf_start = buf_start;
1170
1171 /* copy bytes from the working buffer into the pages */
1172 while (working_bytes > 0) {
974b1adc
CH
1173 bytes = min_t(unsigned long, bvec.bv_len,
1174 PAGE_SIZE - buf_offset);
3a39c18d 1175 bytes = min(bytes, working_bytes);
974b1adc
CH
1176
1177 kaddr = kmap_atomic(bvec.bv_page);
1178 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
7ac687d9 1179 kunmap_atomic(kaddr);
974b1adc 1180 flush_dcache_page(bvec.bv_page);
3a39c18d 1181
3a39c18d
LZ
1182 buf_offset += bytes;
1183 working_bytes -= bytes;
1184 current_buf_start += bytes;
1185
1186 /* check if we need to pick another page */
974b1adc
CH
1187 bio_advance(bio, bytes);
1188 if (!bio->bi_iter.bi_size)
1189 return 0;
1190 bvec = bio_iter_iovec(bio, bio->bi_iter);
6e78b3f7 1191 prev_start_byte = start_byte;
974b1adc 1192 start_byte = page_offset(bvec.bv_page) - disk_start;
3a39c18d 1193
974b1adc 1194 /*
6e78b3f7
OS
1195 * We need to make sure we're only adjusting
1196 * our offset into compression working buffer when
1197 * we're switching pages. Otherwise we can incorrectly
1198 * keep copying when we were actually done.
974b1adc 1199 */
6e78b3f7
OS
1200 if (start_byte != prev_start_byte) {
1201 /*
1202 * make sure our new page is covered by this
1203 * working buffer
1204 */
1205 if (total_out <= start_byte)
1206 return 1;
3a39c18d 1207
6e78b3f7
OS
1208 /*
1209 * the next page in the biovec might not be adjacent
1210 * to the last page, but it might still be found
1211 * inside this working buffer. bump our offset pointer
1212 */
1213 if (total_out > start_byte &&
1214 current_buf_start < start_byte) {
1215 buf_offset = start_byte - buf_start;
1216 working_bytes = total_out - start_byte;
1217 current_buf_start = buf_start + buf_offset;
1218 }
3a39c18d
LZ
1219 }
1220 }
1221
1222 return 1;
1223}
c2fcdcdf 1224
a440d48c
TT
1225static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1226 struct heuristic_ws *ws)
1227{
1228 struct page *page;
1229 u64 index, index_end;
1230 u32 i, curr_sample_pos;
1231 u8 *in_data;
1232
1233 /*
1234 * Compression handles the input data by chunks of 128KiB
1235 * (defined by BTRFS_MAX_UNCOMPRESSED)
1236 *
1237 * We do the same for the heuristic and loop over the whole range.
1238 *
1239 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1240 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1241 */
1242 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1243 end = start + BTRFS_MAX_UNCOMPRESSED;
1244
1245 index = start >> PAGE_SHIFT;
1246 index_end = end >> PAGE_SHIFT;
1247
1248 /* Don't miss unaligned end */
1249 if (!IS_ALIGNED(end, PAGE_SIZE))
1250 index_end++;
1251
1252 curr_sample_pos = 0;
1253 while (index < index_end) {
1254 page = find_get_page(inode->i_mapping, index);
1255 in_data = kmap(page);
1256 /* Handle case where the start is not aligned to PAGE_SIZE */
1257 i = start % PAGE_SIZE;
1258 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1259 /* Don't sample any garbage from the last page */
1260 if (start > end - SAMPLING_READ_SIZE)
1261 break;
1262 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1263 SAMPLING_READ_SIZE);
1264 i += SAMPLING_INTERVAL;
1265 start += SAMPLING_INTERVAL;
1266 curr_sample_pos += SAMPLING_READ_SIZE;
1267 }
1268 kunmap(page);
1269 put_page(page);
1270
1271 index++;
1272 }
1273
1274 ws->sample_size = curr_sample_pos;
1275}
1276
c2fcdcdf
TT
1277/*
1278 * Compression heuristic.
1279 *
1280 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1281 * quickly (compared to direct compression) detect data characteristics
1282 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1283 * data.
1284 *
1285 * The following types of analysis can be performed:
1286 * - detect mostly zero data
1287 * - detect data with low "byte set" size (text, etc)
1288 * - detect data with low/high "core byte" set
1289 *
1290 * Return non-zero if the compression should be done, 0 otherwise.
1291 */
1292int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1293{
4e439a0b
TT
1294 struct list_head *ws_list = __find_workspace(0, true);
1295 struct heuristic_ws *ws;
a440d48c
TT
1296 u32 i;
1297 u8 byte;
c2fcdcdf
TT
1298 int ret = 1;
1299
4e439a0b
TT
1300 ws = list_entry(ws_list, struct heuristic_ws, list);
1301
a440d48c
TT
1302 heuristic_collect_sample(inode, start, end, ws);
1303
1304 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1305
1306 for (i = 0; i < ws->sample_size; i++) {
1307 byte = ws->sample[i];
1308 ws->bucket[byte].count++;
c2fcdcdf
TT
1309 }
1310
4e439a0b
TT
1311 __free_workspace(0, ws_list, true);
1312
c2fcdcdf
TT
1313 return ret;
1314}
f51d2b59
DS
1315
1316unsigned int btrfs_compress_str2level(const char *str)
1317{
1318 if (strncmp(str, "zlib", 4) != 0)
1319 return 0;
1320
fa4d885a
AB
1321 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1322 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1323 return str[5] - '0';
f51d2b59
DS
1324
1325 return 0;
1326}
This page took 0.696665 seconds and 4 git commands to generate.