]> Git Repo - linux.git/blame - fs/jffs2/gc.c
[JFFS2] Initialise ref->next_in_ino when marking dirty space in wbuf flush
[linux.git] / fs / jffs2 / gc.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <[email protected]>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
182ec4ee 10 * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
1da177e4
LT
11 *
12 */
13
14#include <linux/kernel.h>
15#include <linux/mtd/mtd.h>
16#include <linux/slab.h>
17#include <linux/pagemap.h>
18#include <linux/crc32.h>
19#include <linux/compiler.h>
20#include <linux/stat.h>
21#include "nodelist.h"
22#include "compr.h"
23
182ec4ee 24static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
182ec4ee 27static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
182ec4ee 29static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4 30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
182ec4ee 31static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42/* Called with erase_completion_lock held */
43static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44{
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
48
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
a42163d7 53again:
1da177e4
LT
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
182ec4ee 58 /* Note that most of them will have gone directly to be erased.
1da177e4
LT
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81
82 nextlist = &c->erasable_list;
a42163d7
AB
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
3cceb9f6 86 spin_unlock(&c->erase_completion_lock);
a42163d7 87 jffs2_flush_wbuf_pad(c);
3cceb9f6 88 spin_lock(&c->erase_completion_lock);
a42163d7 89 goto again;
1da177e4
LT
90 } else {
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 return NULL;
94 }
95
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 list_del(&ret->list);
98 c->gcblock = ret;
99 ret->gc_node = ret->first_node;
100 if (!ret->gc_node) {
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 BUG();
103 }
182ec4ee 104
1da177e4
LT
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
112 }
113
1da177e4
LT
114 return ret;
115}
116
117/* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
120 */
121int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122{
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
aa98d7cf 128 int xattr = 0;
1da177e4
LT
129
130 if (down_interruptible(&c->alloc_sem))
131 return -EINTR;
132
133 for (;;) {
134 spin_lock(&c->erase_completion_lock);
135 if (!c->unchecked_size)
136 break;
137
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
182ec4ee 140
1da177e4 141 /* checked_ino is protected by the alloc_sem */
aa98d7cf 142 if (c->checked_ino > c->highest_ino && xattr) {
1da177e4
LT
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
144 c->unchecked_size);
e0c8e42f 145 jffs2_dbg_dump_block_lists_nolock(c);
1da177e4
LT
146 spin_unlock(&c->erase_completion_lock);
147 BUG();
148 }
149
150 spin_unlock(&c->erase_completion_lock);
151
aa98d7cf
KK
152 if (!xattr)
153 xattr = jffs2_verify_xattr(c);
154
1da177e4
LT
155 spin_lock(&c->inocache_lock);
156
157 ic = jffs2_get_ino_cache(c, c->checked_ino++);
158
159 if (!ic) {
160 spin_unlock(&c->inocache_lock);
161 continue;
162 }
163
164 if (!ic->nlink) {
165 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
166 ic->ino));
167 spin_unlock(&c->inocache_lock);
168 continue;
169 }
170 switch(ic->state) {
171 case INO_STATE_CHECKEDABSENT:
172 case INO_STATE_PRESENT:
173 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
174 spin_unlock(&c->inocache_lock);
175 continue;
176
177 case INO_STATE_GC:
178 case INO_STATE_CHECKING:
179 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
180 spin_unlock(&c->inocache_lock);
181 BUG();
182
183 case INO_STATE_READING:
184 /* We need to wait for it to finish, lest we move on
182ec4ee 185 and trigger the BUG() above while we haven't yet
1da177e4
LT
186 finished checking all its nodes */
187 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
d96fb997
DW
188 /* We need to come back again for the _same_ inode. We've
189 made no progress in this case, but that should be OK */
190 c->checked_ino--;
191
1da177e4
LT
192 up(&c->alloc_sem);
193 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
194 return 0;
195
196 default:
197 BUG();
198
199 case INO_STATE_UNCHECKED:
200 ;
201 }
202 ic->state = INO_STATE_CHECKING;
203 spin_unlock(&c->inocache_lock);
204
205 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
206
207 ret = jffs2_do_crccheck_inode(c, ic);
208 if (ret)
209 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
210
211 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
212 up(&c->alloc_sem);
213 return ret;
214 }
215
216 /* First, work out which block we're garbage-collecting */
217 jeb = c->gcblock;
218
219 if (!jeb)
220 jeb = jffs2_find_gc_block(c);
221
222 if (!jeb) {
223 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
224 spin_unlock(&c->erase_completion_lock);
225 up(&c->alloc_sem);
226 return -EIO;
227 }
228
229 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
230 D1(if (c->nextblock)
231 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
232
233 if (!jeb->used_size) {
234 up(&c->alloc_sem);
235 goto eraseit;
236 }
237
238 raw = jeb->gc_node;
182ec4ee 239
1da177e4
LT
240 while(ref_obsolete(raw)) {
241 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
242 raw = raw->next_phys;
243 if (unlikely(!raw)) {
244 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
182ec4ee 245 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
1da177e4
LT
246 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
247 jeb->gc_node = raw;
248 spin_unlock(&c->erase_completion_lock);
249 up(&c->alloc_sem);
250 BUG();
251 }
252 }
253 jeb->gc_node = raw;
254
255 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
256
257 if (!raw->next_in_ino) {
258 /* Inode-less node. Clean marker, snapshot or something like that */
1da177e4 259 spin_unlock(&c->erase_completion_lock);
6171586a
DW
260 if (ref_flags(raw) == REF_PRISTINE) {
261 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
262 jffs2_garbage_collect_pristine(c, NULL, raw);
263 } else {
264 /* Just mark it obsolete */
265 jffs2_mark_node_obsolete(c, raw);
266 }
1da177e4
LT
267 up(&c->alloc_sem);
268 goto eraseit_lock;
269 }
270
271 ic = jffs2_raw_ref_to_ic(raw);
272
084702e0 273#ifdef CONFIG_JFFS2_FS_XATTR
aa98d7cf 274 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
084702e0
KK
275 * We can decide whether this node is inode or xattr by ic->class. */
276 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
277 || ic->class == RAWNODE_CLASS_XATTR_REF) {
278 BUG_ON(raw->next_in_ino != (void *)ic);
279 spin_unlock(&c->erase_completion_lock);
280
281 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
282 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
283 } else {
284 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
285 }
aa98d7cf 286 goto release_sem;
084702e0
KK
287 }
288#endif
aa98d7cf 289
1da177e4 290 /* We need to hold the inocache. Either the erase_completion_lock or
182ec4ee 291 the inocache_lock are sufficient; we trade down since the inocache_lock
1da177e4
LT
292 causes less contention. */
293 spin_lock(&c->inocache_lock);
294
295 spin_unlock(&c->erase_completion_lock);
296
297 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
298
299 /* Three possibilities:
300 1. Inode is already in-core. We must iget it and do proper
301 updating to its fragtree, etc.
302 2. Inode is not in-core, node is REF_PRISTINE. We lock the
303 inocache to prevent a read_inode(), copy the node intact.
304 3. Inode is not in-core, node is not pristine. We must iget()
305 and take the slow path.
306 */
307
308 switch(ic->state) {
309 case INO_STATE_CHECKEDABSENT:
182ec4ee 310 /* It's been checked, but it's not currently in-core.
1da177e4
LT
311 We can just copy any pristine nodes, but have
312 to prevent anyone else from doing read_inode() while
313 we're at it, so we set the state accordingly */
314 if (ref_flags(raw) == REF_PRISTINE)
315 ic->state = INO_STATE_GC;
316 else {
182ec4ee 317 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
1da177e4
LT
318 ic->ino));
319 }
320 break;
321
322 case INO_STATE_PRESENT:
323 /* It's in-core. GC must iget() it. */
324 break;
325
326 case INO_STATE_UNCHECKED:
327 case INO_STATE_CHECKING:
328 case INO_STATE_GC:
329 /* Should never happen. We should have finished checking
182ec4ee
TG
330 by the time we actually start doing any GC, and since
331 we're holding the alloc_sem, no other garbage collection
1da177e4
LT
332 can happen.
333 */
334 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
335 ic->ino, ic->state);
336 up(&c->alloc_sem);
337 spin_unlock(&c->inocache_lock);
338 BUG();
339
340 case INO_STATE_READING:
341 /* Someone's currently trying to read it. We must wait for
342 them to finish and then go through the full iget() route
343 to do the GC. However, sometimes read_inode() needs to get
344 the alloc_sem() (for marking nodes invalid) so we must
345 drop the alloc_sem before sleeping. */
346
347 up(&c->alloc_sem);
348 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
349 ic->ino, ic->state));
350 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
182ec4ee 351 /* And because we dropped the alloc_sem we must start again from the
1da177e4
LT
352 beginning. Ponder chance of livelock here -- we're returning success
353 without actually making any progress.
354
182ec4ee 355 Q: What are the chances that the inode is back in INO_STATE_READING
1da177e4
LT
356 again by the time we next enter this function? And that this happens
357 enough times to cause a real delay?
358
182ec4ee 359 A: Small enough that I don't care :)
1da177e4
LT
360 */
361 return 0;
362 }
363
364 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
182ec4ee 365 node intact, and we don't have to muck about with the fragtree etc.
1da177e4
LT
366 because we know it's not in-core. If it _was_ in-core, we go through
367 all the iget() crap anyway */
368
369 if (ic->state == INO_STATE_GC) {
370 spin_unlock(&c->inocache_lock);
371
372 ret = jffs2_garbage_collect_pristine(c, ic, raw);
373
374 spin_lock(&c->inocache_lock);
375 ic->state = INO_STATE_CHECKEDABSENT;
376 wake_up(&c->inocache_wq);
377
378 if (ret != -EBADFD) {
379 spin_unlock(&c->inocache_lock);
380 goto release_sem;
381 }
382
383 /* Fall through if it wanted us to, with inocache_lock held */
384 }
385
386 /* Prevent the fairly unlikely race where the gcblock is
387 entirely obsoleted by the final close of a file which had
388 the only valid nodes in the block, followed by erasure,
389 followed by freeing of the ic because the erased block(s)
390 held _all_ the nodes of that inode.... never been seen but
391 it's vaguely possible. */
392
393 inum = ic->ino;
394 nlink = ic->nlink;
395 spin_unlock(&c->inocache_lock);
396
397 f = jffs2_gc_fetch_inode(c, inum, nlink);
398 if (IS_ERR(f)) {
399 ret = PTR_ERR(f);
400 goto release_sem;
401 }
402 if (!f) {
403 ret = 0;
404 goto release_sem;
405 }
406
407 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
408
409 jffs2_gc_release_inode(c, f);
410
411 release_sem:
412 up(&c->alloc_sem);
413
414 eraseit_lock:
415 /* If we've finished this block, start it erasing */
416 spin_lock(&c->erase_completion_lock);
417
418 eraseit:
419 if (c->gcblock && !c->gcblock->used_size) {
420 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
421 /* We're GC'ing an empty block? */
422 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
423 c->gcblock = NULL;
424 c->nr_erasing_blocks++;
425 jffs2_erase_pending_trigger(c);
426 }
427 spin_unlock(&c->erase_completion_lock);
428
429 return ret;
430}
431
432static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
433 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
434{
435 struct jffs2_node_frag *frag;
436 struct jffs2_full_dnode *fn = NULL;
437 struct jffs2_full_dirent *fd;
438 uint32_t start = 0, end = 0, nrfrags = 0;
439 int ret = 0;
440
441 down(&f->sem);
442
443 /* Now we have the lock for this inode. Check that it's still the one at the head
444 of the list. */
445
446 spin_lock(&c->erase_completion_lock);
447
448 if (c->gcblock != jeb) {
449 spin_unlock(&c->erase_completion_lock);
450 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
451 goto upnout;
452 }
453 if (ref_obsolete(raw)) {
454 spin_unlock(&c->erase_completion_lock);
455 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
456 /* They'll call again */
457 goto upnout;
458 }
459 spin_unlock(&c->erase_completion_lock);
460
461 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
462 if (f->metadata && f->metadata->raw == raw) {
463 fn = f->metadata;
464 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
465 goto upnout;
466 }
467
468 /* FIXME. Read node and do lookup? */
469 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
470 if (frag->node && frag->node->raw == raw) {
471 fn = frag->node;
472 end = frag->ofs + frag->size;
473 if (!nrfrags++)
474 start = frag->ofs;
475 if (nrfrags == frag->node->frags)
476 break; /* We've found them all */
477 }
478 }
479 if (fn) {
480 if (ref_flags(raw) == REF_PRISTINE) {
481 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
482 if (!ret) {
483 /* Urgh. Return it sensibly. */
484 frag->node->raw = f->inocache->nodes;
182ec4ee 485 }
1da177e4
LT
486 if (ret != -EBADFD)
487 goto upnout;
488 }
489 /* We found a datanode. Do the GC */
490 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
491 /* It crosses a page boundary. Therefore, it must be a hole. */
492 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
493 } else {
494 /* It could still be a hole. But we GC the page this way anyway */
495 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
496 }
497 goto upnout;
498 }
182ec4ee 499
1da177e4
LT
500 /* Wasn't a dnode. Try dirent */
501 for (fd = f->dents; fd; fd=fd->next) {
502 if (fd->raw == raw)
503 break;
504 }
505
506 if (fd && fd->ino) {
507 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
508 } else if (fd) {
509 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
510 } else {
511 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
512 ref_offset(raw), f->inocache->ino);
513 if (ref_obsolete(raw)) {
514 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
515 } else {
e0c8e42f
AB
516 jffs2_dbg_dump_node(c, ref_offset(raw));
517 BUG();
1da177e4
LT
518 }
519 }
520 upnout:
521 up(&f->sem);
522
523 return ret;
524}
525
182ec4ee 526static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
1da177e4
LT
527 struct jffs2_inode_cache *ic,
528 struct jffs2_raw_node_ref *raw)
529{
530 union jffs2_node_union *node;
531 struct jffs2_raw_node_ref *nraw;
532 size_t retlen;
533 int ret;
534 uint32_t phys_ofs, alloclen;
535 uint32_t crc, rawlen;
536 int retried = 0;
537
538 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
539
6171586a 540 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
1da177e4
LT
541
542 /* Ask for a small amount of space (or the totlen if smaller) because we
543 don't want to force wastage of the end of a block if splitting would
544 work. */
6171586a
DW
545 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
546 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
547
548 ret = jffs2_reserve_space_gc(c, alloclen, &phys_ofs, &alloclen, rawlen);
549 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
e631ddba 550
1da177e4
LT
551 if (ret)
552 return ret;
553
554 if (alloclen < rawlen) {
555 /* Doesn't fit untouched. We'll go the old route and split it */
556 return -EBADFD;
557 }
558
559 node = kmalloc(rawlen, GFP_KERNEL);
560 if (!node)
561 return -ENOMEM;
562
563 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
564 if (!ret && retlen != rawlen)
565 ret = -EIO;
566 if (ret)
567 goto out_node;
568
569 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
570 if (je32_to_cpu(node->u.hdr_crc) != crc) {
571 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
572 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
573 goto bail;
574 }
575
576 switch(je16_to_cpu(node->u.nodetype)) {
577 case JFFS2_NODETYPE_INODE:
578 crc = crc32(0, node, sizeof(node->i)-8);
579 if (je32_to_cpu(node->i.node_crc) != crc) {
580 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
581 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
582 goto bail;
583 }
584
585 if (je32_to_cpu(node->i.dsize)) {
586 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
587 if (je32_to_cpu(node->i.data_crc) != crc) {
588 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
589 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
590 goto bail;
591 }
592 }
593 break;
594
595 case JFFS2_NODETYPE_DIRENT:
596 crc = crc32(0, node, sizeof(node->d)-8);
597 if (je32_to_cpu(node->d.node_crc) != crc) {
598 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
599 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
600 goto bail;
601 }
602
603 if (node->d.nsize) {
604 crc = crc32(0, node->d.name, node->d.nsize);
605 if (je32_to_cpu(node->d.name_crc) != crc) {
606 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
607 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
608 goto bail;
609 }
610 }
611 break;
612 default:
6171586a
DW
613 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
614 if (ic) {
615 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
616 ref_offset(raw), je16_to_cpu(node->u.nodetype));
617 goto bail;
618 }
1da177e4
LT
619 }
620
621 nraw = jffs2_alloc_raw_node_ref();
622 if (!nraw) {
623 ret = -ENOMEM;
624 goto out_node;
625 }
626
627 /* OK, all the CRCs are good; this node can just be copied as-is. */
628 retry:
629 nraw->flash_offset = phys_ofs;
1da177e4
LT
630
631 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
632
633 if (ret || (retlen != rawlen)) {
634 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
635 rawlen, phys_ofs, ret, retlen);
636 if (retlen) {
637 /* Doesn't belong to any inode */
638 nraw->next_in_ino = NULL;
639
640 nraw->flash_offset |= REF_OBSOLETE;
b64335f2 641 jffs2_add_physical_node_ref(c, nraw, rawlen);
1da177e4
LT
642 jffs2_mark_node_obsolete(c, nraw);
643 } else {
644 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
645 jffs2_free_raw_node_ref(nraw);
646 }
647 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
648 /* Try to reallocate space and retry */
649 uint32_t dummy;
650 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
651
652 retried = 1;
653
654 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
182ec4ee 655
730554d9
AB
656 jffs2_dbg_acct_sanity_check(c,jeb);
657 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4 658
e631ddba
FH
659 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen);
660 /* this is not the exact summary size of it,
661 it is only an upper estimation */
1da177e4
LT
662
663 if (!ret) {
664 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
665
730554d9
AB
666 jffs2_dbg_acct_sanity_check(c,jeb);
667 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4
LT
668
669 goto retry;
670 }
671 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
672 jffs2_free_raw_node_ref(nraw);
673 }
674
675 jffs2_free_raw_node_ref(nraw);
676 if (!ret)
677 ret = -EIO;
678 goto out_node;
679 }
680 nraw->flash_offset |= REF_PRISTINE;
b64335f2 681 jffs2_add_physical_node_ref(c, nraw, rawlen);
1da177e4 682
6171586a
DW
683 if (ic) {
684 /* Link into per-inode list. This is safe because of the ic
685 state being INO_STATE_GC. Note that if we're doing this
686 for an inode which is in-core, the 'nraw' pointer is then
687 going to be fetched from ic->nodes by our caller. */
688 spin_lock(&c->erase_completion_lock);
689 nraw->next_in_ino = ic->nodes;
690 ic->nodes = nraw;
691 spin_unlock(&c->erase_completion_lock);
692 }
1da177e4
LT
693 jffs2_mark_node_obsolete(c, raw);
694 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
695
696 out_node:
697 kfree(node);
698 return ret;
699 bail:
700 ret = -EBADFD;
701 goto out_node;
702}
703
182ec4ee 704static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
705 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
706{
707 struct jffs2_full_dnode *new_fn;
708 struct jffs2_raw_inode ri;
8557fd51 709 struct jffs2_node_frag *last_frag;
aef9ab47 710 union jffs2_device_node dev;
1da177e4 711 char *mdata = NULL, mdatalen = 0;
8557fd51 712 uint32_t alloclen, phys_ofs, ilen;
1da177e4
LT
713 int ret;
714
715 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
716 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
717 /* For these, we don't actually need to read the old node */
aef9ab47 718 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
1da177e4 719 mdata = (char *)&dev;
1da177e4
LT
720 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
721 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
722 mdatalen = fn->size;
723 mdata = kmalloc(fn->size, GFP_KERNEL);
724 if (!mdata) {
725 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
726 return -ENOMEM;
727 }
728 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
729 if (ret) {
730 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
731 kfree(mdata);
732 return ret;
733 }
734 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
735
736 }
182ec4ee 737
e631ddba
FH
738 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen,
739 JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
740 if (ret) {
741 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
742 sizeof(ri)+ mdatalen, ret);
743 goto out;
744 }
182ec4ee 745
8557fd51
AB
746 last_frag = frag_last(&f->fragtree);
747 if (last_frag)
748 /* Fetch the inode length from the fragtree rather then
749 * from i_size since i_size may have not been updated yet */
750 ilen = last_frag->ofs + last_frag->size;
751 else
752 ilen = JFFS2_F_I_SIZE(f);
182ec4ee 753
1da177e4
LT
754 memset(&ri, 0, sizeof(ri));
755 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
756 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
757 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
758 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
759
760 ri.ino = cpu_to_je32(f->inocache->ino);
761 ri.version = cpu_to_je32(++f->highest_version);
762 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
763 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
764 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 765 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
766 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
767 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
768 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
769 ri.offset = cpu_to_je32(0);
770 ri.csize = cpu_to_je32(mdatalen);
771 ri.dsize = cpu_to_je32(mdatalen);
772 ri.compr = JFFS2_COMPR_NONE;
773 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
774 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
775
776 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
777
778 if (IS_ERR(new_fn)) {
779 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
780 ret = PTR_ERR(new_fn);
781 goto out;
782 }
783 jffs2_mark_node_obsolete(c, fn->raw);
784 jffs2_free_full_dnode(fn);
785 f->metadata = new_fn;
786 out:
787 if (S_ISLNK(JFFS2_F_I_MODE(f)))
788 kfree(mdata);
789 return ret;
790}
791
182ec4ee 792static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
793 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
794{
795 struct jffs2_full_dirent *new_fd;
796 struct jffs2_raw_dirent rd;
797 uint32_t alloclen, phys_ofs;
798 int ret;
799
800 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
801 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
802 rd.nsize = strlen(fd->name);
803 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
804 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
805
806 rd.pino = cpu_to_je32(f->inocache->ino);
807 rd.version = cpu_to_je32(++f->highest_version);
808 rd.ino = cpu_to_je32(fd->ino);
3a69e0cd
AB
809 /* If the times on this inode were set by explicit utime() they can be different,
810 so refrain from splatting them. */
811 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
812 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
182ec4ee 813 else
3a69e0cd 814 rd.mctime = cpu_to_je32(0);
1da177e4
LT
815 rd.type = fd->type;
816 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
817 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
182ec4ee 818
e631ddba
FH
819 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen,
820 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
1da177e4
LT
821 if (ret) {
822 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
823 sizeof(rd)+rd.nsize, ret);
824 return ret;
825 }
826 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
827
828 if (IS_ERR(new_fd)) {
829 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
830 return PTR_ERR(new_fd);
831 }
832 jffs2_add_fd_to_list(c, new_fd, &f->dents);
833 return 0;
834}
835
182ec4ee 836static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1da177e4
LT
837 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
838{
839 struct jffs2_full_dirent **fdp = &f->dents;
840 int found = 0;
841
842 /* On a medium where we can't actually mark nodes obsolete
843 pernamently, such as NAND flash, we need to work out
844 whether this deletion dirent is still needed to actively
845 delete a 'real' dirent with the same name that's still
846 somewhere else on the flash. */
847 if (!jffs2_can_mark_obsolete(c)) {
848 struct jffs2_raw_dirent *rd;
849 struct jffs2_raw_node_ref *raw;
850 int ret;
851 size_t retlen;
852 int name_len = strlen(fd->name);
853 uint32_t name_crc = crc32(0, fd->name, name_len);
854 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
855
856 rd = kmalloc(rawlen, GFP_KERNEL);
857 if (!rd)
858 return -ENOMEM;
859
860 /* Prevent the erase code from nicking the obsolete node refs while
861 we're looking at them. I really don't like this extra lock but
862 can't see any alternative. Suggestions on a postcard to... */
863 down(&c->erase_free_sem);
864
865 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
866
867 /* We only care about obsolete ones */
868 if (!(ref_obsolete(raw)))
869 continue;
870
871 /* Any dirent with the same name is going to have the same length... */
872 if (ref_totlen(c, NULL, raw) != rawlen)
873 continue;
874
182ec4ee 875 /* Doesn't matter if there's one in the same erase block. We're going to
1da177e4 876 delete it too at the same time. */
3be36675 877 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
1da177e4
LT
878 continue;
879
880 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
881
882 /* This is an obsolete node belonging to the same directory, and it's of the right
883 length. We need to take a closer look...*/
884 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
885 if (ret) {
886 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
887 /* If we can't read it, we don't need to continue to obsolete it. Continue */
888 continue;
889 }
890 if (retlen != rawlen) {
891 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
892 retlen, rawlen, ref_offset(raw));
893 continue;
894 }
895
896 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
897 continue;
898
899 /* If the name CRC doesn't match, skip */
900 if (je32_to_cpu(rd->name_crc) != name_crc)
901 continue;
902
903 /* If the name length doesn't match, or it's another deletion dirent, skip */
904 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
905 continue;
906
907 /* OK, check the actual name now */
908 if (memcmp(rd->name, fd->name, name_len))
909 continue;
910
911 /* OK. The name really does match. There really is still an older node on
912 the flash which our deletion dirent obsoletes. So we have to write out
913 a new deletion dirent to replace it */
914 up(&c->erase_free_sem);
915
916 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
917 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
918 kfree(rd);
919
920 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
921 }
922
923 up(&c->erase_free_sem);
924 kfree(rd);
925 }
926
182ec4ee 927 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
3a69e0cd
AB
928 we should update the metadata node with those times accordingly */
929
1da177e4
LT
930 /* No need for it any more. Just mark it obsolete and remove it from the list */
931 while (*fdp) {
932 if ((*fdp) == fd) {
933 found = 1;
934 *fdp = fd->next;
935 break;
936 }
937 fdp = &(*fdp)->next;
938 }
939 if (!found) {
940 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
941 }
942 jffs2_mark_node_obsolete(c, fd->raw);
943 jffs2_free_full_dirent(fd);
944 return 0;
945}
946
947static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
948 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
949 uint32_t start, uint32_t end)
950{
951 struct jffs2_raw_inode ri;
952 struct jffs2_node_frag *frag;
953 struct jffs2_full_dnode *new_fn;
8557fd51 954 uint32_t alloclen, phys_ofs, ilen;
1da177e4
LT
955 int ret;
956
957 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
958 f->inocache->ino, start, end));
182ec4ee 959
1da177e4
LT
960 memset(&ri, 0, sizeof(ri));
961
962 if(fn->frags > 1) {
963 size_t readlen;
964 uint32_t crc;
182ec4ee 965 /* It's partially obsoleted by a later write. So we have to
1da177e4
LT
966 write it out again with the _same_ version as before */
967 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
968 if (readlen != sizeof(ri) || ret) {
969 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
970 goto fill;
971 }
972 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
973 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
974 ref_offset(fn->raw),
975 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
976 return -EIO;
977 }
978 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
979 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
980 ref_offset(fn->raw),
981 je32_to_cpu(ri.totlen), sizeof(ri));
982 return -EIO;
983 }
984 crc = crc32(0, &ri, sizeof(ri)-8);
985 if (crc != je32_to_cpu(ri.node_crc)) {
986 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
182ec4ee 987 ref_offset(fn->raw),
1da177e4
LT
988 je32_to_cpu(ri.node_crc), crc);
989 /* FIXME: We could possibly deal with this by writing new holes for each frag */
182ec4ee 990 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1da177e4
LT
991 start, end, f->inocache->ino);
992 goto fill;
993 }
994 if (ri.compr != JFFS2_COMPR_ZERO) {
995 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
182ec4ee 996 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
1da177e4
LT
997 start, end, f->inocache->ino);
998 goto fill;
999 }
1000 } else {
1001 fill:
1002 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1003 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1004 ri.totlen = cpu_to_je32(sizeof(ri));
1005 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1006
1007 ri.ino = cpu_to_je32(f->inocache->ino);
1008 ri.version = cpu_to_je32(++f->highest_version);
1009 ri.offset = cpu_to_je32(start);
1010 ri.dsize = cpu_to_je32(end - start);
1011 ri.csize = cpu_to_je32(0);
1012 ri.compr = JFFS2_COMPR_ZERO;
1013 }
182ec4ee 1014
8557fd51
AB
1015 frag = frag_last(&f->fragtree);
1016 if (frag)
1017 /* Fetch the inode length from the fragtree rather then
1018 * from i_size since i_size may have not been updated yet */
1019 ilen = frag->ofs + frag->size;
1020 else
1021 ilen = JFFS2_F_I_SIZE(f);
1022
1da177e4
LT
1023 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1024 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1025 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 1026 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
1027 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1028 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1029 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1030 ri.data_crc = cpu_to_je32(0);
1031 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1032
e631ddba
FH
1033 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen,
1034 JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
1035 if (ret) {
1036 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1037 sizeof(ri), ret);
1038 return ret;
1039 }
1040 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1041
1042 if (IS_ERR(new_fn)) {
1043 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1044 return PTR_ERR(new_fn);
1045 }
1046 if (je32_to_cpu(ri.version) == f->highest_version) {
1047 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1048 if (f->metadata) {
1049 jffs2_mark_node_obsolete(c, f->metadata->raw);
1050 jffs2_free_full_dnode(f->metadata);
1051 f->metadata = NULL;
1052 }
1053 return 0;
1054 }
1055
182ec4ee 1056 /*
1da177e4
LT
1057 * We should only get here in the case where the node we are
1058 * replacing had more than one frag, so we kept the same version
182ec4ee 1059 * number as before. (Except in case of error -- see 'goto fill;'
1da177e4
LT
1060 * above.)
1061 */
1062 D1(if(unlikely(fn->frags <= 1)) {
1063 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1064 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1065 je32_to_cpu(ri.ino));
1066 });
1067
1068 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1069 mark_ref_normal(new_fn->raw);
1070
182ec4ee 1071 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1da177e4
LT
1072 frag; frag = frag_next(frag)) {
1073 if (frag->ofs > fn->size + fn->ofs)
1074 break;
1075 if (frag->node == fn) {
1076 frag->node = new_fn;
1077 new_fn->frags++;
1078 fn->frags--;
1079 }
1080 }
1081 if (fn->frags) {
1082 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1083 BUG();
1084 }
1085 if (!new_fn->frags) {
1086 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1087 BUG();
1088 }
182ec4ee 1089
1da177e4
LT
1090 jffs2_mark_node_obsolete(c, fn->raw);
1091 jffs2_free_full_dnode(fn);
182ec4ee 1092
1da177e4
LT
1093 return 0;
1094}
1095
1096static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1097 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1098 uint32_t start, uint32_t end)
1099{
1100 struct jffs2_full_dnode *new_fn;
1101 struct jffs2_raw_inode ri;
182ec4ee 1102 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1da177e4
LT
1103 int ret = 0;
1104 unsigned char *comprbuf = NULL, *writebuf;
1105 unsigned long pg;
1106 unsigned char *pg_ptr;
182ec4ee 1107
1da177e4
LT
1108 memset(&ri, 0, sizeof(ri));
1109
1110 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1111 f->inocache->ino, start, end));
1112
1113 orig_end = end;
1114 orig_start = start;
1115
1116 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1117 /* Attempt to do some merging. But only expand to cover logically
1118 adjacent frags if the block containing them is already considered
182ec4ee
TG
1119 to be dirty. Otherwise we end up with GC just going round in
1120 circles dirtying the nodes it already wrote out, especially
1da177e4
LT
1121 on NAND where we have small eraseblocks and hence a much higher
1122 chance of nodes having to be split to cross boundaries. */
1123
1124 struct jffs2_node_frag *frag;
1125 uint32_t min, max;
1126
1127 min = start & ~(PAGE_CACHE_SIZE-1);
1128 max = min + PAGE_CACHE_SIZE;
1129
1130 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1131
1132 /* BUG_ON(!frag) but that'll happen anyway... */
1133
1134 BUG_ON(frag->ofs != start);
1135
1136 /* First grow down... */
1137 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1138
1139 /* If the previous frag doesn't even reach the beginning, there's
1140 excessive fragmentation. Just merge. */
1141 if (frag->ofs > min) {
1142 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1143 frag->ofs, frag->ofs+frag->size));
1144 start = frag->ofs;
1145 continue;
1146 }
1147 /* OK. This frag holds the first byte of the page. */
1148 if (!frag->node || !frag->node->raw) {
1149 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1150 frag->ofs, frag->ofs+frag->size));
1151 break;
1152 } else {
1153
182ec4ee 1154 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1155 in a block which is still considered clean? If so, don't obsolete it.
1156 If not, cover it anyway. */
1157
1158 struct jffs2_raw_node_ref *raw = frag->node->raw;
1159 struct jffs2_eraseblock *jeb;
1160
1161 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1162
1163 if (jeb == c->gcblock) {
1164 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1165 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1166 start = frag->ofs;
1167 break;
1168 }
1169 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1170 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1171 frag->ofs, frag->ofs+frag->size, jeb->offset));
1172 break;
1173 }
1174
1175 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1176 frag->ofs, frag->ofs+frag->size, jeb->offset));
1177 start = frag->ofs;
1178 break;
1179 }
1180 }
1181
1182 /* ... then up */
1183
1184 /* Find last frag which is actually part of the node we're to GC. */
1185 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1186
1187 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1188
1189 /* If the previous frag doesn't even reach the beginning, there's lots
1190 of fragmentation. Just merge. */
1191 if (frag->ofs+frag->size < max) {
1192 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1193 frag->ofs, frag->ofs+frag->size));
1194 end = frag->ofs + frag->size;
1195 continue;
1196 }
1197
1198 if (!frag->node || !frag->node->raw) {
1199 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1200 frag->ofs, frag->ofs+frag->size));
1201 break;
1202 } else {
1203
182ec4ee 1204 /* OK, it's a frag which extends to the beginning of the page. Does it live
1da177e4
LT
1205 in a block which is still considered clean? If so, don't obsolete it.
1206 If not, cover it anyway. */
1207
1208 struct jffs2_raw_node_ref *raw = frag->node->raw;
1209 struct jffs2_eraseblock *jeb;
1210
1211 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1212
1213 if (jeb == c->gcblock) {
1214 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1215 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1216 end = frag->ofs + frag->size;
1217 break;
1218 }
1219 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1220 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1221 frag->ofs, frag->ofs+frag->size, jeb->offset));
1222 break;
1223 }
1224
1225 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1226 frag->ofs, frag->ofs+frag->size, jeb->offset));
1227 end = frag->ofs + frag->size;
1228 break;
1229 }
1230 }
182ec4ee 1231 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1da177e4
LT
1232 orig_start, orig_end, start, end));
1233
8557fd51 1234 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1da177e4
LT
1235 BUG_ON(end < orig_end);
1236 BUG_ON(start > orig_start);
1237 }
182ec4ee 1238
1da177e4
LT
1239 /* First, use readpage() to read the appropriate page into the page cache */
1240 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1241 * triggered garbage collection in the first place?
1242 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1243 * page OK. We'll actually write it out again in commit_write, which is a little
1244 * suboptimal, but at least we're correct.
1245 */
1246 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1247
1248 if (IS_ERR(pg_ptr)) {
1249 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1250 return PTR_ERR(pg_ptr);
1251 }
1252
1253 offset = start;
1254 while(offset < orig_end) {
1255 uint32_t datalen;
1256 uint32_t cdatalen;
1257 uint16_t comprtype = JFFS2_COMPR_NONE;
1258
e631ddba
FH
1259 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs,
1260 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1da177e4
LT
1261
1262 if (ret) {
1263 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1264 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1265 break;
1266 }
1267 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1268 datalen = end - offset;
1269
1270 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1271
1272 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1273
1274 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1275 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1276 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1277 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1278
1279 ri.ino = cpu_to_je32(f->inocache->ino);
1280 ri.version = cpu_to_je32(++f->highest_version);
1281 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1282 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1283 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1284 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1285 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1286 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1287 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1288 ri.offset = cpu_to_je32(offset);
1289 ri.csize = cpu_to_je32(cdatalen);
1290 ri.dsize = cpu_to_je32(datalen);
1291 ri.compr = comprtype & 0xff;
1292 ri.usercompr = (comprtype >> 8) & 0xff;
1293 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1294 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
182ec4ee 1295
1da177e4
LT
1296 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1297
1298 jffs2_free_comprbuf(comprbuf, writebuf);
1299
1300 if (IS_ERR(new_fn)) {
1301 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1302 ret = PTR_ERR(new_fn);
1303 break;
1304 }
1305 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1306 offset += datalen;
1307 if (f->metadata) {
1308 jffs2_mark_node_obsolete(c, f->metadata->raw);
1309 jffs2_free_full_dnode(f->metadata);
1310 f->metadata = NULL;
1311 }
1312 }
1313
1314 jffs2_gc_release_page(c, pg_ptr, &pg);
1315 return ret;
1316}
This page took 0.288455 seconds and 4 git commands to generate.