]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * JFFS2 -- Journalling Flash File System, Version 2. | |
3 | * | |
4 | * Copyright (C) 2001-2003 Red Hat, Inc. | |
5 | * | |
6 | * Created by David Woodhouse <[email protected]> | |
7 | * | |
8 | * For licensing information, see the file 'LICENCE' in this directory. | |
9 | * | |
182ec4ee | 10 | * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $ |
1da177e4 LT |
11 | * |
12 | */ | |
13 | ||
14 | #include <linux/kernel.h> | |
15 | #include <linux/mtd/mtd.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/pagemap.h> | |
18 | #include <linux/crc32.h> | |
19 | #include <linux/compiler.h> | |
20 | #include <linux/stat.h> | |
21 | #include "nodelist.h" | |
22 | #include "compr.h" | |
23 | ||
182ec4ee | 24 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
25 | struct jffs2_inode_cache *ic, |
26 | struct jffs2_raw_node_ref *raw); | |
182ec4ee | 27 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 28 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); |
182ec4ee | 29 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 30 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
182ec4ee | 31 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
32 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
33 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
34 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
35 | uint32_t start, uint32_t end); | |
36 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
37 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
38 | uint32_t start, uint32_t end); | |
39 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
40 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); | |
41 | ||
42 | /* Called with erase_completion_lock held */ | |
43 | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) | |
44 | { | |
45 | struct jffs2_eraseblock *ret; | |
46 | struct list_head *nextlist = NULL; | |
47 | int n = jiffies % 128; | |
48 | ||
49 | /* Pick an eraseblock to garbage collect next. This is where we'll | |
50 | put the clever wear-levelling algorithms. Eventually. */ | |
51 | /* We possibly want to favour the dirtier blocks more when the | |
52 | number of free blocks is low. */ | |
a42163d7 | 53 | again: |
1da177e4 LT |
54 | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { |
55 | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); | |
56 | nextlist = &c->bad_used_list; | |
57 | } else if (n < 50 && !list_empty(&c->erasable_list)) { | |
182ec4ee | 58 | /* Note that most of them will have gone directly to be erased. |
1da177e4 LT |
59 | So don't favour the erasable_list _too_ much. */ |
60 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); | |
61 | nextlist = &c->erasable_list; | |
62 | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { | |
63 | /* Most of the time, pick one off the very_dirty list */ | |
64 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); | |
65 | nextlist = &c->very_dirty_list; | |
66 | } else if (n < 126 && !list_empty(&c->dirty_list)) { | |
67 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); | |
68 | nextlist = &c->dirty_list; | |
69 | } else if (!list_empty(&c->clean_list)) { | |
70 | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); | |
71 | nextlist = &c->clean_list; | |
72 | } else if (!list_empty(&c->dirty_list)) { | |
73 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); | |
74 | ||
75 | nextlist = &c->dirty_list; | |
76 | } else if (!list_empty(&c->very_dirty_list)) { | |
77 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); | |
78 | nextlist = &c->very_dirty_list; | |
79 | } else if (!list_empty(&c->erasable_list)) { | |
80 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); | |
81 | ||
82 | nextlist = &c->erasable_list; | |
a42163d7 AB |
83 | } else if (!list_empty(&c->erasable_pending_wbuf_list)) { |
84 | /* There are blocks are wating for the wbuf sync */ | |
85 | D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); | |
3cceb9f6 | 86 | spin_unlock(&c->erase_completion_lock); |
a42163d7 | 87 | jffs2_flush_wbuf_pad(c); |
3cceb9f6 | 88 | spin_lock(&c->erase_completion_lock); |
a42163d7 | 89 | goto again; |
1da177e4 LT |
90 | } else { |
91 | /* Eep. All were empty */ | |
92 | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); | |
93 | return NULL; | |
94 | } | |
95 | ||
96 | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); | |
97 | list_del(&ret->list); | |
98 | c->gcblock = ret; | |
99 | ret->gc_node = ret->first_node; | |
100 | if (!ret->gc_node) { | |
101 | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); | |
102 | BUG(); | |
103 | } | |
182ec4ee | 104 | |
1da177e4 LT |
105 | /* Have we accidentally picked a clean block with wasted space ? */ |
106 | if (ret->wasted_size) { | |
107 | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); | |
108 | ret->dirty_size += ret->wasted_size; | |
109 | c->wasted_size -= ret->wasted_size; | |
110 | c->dirty_size += ret->wasted_size; | |
111 | ret->wasted_size = 0; | |
112 | } | |
113 | ||
1da177e4 LT |
114 | return ret; |
115 | } | |
116 | ||
117 | /* jffs2_garbage_collect_pass | |
118 | * Make a single attempt to progress GC. Move one node, and possibly | |
119 | * start erasing one eraseblock. | |
120 | */ | |
121 | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) | |
122 | { | |
123 | struct jffs2_inode_info *f; | |
124 | struct jffs2_inode_cache *ic; | |
125 | struct jffs2_eraseblock *jeb; | |
126 | struct jffs2_raw_node_ref *raw; | |
127 | int ret = 0, inum, nlink; | |
aa98d7cf | 128 | int xattr = 0; |
1da177e4 LT |
129 | |
130 | if (down_interruptible(&c->alloc_sem)) | |
131 | return -EINTR; | |
132 | ||
133 | for (;;) { | |
134 | spin_lock(&c->erase_completion_lock); | |
135 | if (!c->unchecked_size) | |
136 | break; | |
137 | ||
138 | /* We can't start doing GC yet. We haven't finished checking | |
139 | the node CRCs etc. Do it now. */ | |
182ec4ee | 140 | |
1da177e4 | 141 | /* checked_ino is protected by the alloc_sem */ |
aa98d7cf | 142 | if (c->checked_ino > c->highest_ino && xattr) { |
1da177e4 LT |
143 | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", |
144 | c->unchecked_size); | |
e0c8e42f | 145 | jffs2_dbg_dump_block_lists_nolock(c); |
1da177e4 LT |
146 | spin_unlock(&c->erase_completion_lock); |
147 | BUG(); | |
148 | } | |
149 | ||
150 | spin_unlock(&c->erase_completion_lock); | |
151 | ||
aa98d7cf KK |
152 | if (!xattr) |
153 | xattr = jffs2_verify_xattr(c); | |
154 | ||
1da177e4 LT |
155 | spin_lock(&c->inocache_lock); |
156 | ||
157 | ic = jffs2_get_ino_cache(c, c->checked_ino++); | |
158 | ||
159 | if (!ic) { | |
160 | spin_unlock(&c->inocache_lock); | |
161 | continue; | |
162 | } | |
163 | ||
164 | if (!ic->nlink) { | |
165 | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n", | |
166 | ic->ino)); | |
167 | spin_unlock(&c->inocache_lock); | |
168 | continue; | |
169 | } | |
170 | switch(ic->state) { | |
171 | case INO_STATE_CHECKEDABSENT: | |
172 | case INO_STATE_PRESENT: | |
173 | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); | |
174 | spin_unlock(&c->inocache_lock); | |
175 | continue; | |
176 | ||
177 | case INO_STATE_GC: | |
178 | case INO_STATE_CHECKING: | |
179 | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); | |
180 | spin_unlock(&c->inocache_lock); | |
181 | BUG(); | |
182 | ||
183 | case INO_STATE_READING: | |
184 | /* We need to wait for it to finish, lest we move on | |
182ec4ee | 185 | and trigger the BUG() above while we haven't yet |
1da177e4 LT |
186 | finished checking all its nodes */ |
187 | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); | |
d96fb997 DW |
188 | /* We need to come back again for the _same_ inode. We've |
189 | made no progress in this case, but that should be OK */ | |
190 | c->checked_ino--; | |
191 | ||
1da177e4 LT |
192 | up(&c->alloc_sem); |
193 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | |
194 | return 0; | |
195 | ||
196 | default: | |
197 | BUG(); | |
198 | ||
199 | case INO_STATE_UNCHECKED: | |
200 | ; | |
201 | } | |
202 | ic->state = INO_STATE_CHECKING; | |
203 | spin_unlock(&c->inocache_lock); | |
204 | ||
205 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); | |
206 | ||
207 | ret = jffs2_do_crccheck_inode(c, ic); | |
208 | if (ret) | |
209 | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); | |
210 | ||
211 | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); | |
212 | up(&c->alloc_sem); | |
213 | return ret; | |
214 | } | |
215 | ||
216 | /* First, work out which block we're garbage-collecting */ | |
217 | jeb = c->gcblock; | |
218 | ||
219 | if (!jeb) | |
220 | jeb = jffs2_find_gc_block(c); | |
221 | ||
222 | if (!jeb) { | |
223 | D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); | |
224 | spin_unlock(&c->erase_completion_lock); | |
225 | up(&c->alloc_sem); | |
226 | return -EIO; | |
227 | } | |
228 | ||
229 | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); | |
230 | D1(if (c->nextblock) | |
231 | printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); | |
232 | ||
233 | if (!jeb->used_size) { | |
234 | up(&c->alloc_sem); | |
235 | goto eraseit; | |
236 | } | |
237 | ||
238 | raw = jeb->gc_node; | |
182ec4ee | 239 | |
1da177e4 LT |
240 | while(ref_obsolete(raw)) { |
241 | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); | |
242 | raw = raw->next_phys; | |
243 | if (unlikely(!raw)) { | |
244 | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); | |
182ec4ee | 245 | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", |
1da177e4 LT |
246 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); |
247 | jeb->gc_node = raw; | |
248 | spin_unlock(&c->erase_completion_lock); | |
249 | up(&c->alloc_sem); | |
250 | BUG(); | |
251 | } | |
252 | } | |
253 | jeb->gc_node = raw; | |
254 | ||
255 | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); | |
256 | ||
257 | if (!raw->next_in_ino) { | |
258 | /* Inode-less node. Clean marker, snapshot or something like that */ | |
1da177e4 | 259 | spin_unlock(&c->erase_completion_lock); |
6171586a DW |
260 | if (ref_flags(raw) == REF_PRISTINE) { |
261 | /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */ | |
262 | jffs2_garbage_collect_pristine(c, NULL, raw); | |
263 | } else { | |
264 | /* Just mark it obsolete */ | |
265 | jffs2_mark_node_obsolete(c, raw); | |
266 | } | |
1da177e4 LT |
267 | up(&c->alloc_sem); |
268 | goto eraseit_lock; | |
269 | } | |
270 | ||
271 | ic = jffs2_raw_ref_to_ic(raw); | |
272 | ||
084702e0 | 273 | #ifdef CONFIG_JFFS2_FS_XATTR |
aa98d7cf | 274 | /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr. |
084702e0 KK |
275 | * We can decide whether this node is inode or xattr by ic->class. */ |
276 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM | |
277 | || ic->class == RAWNODE_CLASS_XATTR_REF) { | |
278 | BUG_ON(raw->next_in_ino != (void *)ic); | |
279 | spin_unlock(&c->erase_completion_lock); | |
280 | ||
281 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM) { | |
282 | ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic); | |
283 | } else { | |
284 | ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic); | |
285 | } | |
aa98d7cf | 286 | goto release_sem; |
084702e0 KK |
287 | } |
288 | #endif | |
aa98d7cf | 289 | |
1da177e4 | 290 | /* We need to hold the inocache. Either the erase_completion_lock or |
182ec4ee | 291 | the inocache_lock are sufficient; we trade down since the inocache_lock |
1da177e4 LT |
292 | causes less contention. */ |
293 | spin_lock(&c->inocache_lock); | |
294 | ||
295 | spin_unlock(&c->erase_completion_lock); | |
296 | ||
297 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); | |
298 | ||
299 | /* Three possibilities: | |
300 | 1. Inode is already in-core. We must iget it and do proper | |
301 | updating to its fragtree, etc. | |
302 | 2. Inode is not in-core, node is REF_PRISTINE. We lock the | |
303 | inocache to prevent a read_inode(), copy the node intact. | |
304 | 3. Inode is not in-core, node is not pristine. We must iget() | |
305 | and take the slow path. | |
306 | */ | |
307 | ||
308 | switch(ic->state) { | |
309 | case INO_STATE_CHECKEDABSENT: | |
182ec4ee | 310 | /* It's been checked, but it's not currently in-core. |
1da177e4 LT |
311 | We can just copy any pristine nodes, but have |
312 | to prevent anyone else from doing read_inode() while | |
313 | we're at it, so we set the state accordingly */ | |
314 | if (ref_flags(raw) == REF_PRISTINE) | |
315 | ic->state = INO_STATE_GC; | |
316 | else { | |
182ec4ee | 317 | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", |
1da177e4 LT |
318 | ic->ino)); |
319 | } | |
320 | break; | |
321 | ||
322 | case INO_STATE_PRESENT: | |
323 | /* It's in-core. GC must iget() it. */ | |
324 | break; | |
325 | ||
326 | case INO_STATE_UNCHECKED: | |
327 | case INO_STATE_CHECKING: | |
328 | case INO_STATE_GC: | |
329 | /* Should never happen. We should have finished checking | |
182ec4ee TG |
330 | by the time we actually start doing any GC, and since |
331 | we're holding the alloc_sem, no other garbage collection | |
1da177e4 LT |
332 | can happen. |
333 | */ | |
334 | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", | |
335 | ic->ino, ic->state); | |
336 | up(&c->alloc_sem); | |
337 | spin_unlock(&c->inocache_lock); | |
338 | BUG(); | |
339 | ||
340 | case INO_STATE_READING: | |
341 | /* Someone's currently trying to read it. We must wait for | |
342 | them to finish and then go through the full iget() route | |
343 | to do the GC. However, sometimes read_inode() needs to get | |
344 | the alloc_sem() (for marking nodes invalid) so we must | |
345 | drop the alloc_sem before sleeping. */ | |
346 | ||
347 | up(&c->alloc_sem); | |
348 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", | |
349 | ic->ino, ic->state)); | |
350 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | |
182ec4ee | 351 | /* And because we dropped the alloc_sem we must start again from the |
1da177e4 LT |
352 | beginning. Ponder chance of livelock here -- we're returning success |
353 | without actually making any progress. | |
354 | ||
182ec4ee | 355 | Q: What are the chances that the inode is back in INO_STATE_READING |
1da177e4 LT |
356 | again by the time we next enter this function? And that this happens |
357 | enough times to cause a real delay? | |
358 | ||
182ec4ee | 359 | A: Small enough that I don't care :) |
1da177e4 LT |
360 | */ |
361 | return 0; | |
362 | } | |
363 | ||
364 | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the | |
182ec4ee | 365 | node intact, and we don't have to muck about with the fragtree etc. |
1da177e4 LT |
366 | because we know it's not in-core. If it _was_ in-core, we go through |
367 | all the iget() crap anyway */ | |
368 | ||
369 | if (ic->state == INO_STATE_GC) { | |
370 | spin_unlock(&c->inocache_lock); | |
371 | ||
372 | ret = jffs2_garbage_collect_pristine(c, ic, raw); | |
373 | ||
374 | spin_lock(&c->inocache_lock); | |
375 | ic->state = INO_STATE_CHECKEDABSENT; | |
376 | wake_up(&c->inocache_wq); | |
377 | ||
378 | if (ret != -EBADFD) { | |
379 | spin_unlock(&c->inocache_lock); | |
380 | goto release_sem; | |
381 | } | |
382 | ||
383 | /* Fall through if it wanted us to, with inocache_lock held */ | |
384 | } | |
385 | ||
386 | /* Prevent the fairly unlikely race where the gcblock is | |
387 | entirely obsoleted by the final close of a file which had | |
388 | the only valid nodes in the block, followed by erasure, | |
389 | followed by freeing of the ic because the erased block(s) | |
390 | held _all_ the nodes of that inode.... never been seen but | |
391 | it's vaguely possible. */ | |
392 | ||
393 | inum = ic->ino; | |
394 | nlink = ic->nlink; | |
395 | spin_unlock(&c->inocache_lock); | |
396 | ||
397 | f = jffs2_gc_fetch_inode(c, inum, nlink); | |
398 | if (IS_ERR(f)) { | |
399 | ret = PTR_ERR(f); | |
400 | goto release_sem; | |
401 | } | |
402 | if (!f) { | |
403 | ret = 0; | |
404 | goto release_sem; | |
405 | } | |
406 | ||
407 | ret = jffs2_garbage_collect_live(c, jeb, raw, f); | |
408 | ||
409 | jffs2_gc_release_inode(c, f); | |
410 | ||
411 | release_sem: | |
412 | up(&c->alloc_sem); | |
413 | ||
414 | eraseit_lock: | |
415 | /* If we've finished this block, start it erasing */ | |
416 | spin_lock(&c->erase_completion_lock); | |
417 | ||
418 | eraseit: | |
419 | if (c->gcblock && !c->gcblock->used_size) { | |
420 | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); | |
421 | /* We're GC'ing an empty block? */ | |
422 | list_add_tail(&c->gcblock->list, &c->erase_pending_list); | |
423 | c->gcblock = NULL; | |
424 | c->nr_erasing_blocks++; | |
425 | jffs2_erase_pending_trigger(c); | |
426 | } | |
427 | spin_unlock(&c->erase_completion_lock); | |
428 | ||
429 | return ret; | |
430 | } | |
431 | ||
432 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
433 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) | |
434 | { | |
435 | struct jffs2_node_frag *frag; | |
436 | struct jffs2_full_dnode *fn = NULL; | |
437 | struct jffs2_full_dirent *fd; | |
438 | uint32_t start = 0, end = 0, nrfrags = 0; | |
439 | int ret = 0; | |
440 | ||
441 | down(&f->sem); | |
442 | ||
443 | /* Now we have the lock for this inode. Check that it's still the one at the head | |
444 | of the list. */ | |
445 | ||
446 | spin_lock(&c->erase_completion_lock); | |
447 | ||
448 | if (c->gcblock != jeb) { | |
449 | spin_unlock(&c->erase_completion_lock); | |
450 | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); | |
451 | goto upnout; | |
452 | } | |
453 | if (ref_obsolete(raw)) { | |
454 | spin_unlock(&c->erase_completion_lock); | |
455 | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); | |
456 | /* They'll call again */ | |
457 | goto upnout; | |
458 | } | |
459 | spin_unlock(&c->erase_completion_lock); | |
460 | ||
461 | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ | |
462 | if (f->metadata && f->metadata->raw == raw) { | |
463 | fn = f->metadata; | |
464 | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); | |
465 | goto upnout; | |
466 | } | |
467 | ||
468 | /* FIXME. Read node and do lookup? */ | |
469 | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { | |
470 | if (frag->node && frag->node->raw == raw) { | |
471 | fn = frag->node; | |
472 | end = frag->ofs + frag->size; | |
473 | if (!nrfrags++) | |
474 | start = frag->ofs; | |
475 | if (nrfrags == frag->node->frags) | |
476 | break; /* We've found them all */ | |
477 | } | |
478 | } | |
479 | if (fn) { | |
480 | if (ref_flags(raw) == REF_PRISTINE) { | |
481 | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); | |
482 | if (!ret) { | |
483 | /* Urgh. Return it sensibly. */ | |
484 | frag->node->raw = f->inocache->nodes; | |
182ec4ee | 485 | } |
1da177e4 LT |
486 | if (ret != -EBADFD) |
487 | goto upnout; | |
488 | } | |
489 | /* We found a datanode. Do the GC */ | |
490 | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { | |
491 | /* It crosses a page boundary. Therefore, it must be a hole. */ | |
492 | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); | |
493 | } else { | |
494 | /* It could still be a hole. But we GC the page this way anyway */ | |
495 | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); | |
496 | } | |
497 | goto upnout; | |
498 | } | |
182ec4ee | 499 | |
1da177e4 LT |
500 | /* Wasn't a dnode. Try dirent */ |
501 | for (fd = f->dents; fd; fd=fd->next) { | |
502 | if (fd->raw == raw) | |
503 | break; | |
504 | } | |
505 | ||
506 | if (fd && fd->ino) { | |
507 | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
508 | } else if (fd) { | |
509 | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); | |
510 | } else { | |
511 | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", | |
512 | ref_offset(raw), f->inocache->ino); | |
513 | if (ref_obsolete(raw)) { | |
514 | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); | |
515 | } else { | |
e0c8e42f AB |
516 | jffs2_dbg_dump_node(c, ref_offset(raw)); |
517 | BUG(); | |
1da177e4 LT |
518 | } |
519 | } | |
520 | upnout: | |
521 | up(&f->sem); | |
522 | ||
523 | return ret; | |
524 | } | |
525 | ||
182ec4ee | 526 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
527 | struct jffs2_inode_cache *ic, |
528 | struct jffs2_raw_node_ref *raw) | |
529 | { | |
530 | union jffs2_node_union *node; | |
531 | struct jffs2_raw_node_ref *nraw; | |
532 | size_t retlen; | |
533 | int ret; | |
534 | uint32_t phys_ofs, alloclen; | |
535 | uint32_t crc, rawlen; | |
536 | int retried = 0; | |
537 | ||
538 | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); | |
539 | ||
6171586a | 540 | alloclen = rawlen = ref_totlen(c, c->gcblock, raw); |
1da177e4 LT |
541 | |
542 | /* Ask for a small amount of space (or the totlen if smaller) because we | |
543 | don't want to force wastage of the end of a block if splitting would | |
544 | work. */ | |
6171586a DW |
545 | if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) |
546 | alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN; | |
547 | ||
548 | ret = jffs2_reserve_space_gc(c, alloclen, &phys_ofs, &alloclen, rawlen); | |
549 | /* 'rawlen' is not the exact summary size; it is only an upper estimation */ | |
e631ddba | 550 | |
1da177e4 LT |
551 | if (ret) |
552 | return ret; | |
553 | ||
554 | if (alloclen < rawlen) { | |
555 | /* Doesn't fit untouched. We'll go the old route and split it */ | |
556 | return -EBADFD; | |
557 | } | |
558 | ||
559 | node = kmalloc(rawlen, GFP_KERNEL); | |
560 | if (!node) | |
561 | return -ENOMEM; | |
562 | ||
563 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); | |
564 | if (!ret && retlen != rawlen) | |
565 | ret = -EIO; | |
566 | if (ret) | |
567 | goto out_node; | |
568 | ||
569 | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); | |
570 | if (je32_to_cpu(node->u.hdr_crc) != crc) { | |
571 | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
572 | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); | |
573 | goto bail; | |
574 | } | |
575 | ||
576 | switch(je16_to_cpu(node->u.nodetype)) { | |
577 | case JFFS2_NODETYPE_INODE: | |
578 | crc = crc32(0, node, sizeof(node->i)-8); | |
579 | if (je32_to_cpu(node->i.node_crc) != crc) { | |
580 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
581 | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); | |
582 | goto bail; | |
583 | } | |
584 | ||
585 | if (je32_to_cpu(node->i.dsize)) { | |
586 | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); | |
587 | if (je32_to_cpu(node->i.data_crc) != crc) { | |
588 | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
589 | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); | |
590 | goto bail; | |
591 | } | |
592 | } | |
593 | break; | |
594 | ||
595 | case JFFS2_NODETYPE_DIRENT: | |
596 | crc = crc32(0, node, sizeof(node->d)-8); | |
597 | if (je32_to_cpu(node->d.node_crc) != crc) { | |
598 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
599 | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); | |
600 | goto bail; | |
601 | } | |
602 | ||
603 | if (node->d.nsize) { | |
604 | crc = crc32(0, node->d.name, node->d.nsize); | |
605 | if (je32_to_cpu(node->d.name_crc) != crc) { | |
606 | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
607 | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); | |
608 | goto bail; | |
609 | } | |
610 | } | |
611 | break; | |
612 | default: | |
6171586a DW |
613 | /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ |
614 | if (ic) { | |
615 | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", | |
616 | ref_offset(raw), je16_to_cpu(node->u.nodetype)); | |
617 | goto bail; | |
618 | } | |
1da177e4 LT |
619 | } |
620 | ||
621 | nraw = jffs2_alloc_raw_node_ref(); | |
622 | if (!nraw) { | |
623 | ret = -ENOMEM; | |
624 | goto out_node; | |
625 | } | |
626 | ||
627 | /* OK, all the CRCs are good; this node can just be copied as-is. */ | |
628 | retry: | |
629 | nraw->flash_offset = phys_ofs; | |
1da177e4 LT |
630 | |
631 | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); | |
632 | ||
633 | if (ret || (retlen != rawlen)) { | |
634 | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", | |
635 | rawlen, phys_ofs, ret, retlen); | |
636 | if (retlen) { | |
637 | /* Doesn't belong to any inode */ | |
638 | nraw->next_in_ino = NULL; | |
639 | ||
640 | nraw->flash_offset |= REF_OBSOLETE; | |
b64335f2 | 641 | jffs2_add_physical_node_ref(c, nraw, rawlen); |
1da177e4 LT |
642 | jffs2_mark_node_obsolete(c, nraw); |
643 | } else { | |
644 | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset); | |
645 | jffs2_free_raw_node_ref(nraw); | |
646 | } | |
647 | if (!retried && (nraw = jffs2_alloc_raw_node_ref())) { | |
648 | /* Try to reallocate space and retry */ | |
649 | uint32_t dummy; | |
650 | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; | |
651 | ||
652 | retried = 1; | |
653 | ||
654 | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); | |
182ec4ee | 655 | |
730554d9 AB |
656 | jffs2_dbg_acct_sanity_check(c,jeb); |
657 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 | 658 | |
e631ddba FH |
659 | ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen); |
660 | /* this is not the exact summary size of it, | |
661 | it is only an upper estimation */ | |
1da177e4 LT |
662 | |
663 | if (!ret) { | |
664 | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); | |
665 | ||
730554d9 AB |
666 | jffs2_dbg_acct_sanity_check(c,jeb); |
667 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 LT |
668 | |
669 | goto retry; | |
670 | } | |
671 | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); | |
672 | jffs2_free_raw_node_ref(nraw); | |
673 | } | |
674 | ||
675 | jffs2_free_raw_node_ref(nraw); | |
676 | if (!ret) | |
677 | ret = -EIO; | |
678 | goto out_node; | |
679 | } | |
680 | nraw->flash_offset |= REF_PRISTINE; | |
b64335f2 | 681 | jffs2_add_physical_node_ref(c, nraw, rawlen); |
1da177e4 | 682 | |
6171586a DW |
683 | if (ic) { |
684 | /* Link into per-inode list. This is safe because of the ic | |
685 | state being INO_STATE_GC. Note that if we're doing this | |
686 | for an inode which is in-core, the 'nraw' pointer is then | |
687 | going to be fetched from ic->nodes by our caller. */ | |
688 | spin_lock(&c->erase_completion_lock); | |
689 | nraw->next_in_ino = ic->nodes; | |
690 | ic->nodes = nraw; | |
691 | spin_unlock(&c->erase_completion_lock); | |
692 | } | |
1da177e4 LT |
693 | jffs2_mark_node_obsolete(c, raw); |
694 | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); | |
695 | ||
696 | out_node: | |
697 | kfree(node); | |
698 | return ret; | |
699 | bail: | |
700 | ret = -EBADFD; | |
701 | goto out_node; | |
702 | } | |
703 | ||
182ec4ee | 704 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
705 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) |
706 | { | |
707 | struct jffs2_full_dnode *new_fn; | |
708 | struct jffs2_raw_inode ri; | |
8557fd51 | 709 | struct jffs2_node_frag *last_frag; |
aef9ab47 | 710 | union jffs2_device_node dev; |
1da177e4 | 711 | char *mdata = NULL, mdatalen = 0; |
8557fd51 | 712 | uint32_t alloclen, phys_ofs, ilen; |
1da177e4 LT |
713 | int ret; |
714 | ||
715 | if (S_ISBLK(JFFS2_F_I_MODE(f)) || | |
716 | S_ISCHR(JFFS2_F_I_MODE(f)) ) { | |
717 | /* For these, we don't actually need to read the old node */ | |
aef9ab47 | 718 | mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); |
1da177e4 | 719 | mdata = (char *)&dev; |
1da177e4 LT |
720 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); |
721 | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { | |
722 | mdatalen = fn->size; | |
723 | mdata = kmalloc(fn->size, GFP_KERNEL); | |
724 | if (!mdata) { | |
725 | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); | |
726 | return -ENOMEM; | |
727 | } | |
728 | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); | |
729 | if (ret) { | |
730 | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); | |
731 | kfree(mdata); | |
732 | return ret; | |
733 | } | |
734 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); | |
735 | ||
736 | } | |
182ec4ee | 737 | |
e631ddba FH |
738 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen, |
739 | JFFS2_SUMMARY_INODE_SIZE); | |
1da177e4 LT |
740 | if (ret) { |
741 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", | |
742 | sizeof(ri)+ mdatalen, ret); | |
743 | goto out; | |
744 | } | |
182ec4ee | 745 | |
8557fd51 AB |
746 | last_frag = frag_last(&f->fragtree); |
747 | if (last_frag) | |
748 | /* Fetch the inode length from the fragtree rather then | |
749 | * from i_size since i_size may have not been updated yet */ | |
750 | ilen = last_frag->ofs + last_frag->size; | |
751 | else | |
752 | ilen = JFFS2_F_I_SIZE(f); | |
182ec4ee | 753 | |
1da177e4 LT |
754 | memset(&ri, 0, sizeof(ri)); |
755 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
756 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
757 | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); | |
758 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
759 | ||
760 | ri.ino = cpu_to_je32(f->inocache->ino); | |
761 | ri.version = cpu_to_je32(++f->highest_version); | |
762 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
763 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
764 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 765 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
766 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
767 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
768 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
769 | ri.offset = cpu_to_je32(0); | |
770 | ri.csize = cpu_to_je32(mdatalen); | |
771 | ri.dsize = cpu_to_je32(mdatalen); | |
772 | ri.compr = JFFS2_COMPR_NONE; | |
773 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
774 | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); | |
775 | ||
776 | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC); | |
777 | ||
778 | if (IS_ERR(new_fn)) { | |
779 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
780 | ret = PTR_ERR(new_fn); | |
781 | goto out; | |
782 | } | |
783 | jffs2_mark_node_obsolete(c, fn->raw); | |
784 | jffs2_free_full_dnode(fn); | |
785 | f->metadata = new_fn; | |
786 | out: | |
787 | if (S_ISLNK(JFFS2_F_I_MODE(f))) | |
788 | kfree(mdata); | |
789 | return ret; | |
790 | } | |
791 | ||
182ec4ee | 792 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
793 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
794 | { | |
795 | struct jffs2_full_dirent *new_fd; | |
796 | struct jffs2_raw_dirent rd; | |
797 | uint32_t alloclen, phys_ofs; | |
798 | int ret; | |
799 | ||
800 | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
801 | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); | |
802 | rd.nsize = strlen(fd->name); | |
803 | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); | |
804 | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); | |
805 | ||
806 | rd.pino = cpu_to_je32(f->inocache->ino); | |
807 | rd.version = cpu_to_je32(++f->highest_version); | |
808 | rd.ino = cpu_to_je32(fd->ino); | |
3a69e0cd AB |
809 | /* If the times on this inode were set by explicit utime() they can be different, |
810 | so refrain from splatting them. */ | |
811 | if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f)) | |
812 | rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
182ec4ee | 813 | else |
3a69e0cd | 814 | rd.mctime = cpu_to_je32(0); |
1da177e4 LT |
815 | rd.type = fd->type; |
816 | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); | |
817 | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); | |
182ec4ee | 818 | |
e631ddba FH |
819 | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen, |
820 | JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); | |
1da177e4 LT |
821 | if (ret) { |
822 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", | |
823 | sizeof(rd)+rd.nsize, ret); | |
824 | return ret; | |
825 | } | |
826 | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC); | |
827 | ||
828 | if (IS_ERR(new_fd)) { | |
829 | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); | |
830 | return PTR_ERR(new_fd); | |
831 | } | |
832 | jffs2_add_fd_to_list(c, new_fd, &f->dents); | |
833 | return 0; | |
834 | } | |
835 | ||
182ec4ee | 836 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
837 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
838 | { | |
839 | struct jffs2_full_dirent **fdp = &f->dents; | |
840 | int found = 0; | |
841 | ||
842 | /* On a medium where we can't actually mark nodes obsolete | |
843 | pernamently, such as NAND flash, we need to work out | |
844 | whether this deletion dirent is still needed to actively | |
845 | delete a 'real' dirent with the same name that's still | |
846 | somewhere else on the flash. */ | |
847 | if (!jffs2_can_mark_obsolete(c)) { | |
848 | struct jffs2_raw_dirent *rd; | |
849 | struct jffs2_raw_node_ref *raw; | |
850 | int ret; | |
851 | size_t retlen; | |
852 | int name_len = strlen(fd->name); | |
853 | uint32_t name_crc = crc32(0, fd->name, name_len); | |
854 | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); | |
855 | ||
856 | rd = kmalloc(rawlen, GFP_KERNEL); | |
857 | if (!rd) | |
858 | return -ENOMEM; | |
859 | ||
860 | /* Prevent the erase code from nicking the obsolete node refs while | |
861 | we're looking at them. I really don't like this extra lock but | |
862 | can't see any alternative. Suggestions on a postcard to... */ | |
863 | down(&c->erase_free_sem); | |
864 | ||
865 | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { | |
866 | ||
867 | /* We only care about obsolete ones */ | |
868 | if (!(ref_obsolete(raw))) | |
869 | continue; | |
870 | ||
871 | /* Any dirent with the same name is going to have the same length... */ | |
872 | if (ref_totlen(c, NULL, raw) != rawlen) | |
873 | continue; | |
874 | ||
182ec4ee | 875 | /* Doesn't matter if there's one in the same erase block. We're going to |
1da177e4 | 876 | delete it too at the same time. */ |
3be36675 | 877 | if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) |
1da177e4 LT |
878 | continue; |
879 | ||
880 | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); | |
881 | ||
882 | /* This is an obsolete node belonging to the same directory, and it's of the right | |
883 | length. We need to take a closer look...*/ | |
884 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); | |
885 | if (ret) { | |
886 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); | |
887 | /* If we can't read it, we don't need to continue to obsolete it. Continue */ | |
888 | continue; | |
889 | } | |
890 | if (retlen != rawlen) { | |
891 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", | |
892 | retlen, rawlen, ref_offset(raw)); | |
893 | continue; | |
894 | } | |
895 | ||
896 | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) | |
897 | continue; | |
898 | ||
899 | /* If the name CRC doesn't match, skip */ | |
900 | if (je32_to_cpu(rd->name_crc) != name_crc) | |
901 | continue; | |
902 | ||
903 | /* If the name length doesn't match, or it's another deletion dirent, skip */ | |
904 | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) | |
905 | continue; | |
906 | ||
907 | /* OK, check the actual name now */ | |
908 | if (memcmp(rd->name, fd->name, name_len)) | |
909 | continue; | |
910 | ||
911 | /* OK. The name really does match. There really is still an older node on | |
912 | the flash which our deletion dirent obsoletes. So we have to write out | |
913 | a new deletion dirent to replace it */ | |
914 | up(&c->erase_free_sem); | |
915 | ||
916 | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", | |
917 | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); | |
918 | kfree(rd); | |
919 | ||
920 | return jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
921 | } | |
922 | ||
923 | up(&c->erase_free_sem); | |
924 | kfree(rd); | |
925 | } | |
926 | ||
182ec4ee | 927 | /* FIXME: If we're deleting a dirent which contains the current mtime and ctime, |
3a69e0cd AB |
928 | we should update the metadata node with those times accordingly */ |
929 | ||
1da177e4 LT |
930 | /* No need for it any more. Just mark it obsolete and remove it from the list */ |
931 | while (*fdp) { | |
932 | if ((*fdp) == fd) { | |
933 | found = 1; | |
934 | *fdp = fd->next; | |
935 | break; | |
936 | } | |
937 | fdp = &(*fdp)->next; | |
938 | } | |
939 | if (!found) { | |
940 | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); | |
941 | } | |
942 | jffs2_mark_node_obsolete(c, fd->raw); | |
943 | jffs2_free_full_dirent(fd); | |
944 | return 0; | |
945 | } | |
946 | ||
947 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
948 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
949 | uint32_t start, uint32_t end) | |
950 | { | |
951 | struct jffs2_raw_inode ri; | |
952 | struct jffs2_node_frag *frag; | |
953 | struct jffs2_full_dnode *new_fn; | |
8557fd51 | 954 | uint32_t alloclen, phys_ofs, ilen; |
1da177e4 LT |
955 | int ret; |
956 | ||
957 | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", | |
958 | f->inocache->ino, start, end)); | |
182ec4ee | 959 | |
1da177e4 LT |
960 | memset(&ri, 0, sizeof(ri)); |
961 | ||
962 | if(fn->frags > 1) { | |
963 | size_t readlen; | |
964 | uint32_t crc; | |
182ec4ee | 965 | /* It's partially obsoleted by a later write. So we have to |
1da177e4 LT |
966 | write it out again with the _same_ version as before */ |
967 | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); | |
968 | if (readlen != sizeof(ri) || ret) { | |
969 | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); | |
970 | goto fill; | |
971 | } | |
972 | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { | |
973 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", | |
974 | ref_offset(fn->raw), | |
975 | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); | |
976 | return -EIO; | |
977 | } | |
978 | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { | |
979 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", | |
980 | ref_offset(fn->raw), | |
981 | je32_to_cpu(ri.totlen), sizeof(ri)); | |
982 | return -EIO; | |
983 | } | |
984 | crc = crc32(0, &ri, sizeof(ri)-8); | |
985 | if (crc != je32_to_cpu(ri.node_crc)) { | |
986 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", | |
182ec4ee | 987 | ref_offset(fn->raw), |
1da177e4 LT |
988 | je32_to_cpu(ri.node_crc), crc); |
989 | /* FIXME: We could possibly deal with this by writing new holes for each frag */ | |
182ec4ee | 990 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
991 | start, end, f->inocache->ino); |
992 | goto fill; | |
993 | } | |
994 | if (ri.compr != JFFS2_COMPR_ZERO) { | |
995 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); | |
182ec4ee | 996 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
997 | start, end, f->inocache->ino); |
998 | goto fill; | |
999 | } | |
1000 | } else { | |
1001 | fill: | |
1002 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
1003 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
1004 | ri.totlen = cpu_to_je32(sizeof(ri)); | |
1005 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
1006 | ||
1007 | ri.ino = cpu_to_je32(f->inocache->ino); | |
1008 | ri.version = cpu_to_je32(++f->highest_version); | |
1009 | ri.offset = cpu_to_je32(start); | |
1010 | ri.dsize = cpu_to_je32(end - start); | |
1011 | ri.csize = cpu_to_je32(0); | |
1012 | ri.compr = JFFS2_COMPR_ZERO; | |
1013 | } | |
182ec4ee | 1014 | |
8557fd51 AB |
1015 | frag = frag_last(&f->fragtree); |
1016 | if (frag) | |
1017 | /* Fetch the inode length from the fragtree rather then | |
1018 | * from i_size since i_size may have not been updated yet */ | |
1019 | ilen = frag->ofs + frag->size; | |
1020 | else | |
1021 | ilen = JFFS2_F_I_SIZE(f); | |
1022 | ||
1da177e4 LT |
1023 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
1024 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1025 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 1026 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
1027 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
1028 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1029 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1030 | ri.data_crc = cpu_to_je32(0); | |
1031 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1032 | ||
e631ddba FH |
1033 | ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen, |
1034 | JFFS2_SUMMARY_INODE_SIZE); | |
1da177e4 LT |
1035 | if (ret) { |
1036 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", | |
1037 | sizeof(ri), ret); | |
1038 | return ret; | |
1039 | } | |
1040 | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC); | |
1041 | ||
1042 | if (IS_ERR(new_fn)) { | |
1043 | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); | |
1044 | return PTR_ERR(new_fn); | |
1045 | } | |
1046 | if (je32_to_cpu(ri.version) == f->highest_version) { | |
1047 | jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1048 | if (f->metadata) { | |
1049 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1050 | jffs2_free_full_dnode(f->metadata); | |
1051 | f->metadata = NULL; | |
1052 | } | |
1053 | return 0; | |
1054 | } | |
1055 | ||
182ec4ee | 1056 | /* |
1da177e4 LT |
1057 | * We should only get here in the case where the node we are |
1058 | * replacing had more than one frag, so we kept the same version | |
182ec4ee | 1059 | * number as before. (Except in case of error -- see 'goto fill;' |
1da177e4 LT |
1060 | * above.) |
1061 | */ | |
1062 | D1(if(unlikely(fn->frags <= 1)) { | |
1063 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", | |
1064 | fn->frags, je32_to_cpu(ri.version), f->highest_version, | |
1065 | je32_to_cpu(ri.ino)); | |
1066 | }); | |
1067 | ||
1068 | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ | |
1069 | mark_ref_normal(new_fn->raw); | |
1070 | ||
182ec4ee | 1071 | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); |
1da177e4 LT |
1072 | frag; frag = frag_next(frag)) { |
1073 | if (frag->ofs > fn->size + fn->ofs) | |
1074 | break; | |
1075 | if (frag->node == fn) { | |
1076 | frag->node = new_fn; | |
1077 | new_fn->frags++; | |
1078 | fn->frags--; | |
1079 | } | |
1080 | } | |
1081 | if (fn->frags) { | |
1082 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); | |
1083 | BUG(); | |
1084 | } | |
1085 | if (!new_fn->frags) { | |
1086 | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); | |
1087 | BUG(); | |
1088 | } | |
182ec4ee | 1089 | |
1da177e4 LT |
1090 | jffs2_mark_node_obsolete(c, fn->raw); |
1091 | jffs2_free_full_dnode(fn); | |
182ec4ee | 1092 | |
1da177e4 LT |
1093 | return 0; |
1094 | } | |
1095 | ||
1096 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
1097 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
1098 | uint32_t start, uint32_t end) | |
1099 | { | |
1100 | struct jffs2_full_dnode *new_fn; | |
1101 | struct jffs2_raw_inode ri; | |
182ec4ee | 1102 | uint32_t alloclen, phys_ofs, offset, orig_end, orig_start; |
1da177e4 LT |
1103 | int ret = 0; |
1104 | unsigned char *comprbuf = NULL, *writebuf; | |
1105 | unsigned long pg; | |
1106 | unsigned char *pg_ptr; | |
182ec4ee | 1107 | |
1da177e4 LT |
1108 | memset(&ri, 0, sizeof(ri)); |
1109 | ||
1110 | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", | |
1111 | f->inocache->ino, start, end)); | |
1112 | ||
1113 | orig_end = end; | |
1114 | orig_start = start; | |
1115 | ||
1116 | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { | |
1117 | /* Attempt to do some merging. But only expand to cover logically | |
1118 | adjacent frags if the block containing them is already considered | |
182ec4ee TG |
1119 | to be dirty. Otherwise we end up with GC just going round in |
1120 | circles dirtying the nodes it already wrote out, especially | |
1da177e4 LT |
1121 | on NAND where we have small eraseblocks and hence a much higher |
1122 | chance of nodes having to be split to cross boundaries. */ | |
1123 | ||
1124 | struct jffs2_node_frag *frag; | |
1125 | uint32_t min, max; | |
1126 | ||
1127 | min = start & ~(PAGE_CACHE_SIZE-1); | |
1128 | max = min + PAGE_CACHE_SIZE; | |
1129 | ||
1130 | frag = jffs2_lookup_node_frag(&f->fragtree, start); | |
1131 | ||
1132 | /* BUG_ON(!frag) but that'll happen anyway... */ | |
1133 | ||
1134 | BUG_ON(frag->ofs != start); | |
1135 | ||
1136 | /* First grow down... */ | |
1137 | while((frag = frag_prev(frag)) && frag->ofs >= min) { | |
1138 | ||
1139 | /* If the previous frag doesn't even reach the beginning, there's | |
1140 | excessive fragmentation. Just merge. */ | |
1141 | if (frag->ofs > min) { | |
1142 | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", | |
1143 | frag->ofs, frag->ofs+frag->size)); | |
1144 | start = frag->ofs; | |
1145 | continue; | |
1146 | } | |
1147 | /* OK. This frag holds the first byte of the page. */ | |
1148 | if (!frag->node || !frag->node->raw) { | |
1149 | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", | |
1150 | frag->ofs, frag->ofs+frag->size)); | |
1151 | break; | |
1152 | } else { | |
1153 | ||
182ec4ee | 1154 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1155 | in a block which is still considered clean? If so, don't obsolete it. |
1156 | If not, cover it anyway. */ | |
1157 | ||
1158 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1159 | struct jffs2_eraseblock *jeb; | |
1160 | ||
1161 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1162 | ||
1163 | if (jeb == c->gcblock) { | |
1164 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1165 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1166 | start = frag->ofs; | |
1167 | break; | |
1168 | } | |
1169 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1170 | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1171 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1172 | break; | |
1173 | } | |
1174 | ||
1175 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1176 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1177 | start = frag->ofs; | |
1178 | break; | |
1179 | } | |
1180 | } | |
1181 | ||
1182 | /* ... then up */ | |
1183 | ||
1184 | /* Find last frag which is actually part of the node we're to GC. */ | |
1185 | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); | |
1186 | ||
1187 | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { | |
1188 | ||
1189 | /* If the previous frag doesn't even reach the beginning, there's lots | |
1190 | of fragmentation. Just merge. */ | |
1191 | if (frag->ofs+frag->size < max) { | |
1192 | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", | |
1193 | frag->ofs, frag->ofs+frag->size)); | |
1194 | end = frag->ofs + frag->size; | |
1195 | continue; | |
1196 | } | |
1197 | ||
1198 | if (!frag->node || !frag->node->raw) { | |
1199 | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", | |
1200 | frag->ofs, frag->ofs+frag->size)); | |
1201 | break; | |
1202 | } else { | |
1203 | ||
182ec4ee | 1204 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1205 | in a block which is still considered clean? If so, don't obsolete it. |
1206 | If not, cover it anyway. */ | |
1207 | ||
1208 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1209 | struct jffs2_eraseblock *jeb; | |
1210 | ||
1211 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1212 | ||
1213 | if (jeb == c->gcblock) { | |
1214 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1215 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1216 | end = frag->ofs + frag->size; | |
1217 | break; | |
1218 | } | |
1219 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1220 | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1221 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1222 | break; | |
1223 | } | |
1224 | ||
1225 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1226 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1227 | end = frag->ofs + frag->size; | |
1228 | break; | |
1229 | } | |
1230 | } | |
182ec4ee | 1231 | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", |
1da177e4 LT |
1232 | orig_start, orig_end, start, end)); |
1233 | ||
8557fd51 | 1234 | D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); |
1da177e4 LT |
1235 | BUG_ON(end < orig_end); |
1236 | BUG_ON(start > orig_start); | |
1237 | } | |
182ec4ee | 1238 | |
1da177e4 LT |
1239 | /* First, use readpage() to read the appropriate page into the page cache */ |
1240 | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() | |
1241 | * triggered garbage collection in the first place? | |
1242 | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the | |
1243 | * page OK. We'll actually write it out again in commit_write, which is a little | |
1244 | * suboptimal, but at least we're correct. | |
1245 | */ | |
1246 | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); | |
1247 | ||
1248 | if (IS_ERR(pg_ptr)) { | |
1249 | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); | |
1250 | return PTR_ERR(pg_ptr); | |
1251 | } | |
1252 | ||
1253 | offset = start; | |
1254 | while(offset < orig_end) { | |
1255 | uint32_t datalen; | |
1256 | uint32_t cdatalen; | |
1257 | uint16_t comprtype = JFFS2_COMPR_NONE; | |
1258 | ||
e631ddba FH |
1259 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, |
1260 | &alloclen, JFFS2_SUMMARY_INODE_SIZE); | |
1da177e4 LT |
1261 | |
1262 | if (ret) { | |
1263 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", | |
1264 | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); | |
1265 | break; | |
1266 | } | |
1267 | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); | |
1268 | datalen = end - offset; | |
1269 | ||
1270 | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); | |
1271 | ||
1272 | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); | |
1273 | ||
1274 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
1275 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
1276 | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); | |
1277 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
1278 | ||
1279 | ri.ino = cpu_to_je32(f->inocache->ino); | |
1280 | ri.version = cpu_to_je32(++f->highest_version); | |
1281 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
1282 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1283 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
1284 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | |
1285 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | |
1286 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1287 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1288 | ri.offset = cpu_to_je32(offset); | |
1289 | ri.csize = cpu_to_je32(cdatalen); | |
1290 | ri.dsize = cpu_to_je32(datalen); | |
1291 | ri.compr = comprtype & 0xff; | |
1292 | ri.usercompr = (comprtype >> 8) & 0xff; | |
1293 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1294 | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); | |
182ec4ee | 1295 | |
1da177e4 LT |
1296 | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC); |
1297 | ||
1298 | jffs2_free_comprbuf(comprbuf, writebuf); | |
1299 | ||
1300 | if (IS_ERR(new_fn)) { | |
1301 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
1302 | ret = PTR_ERR(new_fn); | |
1303 | break; | |
1304 | } | |
1305 | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1306 | offset += datalen; | |
1307 | if (f->metadata) { | |
1308 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1309 | jffs2_free_full_dnode(f->metadata); | |
1310 | f->metadata = NULL; | |
1311 | } | |
1312 | } | |
1313 | ||
1314 | jffs2_gc_release_page(c, pg_ptr, &pg); | |
1315 | return ret; | |
1316 | } |