]> Git Repo - linux.git/blame - fs/btrfs/volumes.c
btrfs: scrub
[linux.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
2b82032c
YZ
36static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
8a4b83cc
CM
41static DEFINE_MUTEX(uuid_mutex);
42static LIST_HEAD(fs_uuids);
43
a061fc8d
CM
44void btrfs_lock_volumes(void)
45{
46 mutex_lock(&uuid_mutex);
47}
48
49void btrfs_unlock_volumes(void)
50{
51 mutex_unlock(&uuid_mutex);
52}
53
7d9eb12c
CM
54static void lock_chunks(struct btrfs_root *root)
55{
7d9eb12c
CM
56 mutex_lock(&root->fs_info->chunk_mutex);
57}
58
59static void unlock_chunks(struct btrfs_root *root)
60{
7d9eb12c
CM
61 mutex_unlock(&root->fs_info->chunk_mutex);
62}
63
e4404d6e
YZ
64static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
65{
66 struct btrfs_device *device;
67 WARN_ON(fs_devices->opened);
68 while (!list_empty(&fs_devices->devices)) {
69 device = list_entry(fs_devices->devices.next,
70 struct btrfs_device, dev_list);
71 list_del(&device->dev_list);
72 kfree(device->name);
73 kfree(device);
74 }
75 kfree(fs_devices);
76}
77
8a4b83cc
CM
78int btrfs_cleanup_fs_uuids(void)
79{
80 struct btrfs_fs_devices *fs_devices;
8a4b83cc 81
2b82032c
YZ
82 while (!list_empty(&fs_uuids)) {
83 fs_devices = list_entry(fs_uuids.next,
84 struct btrfs_fs_devices, list);
85 list_del(&fs_devices->list);
e4404d6e 86 free_fs_devices(fs_devices);
8a4b83cc
CM
87 }
88 return 0;
89}
90
a1b32a59
CM
91static noinline struct btrfs_device *__find_device(struct list_head *head,
92 u64 devid, u8 *uuid)
8a4b83cc
CM
93{
94 struct btrfs_device *dev;
8a4b83cc 95
c6e30871 96 list_for_each_entry(dev, head, dev_list) {
a443755f 97 if (dev->devid == devid &&
8f18cf13 98 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 99 return dev;
a443755f 100 }
8a4b83cc
CM
101 }
102 return NULL;
103}
104
a1b32a59 105static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 106{
8a4b83cc
CM
107 struct btrfs_fs_devices *fs_devices;
108
c6e30871 109 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
110 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
111 return fs_devices;
112 }
113 return NULL;
114}
115
ffbd517d
CM
116static void requeue_list(struct btrfs_pending_bios *pending_bios,
117 struct bio *head, struct bio *tail)
118{
119
120 struct bio *old_head;
121
122 old_head = pending_bios->head;
123 pending_bios->head = head;
124 if (pending_bios->tail)
125 tail->bi_next = old_head;
126 else
127 pending_bios->tail = tail;
128}
129
8b712842
CM
130/*
131 * we try to collect pending bios for a device so we don't get a large
132 * number of procs sending bios down to the same device. This greatly
133 * improves the schedulers ability to collect and merge the bios.
134 *
135 * But, it also turns into a long list of bios to process and that is sure
136 * to eventually make the worker thread block. The solution here is to
137 * make some progress and then put this work struct back at the end of
138 * the list if the block device is congested. This way, multiple devices
139 * can make progress from a single worker thread.
140 */
d397712b 141static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
142{
143 struct bio *pending;
144 struct backing_dev_info *bdi;
b64a2851 145 struct btrfs_fs_info *fs_info;
ffbd517d 146 struct btrfs_pending_bios *pending_bios;
8b712842
CM
147 struct bio *tail;
148 struct bio *cur;
149 int again = 0;
ffbd517d
CM
150 unsigned long num_run;
151 unsigned long num_sync_run;
d644d8a1 152 unsigned long batch_run = 0;
b64a2851 153 unsigned long limit;
b765ead5 154 unsigned long last_waited = 0;
d84275c9 155 int force_reg = 0;
8b712842 156
bedf762b 157 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
158 fs_info = device->dev_root->fs_info;
159 limit = btrfs_async_submit_limit(fs_info);
160 limit = limit * 2 / 3;
161
ffbd517d
CM
162 /* we want to make sure that every time we switch from the sync
163 * list to the normal list, we unplug
164 */
165 num_sync_run = 0;
166
8b712842
CM
167loop:
168 spin_lock(&device->io_lock);
169
a6837051 170loop_lock:
d84275c9 171 num_run = 0;
ffbd517d 172
8b712842
CM
173 /* take all the bios off the list at once and process them
174 * later on (without the lock held). But, remember the
175 * tail and other pointers so the bios can be properly reinserted
176 * into the list if we hit congestion
177 */
d84275c9 178 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 179 pending_bios = &device->pending_sync_bios;
d84275c9
CM
180 force_reg = 1;
181 } else {
ffbd517d 182 pending_bios = &device->pending_bios;
d84275c9
CM
183 force_reg = 0;
184 }
ffbd517d
CM
185
186 pending = pending_bios->head;
187 tail = pending_bios->tail;
8b712842 188 WARN_ON(pending && !tail);
8b712842
CM
189
190 /*
191 * if pending was null this time around, no bios need processing
192 * at all and we can stop. Otherwise it'll loop back up again
193 * and do an additional check so no bios are missed.
194 *
195 * device->running_pending is used to synchronize with the
196 * schedule_bio code.
197 */
ffbd517d
CM
198 if (device->pending_sync_bios.head == NULL &&
199 device->pending_bios.head == NULL) {
8b712842
CM
200 again = 0;
201 device->running_pending = 0;
ffbd517d
CM
202 } else {
203 again = 1;
204 device->running_pending = 1;
8b712842 205 }
ffbd517d
CM
206
207 pending_bios->head = NULL;
208 pending_bios->tail = NULL;
209
8b712842
CM
210 spin_unlock(&device->io_lock);
211
ffbd517d
CM
212 /*
213 * if we're doing the regular priority list, make sure we unplug
214 * for any high prio bios we've sent down
215 */
216 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
217 num_sync_run = 0;
218 blk_run_backing_dev(bdi, NULL);
219 }
220
d397712b 221 while (pending) {
ffbd517d
CM
222
223 rmb();
d84275c9
CM
224 /* we want to work on both lists, but do more bios on the
225 * sync list than the regular list
226 */
227 if ((num_run > 32 &&
228 pending_bios != &device->pending_sync_bios &&
229 device->pending_sync_bios.head) ||
230 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
231 device->pending_bios.head)) {
ffbd517d
CM
232 spin_lock(&device->io_lock);
233 requeue_list(pending_bios, pending, tail);
234 goto loop_lock;
235 }
236
8b712842
CM
237 cur = pending;
238 pending = pending->bi_next;
239 cur->bi_next = NULL;
b64a2851
CM
240 atomic_dec(&fs_info->nr_async_bios);
241
242 if (atomic_read(&fs_info->nr_async_bios) < limit &&
243 waitqueue_active(&fs_info->async_submit_wait))
244 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
245
246 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 247
7b6d91da 248 if (cur->bi_rw & REQ_SYNC)
ffbd517d
CM
249 num_sync_run++;
250
5ff7ba3a
CM
251 submit_bio(cur->bi_rw, cur);
252 num_run++;
253 batch_run++;
ffbd517d
CM
254 if (need_resched()) {
255 if (num_sync_run) {
256 blk_run_backing_dev(bdi, NULL);
257 num_sync_run = 0;
258 }
259 cond_resched();
260 }
8b712842
CM
261
262 /*
263 * we made progress, there is more work to do and the bdi
264 * is now congested. Back off and let other work structs
265 * run instead
266 */
57fd5a5f 267 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 268 fs_info->fs_devices->open_devices > 1) {
b765ead5 269 struct io_context *ioc;
8b712842 270
b765ead5
CM
271 ioc = current->io_context;
272
273 /*
274 * the main goal here is that we don't want to
275 * block if we're going to be able to submit
276 * more requests without blocking.
277 *
278 * This code does two great things, it pokes into
279 * the elevator code from a filesystem _and_
280 * it makes assumptions about how batching works.
281 */
282 if (ioc && ioc->nr_batch_requests > 0 &&
283 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
284 (last_waited == 0 ||
285 ioc->last_waited == last_waited)) {
286 /*
287 * we want to go through our batch of
288 * requests and stop. So, we copy out
289 * the ioc->last_waited time and test
290 * against it before looping
291 */
292 last_waited = ioc->last_waited;
ffbd517d
CM
293 if (need_resched()) {
294 if (num_sync_run) {
295 blk_run_backing_dev(bdi, NULL);
296 num_sync_run = 0;
297 }
298 cond_resched();
299 }
b765ead5
CM
300 continue;
301 }
8b712842 302 spin_lock(&device->io_lock);
ffbd517d 303 requeue_list(pending_bios, pending, tail);
a6837051 304 device->running_pending = 1;
8b712842
CM
305
306 spin_unlock(&device->io_lock);
307 btrfs_requeue_work(&device->work);
308 goto done;
309 }
310 }
ffbd517d
CM
311
312 if (num_sync_run) {
313 num_sync_run = 0;
314 blk_run_backing_dev(bdi, NULL);
315 }
bedf762b
CM
316 /*
317 * IO has already been through a long path to get here. Checksumming,
318 * async helper threads, perhaps compression. We've done a pretty
319 * good job of collecting a batch of IO and should just unplug
320 * the device right away.
321 *
322 * This will help anyone who is waiting on the IO, they might have
323 * already unplugged, but managed to do so before the bio they
324 * cared about found its way down here.
325 */
326 blk_run_backing_dev(bdi, NULL);
51684082
CM
327
328 cond_resched();
329 if (again)
330 goto loop;
331
332 spin_lock(&device->io_lock);
333 if (device->pending_bios.head || device->pending_sync_bios.head)
334 goto loop_lock;
335 spin_unlock(&device->io_lock);
336
8b712842
CM
337done:
338 return 0;
339}
340
b2950863 341static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
342{
343 struct btrfs_device *device;
344
345 device = container_of(work, struct btrfs_device, work);
346 run_scheduled_bios(device);
347}
348
a1b32a59 349static noinline int device_list_add(const char *path,
8a4b83cc
CM
350 struct btrfs_super_block *disk_super,
351 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
352{
353 struct btrfs_device *device;
354 struct btrfs_fs_devices *fs_devices;
355 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 356 char *name;
8a4b83cc
CM
357
358 fs_devices = find_fsid(disk_super->fsid);
359 if (!fs_devices) {
515dc322 360 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
361 if (!fs_devices)
362 return -ENOMEM;
363 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 364 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
365 list_add(&fs_devices->list, &fs_uuids);
366 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
367 fs_devices->latest_devid = devid;
368 fs_devices->latest_trans = found_transid;
e5e9a520 369 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
370 device = NULL;
371 } else {
a443755f
CM
372 device = __find_device(&fs_devices->devices, devid,
373 disk_super->dev_item.uuid);
8a4b83cc
CM
374 }
375 if (!device) {
2b82032c
YZ
376 if (fs_devices->opened)
377 return -EBUSY;
378
8a4b83cc
CM
379 device = kzalloc(sizeof(*device), GFP_NOFS);
380 if (!device) {
381 /* we can safely leave the fs_devices entry around */
382 return -ENOMEM;
383 }
384 device->devid = devid;
8b712842 385 device->work.func = pending_bios_fn;
a443755f
CM
386 memcpy(device->uuid, disk_super->dev_item.uuid,
387 BTRFS_UUID_SIZE);
b248a415 388 spin_lock_init(&device->io_lock);
8a4b83cc
CM
389 device->name = kstrdup(path, GFP_NOFS);
390 if (!device->name) {
391 kfree(device);
392 return -ENOMEM;
393 }
2b82032c 394 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
395
396 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 397 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
398 mutex_unlock(&fs_devices->device_list_mutex);
399
2b82032c 400 device->fs_devices = fs_devices;
8a4b83cc 401 fs_devices->num_devices++;
cd02dca5 402 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
403 name = kstrdup(path, GFP_NOFS);
404 if (!name)
405 return -ENOMEM;
406 kfree(device->name);
407 device->name = name;
cd02dca5
CM
408 if (device->missing) {
409 fs_devices->missing_devices--;
410 device->missing = 0;
411 }
8a4b83cc
CM
412 }
413
414 if (found_transid > fs_devices->latest_trans) {
415 fs_devices->latest_devid = devid;
416 fs_devices->latest_trans = found_transid;
417 }
8a4b83cc
CM
418 *fs_devices_ret = fs_devices;
419 return 0;
420}
421
e4404d6e
YZ
422static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
423{
424 struct btrfs_fs_devices *fs_devices;
425 struct btrfs_device *device;
426 struct btrfs_device *orig_dev;
427
428 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
429 if (!fs_devices)
430 return ERR_PTR(-ENOMEM);
431
432 INIT_LIST_HEAD(&fs_devices->devices);
433 INIT_LIST_HEAD(&fs_devices->alloc_list);
434 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 435 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
436 fs_devices->latest_devid = orig->latest_devid;
437 fs_devices->latest_trans = orig->latest_trans;
438 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
439
e5e9a520 440 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
441 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
442 device = kzalloc(sizeof(*device), GFP_NOFS);
443 if (!device)
444 goto error;
445
446 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
447 if (!device->name) {
448 kfree(device);
e4404d6e 449 goto error;
fd2696f3 450 }
e4404d6e
YZ
451
452 device->devid = orig_dev->devid;
453 device->work.func = pending_bios_fn;
454 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
455 spin_lock_init(&device->io_lock);
456 INIT_LIST_HEAD(&device->dev_list);
457 INIT_LIST_HEAD(&device->dev_alloc_list);
458
459 list_add(&device->dev_list, &fs_devices->devices);
460 device->fs_devices = fs_devices;
461 fs_devices->num_devices++;
462 }
e5e9a520 463 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
464 return fs_devices;
465error:
e5e9a520 466 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
467 free_fs_devices(fs_devices);
468 return ERR_PTR(-ENOMEM);
469}
470
dfe25020
CM
471int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
472{
c6e30871 473 struct btrfs_device *device, *next;
dfe25020
CM
474
475 mutex_lock(&uuid_mutex);
476again:
e5e9a520 477 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 478 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
479 if (device->in_fs_metadata)
480 continue;
481
482 if (device->bdev) {
d4d77629 483 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
484 device->bdev = NULL;
485 fs_devices->open_devices--;
486 }
487 if (device->writeable) {
488 list_del_init(&device->dev_alloc_list);
489 device->writeable = 0;
490 fs_devices->rw_devices--;
491 }
e4404d6e
YZ
492 list_del_init(&device->dev_list);
493 fs_devices->num_devices--;
494 kfree(device->name);
495 kfree(device);
dfe25020 496 }
e5e9a520 497 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
498
499 if (fs_devices->seed) {
500 fs_devices = fs_devices->seed;
2b82032c
YZ
501 goto again;
502 }
503
dfe25020
CM
504 mutex_unlock(&uuid_mutex);
505 return 0;
506}
a0af469b 507
2b82032c 508static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 509{
8a4b83cc 510 struct btrfs_device *device;
e4404d6e 511
2b82032c
YZ
512 if (--fs_devices->opened > 0)
513 return 0;
8a4b83cc 514
c6e30871 515 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 516 if (device->bdev) {
d4d77629 517 blkdev_put(device->bdev, device->mode);
a0af469b 518 fs_devices->open_devices--;
8a4b83cc 519 }
2b82032c
YZ
520 if (device->writeable) {
521 list_del_init(&device->dev_alloc_list);
522 fs_devices->rw_devices--;
523 }
524
8a4b83cc 525 device->bdev = NULL;
2b82032c 526 device->writeable = 0;
dfe25020 527 device->in_fs_metadata = 0;
8a4b83cc 528 }
e4404d6e
YZ
529 WARN_ON(fs_devices->open_devices);
530 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
531 fs_devices->opened = 0;
532 fs_devices->seeding = 0;
2b82032c 533
8a4b83cc
CM
534 return 0;
535}
536
2b82032c
YZ
537int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
538{
e4404d6e 539 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
540 int ret;
541
542 mutex_lock(&uuid_mutex);
543 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
544 if (!fs_devices->opened) {
545 seed_devices = fs_devices->seed;
546 fs_devices->seed = NULL;
547 }
2b82032c 548 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
549
550 while (seed_devices) {
551 fs_devices = seed_devices;
552 seed_devices = fs_devices->seed;
553 __btrfs_close_devices(fs_devices);
554 free_fs_devices(fs_devices);
555 }
2b82032c
YZ
556 return ret;
557}
558
e4404d6e
YZ
559static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
560 fmode_t flags, void *holder)
8a4b83cc
CM
561{
562 struct block_device *bdev;
563 struct list_head *head = &fs_devices->devices;
8a4b83cc 564 struct btrfs_device *device;
a0af469b
CM
565 struct block_device *latest_bdev = NULL;
566 struct buffer_head *bh;
567 struct btrfs_super_block *disk_super;
568 u64 latest_devid = 0;
569 u64 latest_transid = 0;
a0af469b 570 u64 devid;
2b82032c 571 int seeding = 1;
a0af469b 572 int ret = 0;
8a4b83cc 573
d4d77629
TH
574 flags |= FMODE_EXCL;
575
c6e30871 576 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
577 if (device->bdev)
578 continue;
dfe25020
CM
579 if (!device->name)
580 continue;
581
d4d77629 582 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 583 if (IS_ERR(bdev)) {
d397712b 584 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 585 goto error;
8a4b83cc 586 }
a061fc8d 587 set_blocksize(bdev, 4096);
a0af469b 588
a512bbf8 589 bh = btrfs_read_dev_super(bdev);
20b45077
DY
590 if (!bh) {
591 ret = -EINVAL;
a0af469b 592 goto error_close;
20b45077 593 }
a0af469b
CM
594
595 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 596 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
597 if (devid != device->devid)
598 goto error_brelse;
599
2b82032c
YZ
600 if (memcmp(device->uuid, disk_super->dev_item.uuid,
601 BTRFS_UUID_SIZE))
602 goto error_brelse;
603
604 device->generation = btrfs_super_generation(disk_super);
605 if (!latest_transid || device->generation > latest_transid) {
a0af469b 606 latest_devid = devid;
2b82032c 607 latest_transid = device->generation;
a0af469b
CM
608 latest_bdev = bdev;
609 }
610
2b82032c
YZ
611 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
612 device->writeable = 0;
613 } else {
614 device->writeable = !bdev_read_only(bdev);
615 seeding = 0;
616 }
617
8a4b83cc 618 device->bdev = bdev;
dfe25020 619 device->in_fs_metadata = 0;
15916de8
CM
620 device->mode = flags;
621
c289811c
CM
622 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
623 fs_devices->rotating = 1;
624
a0af469b 625 fs_devices->open_devices++;
2b82032c
YZ
626 if (device->writeable) {
627 fs_devices->rw_devices++;
628 list_add(&device->dev_alloc_list,
629 &fs_devices->alloc_list);
630 }
a0af469b 631 continue;
a061fc8d 632
a0af469b
CM
633error_brelse:
634 brelse(bh);
635error_close:
d4d77629 636 blkdev_put(bdev, flags);
a0af469b
CM
637error:
638 continue;
8a4b83cc 639 }
a0af469b
CM
640 if (fs_devices->open_devices == 0) {
641 ret = -EIO;
642 goto out;
643 }
2b82032c
YZ
644 fs_devices->seeding = seeding;
645 fs_devices->opened = 1;
a0af469b
CM
646 fs_devices->latest_bdev = latest_bdev;
647 fs_devices->latest_devid = latest_devid;
648 fs_devices->latest_trans = latest_transid;
2b82032c 649 fs_devices->total_rw_bytes = 0;
a0af469b 650out:
2b82032c
YZ
651 return ret;
652}
653
654int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 655 fmode_t flags, void *holder)
2b82032c
YZ
656{
657 int ret;
658
659 mutex_lock(&uuid_mutex);
660 if (fs_devices->opened) {
e4404d6e
YZ
661 fs_devices->opened++;
662 ret = 0;
2b82032c 663 } else {
15916de8 664 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 665 }
8a4b83cc 666 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
667 return ret;
668}
669
97288f2c 670int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
671 struct btrfs_fs_devices **fs_devices_ret)
672{
673 struct btrfs_super_block *disk_super;
674 struct block_device *bdev;
675 struct buffer_head *bh;
676 int ret;
677 u64 devid;
f2984462 678 u64 transid;
8a4b83cc
CM
679
680 mutex_lock(&uuid_mutex);
681
d4d77629
TH
682 flags |= FMODE_EXCL;
683 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
684
685 if (IS_ERR(bdev)) {
8a4b83cc
CM
686 ret = PTR_ERR(bdev);
687 goto error;
688 }
689
690 ret = set_blocksize(bdev, 4096);
691 if (ret)
692 goto error_close;
a512bbf8 693 bh = btrfs_read_dev_super(bdev);
8a4b83cc 694 if (!bh) {
20b45077 695 ret = -EINVAL;
8a4b83cc
CM
696 goto error_close;
697 }
698 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 699 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 700 transid = btrfs_super_generation(disk_super);
7ae9c09d 701 if (disk_super->label[0])
d397712b 702 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
703 else {
704 /* FIXME, make a readl uuid parser */
d397712b 705 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
706 *(unsigned long long *)disk_super->fsid,
707 *(unsigned long long *)(disk_super->fsid + 8));
708 }
119e10cf 709 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 710 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
711 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
712
8a4b83cc
CM
713 brelse(bh);
714error_close:
d4d77629 715 blkdev_put(bdev, flags);
8a4b83cc
CM
716error:
717 mutex_unlock(&uuid_mutex);
718 return ret;
719}
0b86a832 720
6d07bcec
MX
721/* helper to account the used device space in the range */
722int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
723 u64 end, u64 *length)
724{
725 struct btrfs_key key;
726 struct btrfs_root *root = device->dev_root;
727 struct btrfs_dev_extent *dev_extent;
728 struct btrfs_path *path;
729 u64 extent_end;
730 int ret;
731 int slot;
732 struct extent_buffer *l;
733
734 *length = 0;
735
736 if (start >= device->total_bytes)
737 return 0;
738
739 path = btrfs_alloc_path();
740 if (!path)
741 return -ENOMEM;
742 path->reada = 2;
743
744 key.objectid = device->devid;
745 key.offset = start;
746 key.type = BTRFS_DEV_EXTENT_KEY;
747
748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 if (ret < 0)
750 goto out;
751 if (ret > 0) {
752 ret = btrfs_previous_item(root, path, key.objectid, key.type);
753 if (ret < 0)
754 goto out;
755 }
756
757 while (1) {
758 l = path->nodes[0];
759 slot = path->slots[0];
760 if (slot >= btrfs_header_nritems(l)) {
761 ret = btrfs_next_leaf(root, path);
762 if (ret == 0)
763 continue;
764 if (ret < 0)
765 goto out;
766
767 break;
768 }
769 btrfs_item_key_to_cpu(l, &key, slot);
770
771 if (key.objectid < device->devid)
772 goto next;
773
774 if (key.objectid > device->devid)
775 break;
776
777 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
778 goto next;
779
780 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
781 extent_end = key.offset + btrfs_dev_extent_length(l,
782 dev_extent);
783 if (key.offset <= start && extent_end > end) {
784 *length = end - start + 1;
785 break;
786 } else if (key.offset <= start && extent_end > start)
787 *length += extent_end - start;
788 else if (key.offset > start && extent_end <= end)
789 *length += extent_end - key.offset;
790 else if (key.offset > start && key.offset <= end) {
791 *length += end - key.offset + 1;
792 break;
793 } else if (key.offset > end)
794 break;
795
796next:
797 path->slots[0]++;
798 }
799 ret = 0;
800out:
801 btrfs_free_path(path);
802 return ret;
803}
804
0b86a832 805/*
7bfc837d
MX
806 * find_free_dev_extent - find free space in the specified device
807 * @trans: transaction handler
808 * @device: the device which we search the free space in
809 * @num_bytes: the size of the free space that we need
810 * @start: store the start of the free space.
811 * @len: the size of the free space. that we find, or the size of the max
812 * free space if we don't find suitable free space
813 *
0b86a832
CM
814 * this uses a pretty simple search, the expectation is that it is
815 * called very infrequently and that a given device has a small number
816 * of extents
7bfc837d
MX
817 *
818 * @start is used to store the start of the free space if we find. But if we
819 * don't find suitable free space, it will be used to store the start position
820 * of the max free space.
821 *
822 * @len is used to store the size of the free space that we find.
823 * But if we don't find suitable free space, it is used to store the size of
824 * the max free space.
0b86a832 825 */
ba1bf481
JB
826int find_free_dev_extent(struct btrfs_trans_handle *trans,
827 struct btrfs_device *device, u64 num_bytes,
7bfc837d 828 u64 *start, u64 *len)
0b86a832
CM
829{
830 struct btrfs_key key;
831 struct btrfs_root *root = device->dev_root;
7bfc837d 832 struct btrfs_dev_extent *dev_extent;
2b82032c 833 struct btrfs_path *path;
7bfc837d
MX
834 u64 hole_size;
835 u64 max_hole_start;
836 u64 max_hole_size;
837 u64 extent_end;
838 u64 search_start;
0b86a832
CM
839 u64 search_end = device->total_bytes;
840 int ret;
7bfc837d 841 int slot;
0b86a832
CM
842 struct extent_buffer *l;
843
0b86a832
CM
844 /* FIXME use last free of some kind */
845
8a4b83cc
CM
846 /* we don't want to overwrite the superblock on the drive,
847 * so we make sure to start at an offset of at least 1MB
848 */
7bfc837d 849 search_start = 1024 * 1024;
8f18cf13 850
7bfc837d 851 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
852 search_start = max(root->fs_info->alloc_start, search_start);
853
7bfc837d
MX
854 max_hole_start = search_start;
855 max_hole_size = 0;
856
857 if (search_start >= search_end) {
858 ret = -ENOSPC;
859 goto error;
860 }
861
862 path = btrfs_alloc_path();
863 if (!path) {
864 ret = -ENOMEM;
865 goto error;
866 }
867 path->reada = 2;
868
0b86a832
CM
869 key.objectid = device->devid;
870 key.offset = search_start;
871 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 872
0b86a832
CM
873 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
874 if (ret < 0)
7bfc837d 875 goto out;
1fcbac58
YZ
876 if (ret > 0) {
877 ret = btrfs_previous_item(root, path, key.objectid, key.type);
878 if (ret < 0)
7bfc837d 879 goto out;
1fcbac58 880 }
7bfc837d 881
0b86a832
CM
882 while (1) {
883 l = path->nodes[0];
884 slot = path->slots[0];
885 if (slot >= btrfs_header_nritems(l)) {
886 ret = btrfs_next_leaf(root, path);
887 if (ret == 0)
888 continue;
889 if (ret < 0)
7bfc837d
MX
890 goto out;
891
892 break;
0b86a832
CM
893 }
894 btrfs_item_key_to_cpu(l, &key, slot);
895
896 if (key.objectid < device->devid)
897 goto next;
898
899 if (key.objectid > device->devid)
7bfc837d 900 break;
0b86a832 901
7bfc837d
MX
902 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
903 goto next;
9779b72f 904
7bfc837d
MX
905 if (key.offset > search_start) {
906 hole_size = key.offset - search_start;
9779b72f 907
7bfc837d
MX
908 if (hole_size > max_hole_size) {
909 max_hole_start = search_start;
910 max_hole_size = hole_size;
911 }
9779b72f 912
7bfc837d
MX
913 /*
914 * If this free space is greater than which we need,
915 * it must be the max free space that we have found
916 * until now, so max_hole_start must point to the start
917 * of this free space and the length of this free space
918 * is stored in max_hole_size. Thus, we return
919 * max_hole_start and max_hole_size and go back to the
920 * caller.
921 */
922 if (hole_size >= num_bytes) {
923 ret = 0;
924 goto out;
0b86a832
CM
925 }
926 }
0b86a832 927
0b86a832 928 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
929 extent_end = key.offset + btrfs_dev_extent_length(l,
930 dev_extent);
931 if (extent_end > search_start)
932 search_start = extent_end;
0b86a832
CM
933next:
934 path->slots[0]++;
935 cond_resched();
936 }
0b86a832 937
7bfc837d
MX
938 hole_size = search_end- search_start;
939 if (hole_size > max_hole_size) {
940 max_hole_start = search_start;
941 max_hole_size = hole_size;
0b86a832 942 }
0b86a832 943
7bfc837d
MX
944 /* See above. */
945 if (hole_size < num_bytes)
946 ret = -ENOSPC;
947 else
948 ret = 0;
949
950out:
2b82032c 951 btrfs_free_path(path);
7bfc837d
MX
952error:
953 *start = max_hole_start;
b2117a39 954 if (len)
7bfc837d 955 *len = max_hole_size;
0b86a832
CM
956 return ret;
957}
958
b2950863 959static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
960 struct btrfs_device *device,
961 u64 start)
962{
963 int ret;
964 struct btrfs_path *path;
965 struct btrfs_root *root = device->dev_root;
966 struct btrfs_key key;
a061fc8d
CM
967 struct btrfs_key found_key;
968 struct extent_buffer *leaf = NULL;
969 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
970
971 path = btrfs_alloc_path();
972 if (!path)
973 return -ENOMEM;
974
975 key.objectid = device->devid;
976 key.offset = start;
977 key.type = BTRFS_DEV_EXTENT_KEY;
978
979 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
980 if (ret > 0) {
981 ret = btrfs_previous_item(root, path, key.objectid,
982 BTRFS_DEV_EXTENT_KEY);
983 BUG_ON(ret);
984 leaf = path->nodes[0];
985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
986 extent = btrfs_item_ptr(leaf, path->slots[0],
987 struct btrfs_dev_extent);
988 BUG_ON(found_key.offset > start || found_key.offset +
989 btrfs_dev_extent_length(leaf, extent) < start);
990 ret = 0;
991 } else if (ret == 0) {
992 leaf = path->nodes[0];
993 extent = btrfs_item_ptr(leaf, path->slots[0],
994 struct btrfs_dev_extent);
995 }
8f18cf13
CM
996 BUG_ON(ret);
997
dfe25020
CM
998 if (device->bytes_used > 0)
999 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
1000 ret = btrfs_del_item(trans, root, path);
1001 BUG_ON(ret);
1002
1003 btrfs_free_path(path);
1004 return ret;
1005}
1006
2b82032c 1007int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1008 struct btrfs_device *device,
e17cade2 1009 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1010 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1011{
1012 int ret;
1013 struct btrfs_path *path;
1014 struct btrfs_root *root = device->dev_root;
1015 struct btrfs_dev_extent *extent;
1016 struct extent_buffer *leaf;
1017 struct btrfs_key key;
1018
dfe25020 1019 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1020 path = btrfs_alloc_path();
1021 if (!path)
1022 return -ENOMEM;
1023
0b86a832 1024 key.objectid = device->devid;
2b82032c 1025 key.offset = start;
0b86a832
CM
1026 key.type = BTRFS_DEV_EXTENT_KEY;
1027 ret = btrfs_insert_empty_item(trans, root, path, &key,
1028 sizeof(*extent));
1029 BUG_ON(ret);
1030
1031 leaf = path->nodes[0];
1032 extent = btrfs_item_ptr(leaf, path->slots[0],
1033 struct btrfs_dev_extent);
e17cade2
CM
1034 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1035 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1036 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1037
1038 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1039 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1040 BTRFS_UUID_SIZE);
1041
0b86a832
CM
1042 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1043 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1044 btrfs_free_path(path);
1045 return ret;
1046}
1047
a1b32a59
CM
1048static noinline int find_next_chunk(struct btrfs_root *root,
1049 u64 objectid, u64 *offset)
0b86a832
CM
1050{
1051 struct btrfs_path *path;
1052 int ret;
1053 struct btrfs_key key;
e17cade2 1054 struct btrfs_chunk *chunk;
0b86a832
CM
1055 struct btrfs_key found_key;
1056
1057 path = btrfs_alloc_path();
1058 BUG_ON(!path);
1059
e17cade2 1060 key.objectid = objectid;
0b86a832
CM
1061 key.offset = (u64)-1;
1062 key.type = BTRFS_CHUNK_ITEM_KEY;
1063
1064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1065 if (ret < 0)
1066 goto error;
1067
1068 BUG_ON(ret == 0);
1069
1070 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1071 if (ret) {
e17cade2 1072 *offset = 0;
0b86a832
CM
1073 } else {
1074 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1075 path->slots[0]);
e17cade2
CM
1076 if (found_key.objectid != objectid)
1077 *offset = 0;
1078 else {
1079 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1080 struct btrfs_chunk);
1081 *offset = found_key.offset +
1082 btrfs_chunk_length(path->nodes[0], chunk);
1083 }
0b86a832
CM
1084 }
1085 ret = 0;
1086error:
1087 btrfs_free_path(path);
1088 return ret;
1089}
1090
2b82032c 1091static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1092{
1093 int ret;
1094 struct btrfs_key key;
1095 struct btrfs_key found_key;
2b82032c
YZ
1096 struct btrfs_path *path;
1097
1098 root = root->fs_info->chunk_root;
1099
1100 path = btrfs_alloc_path();
1101 if (!path)
1102 return -ENOMEM;
0b86a832
CM
1103
1104 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1105 key.type = BTRFS_DEV_ITEM_KEY;
1106 key.offset = (u64)-1;
1107
1108 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1109 if (ret < 0)
1110 goto error;
1111
1112 BUG_ON(ret == 0);
1113
1114 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1115 BTRFS_DEV_ITEM_KEY);
1116 if (ret) {
1117 *objectid = 1;
1118 } else {
1119 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1120 path->slots[0]);
1121 *objectid = found_key.offset + 1;
1122 }
1123 ret = 0;
1124error:
2b82032c 1125 btrfs_free_path(path);
0b86a832
CM
1126 return ret;
1127}
1128
1129/*
1130 * the device information is stored in the chunk root
1131 * the btrfs_device struct should be fully filled in
1132 */
1133int btrfs_add_device(struct btrfs_trans_handle *trans,
1134 struct btrfs_root *root,
1135 struct btrfs_device *device)
1136{
1137 int ret;
1138 struct btrfs_path *path;
1139 struct btrfs_dev_item *dev_item;
1140 struct extent_buffer *leaf;
1141 struct btrfs_key key;
1142 unsigned long ptr;
0b86a832
CM
1143
1144 root = root->fs_info->chunk_root;
1145
1146 path = btrfs_alloc_path();
1147 if (!path)
1148 return -ENOMEM;
1149
0b86a832
CM
1150 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1151 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1152 key.offset = device->devid;
0b86a832
CM
1153
1154 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1155 sizeof(*dev_item));
0b86a832
CM
1156 if (ret)
1157 goto out;
1158
1159 leaf = path->nodes[0];
1160 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1161
1162 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1163 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1164 btrfs_set_device_type(leaf, dev_item, device->type);
1165 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1166 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1167 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1168 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1169 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1170 btrfs_set_device_group(leaf, dev_item, 0);
1171 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1172 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1173 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1174
0b86a832 1175 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1176 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1177 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1178 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1179 btrfs_mark_buffer_dirty(leaf);
0b86a832 1180
2b82032c 1181 ret = 0;
0b86a832
CM
1182out:
1183 btrfs_free_path(path);
1184 return ret;
1185}
8f18cf13 1186
a061fc8d
CM
1187static int btrfs_rm_dev_item(struct btrfs_root *root,
1188 struct btrfs_device *device)
1189{
1190 int ret;
1191 struct btrfs_path *path;
a061fc8d 1192 struct btrfs_key key;
a061fc8d
CM
1193 struct btrfs_trans_handle *trans;
1194
1195 root = root->fs_info->chunk_root;
1196
1197 path = btrfs_alloc_path();
1198 if (!path)
1199 return -ENOMEM;
1200
a22285a6 1201 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1202 if (IS_ERR(trans)) {
1203 btrfs_free_path(path);
1204 return PTR_ERR(trans);
1205 }
a061fc8d
CM
1206 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1207 key.type = BTRFS_DEV_ITEM_KEY;
1208 key.offset = device->devid;
7d9eb12c 1209 lock_chunks(root);
a061fc8d
CM
1210
1211 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1212 if (ret < 0)
1213 goto out;
1214
1215 if (ret > 0) {
1216 ret = -ENOENT;
1217 goto out;
1218 }
1219
1220 ret = btrfs_del_item(trans, root, path);
1221 if (ret)
1222 goto out;
a061fc8d
CM
1223out:
1224 btrfs_free_path(path);
7d9eb12c 1225 unlock_chunks(root);
a061fc8d
CM
1226 btrfs_commit_transaction(trans, root);
1227 return ret;
1228}
1229
1230int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1231{
1232 struct btrfs_device *device;
2b82032c 1233 struct btrfs_device *next_device;
a061fc8d 1234 struct block_device *bdev;
dfe25020 1235 struct buffer_head *bh = NULL;
a061fc8d
CM
1236 struct btrfs_super_block *disk_super;
1237 u64 all_avail;
1238 u64 devid;
2b82032c
YZ
1239 u64 num_devices;
1240 u8 *dev_uuid;
a061fc8d
CM
1241 int ret = 0;
1242
a061fc8d 1243 mutex_lock(&uuid_mutex);
7d9eb12c 1244 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1245
1246 all_avail = root->fs_info->avail_data_alloc_bits |
1247 root->fs_info->avail_system_alloc_bits |
1248 root->fs_info->avail_metadata_alloc_bits;
1249
1250 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1251 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1252 printk(KERN_ERR "btrfs: unable to go below four devices "
1253 "on raid10\n");
a061fc8d
CM
1254 ret = -EINVAL;
1255 goto out;
1256 }
1257
1258 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1259 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1260 printk(KERN_ERR "btrfs: unable to go below two "
1261 "devices on raid1\n");
a061fc8d
CM
1262 ret = -EINVAL;
1263 goto out;
1264 }
1265
dfe25020 1266 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1267 struct list_head *devices;
1268 struct btrfs_device *tmp;
a061fc8d 1269
dfe25020
CM
1270 device = NULL;
1271 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1272 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1273 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1274 if (tmp->in_fs_metadata && !tmp->bdev) {
1275 device = tmp;
1276 break;
1277 }
1278 }
e5e9a520 1279 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1280 bdev = NULL;
1281 bh = NULL;
1282 disk_super = NULL;
1283 if (!device) {
d397712b
CM
1284 printk(KERN_ERR "btrfs: no missing devices found to "
1285 "remove\n");
dfe25020
CM
1286 goto out;
1287 }
dfe25020 1288 } else {
d4d77629
TH
1289 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1290 root->fs_info->bdev_holder);
dfe25020
CM
1291 if (IS_ERR(bdev)) {
1292 ret = PTR_ERR(bdev);
1293 goto out;
1294 }
a061fc8d 1295
2b82032c 1296 set_blocksize(bdev, 4096);
a512bbf8 1297 bh = btrfs_read_dev_super(bdev);
dfe25020 1298 if (!bh) {
20b45077 1299 ret = -EINVAL;
dfe25020
CM
1300 goto error_close;
1301 }
1302 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1303 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1304 dev_uuid = disk_super->dev_item.uuid;
1305 device = btrfs_find_device(root, devid, dev_uuid,
1306 disk_super->fsid);
dfe25020
CM
1307 if (!device) {
1308 ret = -ENOENT;
1309 goto error_brelse;
1310 }
2b82032c 1311 }
dfe25020 1312
2b82032c 1313 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1314 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1315 "device\n");
2b82032c
YZ
1316 ret = -EINVAL;
1317 goto error_brelse;
1318 }
1319
1320 if (device->writeable) {
1321 list_del_init(&device->dev_alloc_list);
1322 root->fs_info->fs_devices->rw_devices--;
dfe25020 1323 }
a061fc8d
CM
1324
1325 ret = btrfs_shrink_device(device, 0);
1326 if (ret)
9b3517e9 1327 goto error_undo;
a061fc8d 1328
a061fc8d
CM
1329 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1330 if (ret)
9b3517e9 1331 goto error_undo;
a061fc8d 1332
2b82032c 1333 device->in_fs_metadata = 0;
a2de733c 1334 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1335
1336 /*
1337 * the device list mutex makes sure that we don't change
1338 * the device list while someone else is writing out all
1339 * the device supers.
1340 */
1341 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1342 list_del_init(&device->dev_list);
e5e9a520
CM
1343 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1344
e4404d6e 1345 device->fs_devices->num_devices--;
2b82032c 1346
cd02dca5
CM
1347 if (device->missing)
1348 root->fs_info->fs_devices->missing_devices--;
1349
2b82032c
YZ
1350 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1351 struct btrfs_device, dev_list);
1352 if (device->bdev == root->fs_info->sb->s_bdev)
1353 root->fs_info->sb->s_bdev = next_device->bdev;
1354 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1355 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1356
e4404d6e 1357 if (device->bdev) {
d4d77629 1358 blkdev_put(device->bdev, device->mode);
e4404d6e
YZ
1359 device->bdev = NULL;
1360 device->fs_devices->open_devices--;
1361 }
1362
2b82032c
YZ
1363 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1364 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1365
e4404d6e
YZ
1366 if (device->fs_devices->open_devices == 0) {
1367 struct btrfs_fs_devices *fs_devices;
1368 fs_devices = root->fs_info->fs_devices;
1369 while (fs_devices) {
1370 if (fs_devices->seed == device->fs_devices)
1371 break;
1372 fs_devices = fs_devices->seed;
2b82032c 1373 }
e4404d6e
YZ
1374 fs_devices->seed = device->fs_devices->seed;
1375 device->fs_devices->seed = NULL;
1376 __btrfs_close_devices(device->fs_devices);
1377 free_fs_devices(device->fs_devices);
2b82032c
YZ
1378 }
1379
1380 /*
1381 * at this point, the device is zero sized. We want to
1382 * remove it from the devices list and zero out the old super
1383 */
1384 if (device->writeable) {
dfe25020
CM
1385 /* make sure this device isn't detected as part of
1386 * the FS anymore
1387 */
1388 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1389 set_buffer_dirty(bh);
1390 sync_dirty_buffer(bh);
dfe25020 1391 }
a061fc8d
CM
1392
1393 kfree(device->name);
1394 kfree(device);
1395 ret = 0;
a061fc8d
CM
1396
1397error_brelse:
1398 brelse(bh);
1399error_close:
dfe25020 1400 if (bdev)
e525fd89 1401 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d 1402out:
7d9eb12c 1403 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1404 mutex_unlock(&uuid_mutex);
a061fc8d 1405 return ret;
9b3517e9
ID
1406error_undo:
1407 if (device->writeable) {
1408 list_add(&device->dev_alloc_list,
1409 &root->fs_info->fs_devices->alloc_list);
1410 root->fs_info->fs_devices->rw_devices++;
1411 }
1412 goto error_brelse;
a061fc8d
CM
1413}
1414
2b82032c
YZ
1415/*
1416 * does all the dirty work required for changing file system's UUID.
1417 */
1418static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1419 struct btrfs_root *root)
1420{
1421 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1422 struct btrfs_fs_devices *old_devices;
e4404d6e 1423 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1424 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1425 struct btrfs_device *device;
1426 u64 super_flags;
1427
1428 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1429 if (!fs_devices->seeding)
2b82032c
YZ
1430 return -EINVAL;
1431
e4404d6e
YZ
1432 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1433 if (!seed_devices)
2b82032c
YZ
1434 return -ENOMEM;
1435
e4404d6e
YZ
1436 old_devices = clone_fs_devices(fs_devices);
1437 if (IS_ERR(old_devices)) {
1438 kfree(seed_devices);
1439 return PTR_ERR(old_devices);
2b82032c 1440 }
e4404d6e 1441
2b82032c
YZ
1442 list_add(&old_devices->list, &fs_uuids);
1443
e4404d6e
YZ
1444 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1445 seed_devices->opened = 1;
1446 INIT_LIST_HEAD(&seed_devices->devices);
1447 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1448 mutex_init(&seed_devices->device_list_mutex);
e4404d6e
YZ
1449 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1451 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1452 device->fs_devices = seed_devices;
1453 }
1454
2b82032c
YZ
1455 fs_devices->seeding = 0;
1456 fs_devices->num_devices = 0;
1457 fs_devices->open_devices = 0;
e4404d6e 1458 fs_devices->seed = seed_devices;
2b82032c
YZ
1459
1460 generate_random_uuid(fs_devices->fsid);
1461 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1463 super_flags = btrfs_super_flags(disk_super) &
1464 ~BTRFS_SUPER_FLAG_SEEDING;
1465 btrfs_set_super_flags(disk_super, super_flags);
1466
1467 return 0;
1468}
1469
1470/*
1471 * strore the expected generation for seed devices in device items.
1472 */
1473static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root)
1475{
1476 struct btrfs_path *path;
1477 struct extent_buffer *leaf;
1478 struct btrfs_dev_item *dev_item;
1479 struct btrfs_device *device;
1480 struct btrfs_key key;
1481 u8 fs_uuid[BTRFS_UUID_SIZE];
1482 u8 dev_uuid[BTRFS_UUID_SIZE];
1483 u64 devid;
1484 int ret;
1485
1486 path = btrfs_alloc_path();
1487 if (!path)
1488 return -ENOMEM;
1489
1490 root = root->fs_info->chunk_root;
1491 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1492 key.offset = 0;
1493 key.type = BTRFS_DEV_ITEM_KEY;
1494
1495 while (1) {
1496 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1497 if (ret < 0)
1498 goto error;
1499
1500 leaf = path->nodes[0];
1501next_slot:
1502 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1503 ret = btrfs_next_leaf(root, path);
1504 if (ret > 0)
1505 break;
1506 if (ret < 0)
1507 goto error;
1508 leaf = path->nodes[0];
1509 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1510 btrfs_release_path(root, path);
1511 continue;
1512 }
1513
1514 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1515 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1516 key.type != BTRFS_DEV_ITEM_KEY)
1517 break;
1518
1519 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1520 struct btrfs_dev_item);
1521 devid = btrfs_device_id(leaf, dev_item);
1522 read_extent_buffer(leaf, dev_uuid,
1523 (unsigned long)btrfs_device_uuid(dev_item),
1524 BTRFS_UUID_SIZE);
1525 read_extent_buffer(leaf, fs_uuid,
1526 (unsigned long)btrfs_device_fsid(dev_item),
1527 BTRFS_UUID_SIZE);
1528 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1529 BUG_ON(!device);
1530
1531 if (device->fs_devices->seeding) {
1532 btrfs_set_device_generation(leaf, dev_item,
1533 device->generation);
1534 btrfs_mark_buffer_dirty(leaf);
1535 }
1536
1537 path->slots[0]++;
1538 goto next_slot;
1539 }
1540 ret = 0;
1541error:
1542 btrfs_free_path(path);
1543 return ret;
1544}
1545
788f20eb
CM
1546int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1547{
1548 struct btrfs_trans_handle *trans;
1549 struct btrfs_device *device;
1550 struct block_device *bdev;
788f20eb 1551 struct list_head *devices;
2b82032c 1552 struct super_block *sb = root->fs_info->sb;
788f20eb 1553 u64 total_bytes;
2b82032c 1554 int seeding_dev = 0;
788f20eb
CM
1555 int ret = 0;
1556
2b82032c
YZ
1557 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1558 return -EINVAL;
788f20eb 1559
d4d77629
TH
1560 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1561 root->fs_info->bdev_holder);
7f59203a
JB
1562 if (IS_ERR(bdev))
1563 return PTR_ERR(bdev);
a2135011 1564
2b82032c
YZ
1565 if (root->fs_info->fs_devices->seeding) {
1566 seeding_dev = 1;
1567 down_write(&sb->s_umount);
1568 mutex_lock(&uuid_mutex);
1569 }
1570
8c8bee1d 1571 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1572 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1573
788f20eb 1574 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1575 /*
1576 * we have the volume lock, so we don't need the extra
1577 * device list mutex while reading the list here.
1578 */
c6e30871 1579 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1580 if (device->bdev == bdev) {
1581 ret = -EEXIST;
2b82032c 1582 goto error;
788f20eb
CM
1583 }
1584 }
1585
1586 device = kzalloc(sizeof(*device), GFP_NOFS);
1587 if (!device) {
1588 /* we can safely leave the fs_devices entry around */
1589 ret = -ENOMEM;
2b82032c 1590 goto error;
788f20eb
CM
1591 }
1592
788f20eb
CM
1593 device->name = kstrdup(device_path, GFP_NOFS);
1594 if (!device->name) {
1595 kfree(device);
2b82032c
YZ
1596 ret = -ENOMEM;
1597 goto error;
788f20eb 1598 }
2b82032c
YZ
1599
1600 ret = find_next_devid(root, &device->devid);
1601 if (ret) {
67100f25 1602 kfree(device->name);
2b82032c
YZ
1603 kfree(device);
1604 goto error;
1605 }
1606
a22285a6 1607 trans = btrfs_start_transaction(root, 0);
98d5dc13 1608 if (IS_ERR(trans)) {
67100f25 1609 kfree(device->name);
98d5dc13
TI
1610 kfree(device);
1611 ret = PTR_ERR(trans);
1612 goto error;
1613 }
1614
2b82032c
YZ
1615 lock_chunks(root);
1616
2b82032c
YZ
1617 device->writeable = 1;
1618 device->work.func = pending_bios_fn;
1619 generate_random_uuid(device->uuid);
1620 spin_lock_init(&device->io_lock);
1621 device->generation = trans->transid;
788f20eb
CM
1622 device->io_width = root->sectorsize;
1623 device->io_align = root->sectorsize;
1624 device->sector_size = root->sectorsize;
1625 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1626 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1627 device->dev_root = root->fs_info->dev_root;
1628 device->bdev = bdev;
dfe25020 1629 device->in_fs_metadata = 1;
fb01aa85 1630 device->mode = FMODE_EXCL;
2b82032c 1631 set_blocksize(device->bdev, 4096);
788f20eb 1632
2b82032c
YZ
1633 if (seeding_dev) {
1634 sb->s_flags &= ~MS_RDONLY;
1635 ret = btrfs_prepare_sprout(trans, root);
1636 BUG_ON(ret);
1637 }
788f20eb 1638
2b82032c 1639 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1640
1641 /*
1642 * we don't want write_supers to jump in here with our device
1643 * half setup
1644 */
1645 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1646 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1647 list_add(&device->dev_alloc_list,
1648 &root->fs_info->fs_devices->alloc_list);
1649 root->fs_info->fs_devices->num_devices++;
1650 root->fs_info->fs_devices->open_devices++;
1651 root->fs_info->fs_devices->rw_devices++;
1652 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1653
c289811c
CM
1654 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1655 root->fs_info->fs_devices->rotating = 1;
1656
788f20eb
CM
1657 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1658 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1659 total_bytes + device->total_bytes);
1660
1661 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1662 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1663 total_bytes + 1);
e5e9a520 1664 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1665
2b82032c
YZ
1666 if (seeding_dev) {
1667 ret = init_first_rw_device(trans, root, device);
1668 BUG_ON(ret);
1669 ret = btrfs_finish_sprout(trans, root);
1670 BUG_ON(ret);
1671 } else {
1672 ret = btrfs_add_device(trans, root, device);
1673 }
1674
913d952e
CM
1675 /*
1676 * we've got more storage, clear any full flags on the space
1677 * infos
1678 */
1679 btrfs_clear_space_info_full(root->fs_info);
1680
7d9eb12c 1681 unlock_chunks(root);
2b82032c 1682 btrfs_commit_transaction(trans, root);
a2135011 1683
2b82032c
YZ
1684 if (seeding_dev) {
1685 mutex_unlock(&uuid_mutex);
1686 up_write(&sb->s_umount);
788f20eb 1687
2b82032c
YZ
1688 ret = btrfs_relocate_sys_chunks(root);
1689 BUG_ON(ret);
1690 }
1691out:
1692 mutex_unlock(&root->fs_info->volume_mutex);
1693 return ret;
1694error:
e525fd89 1695 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1696 if (seeding_dev) {
1697 mutex_unlock(&uuid_mutex);
1698 up_write(&sb->s_umount);
1699 }
788f20eb
CM
1700 goto out;
1701}
1702
d397712b
CM
1703static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1704 struct btrfs_device *device)
0b86a832
CM
1705{
1706 int ret;
1707 struct btrfs_path *path;
1708 struct btrfs_root *root;
1709 struct btrfs_dev_item *dev_item;
1710 struct extent_buffer *leaf;
1711 struct btrfs_key key;
1712
1713 root = device->dev_root->fs_info->chunk_root;
1714
1715 path = btrfs_alloc_path();
1716 if (!path)
1717 return -ENOMEM;
1718
1719 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1720 key.type = BTRFS_DEV_ITEM_KEY;
1721 key.offset = device->devid;
1722
1723 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1724 if (ret < 0)
1725 goto out;
1726
1727 if (ret > 0) {
1728 ret = -ENOENT;
1729 goto out;
1730 }
1731
1732 leaf = path->nodes[0];
1733 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1734
1735 btrfs_set_device_id(leaf, dev_item, device->devid);
1736 btrfs_set_device_type(leaf, dev_item, device->type);
1737 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1738 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1739 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1740 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1741 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1742 btrfs_mark_buffer_dirty(leaf);
1743
1744out:
1745 btrfs_free_path(path);
1746 return ret;
1747}
1748
7d9eb12c 1749static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1750 struct btrfs_device *device, u64 new_size)
1751{
1752 struct btrfs_super_block *super_copy =
1753 &device->dev_root->fs_info->super_copy;
1754 u64 old_total = btrfs_super_total_bytes(super_copy);
1755 u64 diff = new_size - device->total_bytes;
1756
2b82032c
YZ
1757 if (!device->writeable)
1758 return -EACCES;
1759 if (new_size <= device->total_bytes)
1760 return -EINVAL;
1761
8f18cf13 1762 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1763 device->fs_devices->total_rw_bytes += diff;
1764
1765 device->total_bytes = new_size;
9779b72f 1766 device->disk_total_bytes = new_size;
4184ea7f
CM
1767 btrfs_clear_space_info_full(device->dev_root->fs_info);
1768
8f18cf13
CM
1769 return btrfs_update_device(trans, device);
1770}
1771
7d9eb12c
CM
1772int btrfs_grow_device(struct btrfs_trans_handle *trans,
1773 struct btrfs_device *device, u64 new_size)
1774{
1775 int ret;
1776 lock_chunks(device->dev_root);
1777 ret = __btrfs_grow_device(trans, device, new_size);
1778 unlock_chunks(device->dev_root);
1779 return ret;
1780}
1781
8f18cf13
CM
1782static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 u64 chunk_tree, u64 chunk_objectid,
1785 u64 chunk_offset)
1786{
1787 int ret;
1788 struct btrfs_path *path;
1789 struct btrfs_key key;
1790
1791 root = root->fs_info->chunk_root;
1792 path = btrfs_alloc_path();
1793 if (!path)
1794 return -ENOMEM;
1795
1796 key.objectid = chunk_objectid;
1797 key.offset = chunk_offset;
1798 key.type = BTRFS_CHUNK_ITEM_KEY;
1799
1800 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1801 BUG_ON(ret);
1802
1803 ret = btrfs_del_item(trans, root, path);
1804 BUG_ON(ret);
1805
1806 btrfs_free_path(path);
1807 return 0;
1808}
1809
b2950863 1810static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1811 chunk_offset)
1812{
1813 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1814 struct btrfs_disk_key *disk_key;
1815 struct btrfs_chunk *chunk;
1816 u8 *ptr;
1817 int ret = 0;
1818 u32 num_stripes;
1819 u32 array_size;
1820 u32 len = 0;
1821 u32 cur;
1822 struct btrfs_key key;
1823
1824 array_size = btrfs_super_sys_array_size(super_copy);
1825
1826 ptr = super_copy->sys_chunk_array;
1827 cur = 0;
1828
1829 while (cur < array_size) {
1830 disk_key = (struct btrfs_disk_key *)ptr;
1831 btrfs_disk_key_to_cpu(&key, disk_key);
1832
1833 len = sizeof(*disk_key);
1834
1835 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1836 chunk = (struct btrfs_chunk *)(ptr + len);
1837 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1838 len += btrfs_chunk_item_size(num_stripes);
1839 } else {
1840 ret = -EIO;
1841 break;
1842 }
1843 if (key.objectid == chunk_objectid &&
1844 key.offset == chunk_offset) {
1845 memmove(ptr, ptr + len, array_size - (cur + len));
1846 array_size -= len;
1847 btrfs_set_super_sys_array_size(super_copy, array_size);
1848 } else {
1849 ptr += len;
1850 cur += len;
1851 }
1852 }
1853 return ret;
1854}
1855
b2950863 1856static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1857 u64 chunk_tree, u64 chunk_objectid,
1858 u64 chunk_offset)
1859{
1860 struct extent_map_tree *em_tree;
1861 struct btrfs_root *extent_root;
1862 struct btrfs_trans_handle *trans;
1863 struct extent_map *em;
1864 struct map_lookup *map;
1865 int ret;
1866 int i;
1867
1868 root = root->fs_info->chunk_root;
1869 extent_root = root->fs_info->extent_root;
1870 em_tree = &root->fs_info->mapping_tree.map_tree;
1871
ba1bf481
JB
1872 ret = btrfs_can_relocate(extent_root, chunk_offset);
1873 if (ret)
1874 return -ENOSPC;
1875
8f18cf13 1876 /* step one, relocate all the extents inside this chunk */
1a40e23b 1877 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1878 if (ret)
1879 return ret;
8f18cf13 1880
a22285a6 1881 trans = btrfs_start_transaction(root, 0);
98d5dc13 1882 BUG_ON(IS_ERR(trans));
8f18cf13 1883
7d9eb12c
CM
1884 lock_chunks(root);
1885
8f18cf13
CM
1886 /*
1887 * step two, delete the device extents and the
1888 * chunk tree entries
1889 */
890871be 1890 read_lock(&em_tree->lock);
8f18cf13 1891 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1892 read_unlock(&em_tree->lock);
8f18cf13 1893
a061fc8d
CM
1894 BUG_ON(em->start > chunk_offset ||
1895 em->start + em->len < chunk_offset);
8f18cf13
CM
1896 map = (struct map_lookup *)em->bdev;
1897
1898 for (i = 0; i < map->num_stripes; i++) {
1899 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1900 map->stripes[i].physical);
1901 BUG_ON(ret);
a061fc8d 1902
dfe25020
CM
1903 if (map->stripes[i].dev) {
1904 ret = btrfs_update_device(trans, map->stripes[i].dev);
1905 BUG_ON(ret);
1906 }
8f18cf13
CM
1907 }
1908 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1909 chunk_offset);
1910
1911 BUG_ON(ret);
1912
1abe9b8a 1913 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1914
8f18cf13
CM
1915 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1916 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1917 BUG_ON(ret);
8f18cf13
CM
1918 }
1919
2b82032c
YZ
1920 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1921 BUG_ON(ret);
1922
890871be 1923 write_lock(&em_tree->lock);
2b82032c 1924 remove_extent_mapping(em_tree, em);
890871be 1925 write_unlock(&em_tree->lock);
2b82032c
YZ
1926
1927 kfree(map);
1928 em->bdev = NULL;
1929
1930 /* once for the tree */
1931 free_extent_map(em);
1932 /* once for us */
1933 free_extent_map(em);
1934
1935 unlock_chunks(root);
1936 btrfs_end_transaction(trans, root);
1937 return 0;
1938}
1939
1940static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1941{
1942 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1943 struct btrfs_path *path;
1944 struct extent_buffer *leaf;
1945 struct btrfs_chunk *chunk;
1946 struct btrfs_key key;
1947 struct btrfs_key found_key;
1948 u64 chunk_tree = chunk_root->root_key.objectid;
1949 u64 chunk_type;
ba1bf481
JB
1950 bool retried = false;
1951 int failed = 0;
2b82032c
YZ
1952 int ret;
1953
1954 path = btrfs_alloc_path();
1955 if (!path)
1956 return -ENOMEM;
1957
ba1bf481 1958again:
2b82032c
YZ
1959 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1960 key.offset = (u64)-1;
1961 key.type = BTRFS_CHUNK_ITEM_KEY;
1962
1963 while (1) {
1964 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1965 if (ret < 0)
1966 goto error;
1967 BUG_ON(ret == 0);
1968
1969 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1970 key.type);
1971 if (ret < 0)
1972 goto error;
1973 if (ret > 0)
1974 break;
1a40e23b 1975
2b82032c
YZ
1976 leaf = path->nodes[0];
1977 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1978
2b82032c
YZ
1979 chunk = btrfs_item_ptr(leaf, path->slots[0],
1980 struct btrfs_chunk);
1981 chunk_type = btrfs_chunk_type(leaf, chunk);
1982 btrfs_release_path(chunk_root, path);
8f18cf13 1983
2b82032c
YZ
1984 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1985 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1986 found_key.objectid,
1987 found_key.offset);
ba1bf481
JB
1988 if (ret == -ENOSPC)
1989 failed++;
1990 else if (ret)
1991 BUG();
2b82032c 1992 }
8f18cf13 1993
2b82032c
YZ
1994 if (found_key.offset == 0)
1995 break;
1996 key.offset = found_key.offset - 1;
1997 }
1998 ret = 0;
ba1bf481
JB
1999 if (failed && !retried) {
2000 failed = 0;
2001 retried = true;
2002 goto again;
2003 } else if (failed && retried) {
2004 WARN_ON(1);
2005 ret = -ENOSPC;
2006 }
2b82032c
YZ
2007error:
2008 btrfs_free_path(path);
2009 return ret;
8f18cf13
CM
2010}
2011
ec44a35c
CM
2012static u64 div_factor(u64 num, int factor)
2013{
2014 if (factor == 10)
2015 return num;
2016 num *= factor;
2017 do_div(num, 10);
2018 return num;
2019}
2020
ec44a35c
CM
2021int btrfs_balance(struct btrfs_root *dev_root)
2022{
2023 int ret;
ec44a35c
CM
2024 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2025 struct btrfs_device *device;
2026 u64 old_size;
2027 u64 size_to_free;
2028 struct btrfs_path *path;
2029 struct btrfs_key key;
ec44a35c
CM
2030 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2031 struct btrfs_trans_handle *trans;
2032 struct btrfs_key found_key;
2033
2b82032c
YZ
2034 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2035 return -EROFS;
ec44a35c 2036
6f88a440
BH
2037 if (!capable(CAP_SYS_ADMIN))
2038 return -EPERM;
2039
7d9eb12c 2040 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2041 dev_root = dev_root->fs_info->dev_root;
2042
ec44a35c 2043 /* step one make some room on all the devices */
c6e30871 2044 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2045 old_size = device->total_bytes;
2046 size_to_free = div_factor(old_size, 1);
2047 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2048 if (!device->writeable ||
2049 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2050 continue;
2051
2052 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2053 if (ret == -ENOSPC)
2054 break;
ec44a35c
CM
2055 BUG_ON(ret);
2056
a22285a6 2057 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2058 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2059
2060 ret = btrfs_grow_device(trans, device, old_size);
2061 BUG_ON(ret);
2062
2063 btrfs_end_transaction(trans, dev_root);
2064 }
2065
2066 /* step two, relocate all the chunks */
2067 path = btrfs_alloc_path();
2068 BUG_ON(!path);
2069
2070 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2071 key.offset = (u64)-1;
2072 key.type = BTRFS_CHUNK_ITEM_KEY;
2073
d397712b 2074 while (1) {
ec44a35c
CM
2075 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2076 if (ret < 0)
2077 goto error;
2078
2079 /*
2080 * this shouldn't happen, it means the last relocate
2081 * failed
2082 */
2083 if (ret == 0)
2084 break;
2085
2086 ret = btrfs_previous_item(chunk_root, path, 0,
2087 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2088 if (ret)
ec44a35c 2089 break;
7d9eb12c 2090
ec44a35c
CM
2091 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2092 path->slots[0]);
2093 if (found_key.objectid != key.objectid)
2094 break;
7d9eb12c 2095
ec44a35c 2096 /* chunk zero is special */
ba1bf481 2097 if (found_key.offset == 0)
ec44a35c
CM
2098 break;
2099
7d9eb12c 2100 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2101 ret = btrfs_relocate_chunk(chunk_root,
2102 chunk_root->root_key.objectid,
2103 found_key.objectid,
2104 found_key.offset);
ba1bf481
JB
2105 BUG_ON(ret && ret != -ENOSPC);
2106 key.offset = found_key.offset - 1;
ec44a35c
CM
2107 }
2108 ret = 0;
2109error:
2110 btrfs_free_path(path);
7d9eb12c 2111 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2112 return ret;
2113}
2114
8f18cf13
CM
2115/*
2116 * shrinking a device means finding all of the device extents past
2117 * the new size, and then following the back refs to the chunks.
2118 * The chunk relocation code actually frees the device extent
2119 */
2120int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2121{
2122 struct btrfs_trans_handle *trans;
2123 struct btrfs_root *root = device->dev_root;
2124 struct btrfs_dev_extent *dev_extent = NULL;
2125 struct btrfs_path *path;
2126 u64 length;
2127 u64 chunk_tree;
2128 u64 chunk_objectid;
2129 u64 chunk_offset;
2130 int ret;
2131 int slot;
ba1bf481
JB
2132 int failed = 0;
2133 bool retried = false;
8f18cf13
CM
2134 struct extent_buffer *l;
2135 struct btrfs_key key;
2136 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2137 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2138 u64 old_size = device->total_bytes;
8f18cf13
CM
2139 u64 diff = device->total_bytes - new_size;
2140
2b82032c
YZ
2141 if (new_size >= device->total_bytes)
2142 return -EINVAL;
8f18cf13
CM
2143
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
8f18cf13
CM
2148 path->reada = 2;
2149
7d9eb12c
CM
2150 lock_chunks(root);
2151
8f18cf13 2152 device->total_bytes = new_size;
2b82032c
YZ
2153 if (device->writeable)
2154 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2155 unlock_chunks(root);
8f18cf13 2156
ba1bf481 2157again:
8f18cf13
CM
2158 key.objectid = device->devid;
2159 key.offset = (u64)-1;
2160 key.type = BTRFS_DEV_EXTENT_KEY;
2161
2162 while (1) {
2163 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2164 if (ret < 0)
2165 goto done;
2166
2167 ret = btrfs_previous_item(root, path, 0, key.type);
2168 if (ret < 0)
2169 goto done;
2170 if (ret) {
2171 ret = 0;
ba1bf481 2172 btrfs_release_path(root, path);
bf1fb512 2173 break;
8f18cf13
CM
2174 }
2175
2176 l = path->nodes[0];
2177 slot = path->slots[0];
2178 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2179
ba1bf481
JB
2180 if (key.objectid != device->devid) {
2181 btrfs_release_path(root, path);
bf1fb512 2182 break;
ba1bf481 2183 }
8f18cf13
CM
2184
2185 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2186 length = btrfs_dev_extent_length(l, dev_extent);
2187
ba1bf481
JB
2188 if (key.offset + length <= new_size) {
2189 btrfs_release_path(root, path);
d6397bae 2190 break;
ba1bf481 2191 }
8f18cf13
CM
2192
2193 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2194 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2195 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2196 btrfs_release_path(root, path);
2197
2198 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2199 chunk_offset);
ba1bf481 2200 if (ret && ret != -ENOSPC)
8f18cf13 2201 goto done;
ba1bf481
JB
2202 if (ret == -ENOSPC)
2203 failed++;
2204 key.offset -= 1;
2205 }
2206
2207 if (failed && !retried) {
2208 failed = 0;
2209 retried = true;
2210 goto again;
2211 } else if (failed && retried) {
2212 ret = -ENOSPC;
2213 lock_chunks(root);
2214
2215 device->total_bytes = old_size;
2216 if (device->writeable)
2217 device->fs_devices->total_rw_bytes += diff;
2218 unlock_chunks(root);
2219 goto done;
8f18cf13
CM
2220 }
2221
d6397bae 2222 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2223 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2224 if (IS_ERR(trans)) {
2225 ret = PTR_ERR(trans);
2226 goto done;
2227 }
2228
d6397bae
CB
2229 lock_chunks(root);
2230
2231 device->disk_total_bytes = new_size;
2232 /* Now btrfs_update_device() will change the on-disk size. */
2233 ret = btrfs_update_device(trans, device);
2234 if (ret) {
2235 unlock_chunks(root);
2236 btrfs_end_transaction(trans, root);
2237 goto done;
2238 }
2239 WARN_ON(diff > old_total);
2240 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2241 unlock_chunks(root);
2242 btrfs_end_transaction(trans, root);
8f18cf13
CM
2243done:
2244 btrfs_free_path(path);
2245 return ret;
2246}
2247
b2950863 2248static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2249 struct btrfs_root *root,
2250 struct btrfs_key *key,
2251 struct btrfs_chunk *chunk, int item_size)
2252{
2253 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2254 struct btrfs_disk_key disk_key;
2255 u32 array_size;
2256 u8 *ptr;
2257
2258 array_size = btrfs_super_sys_array_size(super_copy);
2259 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2260 return -EFBIG;
2261
2262 ptr = super_copy->sys_chunk_array + array_size;
2263 btrfs_cpu_key_to_disk(&disk_key, key);
2264 memcpy(ptr, &disk_key, sizeof(disk_key));
2265 ptr += sizeof(disk_key);
2266 memcpy(ptr, chunk, item_size);
2267 item_size += sizeof(disk_key);
2268 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2269 return 0;
2270}
2271
d397712b 2272static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2273 int num_stripes, int sub_stripes)
9b3f68b9
CM
2274{
2275 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2276 return calc_size;
2277 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2278 return calc_size * (num_stripes / sub_stripes);
2279 else
2280 return calc_size * num_stripes;
2281}
2282
b2117a39
MX
2283/* Used to sort the devices by max_avail(descending sort) */
2284int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
0b86a832 2285{
b2117a39
MX
2286 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2287 ((struct btrfs_device_info *)dev_info2)->max_avail)
2288 return -1;
2289 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2290 ((struct btrfs_device_info *)dev_info2)->max_avail)
2291 return 1;
2292 else
2293 return 0;
2294}
0b86a832 2295
b2117a39
MX
2296static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2297 int *num_stripes, int *min_stripes,
2298 int *sub_stripes)
2299{
2300 *num_stripes = 1;
2301 *min_stripes = 1;
2302 *sub_stripes = 0;
593060d7 2303
a40a90a0 2304 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
b2117a39
MX
2305 *num_stripes = fs_devices->rw_devices;
2306 *min_stripes = 2;
a40a90a0
CM
2307 }
2308 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
b2117a39
MX
2309 *num_stripes = 2;
2310 *min_stripes = 2;
a40a90a0 2311 }
8790d502 2312 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2313 if (fs_devices->rw_devices < 2)
9b3f68b9 2314 return -ENOSPC;
b2117a39
MX
2315 *num_stripes = 2;
2316 *min_stripes = 2;
8790d502 2317 }
321aecc6 2318 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
b2117a39
MX
2319 *num_stripes = fs_devices->rw_devices;
2320 if (*num_stripes < 4)
321aecc6 2321 return -ENOSPC;
b2117a39
MX
2322 *num_stripes &= ~(u32)1;
2323 *sub_stripes = 2;
2324 *min_stripes = 4;
321aecc6 2325 }
9b3f68b9 2326
b2117a39
MX
2327 return 0;
2328}
2329
2330static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2331 u64 proposed_size, u64 type,
2332 int num_stripes, int small_stripe)
2333{
2334 int min_stripe_size = 1 * 1024 * 1024;
2335 u64 calc_size = proposed_size;
2336 u64 max_chunk_size = calc_size;
2337 int ncopies = 1;
2338
2339 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2340 BTRFS_BLOCK_GROUP_DUP |
2341 BTRFS_BLOCK_GROUP_RAID10))
2342 ncopies = 2;
2343
9b3f68b9
CM
2344 if (type & BTRFS_BLOCK_GROUP_DATA) {
2345 max_chunk_size = 10 * calc_size;
a40a90a0 2346 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2347 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2348 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2349 min_stripe_size = 32 * 1024 * 1024;
2350 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2351 calc_size = 8 * 1024 * 1024;
2352 max_chunk_size = calc_size * 2;
2353 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2354 }
2355
2b82032c
YZ
2356 /* we don't want a chunk larger than 10% of writeable space */
2357 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2358 max_chunk_size);
9b3f68b9 2359
1974a3b4
MX
2360 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2361 calc_size = max_chunk_size * ncopies;
9b3f68b9 2362 do_div(calc_size, num_stripes);
b2117a39
MX
2363 do_div(calc_size, BTRFS_STRIPE_LEN);
2364 calc_size *= BTRFS_STRIPE_LEN;
9b3f68b9 2365 }
0cad8a11 2366
9b3f68b9 2367 /* we don't want tiny stripes */
b2117a39 2368 if (!small_stripe)
0cad8a11 2369 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2370
9f680ce0 2371 /*
b2117a39 2372 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
9f680ce0
CM
2373 * we end up with something bigger than a stripe
2374 */
b2117a39
MX
2375 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2376
2377 do_div(calc_size, BTRFS_STRIPE_LEN);
2378 calc_size *= BTRFS_STRIPE_LEN;
2379
2380 return calc_size;
2381}
2382
2383static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2384 int num_stripes)
2385{
2386 struct map_lookup *new;
2387 size_t len = map_lookup_size(num_stripes);
2388
2389 BUG_ON(map->num_stripes < num_stripes);
2390
2391 if (map->num_stripes == num_stripes)
2392 return map;
2393
2394 new = kmalloc(len, GFP_NOFS);
2395 if (!new) {
2396 /* just change map->num_stripes */
2397 map->num_stripes = num_stripes;
2398 return map;
2399 }
2400
2401 memcpy(new, map, len);
2402 new->num_stripes = num_stripes;
2403 kfree(map);
2404 return new;
2405}
2406
2407/*
2408 * helper to allocate device space from btrfs_device_info, in which we stored
2409 * max free space information of every device. It is used when we can not
2410 * allocate chunks by default size.
2411 *
2412 * By this helper, we can allocate a new chunk as larger as possible.
2413 */
2414static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2415 struct btrfs_fs_devices *fs_devices,
2416 struct btrfs_device_info *devices,
2417 int nr_device, u64 type,
2418 struct map_lookup **map_lookup,
2419 int min_stripes, u64 *stripe_size)
2420{
2421 int i, index, sort_again = 0;
2422 int min_devices = min_stripes;
2423 u64 max_avail, min_free;
2424 struct map_lookup *map = *map_lookup;
2425 int ret;
9f680ce0 2426
b2117a39
MX
2427 if (nr_device < min_stripes)
2428 return -ENOSPC;
2429
2430 btrfs_descending_sort_devices(devices, nr_device);
2431
2432 max_avail = devices[0].max_avail;
2433 if (!max_avail)
2434 return -ENOSPC;
2435
2436 for (i = 0; i < nr_device; i++) {
2437 /*
2438 * if dev_offset = 0, it means the free space of this device
2439 * is less than what we need, and we didn't search max avail
2440 * extent on this device, so do it now.
2441 */
2442 if (!devices[i].dev_offset) {
2443 ret = find_free_dev_extent(trans, devices[i].dev,
2444 max_avail,
2445 &devices[i].dev_offset,
2446 &devices[i].max_avail);
2447 if (ret != 0 && ret != -ENOSPC)
2448 return ret;
2449 sort_again = 1;
2450 }
2451 }
2452
2453 /* we update the max avail free extent of each devices, sort again */
2454 if (sort_again)
2455 btrfs_descending_sort_devices(devices, nr_device);
2456
2457 if (type & BTRFS_BLOCK_GROUP_DUP)
2458 min_devices = 1;
2459
2460 if (!devices[min_devices - 1].max_avail)
2461 return -ENOSPC;
2462
2463 max_avail = devices[min_devices - 1].max_avail;
2464 if (type & BTRFS_BLOCK_GROUP_DUP)
2465 do_div(max_avail, 2);
2466
2467 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2468 min_stripes, 1);
2469 if (type & BTRFS_BLOCK_GROUP_DUP)
2470 min_free = max_avail * 2;
2471 else
2472 min_free = max_avail;
2473
2474 if (min_free > devices[min_devices - 1].max_avail)
2475 return -ENOSPC;
2476
2477 map = __shrink_map_lookup_stripes(map, min_stripes);
2478 *stripe_size = max_avail;
2479
2480 index = 0;
2481 for (i = 0; i < min_stripes; i++) {
2482 map->stripes[i].dev = devices[index].dev;
2483 map->stripes[i].physical = devices[index].dev_offset;
2484 if (type & BTRFS_BLOCK_GROUP_DUP) {
2485 i++;
2486 map->stripes[i].dev = devices[index].dev;
2487 map->stripes[i].physical = devices[index].dev_offset +
2488 max_avail;
2489 }
2490 index++;
2491 }
2492 *map_lookup = map;
9f680ce0 2493
b2117a39
MX
2494 return 0;
2495}
2496
2497static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *extent_root,
2499 struct map_lookup **map_ret,
2500 u64 *num_bytes, u64 *stripe_size,
2501 u64 start, u64 type)
2502{
2503 struct btrfs_fs_info *info = extent_root->fs_info;
2504 struct btrfs_device *device = NULL;
2505 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2506 struct list_head *cur;
2507 struct map_lookup *map;
2508 struct extent_map_tree *em_tree;
2509 struct extent_map *em;
2510 struct btrfs_device_info *devices_info;
2511 struct list_head private_devs;
2512 u64 calc_size = 1024 * 1024 * 1024;
2513 u64 min_free;
2514 u64 avail;
2515 u64 dev_offset;
2516 int num_stripes;
2517 int min_stripes;
2518 int sub_stripes;
2519 int min_devices; /* the min number of devices we need */
2520 int i;
2521 int ret;
2522 int index;
2523
2524 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2525 (type & BTRFS_BLOCK_GROUP_DUP)) {
2526 WARN_ON(1);
2527 type &= ~BTRFS_BLOCK_GROUP_DUP;
2528 }
2529 if (list_empty(&fs_devices->alloc_list))
2530 return -ENOSPC;
2531
2532 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2533 &min_stripes, &sub_stripes);
2534 if (ret)
2535 return ret;
2536
2537 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2538 GFP_NOFS);
2539 if (!devices_info)
2540 return -ENOMEM;
2541
2542 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2543 if (!map) {
2544 ret = -ENOMEM;
2545 goto error;
2546 }
2547 map->num_stripes = num_stripes;
9b3f68b9 2548
2b82032c 2549 cur = fs_devices->alloc_list.next;
6324fbf3 2550 index = 0;
b2117a39 2551 i = 0;
611f0e00 2552
b2117a39
MX
2553 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2554 num_stripes, 0);
2555
2556 if (type & BTRFS_BLOCK_GROUP_DUP) {
611f0e00 2557 min_free = calc_size * 2;
b2117a39
MX
2558 min_devices = 1;
2559 } else {
9b3f68b9 2560 min_free = calc_size;
b2117a39
MX
2561 min_devices = min_stripes;
2562 }
ad5bd91e 2563
2b82032c 2564 INIT_LIST_HEAD(&private_devs);
d397712b 2565 while (index < num_stripes) {
b3075717 2566 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2567 BUG_ON(!device->writeable);
dfe25020
CM
2568 if (device->total_bytes > device->bytes_used)
2569 avail = device->total_bytes - device->bytes_used;
2570 else
2571 avail = 0;
6324fbf3 2572 cur = cur->next;
8f18cf13 2573
dfe25020 2574 if (device->in_fs_metadata && avail >= min_free) {
b2117a39
MX
2575 ret = find_free_dev_extent(trans, device, min_free,
2576 &devices_info[i].dev_offset,
2577 &devices_info[i].max_avail);
8f18cf13
CM
2578 if (ret == 0) {
2579 list_move_tail(&device->dev_alloc_list,
2580 &private_devs);
2b82032c 2581 map->stripes[index].dev = device;
b2117a39
MX
2582 map->stripes[index].physical =
2583 devices_info[i].dev_offset;
611f0e00 2584 index++;
2b82032c
YZ
2585 if (type & BTRFS_BLOCK_GROUP_DUP) {
2586 map->stripes[index].dev = device;
2587 map->stripes[index].physical =
b2117a39
MX
2588 devices_info[i].dev_offset +
2589 calc_size;
8f18cf13 2590 index++;
2b82032c 2591 }
b2117a39
MX
2592 } else if (ret != -ENOSPC)
2593 goto error;
2594
2595 devices_info[i].dev = device;
2596 i++;
2597 } else if (device->in_fs_metadata &&
2598 avail >= BTRFS_STRIPE_LEN) {
2599 devices_info[i].dev = device;
2600 devices_info[i].max_avail = avail;
2601 i++;
2602 }
2603
2b82032c 2604 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2605 break;
2606 }
b2117a39 2607
2b82032c 2608 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2609 if (index < num_stripes) {
a40a90a0
CM
2610 if (index >= min_stripes) {
2611 num_stripes = index;
2612 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2613 num_stripes /= sub_stripes;
2614 num_stripes *= sub_stripes;
2615 }
b2117a39
MX
2616
2617 map = __shrink_map_lookup_stripes(map, num_stripes);
2618 } else if (i >= min_devices) {
2619 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2620 devices_info, i, type,
2621 &map, min_stripes,
2622 &calc_size);
2623 if (ret)
2624 goto error;
2625 } else {
2626 ret = -ENOSPC;
2627 goto error;
6324fbf3 2628 }
6324fbf3 2629 }
2b82032c 2630 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2631 map->stripe_len = BTRFS_STRIPE_LEN;
2632 map->io_align = BTRFS_STRIPE_LEN;
2633 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2634 map->type = type;
2b82032c 2635 map->sub_stripes = sub_stripes;
0b86a832 2636
2b82032c
YZ
2637 *map_ret = map;
2638 *stripe_size = calc_size;
2639 *num_bytes = chunk_bytes_by_type(type, calc_size,
b2117a39 2640 map->num_stripes, sub_stripes);
0b86a832 2641
1abe9b8a 2642 trace_btrfs_chunk_alloc(info->chunk_root, map, start, *num_bytes);
2643
2b82032c
YZ
2644 em = alloc_extent_map(GFP_NOFS);
2645 if (!em) {
b2117a39
MX
2646 ret = -ENOMEM;
2647 goto error;
593060d7 2648 }
2b82032c
YZ
2649 em->bdev = (struct block_device *)map;
2650 em->start = start;
2651 em->len = *num_bytes;
2652 em->block_start = 0;
2653 em->block_len = em->len;
593060d7 2654
2b82032c 2655 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2656 write_lock(&em_tree->lock);
2b82032c 2657 ret = add_extent_mapping(em_tree, em);
890871be 2658 write_unlock(&em_tree->lock);
2b82032c
YZ
2659 BUG_ON(ret);
2660 free_extent_map(em);
0b86a832 2661
2b82032c
YZ
2662 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2663 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2664 start, *num_bytes);
2665 BUG_ON(ret);
611f0e00 2666
2b82032c
YZ
2667 index = 0;
2668 while (index < map->num_stripes) {
2669 device = map->stripes[index].dev;
2670 dev_offset = map->stripes[index].physical;
0b86a832
CM
2671
2672 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2673 info->chunk_root->root_key.objectid,
2674 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2675 start, dev_offset, calc_size);
0b86a832 2676 BUG_ON(ret);
2b82032c
YZ
2677 index++;
2678 }
2679
b2117a39 2680 kfree(devices_info);
2b82032c 2681 return 0;
b2117a39
MX
2682
2683error:
2684 kfree(map);
2685 kfree(devices_info);
2686 return ret;
2b82032c
YZ
2687}
2688
2689static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2690 struct btrfs_root *extent_root,
2691 struct map_lookup *map, u64 chunk_offset,
2692 u64 chunk_size, u64 stripe_size)
2693{
2694 u64 dev_offset;
2695 struct btrfs_key key;
2696 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2697 struct btrfs_device *device;
2698 struct btrfs_chunk *chunk;
2699 struct btrfs_stripe *stripe;
2700 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2701 int index = 0;
2702 int ret;
2703
2704 chunk = kzalloc(item_size, GFP_NOFS);
2705 if (!chunk)
2706 return -ENOMEM;
2707
2708 index = 0;
2709 while (index < map->num_stripes) {
2710 device = map->stripes[index].dev;
2711 device->bytes_used += stripe_size;
0b86a832
CM
2712 ret = btrfs_update_device(trans, device);
2713 BUG_ON(ret);
2b82032c
YZ
2714 index++;
2715 }
2716
2717 index = 0;
2718 stripe = &chunk->stripe;
2719 while (index < map->num_stripes) {
2720 device = map->stripes[index].dev;
2721 dev_offset = map->stripes[index].physical;
0b86a832 2722
e17cade2
CM
2723 btrfs_set_stack_stripe_devid(stripe, device->devid);
2724 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2725 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2726 stripe++;
0b86a832
CM
2727 index++;
2728 }
2729
2b82032c 2730 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2731 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2732 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2733 btrfs_set_stack_chunk_type(chunk, map->type);
2734 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2735 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2736 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2737 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2738 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2739
2b82032c
YZ
2740 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2741 key.type = BTRFS_CHUNK_ITEM_KEY;
2742 key.offset = chunk_offset;
0b86a832 2743
2b82032c
YZ
2744 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2745 BUG_ON(ret);
0b86a832 2746
2b82032c
YZ
2747 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2748 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2749 item_size);
8f18cf13
CM
2750 BUG_ON(ret);
2751 }
1abe9b8a 2752
0b86a832 2753 kfree(chunk);
2b82032c
YZ
2754 return 0;
2755}
0b86a832 2756
2b82032c
YZ
2757/*
2758 * Chunk allocation falls into two parts. The first part does works
2759 * that make the new allocated chunk useable, but not do any operation
2760 * that modifies the chunk tree. The second part does the works that
2761 * require modifying the chunk tree. This division is important for the
2762 * bootstrap process of adding storage to a seed btrfs.
2763 */
2764int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *extent_root, u64 type)
2766{
2767 u64 chunk_offset;
2768 u64 chunk_size;
2769 u64 stripe_size;
2770 struct map_lookup *map;
2771 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2772 int ret;
2773
2774 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2775 &chunk_offset);
2776 if (ret)
2777 return ret;
2778
2779 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2780 &stripe_size, chunk_offset, type);
2781 if (ret)
2782 return ret;
2783
2784 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2785 chunk_size, stripe_size);
2786 BUG_ON(ret);
2787 return 0;
2788}
2789
d397712b 2790static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2791 struct btrfs_root *root,
2792 struct btrfs_device *device)
2793{
2794 u64 chunk_offset;
2795 u64 sys_chunk_offset;
2796 u64 chunk_size;
2797 u64 sys_chunk_size;
2798 u64 stripe_size;
2799 u64 sys_stripe_size;
2800 u64 alloc_profile;
2801 struct map_lookup *map;
2802 struct map_lookup *sys_map;
2803 struct btrfs_fs_info *fs_info = root->fs_info;
2804 struct btrfs_root *extent_root = fs_info->extent_root;
2805 int ret;
2806
2807 ret = find_next_chunk(fs_info->chunk_root,
2808 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2809 BUG_ON(ret);
2810
2811 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2812 (fs_info->metadata_alloc_profile &
2813 fs_info->avail_metadata_alloc_bits);
2814 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2815
2816 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2817 &stripe_size, chunk_offset, alloc_profile);
2818 BUG_ON(ret);
2819
2820 sys_chunk_offset = chunk_offset + chunk_size;
2821
2822 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2823 (fs_info->system_alloc_profile &
2824 fs_info->avail_system_alloc_bits);
2825 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2826
2827 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2828 &sys_chunk_size, &sys_stripe_size,
2829 sys_chunk_offset, alloc_profile);
2830 BUG_ON(ret);
2831
2832 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2833 BUG_ON(ret);
2834
2835 /*
2836 * Modifying chunk tree needs allocating new blocks from both
2837 * system block group and metadata block group. So we only can
2838 * do operations require modifying the chunk tree after both
2839 * block groups were created.
2840 */
2841 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2842 chunk_size, stripe_size);
2843 BUG_ON(ret);
2844
2845 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2846 sys_chunk_offset, sys_chunk_size,
2847 sys_stripe_size);
b248a415 2848 BUG_ON(ret);
2b82032c
YZ
2849 return 0;
2850}
2851
2852int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2853{
2854 struct extent_map *em;
2855 struct map_lookup *map;
2856 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2857 int readonly = 0;
2858 int i;
2859
890871be 2860 read_lock(&map_tree->map_tree.lock);
2b82032c 2861 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2862 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2863 if (!em)
2864 return 1;
2865
f48b9075
JB
2866 if (btrfs_test_opt(root, DEGRADED)) {
2867 free_extent_map(em);
2868 return 0;
2869 }
2870
2b82032c
YZ
2871 map = (struct map_lookup *)em->bdev;
2872 for (i = 0; i < map->num_stripes; i++) {
2873 if (!map->stripes[i].dev->writeable) {
2874 readonly = 1;
2875 break;
2876 }
2877 }
0b86a832 2878 free_extent_map(em);
2b82032c 2879 return readonly;
0b86a832
CM
2880}
2881
2882void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2883{
2884 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2885}
2886
2887void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2888{
2889 struct extent_map *em;
2890
d397712b 2891 while (1) {
890871be 2892 write_lock(&tree->map_tree.lock);
0b86a832
CM
2893 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2894 if (em)
2895 remove_extent_mapping(&tree->map_tree, em);
890871be 2896 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2897 if (!em)
2898 break;
2899 kfree(em->bdev);
2900 /* once for us */
2901 free_extent_map(em);
2902 /* once for the tree */
2903 free_extent_map(em);
2904 }
2905}
2906
f188591e
CM
2907int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2908{
2909 struct extent_map *em;
2910 struct map_lookup *map;
2911 struct extent_map_tree *em_tree = &map_tree->map_tree;
2912 int ret;
2913
890871be 2914 read_lock(&em_tree->lock);
f188591e 2915 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2916 read_unlock(&em_tree->lock);
f188591e
CM
2917 BUG_ON(!em);
2918
2919 BUG_ON(em->start > logical || em->start + em->len < logical);
2920 map = (struct map_lookup *)em->bdev;
2921 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2922 ret = map->num_stripes;
321aecc6
CM
2923 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2924 ret = map->sub_stripes;
f188591e
CM
2925 else
2926 ret = 1;
2927 free_extent_map(em);
f188591e
CM
2928 return ret;
2929}
2930
dfe25020
CM
2931static int find_live_mirror(struct map_lookup *map, int first, int num,
2932 int optimal)
2933{
2934 int i;
2935 if (map->stripes[optimal].dev->bdev)
2936 return optimal;
2937 for (i = first; i < first + num; i++) {
2938 if (map->stripes[i].dev->bdev)
2939 return i;
2940 }
2941 /* we couldn't find one that doesn't fail. Just return something
2942 * and the io error handling code will clean up eventually
2943 */
2944 return optimal;
2945}
2946
f2d8d74d
CM
2947static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2948 u64 logical, u64 *length,
2949 struct btrfs_multi_bio **multi_ret,
2950 int mirror_num, struct page *unplug_page)
0b86a832
CM
2951{
2952 struct extent_map *em;
2953 struct map_lookup *map;
2954 struct extent_map_tree *em_tree = &map_tree->map_tree;
2955 u64 offset;
593060d7 2956 u64 stripe_offset;
fce3bb9a 2957 u64 stripe_end_offset;
593060d7 2958 u64 stripe_nr;
fce3bb9a
LD
2959 u64 stripe_nr_orig;
2960 u64 stripe_nr_end;
cea9e445 2961 int stripes_allocated = 8;
321aecc6 2962 int stripes_required = 1;
593060d7 2963 int stripe_index;
cea9e445 2964 int i;
f2d8d74d 2965 int num_stripes;
a236aed1 2966 int max_errors = 0;
cea9e445 2967 struct btrfs_multi_bio *multi = NULL;
0b86a832 2968
fce3bb9a 2969 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
cea9e445 2970 stripes_allocated = 1;
cea9e445
CM
2971again:
2972 if (multi_ret) {
2973 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2974 GFP_NOFS);
2975 if (!multi)
2976 return -ENOMEM;
a236aed1
CM
2977
2978 atomic_set(&multi->error, 0);
cea9e445 2979 }
0b86a832 2980
890871be 2981 read_lock(&em_tree->lock);
0b86a832 2982 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2983 read_unlock(&em_tree->lock);
f2d8d74d 2984
2423fdfb
JS
2985 if (!em && unplug_page) {
2986 kfree(multi);
f2d8d74d 2987 return 0;
2423fdfb 2988 }
f2d8d74d 2989
3b951516 2990 if (!em) {
d397712b
CM
2991 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2992 (unsigned long long)logical,
2993 (unsigned long long)*length);
f2d8d74d 2994 BUG();
3b951516 2995 }
0b86a832
CM
2996
2997 BUG_ON(em->start > logical || em->start + em->len < logical);
2998 map = (struct map_lookup *)em->bdev;
2999 offset = logical - em->start;
593060d7 3000
f188591e
CM
3001 if (mirror_num > map->num_stripes)
3002 mirror_num = 0;
3003
cea9e445 3004 /* if our multi bio struct is too small, back off and try again */
7b6d91da 3005 if (rw & REQ_WRITE) {
321aecc6
CM
3006 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3007 BTRFS_BLOCK_GROUP_DUP)) {
3008 stripes_required = map->num_stripes;
a236aed1 3009 max_errors = 1;
321aecc6
CM
3010 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3011 stripes_required = map->sub_stripes;
a236aed1 3012 max_errors = 1;
321aecc6
CM
3013 }
3014 }
fce3bb9a
LD
3015 if (rw & REQ_DISCARD) {
3016 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3017 BTRFS_BLOCK_GROUP_RAID1 |
3018 BTRFS_BLOCK_GROUP_DUP |
3019 BTRFS_BLOCK_GROUP_RAID10)) {
3020 stripes_required = map->num_stripes;
3021 }
3022 }
3023 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
321aecc6 3024 stripes_allocated < stripes_required) {
cea9e445 3025 stripes_allocated = map->num_stripes;
cea9e445
CM
3026 free_extent_map(em);
3027 kfree(multi);
3028 goto again;
3029 }
593060d7
CM
3030 stripe_nr = offset;
3031 /*
3032 * stripe_nr counts the total number of stripes we have to stride
3033 * to get to this block
3034 */
3035 do_div(stripe_nr, map->stripe_len);
3036
3037 stripe_offset = stripe_nr * map->stripe_len;
3038 BUG_ON(offset < stripe_offset);
3039
3040 /* stripe_offset is the offset of this block in its stripe*/
3041 stripe_offset = offset - stripe_offset;
3042
fce3bb9a
LD
3043 if (rw & REQ_DISCARD)
3044 *length = min_t(u64, em->len - offset, *length);
3045 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3046 BTRFS_BLOCK_GROUP_RAID1 |
3047 BTRFS_BLOCK_GROUP_RAID10 |
3048 BTRFS_BLOCK_GROUP_DUP)) {
cea9e445
CM
3049 /* we limit the length of each bio to what fits in a stripe */
3050 *length = min_t(u64, em->len - offset,
fce3bb9a 3051 map->stripe_len - stripe_offset);
cea9e445
CM
3052 } else {
3053 *length = em->len - offset;
3054 }
f2d8d74d
CM
3055
3056 if (!multi_ret && !unplug_page)
cea9e445
CM
3057 goto out;
3058
f2d8d74d 3059 num_stripes = 1;
cea9e445 3060 stripe_index = 0;
fce3bb9a
LD
3061 stripe_nr_orig = stripe_nr;
3062 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3063 (~(map->stripe_len - 1));
3064 do_div(stripe_nr_end, map->stripe_len);
3065 stripe_end_offset = stripe_nr_end * map->stripe_len -
3066 (offset + *length);
3067 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3068 if (rw & REQ_DISCARD)
3069 num_stripes = min_t(u64, map->num_stripes,
3070 stripe_nr_end - stripe_nr_orig);
3071 stripe_index = do_div(stripe_nr, map->num_stripes);
3072 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3073 if (unplug_page || (rw & (REQ_WRITE | REQ_DISCARD)))
f2d8d74d 3074 num_stripes = map->num_stripes;
2fff734f 3075 else if (mirror_num)
f188591e 3076 stripe_index = mirror_num - 1;
dfe25020
CM
3077 else {
3078 stripe_index = find_live_mirror(map, 0,
3079 map->num_stripes,
3080 current->pid % map->num_stripes);
3081 }
2fff734f 3082
611f0e00 3083 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
fce3bb9a 3084 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3085 num_stripes = map->num_stripes;
f188591e
CM
3086 else if (mirror_num)
3087 stripe_index = mirror_num - 1;
2fff734f 3088
321aecc6
CM
3089 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3090 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3091
3092 stripe_index = do_div(stripe_nr, factor);
3093 stripe_index *= map->sub_stripes;
3094
7b6d91da 3095 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3096 num_stripes = map->sub_stripes;
fce3bb9a
LD
3097 else if (rw & REQ_DISCARD)
3098 num_stripes = min_t(u64, map->sub_stripes *
3099 (stripe_nr_end - stripe_nr_orig),
3100 map->num_stripes);
321aecc6
CM
3101 else if (mirror_num)
3102 stripe_index += mirror_num - 1;
dfe25020
CM
3103 else {
3104 stripe_index = find_live_mirror(map, stripe_index,
3105 map->sub_stripes, stripe_index +
3106 current->pid % map->sub_stripes);
3107 }
8790d502
CM
3108 } else {
3109 /*
3110 * after this do_div call, stripe_nr is the number of stripes
3111 * on this device we have to walk to find the data, and
3112 * stripe_index is the number of our device in the stripe array
3113 */
3114 stripe_index = do_div(stripe_nr, map->num_stripes);
3115 }
593060d7 3116 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3117
fce3bb9a
LD
3118 if (rw & REQ_DISCARD) {
3119 for (i = 0; i < num_stripes; i++) {
f2d8d74d
CM
3120 multi->stripes[i].physical =
3121 map->stripes[stripe_index].physical +
3122 stripe_offset + stripe_nr * map->stripe_len;
3123 multi->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a
LD
3124
3125 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3126 u64 stripes;
d9d04879 3127 u32 last_stripe = 0;
fce3bb9a
LD
3128 int j;
3129
d9d04879
CM
3130 div_u64_rem(stripe_nr_end - 1,
3131 map->num_stripes,
3132 &last_stripe);
3133
fce3bb9a 3134 for (j = 0; j < map->num_stripes; j++) {
d9d04879
CM
3135 u32 test;
3136
3137 div_u64_rem(stripe_nr_end - 1 - j,
3138 map->num_stripes, &test);
3139 if (test == stripe_index)
fce3bb9a
LD
3140 break;
3141 }
3142 stripes = stripe_nr_end - 1 - j;
3143 do_div(stripes, map->num_stripes);
3144 multi->stripes[i].length = map->stripe_len *
3145 (stripes - stripe_nr + 1);
3146
3147 if (i == 0) {
3148 multi->stripes[i].length -=
3149 stripe_offset;
3150 stripe_offset = 0;
3151 }
3152 if (stripe_index == last_stripe)
3153 multi->stripes[i].length -=
3154 stripe_end_offset;
3155 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3156 u64 stripes;
3157 int j;
3158 int factor = map->num_stripes /
3159 map->sub_stripes;
d9d04879
CM
3160 u32 last_stripe = 0;
3161
3162 div_u64_rem(stripe_nr_end - 1,
3163 factor, &last_stripe);
fce3bb9a
LD
3164 last_stripe *= map->sub_stripes;
3165
3166 for (j = 0; j < factor; j++) {
d9d04879
CM
3167 u32 test;
3168
3169 div_u64_rem(stripe_nr_end - 1 - j,
3170 factor, &test);
3171
3172 if (test ==
fce3bb9a
LD
3173 stripe_index / map->sub_stripes)
3174 break;
3175 }
3176 stripes = stripe_nr_end - 1 - j;
3177 do_div(stripes, factor);
3178 multi->stripes[i].length = map->stripe_len *
3179 (stripes - stripe_nr + 1);
3180
3181 if (i < map->sub_stripes) {
3182 multi->stripes[i].length -=
3183 stripe_offset;
3184 if (i == map->sub_stripes - 1)
3185 stripe_offset = 0;
3186 }
3187 if (stripe_index >= last_stripe &&
3188 stripe_index <= (last_stripe +
3189 map->sub_stripes - 1)) {
3190 multi->stripes[i].length -=
3191 stripe_end_offset;
3192 }
3193 } else
3194 multi->stripes[i].length = *length;
3195
3196 stripe_index++;
3197 if (stripe_index == map->num_stripes) {
3198 /* This could only happen for RAID0/10 */
3199 stripe_index = 0;
3200 stripe_nr++;
3201 }
3202 }
3203 } else {
3204 for (i = 0; i < num_stripes; i++) {
3205 if (unplug_page) {
3206 struct btrfs_device *device;
3207 struct backing_dev_info *bdi;
3208
3209 device = map->stripes[stripe_index].dev;
3210 if (device->bdev) {
3211 bdi = blk_get_backing_dev_info(device->
3212 bdev);
3213 if (bdi->unplug_io_fn)
3214 bdi->unplug_io_fn(bdi,
3215 unplug_page);
3216 }
3217 } else {
3218 multi->stripes[i].physical =
3219 map->stripes[stripe_index].physical +
3220 stripe_offset +
3221 stripe_nr * map->stripe_len;
3222 multi->stripes[i].dev =
3223 map->stripes[stripe_index].dev;
3224 }
3225 stripe_index++;
f2d8d74d 3226 }
593060d7 3227 }
f2d8d74d
CM
3228 if (multi_ret) {
3229 *multi_ret = multi;
3230 multi->num_stripes = num_stripes;
a236aed1 3231 multi->max_errors = max_errors;
f2d8d74d 3232 }
cea9e445 3233out:
0b86a832 3234 free_extent_map(em);
0b86a832
CM
3235 return 0;
3236}
3237
f2d8d74d
CM
3238int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3239 u64 logical, u64 *length,
3240 struct btrfs_multi_bio **multi_ret, int mirror_num)
3241{
3242 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3243 mirror_num, NULL);
3244}
3245
a512bbf8
YZ
3246int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3247 u64 chunk_start, u64 physical, u64 devid,
3248 u64 **logical, int *naddrs, int *stripe_len)
3249{
3250 struct extent_map_tree *em_tree = &map_tree->map_tree;
3251 struct extent_map *em;
3252 struct map_lookup *map;
3253 u64 *buf;
3254 u64 bytenr;
3255 u64 length;
3256 u64 stripe_nr;
3257 int i, j, nr = 0;
3258
890871be 3259 read_lock(&em_tree->lock);
a512bbf8 3260 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3261 read_unlock(&em_tree->lock);
a512bbf8
YZ
3262
3263 BUG_ON(!em || em->start != chunk_start);
3264 map = (struct map_lookup *)em->bdev;
3265
3266 length = em->len;
3267 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3268 do_div(length, map->num_stripes / map->sub_stripes);
3269 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3270 do_div(length, map->num_stripes);
3271
3272 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3273 BUG_ON(!buf);
3274
3275 for (i = 0; i < map->num_stripes; i++) {
3276 if (devid && map->stripes[i].dev->devid != devid)
3277 continue;
3278 if (map->stripes[i].physical > physical ||
3279 map->stripes[i].physical + length <= physical)
3280 continue;
3281
3282 stripe_nr = physical - map->stripes[i].physical;
3283 do_div(stripe_nr, map->stripe_len);
3284
3285 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3286 stripe_nr = stripe_nr * map->num_stripes + i;
3287 do_div(stripe_nr, map->sub_stripes);
3288 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3289 stripe_nr = stripe_nr * map->num_stripes + i;
3290 }
3291 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3292 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3293 for (j = 0; j < nr; j++) {
3294 if (buf[j] == bytenr)
3295 break;
3296 }
934d375b
CM
3297 if (j == nr) {
3298 WARN_ON(nr >= map->num_stripes);
a512bbf8 3299 buf[nr++] = bytenr;
934d375b 3300 }
a512bbf8
YZ
3301 }
3302
a512bbf8
YZ
3303 *logical = buf;
3304 *naddrs = nr;
3305 *stripe_len = map->stripe_len;
3306
3307 free_extent_map(em);
3308 return 0;
3309}
3310
f2d8d74d
CM
3311int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3312 u64 logical, struct page *page)
3313{
3314 u64 length = PAGE_CACHE_SIZE;
3315 return __btrfs_map_block(map_tree, READ, logical, &length,
3316 NULL, 0, page);
3317}
3318
8790d502 3319static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3320{
cea9e445 3321 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3322 int is_orig_bio = 0;
8790d502 3323
8790d502 3324 if (err)
a236aed1 3325 atomic_inc(&multi->error);
8790d502 3326
7d2b4daa
CM
3327 if (bio == multi->orig_bio)
3328 is_orig_bio = 1;
3329
cea9e445 3330 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3331 if (!is_orig_bio) {
3332 bio_put(bio);
3333 bio = multi->orig_bio;
3334 }
8790d502
CM
3335 bio->bi_private = multi->private;
3336 bio->bi_end_io = multi->end_io;
a236aed1
CM
3337 /* only send an error to the higher layers if it is
3338 * beyond the tolerance of the multi-bio
3339 */
1259ab75 3340 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3341 err = -EIO;
1259ab75
CM
3342 } else if (err) {
3343 /*
3344 * this bio is actually up to date, we didn't
3345 * go over the max number of errors
3346 */
3347 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3348 err = 0;
1259ab75 3349 }
8790d502
CM
3350 kfree(multi);
3351
3352 bio_endio(bio, err);
7d2b4daa 3353 } else if (!is_orig_bio) {
8790d502
CM
3354 bio_put(bio);
3355 }
8790d502
CM
3356}
3357
8b712842
CM
3358struct async_sched {
3359 struct bio *bio;
3360 int rw;
3361 struct btrfs_fs_info *info;
3362 struct btrfs_work work;
3363};
3364
3365/*
3366 * see run_scheduled_bios for a description of why bios are collected for
3367 * async submit.
3368 *
3369 * This will add one bio to the pending list for a device and make sure
3370 * the work struct is scheduled.
3371 */
d397712b 3372static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3373 struct btrfs_device *device,
3374 int rw, struct bio *bio)
8b712842
CM
3375{
3376 int should_queue = 1;
ffbd517d 3377 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3378
3379 /* don't bother with additional async steps for reads, right now */
7b6d91da 3380 if (!(rw & REQ_WRITE)) {
492bb6de 3381 bio_get(bio);
8b712842 3382 submit_bio(rw, bio);
492bb6de 3383 bio_put(bio);
8b712842
CM
3384 return 0;
3385 }
3386
3387 /*
0986fe9e 3388 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3389 * higher layers. Otherwise, the async bio makes it appear we have
3390 * made progress against dirty pages when we've really just put it
3391 * on a queue for later
3392 */
0986fe9e 3393 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3394 WARN_ON(bio->bi_next);
8b712842
CM
3395 bio->bi_next = NULL;
3396 bio->bi_rw |= rw;
3397
3398 spin_lock(&device->io_lock);
7b6d91da 3399 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3400 pending_bios = &device->pending_sync_bios;
3401 else
3402 pending_bios = &device->pending_bios;
8b712842 3403
ffbd517d
CM
3404 if (pending_bios->tail)
3405 pending_bios->tail->bi_next = bio;
8b712842 3406
ffbd517d
CM
3407 pending_bios->tail = bio;
3408 if (!pending_bios->head)
3409 pending_bios->head = bio;
8b712842
CM
3410 if (device->running_pending)
3411 should_queue = 0;
3412
3413 spin_unlock(&device->io_lock);
3414
3415 if (should_queue)
1cc127b5
CM
3416 btrfs_queue_worker(&root->fs_info->submit_workers,
3417 &device->work);
8b712842
CM
3418 return 0;
3419}
3420
f188591e 3421int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3422 int mirror_num, int async_submit)
0b86a832
CM
3423{
3424 struct btrfs_mapping_tree *map_tree;
3425 struct btrfs_device *dev;
8790d502 3426 struct bio *first_bio = bio;
a62b9401 3427 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3428 u64 length = 0;
3429 u64 map_length;
cea9e445 3430 struct btrfs_multi_bio *multi = NULL;
0b86a832 3431 int ret;
8790d502
CM
3432 int dev_nr = 0;
3433 int total_devs = 1;
0b86a832 3434
f2d8d74d 3435 length = bio->bi_size;
0b86a832
CM
3436 map_tree = &root->fs_info->mapping_tree;
3437 map_length = length;
cea9e445 3438
f188591e
CM
3439 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3440 mirror_num);
cea9e445
CM
3441 BUG_ON(ret);
3442
3443 total_devs = multi->num_stripes;
3444 if (map_length < length) {
d397712b
CM
3445 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3446 "len %llu\n", (unsigned long long)logical,
3447 (unsigned long long)length,
3448 (unsigned long long)map_length);
cea9e445
CM
3449 BUG();
3450 }
3451 multi->end_io = first_bio->bi_end_io;
3452 multi->private = first_bio->bi_private;
7d2b4daa 3453 multi->orig_bio = first_bio;
cea9e445
CM
3454 atomic_set(&multi->stripes_pending, multi->num_stripes);
3455
d397712b 3456 while (dev_nr < total_devs) {
8790d502 3457 if (total_devs > 1) {
8790d502
CM
3458 if (dev_nr < total_devs - 1) {
3459 bio = bio_clone(first_bio, GFP_NOFS);
3460 BUG_ON(!bio);
3461 } else {
3462 bio = first_bio;
3463 }
3464 bio->bi_private = multi;
3465 bio->bi_end_io = end_bio_multi_stripe;
3466 }
cea9e445
CM
3467 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3468 dev = multi->stripes[dev_nr].dev;
18e503d6 3469 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3470 bio->bi_bdev = dev->bdev;
8b712842
CM
3471 if (async_submit)
3472 schedule_bio(root, dev, rw, bio);
3473 else
3474 submit_bio(rw, bio);
dfe25020
CM
3475 } else {
3476 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3477 bio->bi_sector = logical >> 9;
dfe25020 3478 bio_endio(bio, -EIO);
dfe25020 3479 }
8790d502
CM
3480 dev_nr++;
3481 }
cea9e445
CM
3482 if (total_devs == 1)
3483 kfree(multi);
0b86a832
CM
3484 return 0;
3485}
3486
a443755f 3487struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3488 u8 *uuid, u8 *fsid)
0b86a832 3489{
2b82032c
YZ
3490 struct btrfs_device *device;
3491 struct btrfs_fs_devices *cur_devices;
3492
3493 cur_devices = root->fs_info->fs_devices;
3494 while (cur_devices) {
3495 if (!fsid ||
3496 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3497 device = __find_device(&cur_devices->devices,
3498 devid, uuid);
3499 if (device)
3500 return device;
3501 }
3502 cur_devices = cur_devices->seed;
3503 }
3504 return NULL;
0b86a832
CM
3505}
3506
dfe25020
CM
3507static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3508 u64 devid, u8 *dev_uuid)
3509{
3510 struct btrfs_device *device;
3511 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3512
3513 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3514 if (!device)
3515 return NULL;
dfe25020
CM
3516 list_add(&device->dev_list,
3517 &fs_devices->devices);
dfe25020
CM
3518 device->dev_root = root->fs_info->dev_root;
3519 device->devid = devid;
8b712842 3520 device->work.func = pending_bios_fn;
e4404d6e 3521 device->fs_devices = fs_devices;
cd02dca5 3522 device->missing = 1;
dfe25020 3523 fs_devices->num_devices++;
cd02dca5 3524 fs_devices->missing_devices++;
dfe25020 3525 spin_lock_init(&device->io_lock);
d20f7043 3526 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3527 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3528 return device;
3529}
3530
0b86a832
CM
3531static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3532 struct extent_buffer *leaf,
3533 struct btrfs_chunk *chunk)
3534{
3535 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3536 struct map_lookup *map;
3537 struct extent_map *em;
3538 u64 logical;
3539 u64 length;
3540 u64 devid;
a443755f 3541 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3542 int num_stripes;
0b86a832 3543 int ret;
593060d7 3544 int i;
0b86a832 3545
e17cade2
CM
3546 logical = key->offset;
3547 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3548
890871be 3549 read_lock(&map_tree->map_tree.lock);
0b86a832 3550 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3551 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3552
3553 /* already mapped? */
3554 if (em && em->start <= logical && em->start + em->len > logical) {
3555 free_extent_map(em);
0b86a832
CM
3556 return 0;
3557 } else if (em) {
3558 free_extent_map(em);
3559 }
0b86a832 3560
0b86a832
CM
3561 em = alloc_extent_map(GFP_NOFS);
3562 if (!em)
3563 return -ENOMEM;
593060d7
CM
3564 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3565 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3566 if (!map) {
3567 free_extent_map(em);
3568 return -ENOMEM;
3569 }
3570
3571 em->bdev = (struct block_device *)map;
3572 em->start = logical;
3573 em->len = length;
3574 em->block_start = 0;
c8b97818 3575 em->block_len = em->len;
0b86a832 3576
593060d7
CM
3577 map->num_stripes = num_stripes;
3578 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3579 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3580 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3581 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3582 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3583 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3584 for (i = 0; i < num_stripes; i++) {
3585 map->stripes[i].physical =
3586 btrfs_stripe_offset_nr(leaf, chunk, i);
3587 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3588 read_extent_buffer(leaf, uuid, (unsigned long)
3589 btrfs_stripe_dev_uuid_nr(chunk, i),
3590 BTRFS_UUID_SIZE);
2b82032c
YZ
3591 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3592 NULL);
dfe25020 3593 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3594 kfree(map);
3595 free_extent_map(em);
3596 return -EIO;
3597 }
dfe25020
CM
3598 if (!map->stripes[i].dev) {
3599 map->stripes[i].dev =
3600 add_missing_dev(root, devid, uuid);
3601 if (!map->stripes[i].dev) {
3602 kfree(map);
3603 free_extent_map(em);
3604 return -EIO;
3605 }
3606 }
3607 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3608 }
3609
890871be 3610 write_lock(&map_tree->map_tree.lock);
0b86a832 3611 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3612 write_unlock(&map_tree->map_tree.lock);
b248a415 3613 BUG_ON(ret);
0b86a832
CM
3614 free_extent_map(em);
3615
3616 return 0;
3617}
3618
3619static int fill_device_from_item(struct extent_buffer *leaf,
3620 struct btrfs_dev_item *dev_item,
3621 struct btrfs_device *device)
3622{
3623 unsigned long ptr;
0b86a832
CM
3624
3625 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3626 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3627 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3628 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3629 device->type = btrfs_device_type(leaf, dev_item);
3630 device->io_align = btrfs_device_io_align(leaf, dev_item);
3631 device->io_width = btrfs_device_io_width(leaf, dev_item);
3632 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3633
3634 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3635 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3636
0b86a832
CM
3637 return 0;
3638}
3639
2b82032c
YZ
3640static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3641{
3642 struct btrfs_fs_devices *fs_devices;
3643 int ret;
3644
3645 mutex_lock(&uuid_mutex);
3646
3647 fs_devices = root->fs_info->fs_devices->seed;
3648 while (fs_devices) {
3649 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3650 ret = 0;
3651 goto out;
3652 }
3653 fs_devices = fs_devices->seed;
3654 }
3655
3656 fs_devices = find_fsid(fsid);
3657 if (!fs_devices) {
3658 ret = -ENOENT;
3659 goto out;
3660 }
e4404d6e
YZ
3661
3662 fs_devices = clone_fs_devices(fs_devices);
3663 if (IS_ERR(fs_devices)) {
3664 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3665 goto out;
3666 }
3667
97288f2c 3668 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3669 root->fs_info->bdev_holder);
2b82032c
YZ
3670 if (ret)
3671 goto out;
3672
3673 if (!fs_devices->seeding) {
3674 __btrfs_close_devices(fs_devices);
e4404d6e 3675 free_fs_devices(fs_devices);
2b82032c
YZ
3676 ret = -EINVAL;
3677 goto out;
3678 }
3679
3680 fs_devices->seed = root->fs_info->fs_devices->seed;
3681 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3682out:
3683 mutex_unlock(&uuid_mutex);
3684 return ret;
3685}
3686
0d81ba5d 3687static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3688 struct extent_buffer *leaf,
3689 struct btrfs_dev_item *dev_item)
3690{
3691 struct btrfs_device *device;
3692 u64 devid;
3693 int ret;
2b82032c 3694 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3695 u8 dev_uuid[BTRFS_UUID_SIZE];
3696
0b86a832 3697 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3698 read_extent_buffer(leaf, dev_uuid,
3699 (unsigned long)btrfs_device_uuid(dev_item),
3700 BTRFS_UUID_SIZE);
2b82032c
YZ
3701 read_extent_buffer(leaf, fs_uuid,
3702 (unsigned long)btrfs_device_fsid(dev_item),
3703 BTRFS_UUID_SIZE);
3704
3705 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3706 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3707 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3708 return ret;
2b82032c
YZ
3709 }
3710
3711 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3712 if (!device || !device->bdev) {
e4404d6e 3713 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3714 return -EIO;
3715
3716 if (!device) {
d397712b
CM
3717 printk(KERN_WARNING "warning devid %llu missing\n",
3718 (unsigned long long)devid);
2b82032c
YZ
3719 device = add_missing_dev(root, devid, dev_uuid);
3720 if (!device)
3721 return -ENOMEM;
cd02dca5
CM
3722 } else if (!device->missing) {
3723 /*
3724 * this happens when a device that was properly setup
3725 * in the device info lists suddenly goes bad.
3726 * device->bdev is NULL, and so we have to set
3727 * device->missing to one here
3728 */
3729 root->fs_info->fs_devices->missing_devices++;
3730 device->missing = 1;
2b82032c
YZ
3731 }
3732 }
3733
3734 if (device->fs_devices != root->fs_info->fs_devices) {
3735 BUG_ON(device->writeable);
3736 if (device->generation !=
3737 btrfs_device_generation(leaf, dev_item))
3738 return -EINVAL;
6324fbf3 3739 }
0b86a832
CM
3740
3741 fill_device_from_item(leaf, dev_item, device);
3742 device->dev_root = root->fs_info->dev_root;
dfe25020 3743 device->in_fs_metadata = 1;
2b82032c
YZ
3744 if (device->writeable)
3745 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3746 ret = 0;
0b86a832
CM
3747 return ret;
3748}
3749
0d81ba5d
CM
3750int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3751{
3752 struct btrfs_dev_item *dev_item;
3753
3754 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3755 dev_item);
3756 return read_one_dev(root, buf, dev_item);
3757}
3758
e4404d6e 3759int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3760{
3761 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3762 struct extent_buffer *sb;
0b86a832 3763 struct btrfs_disk_key *disk_key;
0b86a832 3764 struct btrfs_chunk *chunk;
84eed90f
CM
3765 u8 *ptr;
3766 unsigned long sb_ptr;
3767 int ret = 0;
0b86a832
CM
3768 u32 num_stripes;
3769 u32 array_size;
3770 u32 len = 0;
0b86a832 3771 u32 cur;
84eed90f 3772 struct btrfs_key key;
0b86a832 3773
e4404d6e 3774 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3775 BTRFS_SUPER_INFO_SIZE);
3776 if (!sb)
3777 return -ENOMEM;
3778 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3779 btrfs_set_buffer_lockdep_class(sb, 0);
3780
a061fc8d 3781 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3782 array_size = btrfs_super_sys_array_size(super_copy);
3783
0b86a832
CM
3784 ptr = super_copy->sys_chunk_array;
3785 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3786 cur = 0;
3787
3788 while (cur < array_size) {
3789 disk_key = (struct btrfs_disk_key *)ptr;
3790 btrfs_disk_key_to_cpu(&key, disk_key);
3791
a061fc8d 3792 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3793 sb_ptr += len;
3794 cur += len;
3795
0d81ba5d 3796 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3797 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3798 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3799 if (ret)
3800 break;
0b86a832
CM
3801 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3802 len = btrfs_chunk_item_size(num_stripes);
3803 } else {
84eed90f
CM
3804 ret = -EIO;
3805 break;
0b86a832
CM
3806 }
3807 ptr += len;
3808 sb_ptr += len;
3809 cur += len;
3810 }
a061fc8d 3811 free_extent_buffer(sb);
84eed90f 3812 return ret;
0b86a832
CM
3813}
3814
3815int btrfs_read_chunk_tree(struct btrfs_root *root)
3816{
3817 struct btrfs_path *path;
3818 struct extent_buffer *leaf;
3819 struct btrfs_key key;
3820 struct btrfs_key found_key;
3821 int ret;
3822 int slot;
3823
3824 root = root->fs_info->chunk_root;
3825
3826 path = btrfs_alloc_path();
3827 if (!path)
3828 return -ENOMEM;
3829
3830 /* first we search for all of the device items, and then we
3831 * read in all of the chunk items. This way we can create chunk
3832 * mappings that reference all of the devices that are afound
3833 */
3834 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3835 key.offset = 0;
3836 key.type = 0;
3837again:
3838 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3839 if (ret < 0)
3840 goto error;
d397712b 3841 while (1) {
0b86a832
CM
3842 leaf = path->nodes[0];
3843 slot = path->slots[0];
3844 if (slot >= btrfs_header_nritems(leaf)) {
3845 ret = btrfs_next_leaf(root, path);
3846 if (ret == 0)
3847 continue;
3848 if (ret < 0)
3849 goto error;
3850 break;
3851 }
3852 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3853 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3854 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3855 break;
3856 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3857 struct btrfs_dev_item *dev_item;
3858 dev_item = btrfs_item_ptr(leaf, slot,
3859 struct btrfs_dev_item);
0d81ba5d 3860 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3861 if (ret)
3862 goto error;
0b86a832
CM
3863 }
3864 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3865 struct btrfs_chunk *chunk;
3866 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3867 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3868 if (ret)
3869 goto error;
0b86a832
CM
3870 }
3871 path->slots[0]++;
3872 }
3873 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3874 key.objectid = 0;
3875 btrfs_release_path(root, path);
3876 goto again;
3877 }
0b86a832
CM
3878 ret = 0;
3879error:
2b82032c 3880 btrfs_free_path(path);
0b86a832
CM
3881 return ret;
3882}
This page took 0.754835 seconds and 4 git commands to generate.